Site Loader

Содержание

Что такое диод и как его проверить

Приветствую друзья!

Мы настолько привыкли к компьютерам, что не представляем своей жизни без них. Эти жужжащие ящики на наших столах собраны из множества различных «железок». Интересно отметить, что ни один из этих составных «кирпичиков» сам по себе не может похвастаться теми свойствами, которыми обладает компьютер.

А собранные вместе, они являют собой нечто совершенно уникальное!

Какой кирпич не возьми – это только кусок обожженной глины; не сразу и понятно, к какому делу его – самого по себе — можно приспособить.

Проверка диодовЭто как дом, построенный из кирпичей.

Но несколько тысяч собранных определенным образом таких кусков глины — это жилище, которое защищает от непогоды и предоставляет крышу над головой.

Разумеется, можно пользоваться компьютером (и жить в доме) и не представлять себе, как эти штуки устроены.

Но если вы хотите научиться «лечить» ваши компьютеры, то придется разбираться, как устроены их составные части.

Поэтому сегодня мы поговорим об одном из компьютерных «кирпичиков» чуть более подробно. Мы попытаемся кратко познакомиться с тем, что такое полупроводниковые диоды и зачем они нужны.

Что такое диод?

Диоды в блоке питанияДиоды применяются в компьютерных блоках питания для выпрямления переменного тока.

Выпрямительный диод – это деталь, имеющая в своем составе соединенные вместе полупроводники двух типов – p-типа (positive – положительный) и n–типа (negative – отрицательный).

При их соединении (сплавлении) образуется так называемый p-n переход. Этот переход обладает разным сопротивлением при различной полярности приложенного напряжения.

Если напряжение приложено в прямом направлении (положительная клемма источника напряжения подключена к p-полупроводнику — аноду, а отрицательная – к n-полупроводнику — катоду), то сопротивление диода невелико.

В этом случае говорят, что диод открыт. Если полярность подключения изменить на противоположную, то сопротивление диода будет очень большим. В таком случае говорят, что диод закрыт (заперт).

Вольт-амперная характеристика диода

Когда диод открыт, то на нем падает какое-то напряжение.

Это падение напряжения создается протекающим через диод так называемым прямым током и зависит от величины этого тока.

Причем зависимость эта нелинейная.

Конкретное значение падения напряжения в зависимости от протекающего тока можно определить по вольт-амперной характеристике.

Эта характеристика обязательно приводится в полном техническом описании (data sheets, справочных листах).

Например, на распространенном диоде 1N5408, применяемом в компьютерном блоке питания, при изменении тока от 0,2 до 3 А падение напряжения изменяется от 0,6 до 0,9 В. Чем больше протекающий через диод ток, тем больше падение напряжения на нем и, соответственно, рассеиваемая на нем мощность (P = U * I). Чем большая мощность рассеивается на диоде, тем сильнее он греется.

Мостовая схема выпрямления

Мостовая схема выпрямления

В компьютерном блоке питания при выпрямлении сетевого напряжения применяется обычно мостовая схема выпрямления – 4 диода, включенные определенным образом.

Если клемма 1 имеет положительный относительно клеммы 2 потенциал, то ток пойдет через диод VD1, нагрузку и диод VD3.

Если клемма 1 имеет отрицательный клеммы 2 потенциал, то ток потечет через диод VD2, нагрузку и диод VD4. Таким образом, ток через нагрузку хоть и меняется по величине (при переменном напряжении), но протекает всегда в одном направлении – от клеммы 3 к клемме 4.

В этом и заключается эффект выпрямления. Если бы не было диодного моста – ток по нагрузке протекал бы в разных направлениях. С мостом же он протекает в одном. Такой ток называется пульсирующим.

В курсе высшей математики доказывается, что пульсирующее напряжение содержит в себе постоянную составляющую и сумму гармоник (частот, кратных основной частоте переменного напряжения 50 Герц). Постоянная составляющая выделяется фильтром (конденсатором большой емкости), который не пропускает гармоники.

Схема выпрямления из двух диодов

Выпрямительные диоды присутствуют и в низковольтной части блока питания. Только схема включения состоит там не из 4-х диодов, а из двух.

Схема выпрямления из двух диодов

Внимательный читатель может спросить: «А почему это используются разные схемы включения? Нельзя ли применить диодный мост и в низковольтной части?»

Можно, но это будет не лучшее решение. В случае диодного моста ток проходит через нагрузку и два последовательно включенных диода.

В случае использования диодов 1N5408 общее падение напряжения на них может составить величину 1,8 В. Это очень немного по сравнению с сетевым напряжением 220 В.

А вот если такая схема будет применена в низковольтной части, то это падение будет весьма заметным по сравнению с напряжениями +3,3, +5 и +12 В. Применение схемы из двух диодов уменьшает потери вдвое, так как последовательно с нагрузкой включен один диод, а не два.

К тому же, ток во вторичных цепях блока питания гораздо больше (в разы), чем в первичной.

Схема выпрямления из двух диодовСледует отметить, для этой схемы трансформатор должен иметь две одинаковые обмотки, а не одну. Схема выпрямления из двух диодов использует оба полупериода переменного напряжения, также как и мостовая.

Если потенциал верхнего конца вторичной обмотки трансформатора (см схему) положителен по отношению к нижнему, то ток протекает через клемму 1, диод VD1, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD2 в это время заперт.

Если потенциал нижнего конца вторичной обмотки положителен по отношению к верхнему, то ток протекает через клемму 2, диод VD2, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD1 в это время заперт. Получается тот же пульсирующий ток, что и при мостовой схеме.

Теперь давайте покончим со скучной теорией и перейдем к самому интересному – к практике.

Проверка диодов

Изображение диода в схемахДля начала скажем, что перед началом проверки диодов, хорошо бы ознакомиться с тем, как работать с цифровым тестером.

Об этом рассказывается в соответствующих статьях здесь, здесь и здесь.

Диод на электрических схемах изображается символически в виде треугольника (стрелочки) и палочки.

Палочка – это катод, стрелочка (она указывает направление тока, т.е. движения положительных зарядов) – анод.

Проверить диодный мост можно цифровым тестером, установив переключатель работы в положении проверки диодов (указатель переключателя диапазонов тестера должен стоять напротив символического изображения диода).

Открытый диод

Если присоединить красный щуп тестера к аноду, а черный — к катоду отдельного диода, то диод будет открыт напряжением с тестера.

Дисплей покажет величину 0,5 – 0,6 В.

Если изменить полярность щупов, диод будет заперт.

Дисплей при этом покажет единицу в крайнем левом разряде.

Диодный мост часто имеет символическое обозначение вида напряжения на корпусе (~ переменное напряжение, +, — постоянное напряжение).

Диод закрытДиодный мост можно проверить, установив один щуп на одну из клемм «~», а второй – поочередно на выводы «+» и «-».

При этом один диод будет открыт, а другой закрыт.

Если поменять полярность щупов – то тот диод, который был закрыт, теперь откроется, а другой закроется.

Следует обратить внимание на то, что катод – это плюсовой вывод моста.

Если какой-то из диодов закорочен, тестер покажет нулевое (или очень небольшое напряжение).

Диод закорочен Такой мост, естественно, непригоден для работы.

В закоротке диода можно убедиться, если тестировать диоды в режиме измерения сопротивления.

При закороченном диоде тестер покажет небольшое сопротивление в обоих направлениях.

Как уже говорилось, во вторичных цепях используется схема выпрямления из двух диодов.

Но даже на одном диоде падает достаточно большое напряжение по сравнению с выходными напряжениями +12 В, +5 В, +3,3 В.

Диодный мостТоки потребления могут достигать 20 А и более, и на диодах будет рассеиваться большая мощность.

Вследствие этого они будут сильно греться.

Мощность рассеяния уменьшится, если будет меньшим прямое напряжение на диоде.

Поэтому в таких случаях применяют так называемые диоды Шоттки, у которых прямое падение напряжения меньше.

Диоды Шоттки

Низковольтная диодная сборкаДиод Шоттки состоит не из двух различных полупроводников, а из металла и полупроводника.

Получающийся при этом так называемый потенциальный барьер будет меньше.

В компьютерных блоках питания применяют сдвоенные диоды Шоттки в трехвыводном корпусе.

Типичным представителем такой сборки является SBL2040. Падение напряжения на каждом из ее диодов при максимальном токе не превысит (по даташиту) 0,55 В. Если проверить ее тестером (в режиме проверки диодов), то он покажет величину около 0,17 В.

Меньшая величина напряжения обусловлена тем, что через диод протекает очень небольшой ток, далекий от максимального.

Схема выпрямления из двух диодовВ заключение скажем, что у диода есть такой параметр, как предельно допустимое обратное напряжение. Если диод заперт – к нему приложено обратное напряжение. При замене диодов надо учитывать эту величину.

Низковольтная диодная сборкаЕсли в реальной схеме обратное напряжение превысит предельно допустимое – диод выйдет из строя!

Диод – важная «железка» в электронике. Чем бы еще мы выпрямляли напряжение?

Купить диоды для экспериментов можно здесь:

До встречи на блоге!


Супрессор. Защитный диод.

Обозначение, параметры и применение защитных диодов

Среди всего многообразия полупроводниковых приборов, наверное, самая большая семья у диодов. Диоды Шоттки, диоды Ганна, стабилитроны, светодиоды, фотодиоды, туннельные диоды и ещё много разных типов и областей применения.

Один из классов полупроводниковых диодов в нашей литературе называется ПОН (полупроводниковый ограничитель напряжения) или супрессор. В зарубежной технической литературе используется название TVS-диод (Transient Voltage Suppressor). Очень часто TVS-диоды называют по маркам производителей: TRANSIL, INSEL.

В технической литературе и среди радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, трансил, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.

Рассмотрим, что же такое TVS-диод, его принцип действия, в каких схемах и для каких целей используется.

TVS-диоды были созданы в 1968 году в США для защиты промышленной аппаратуры от разрядов атмосферного электричества. В условиях эксплуатации электронных приборов как промышленного, так и бытового назначения большое значение придаётся защите этих приборов именно от природных электрических импульсов.

Очень часто возникают броски напряжения и на силовых трансформаторных подстанциях. В таких случаях бытовая техника выходит из строя сотнями. Поскольку на промышленных предприятиях комплексная защита имеется, а жилые дома в этом случае совершенно не защищены.

По некоторым данным потери связанные с выходом из строя и последующим ремонтом всей электронной аппаратуры в США составляют около $12 млрд. в год. Специалисты посчитали, что и в нашей стране потери соответствуют этой сумме.

Для защиты аппаратуры от воздействия электрических перенапряжений и был разработан класс полупроводниковых приборов называемых TVS-диоды или “супрессоры”. Иногда в разговоре можно услышать: диодный предохранитель.

Обозначение на схеме.

На принципиальных схемах супрессор (ака защитный диод) обозначается так (VD1, VD2 — симметричные; VD3 — однонаправленные).

Обозначение на схеме защитного диода

Принцип работы супрессора (защитного диода).

У TVS-диодов ярко выраженная нелинейная вольт-амперная характеристика. Если амплитуда электрического импульса превысит паспортное напряжение для конкретного типа диода, то он перейдёт в режим лавинного пробоя. То есть TVS-диод ограничит импульс напряжения до нормальной величины, а “излишки” уходят на корпус (землю) через диод. Более наглядно процесс выглядит на рисунке.

Принцип работы супрессора

До тех пор пока не возникает угроза выхода из строя электронного прибора, TVS-диод не оказывает никакого влияния на работу техники. У этого полупроводникового прибора более высокое быстродействие по сравнению с ограничителями, которые использовались раньше.

Предохранительные диоды выпускаются как несимметричные (однонаправленные), так и симметричные (двунаправленные). Симметричные могут работать в цепях с двуполярными напряжениями, а несимметричные только с напряжением одной полярности. Ещё одна типовая схема подключения (для двунаправленного диода).

Схема включения двунаправленного защитного диода

Для однонаправленного супрессора схема выглядит чуть по-другому.

Схема включения однонаправленного супрессора

В случае повышения входного напряжения прибор за очень короткое время уменьшает своё сопротивление. Ток в цепи резко возрастает и происходит перегорание предохранителя. Поскольку супрессор срабатывает очень быстро, то оборудованию не наносится вреда. Отличительной чертой TVS-диодов является очень короткое время реакции на превышение напряжения. Это одна из «фишек» защитных диодов.

Основные электрические параметры супрессоров.

  • U проб. (В) – значение напряжения пробоя. В зарубежной технической документации этот параметр обозначается как VBR (Breakdown Voltage). Это значение напряжения, при котором диод резко открывается и отводит опасный импульс тока на общий провод («на землю»).

  • I обр. (мкА) – значение постоянного обратного тока. Это значение максимального обратного тока утечки, который есть у всех диодов. Он очень мал и практически не оказывает никого влияния на работу схемы. Иное обозначение – IR (Max. Reverse Leakage Current). Так же может обозначаться как IRM.

  • U обр. (В) – постоянное обратное напряжение. Соответствует англоязычной аббревиатуре VRWM (Working Peak Reverse Voltage). Может обозначаться как VRM.

  • U огр. имп. (В) – максимальное импульсное напряжение ограничения. В даташитах обозначается как VCL или VCMax. Clamping Voltage или просто Clamping Voltage.

  • I огр. мах. (А) – максимальный пиковый импульсный ток. На английский манер обозначается как IPP (Max. Peak Pulse Current). Данное значение показывает, какое максимальное значение импульса тока способен выдержать супрессор без разрушения. Для мощных супрессоров это значение может достигать нескольких сотен ампер!

  • P имп. (Ватт) – максимальная допустимая импульсная мощность. Этот параметр показывает, какую мощность может подавить супрессор. Напомним, что слово супрессор произошло от английского слова Suppressor, что в переводе означает «подавитель». Зарубежное название параметра Peak Pulse Power (PPP).

    Значение максимальной импульсной мощности можно найти перемножением значений U огр. имп. (VCL) и I огр. мах. (IPP).

Вольт-амперные характеристики симметричного и несимметричного TVS-диода выглядят следующим образом.

ВАХ защитного диода
ВАХ однонаправленного защитного диода (супрессора)

ВАХ симметричного супрессора
ВАХ двунаправленного супрессора

Большим минусом этих диодов можно считать большую зависимость максимальной импульсной мощности от длительности импульса. Обычно рассматривается работа TVS-диода при подаче на него импульса с минимальным временем нарастания порядка 10 микросекунд и малой длительностью.

Например, при длительности импульса 50 микросекунд диод типа SMBJ 12A выдерживает импульсный ток, превышающий номинальный почти в четыре раза.

Очень хорошо зарекомендовали себя малогабаритные диоды TRANSZORBTM серии 1.5КЕ6.8 – 1.5КЕ440 (С)A. Они выпускаются как в симметричном, так и в несимметричном исполнении. Для симметричного диода к обозначению добавляется буква С или СА. У этой серии большой диапазон рабочих напряжений от 5,0 до 376 вольт, малое время срабатывания 1*10-9 сек, способность к подавлению импульсов большой мощности до 1500 Вт. Они прекрасно зарекомендовали себя в схемах защиты телевизионного, цифрового и другого современного оборудования.

Диоды выпускаются в корпусе DO-201.

Размеры корпуса

Размеры указаны в дюймах и миллиметрах (в скобках). Несимметричные супрессоры имеют на корпусе цветное маркировочное кольцо, которое расположено ближе к катодному выводу.

На корпусе указана маркировка защитного диода, в которой зашифрованы его основные параметры.

Маркировка супрессоров серии 1.5KExx

Диоды TRANSILTM фирмы THOMSON широко используются для защиты автомобильной электроники от перенапряжений. Самым сильным источником электрических импульсов является система зажигания. Для защиты автомобильного музыкального центра достаточно одного диода TRANSILTM.

Двунаправленные диоды TRANSILTM 1.5КЕ440СА с успехом применяются для защиты бытовой электронной аппаратуры в сетях 220 вольт. Их применение наиболее эффективно для защиты объектов, которые подключены к воздушным линиям. В этом случае будет защита и от атмосферных электрических импульсов и от импульсных перенапряжений по цепям питания.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Радиоэлектроника для начинающих

Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправностиСхема диодного моста

Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

В железе это выглядит следующим образом.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправностиДиодный мост из отдельных диодов S1J37

Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно.

С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще.

Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

Как работает диодный мост?

Пару слов о том, как работает диодный мост.

Если на его вход (обозначен значком «~») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

Обозначение диодного моста на схеме

На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Диодная сборка

Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода.

Два служат для подключения переменного напряжения и обозначаются значком «~». Иногда могут иметь обозначение AC (Alternating Current — переменный ток).

Оставшиеся два вывода имеют обозначения « + » и « — ». Это выход выпрямленного, пульсирующего напряжения (тока).

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.

  • Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.
  • В реальности сборка диодного моста может выглядеть вот так.
  • Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправностиДиодная сборка KBL02 на печатной плате
  • Или вот так.
  • Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправностиДиодная сборка RS607 на плате компьютерного блока питания

А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправностиУсловное изображение диодного моста и диодной сборки

Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме.

Например, вот так: VD1VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка.

Также можно встретить обозначение BD.

Где применяется схема диодного моста?

Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах… .

Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания.

На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).

В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/diodniy%20most.html

Как проверить диодный мост мультиметром?

  • Проверка обычного диодного моста
  • Проверка диодной сборки
  • Вывод

С развитием электроники в современном мире, в различной аппаратуре применяется такой узел как диодный мост.

В случае не нормальных режимов работы и коротких замыканий, он первый кто принимает удар на себя.

Научиться проверять диодный мост самостоятельно – это полезный навык, который пригодиться всем тем, кто хоть как-то занимается самостоятельным ремонтом поломанного оборудования.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Давайте вспомним немного теории. Работа диодного моста, основана на свойстве полупроводникового диода пропускать ток только в одном направлении. Схема моста состоит из четырех диодов и может выполняться как в открытом виде, так и в виде монолитного корпуса. Подробней обо всем этом вы можете прочесть в материале про диодный мост.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Неисправности диодного моста:

  1. Пробой диода – это когда диод становиться обычным проводником, а мультиметр показывает сопротивление этого проводника, обычно происходит в следствии высокого обратного напряжения или тока, диод не может выдержать величины и пробивается, ток проводиться в обоих направлениях.
  2. Обрыв диода – название говорит само за себя, это когда диод вообще не проводит электрический ток, в любом включении он будет иметь очень высокое сопротивление, а мультиметр будет показывать единицу, свидетельствуя о обрыве. Это менее распространенная неисправность.

Проверка обычного диодного моста

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Как было написано выше, диодный мост состоит из четырех отдельных полупроводниковых диодов. Чтобы проверить его исправность, нам нужно прозвонить каждый из них в двух направлениях. Включаем мультиметр в режим прозвонки (он отмечен значком диода или звука) и выбираем первый диод, с которого мы начнем проверку.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправностиСхема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Находим у него анод (плюсовой вывод) и катод (минусовой вывод). Обычно они обозначены на корпусе диода с помощью цветового обозначения, либо соответствующими иконками. Для начала проверяем диод в прямом включении, для этого красный щуп (плюсовой) подключаем к аноду, а черный (минусовой) к катоду.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

На дисплее мультиметра должны появиться цифры – значение падения напряжения, указывается оно в милливольтах. Это то минимальное напряжение, которое нужно для открытия диода.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Теперь давайте проверим его в обратном включении, для этого меняем щупы местами – красный к катоду, а черный к аноду. На дисплее должна показываться единица, что указывает нам на высокое сопротивление P-N перехода – этот диод исправен.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Если в обратном включении показываются малое сопротивление, а прибор пищит (при наличии звуковой индикации) – этот диод пробит и его нужно заменить. Таким образом прозванием оставшиеся три штуки и если найден неисправный, просто выпаиваем его и заменяем на новый.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Проверка диодной сборки

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Вся хитрость диодной сборки в том, что мы не видим отдельно диоды. Но сложного тут ничего нет, на помощь нам приходит схема диодного моста. Для наглядности размещаем ее недалеко от себя и начинаем проверку. Проверять мы будем как в первом пункте статьи – по одному диоду. В диодной сборке каждый вывод подписан, так что найти нужный нам диод не составит труда.

Выводы диодов в монолитном корпусе:

  • Диод 1: минус сборки – анод, один из переменных выводов – катод;
  • Диод 2: минус сборки – анод, один из переменных выводов – катод;
  • Диод 3: переменный вывод – анод, плюс сборки – катод;
  • Диод 4: переменный вывод – анод, плюс сборки – катод.

Зная обозначение выводов, проверяем каждый диод в двух направлениях. Если какой-то из них имеет пробой или обрыв, то приодеться заменить всю диодную сборку. Изображения для наглядности:

  • Проверка диодов 1 и 2 при прямом включении:
  • Проверка диодов 1 и 2 при обратном включении:

Будет интересно➡  Как проверить конденсатор при помощи мультиметра

  1. Проверка диодов 3 и 4 при прямом включении:
  2. Проверка диодов 3 и 4 при обратном включении:
  3. Если все еще что-то не понятно, возможно вам стоит посмотреть видео по проверке диодного моста.

Вывод

В этом материале был разобран полезный материал по прозвонке диодного моста на его исправность. Разобрали случай с отдельными диодами и диодной сборкой. Если у вас остались какие-нибудь вопросы, то задавайте их в комментарии.

Источник: https://ElectroInfo.net/praktika/5-kak-proverit-diodnyj-most.html

Диодный мост

Словосочетание “диодный мост” образуется от слова “диод”. Следовательно, диодный мост  должен состоять из диодов, но они должны соединятся с друг другом в определенной последовательности. Почему это имеет важное значение мы как раз и поговорим в этой статье.

Обозначение на схеме

  • Диодный мост на схемах выглядит подобным образом:
  • Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности
  • Иногда в схемах его обозначают  еще так:
  • Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Как мы с вами видим, схема состоит из четырех диодов. Для того, чтобы она работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Слева мы видим два значка “~”.  На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов обозначенных значками “+” и “-“. Диодный мост также называют диодным выпрямителем.

Принцип работы

Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим  рисунок, как все это будет выглядеть:

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Диод срезает отрицательную полуволну переменного напряжения, оставляя только положительную, что мы и видим на рисунке выше. Вся прелесть этой немудреной схемы состоит в том, что мы получаем постоянное напряжение из переменного. Проблема кроется в том, что мы теряем половину мощности переменного напряжения. Ее срезает диод.

Чтобы исправить эту ситуацию, была придумана великими умами схема диодного моста. Диодный мост “переворачивает” отрицательную полуволну, превращая ее в положительную полуволну, тем самым у нас сохраняется мощность.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

На выходе  диодного моста появляется постоянное пульсирующее напряжение с частой в 100 Герц. Это в два раза больше, чем частота сети.

Практические опыты

Для начала возьмем простой диод.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.

Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220В делает 12В.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. Мультиметр показал чуть больше, так как на вторичной обмотке нет никакой нагрузки. Трансформатор работает на  так называемом “холостом ходу”.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Давайте же рассмотрим осциллограмму, которая идет со вторичной обмотки трансформатора. Максимальную амплитуду напряжения  нетрудно посчитать. Если не помните как это делать, можно прочитать статью Осциллограф. Основы эксплуатации.

3,3х5=16.5В – это максимальное значение напряжения.  А если разделить максимальное амплитудное значение на корень из двух, то получим где то 11,8 Вольт. Это и есть действующее значение напряжения. Осциллограф не врет, все ОК.

  1. Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности
  2. Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт  – это не шутки, поэтому я и понизил переменное напряжение.
  3. Припаяем к одному концу  вторичной обмотки трансформатора наш диод.
  4. Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности
  5. Цепляемся снова щупами осциллографа
  6. Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности
  7. Смотрим на осциллограмму

А где же нижняя часть изображения? Ее срезал диод. Он оставил только верхнюю часть, то есть ту, которая положительная.

  • Находим еще  три таких диода и спаиваем диодный мост.
  • Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.
  • С двух других  концов снимаем постоянное пульсирующее напряжение щупом осциллографа и смотрим на осциллограмму
  • Вот, теперь порядок.

Виды диодных мостов

Чтобы не заморачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате, получился очень компактный и удобный радиоэлемент – диодный мост. Думаю, вы догадаетесь, где импортный, а где советский ))).

  1. Например, на советском диодном мосте показаны контакты,  на которые  нужно подавать переменное напряжение значком ” ~ “, а  контакты, с которых  надо снимать постоянное пульсирующее напряжение значком “+” и “-“.
  2. Существует множество видов диодных мостов в разных корпусах
  3. Есть даже автомобильный диодный мост
  4. Существует также диодный мост для трехфазного напряжения. Он собирается по так называемой схеме Ларионова и состоит из 6 диодов:
  5. В основном трехфазные диодные мосты используются в силовой электронике.

Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы и с двух других выводов мы будем снимать постоянное пульсирующее напряжение.

Как проверить диодный мост

1) Первый способ самый простой. Диодный мост проверяется целостностью всех его диодов. Для этого прозваниваем каждый диод мультиметром и смотрим целостность каждого диода. Как это сделать, читаем эту статью.

2) Второй способ 100%-ый. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор. Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменному напряжению со значками “~”, а с двух других контактов, с “+” и “-”  снимаем показания с помощью осциллографа.

  • Смотрим осциллограмму
  • Значит, импортный диодный мост исправен.

Резюме

Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.

Диодный мост используется почти во всей радиоаппаратуре, которая “кушает” напряжение из переменной сети, будь то простой телевизор или даже зарядка от сотового телефона.

Источник: https://www.RusElectronic.com/diodnyj-most/

Устройство и работа выпрямительного диода. Диодный мост

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.В этой части мы рассмотрим устройство и работу выпрямительных диодов.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный.

Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.

Общие характеристики выпрямительных диодов

  • В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой, средней и большой мощности:
  • малой мощности рассчитаны для выпрямления прямого тока до 300mA;средней мощности – от 300mA до 10А;большой мощности — более 10А.
  • По типу применяемого материала они делятся на германиевые и кремниевые, но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.
  • Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +(125 — 150)º С, а германиевых – лишь от -60 до +(70 – 85)º С. Это связано с тем, что при температурах выше 85º С образование электронно-дырочных пар становится столь значительным, что происходит резкое увеличение обратного тока и эффективность работы выпрямителя падает.

Технология изготовления и конструкция выпрямительных диодов

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.

Технология изготовления таких диодов заключается в следующем:на поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника.

При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью.

Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.

Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е.

со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Кристаллы кремния или германия (3) с p-n переходом (4) припаиваются к кристаллодержателю (2), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7) со стеклянным изолятором (6), через который проходит вывод одного из электродов (5).

Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1) с помощью которых они монтируются в схемах.

У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1) значительно мощнее.

Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).

Электрические параметры выпрямительных диодов

  1. У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:
  2. Iобр – постоянный обратный ток, мкА;
    Uпр – постоянное прямое напряжение, В;
    Iпр max – максимально допустимый прямой ток, А;
    Uобр max – максимально допустимое обратное напряжение, В;
    Р max – максимально допустимая мощность, рассеиваемая на диоде;
    Рабочая частота, кГц;
    Рабочая температура, С.
  3. Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде

Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (), а функцию выпрямляющего элемента будет выполнять диод (VD).

При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.

Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.

Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц.

Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.

Схема диодного моста выпрямителя: принцип действия, обозначения на схеме, проверка исправности

Заряжаясь импульсами тока во время положительных полупериодов, конденсатор () во время отрицательных полупериодов разряжается через нагрузку ().

Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке () будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов.

Ток, поддерживаемый за счет зарядки конденса

Зачем нужен диод VD2 в этой схеме? [ссылка появится после проверки модератором]

Диод в обратном включении, служит для защиты элементов схемы от выброса напряжения самоиндукции обмотки реле при прекращении тока в обмотке. Если попросту, когда реле хотят выключить, снимают напряжение с обмотки. Тонны матана какбэ говорят, что в этот момент эта ваша обмотка генерит импульс напряжения с перевернутым вольтажом (+ и — меняются местами) , при этом чем больше число витков, тем нехилее импульс. Могут сгореть всякие разные микросхемы/транзисторы, тиристоры, конденсаторы тысячи их, припаянные к этому вашему реле. На практике диод припаивают/прикручивают к реле наглухо. А буржуины, видя сгоревшие мелкосхемы и полевые (и неполевые) транзисторы стоимостью в сотни денег, с горя стали встраивать такие диоды прямо в корпус реле/мелкосхемы/транзистора/вобщемдевайса или даже прямо в кристалл мелкосхемы/транзистора, про который есть подозрение, что он будет таки припаян к реле или трансформатору, для обмоток которого все изложенное верно чуть более чем полностью. А у вас же на схеме диод специально отключается девайсом S5, дабы школие невозбранно палило детали с целью не палить их ИРЛ. А разгадка одна — безблагодатность.

если s3 будет в положении вниз а s5 замкнут то после размыкания s1 через этот диод потечёт ток самоиндукции от обмотки реле. наверно это часть исследования.

Очень странный диод. Во-первых, защитный диод включается не так. В положении S3 по схеме он просто замкнут накоротко, и ничего не делает. В нижнем положении S3 он просто заперт. Смысл его непонятен.

Для самых начинающих

Проводник, резистор, — они пропускают ток в обоих направлениях, то есть, резистору или лампочке совершенно безразлично к «плюсу» или к «минусу» источника питания они подключены. Другое дело — диоды, они пропускают ток только в одном направлении, и это их главное свойство, которое используется в различных схемах выпрямителей и другой электронике.

Полупроводниковый диод представляет собой корпус, внутри которого находится полупроводниковый кристалл, ну и два вывода для его подключения. Корпуса бывают самые разные, — стеклянные, пластмассовые, металлические, керамические. А выводы, — проволочные гибкие, негибкие и даже с винтами для крепления, а так же, выводы под поверхностный монтаж.

Треугольником обозначен анод (+), а черточкой катод (-). Ниже показано как выглядят диоды типа КД226 и КД209. Диод КД226 имеет цилиндрическую форму, диод КД209 — овальную. Хочу заметить, что обозначения выводов (анод, катод) у разных типов диодов различаются. Например, у КД226 со стороны катодного вывода есть метка — полоска, а у КД209 метка (точка) у анодного вывода.

Еще бывает что на корпусе диода нарисовано изображение символа диода, но это обычно на диодах в металлических корпусах. Он включен между лампочкой и источником питания. Когда анод диода идет к плюсу источника питания (а катод, соответственно, к минусу), то ток в цепи течет и лампа горит. В таком положении он ток не пропускает, поэтому лампа не горит.

Если сравнивать диод с чем-то неэлектрическим, то это будет похоже на действие ниппеля, то есть, в одну сторону он воздух (или воду) пропускает, а в обратную, — нет. Вот так работает и диод, только относительно к электрическому току. Теперь немного о практическом применении. Допустим, нужно переключать две лампочки, но для связи с лампочками есть только два провода. Здесь лампочки переключаются с помощью переключателя S1, и нужно три провода.

Если использовать диоды и переключатель, изменяющий полярность подключения источника, то можно обойтись двумя проводами. Здесь двойной переключатель S1. Когда он находится в показанном на схеме положении, то ток от батарейки проходит через диод VD1, а через диод VD2 не проходит, поэтому горит лампа Н1, а лампа Н2 не горит.

Если переключатель S1 переключить в противоположное показанному на схеме положение, то ток будет проходить через диод VD2, а через VD1 проходить не будет. Поэтому будет гореть только Н2. Как уже сказано выше, цоколевка разных диодов существенно различается, — у одних отмечен катод, у других анод, поэтому для определения выводов диода нужно пользоваться справочником. Испытуемый диод здесь VD. Когда он подключен а по надписям «Анод», «Катод» можно определить его назначение выводов.

Если VD подключить наоборот, лампа гореть не будет. Проверить диод можно и мульти-метром (обычно у мультиметра есть такой режим) или даже обычным омметром, -прямое сопротивление диода многократно ниже обратного. Эта схема очень интересна тем, что полярность выходного напряжения в ней не зависит от полярности входного. Если мы перевернем батарейку, то ток теперь пойдет через диоды VD3 и VD2.

В результате полярность выходного напряжения не изменится. Таким образом, полярность напряжения на выходе диодного моста не зависит от полярности напряжения на его входе. Это интересное свойство используется во многих выпрямителях и сетевых источниках питания. На вход моста подают переменное напряжение, то есть, напряжение полярность которого периодически меняется. А на выходе моста получается напряжение неизменной полярности, то есть, выпрямленное.

На вход поступает синусоидальное переменное напряжение, а на выходе получается постоянное пульсирующее. Положительные полуволны входного переменного напряжения проходят через диоды VD1 и VD4, а отрицательные — через диоды VD2 и VD3. Выпрямительный мост как будто выворачивает отрицательную полуволну переменного напряжения наверх, в зону положительного. В результате обе полуволны получаются положительными.

Впрочем, выпрямитель можно сделать и на одном диоде, но он будет не таким эффективным, так одна полуволна остается неиспользуемой. Такой выпрямитель называет однополупериодным, так как он пропускает только один полупериод входного переменного напряжения, а второй полупериод «обрезает».

Эксплуатация TDA2030 возможна и с одним питающим напряжением. В этом случае с помощью делителя R1-R2 и резистора R3 на не инвертирующий вход ИМС подается напряжение смещения, равное половине питающего.

Конденсатор С1 «не пускает» звуковые частоты в цепь делителя. На выходе (выводе 4) ИМС также возникает постоянное напряжение, равное половине питающего, поэтому подключение громкоговорителя осуществляется через разделительный конденсатор С8. Входной импеданс усилителя практически совпадает с величиной сопротивления R3, т.е. составляет около 100 кОм.

Прочие элементы схемы аналогичны тем, которые использованы в предыдущей схеме усилителя. Здесь также предусмотрена возможность питания пред усилителя. Транзисторы Т1 и Т2 включены по схеме Дарлингтона. Светодиод D12 индицирует включенное состояние усилителя. Ток светодиода ограничивается резистором R9 на уровне 20 мА. Во втором усилителе охлаждение требуется для микросхемы УМЗЧ и транзистора Т1 блока питания,

Для них, а также для интегральных схем стабилизаторов напряжения первого усилителя целесообразно изготовить радиаторы по чертежу. Материалом может служить медная или алюминиевая пластинка с оптимальной толщиной 1,5 мм. Измерение параметров этого усилителя не выявило существенных отличий по сравнению с первым вариантом. Выходная мощность, а также искажения оказались практически идентичны.

Динистор DB3. Характеристики, проверка, аналог, datasheet

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:

Цоколевка динистора DB3

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.

Характеристики динистора DB3

Аналоги динистора DB3

  • HT-32
  • STB120NF10T4
  • STB80NF10T4
  • BAT54

Как проверить динистор DB3

Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.

Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.

Источник питания

Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.

Этапы проверки

Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжения на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.

Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.

Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.

Проверка динистора с помощью осциллографа

Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.

В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжения пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.

Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая:

  • C = 0,015мкф — 0,275 мс.
  • С = 0,1мкф — 3 мс.
  • C = 0,22 мкф — 6 мс.
  • С = 0,33 мкф — 8,4 мс.
  • С = 0,56 мкф — 15 мс.

Скачать datasheet на DB3 (242,6 KiB, скачано: 8 537)

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *