Site Loader

Содержание

Варистор. Принцип работы и применение

Варистор является пассивным двухвыводным, твердотельным полупроводниковым прибором, который используется для обеспечения защиты электрических и электронных схем. В отличие от плавкого предохранителя или автоматического выключателя, которые обеспечивают защиту по току, варистор обеспечивает защиту от перенапряжения с помощью стабилизации напряжения подобно стабилитрону.

Слово «Варистор» является аббревиатурой и сочетанием слов «Varistor — variable resistor», резистор, имеющий переменное сопротивление, что в свою очередь описывает режим его работы. Его буквальный перевод с английского (Переменный Резистор) может немного ввести в заблуждения — сравнивая его с потенциометром или реостатом.

Но, в отличие от потенциометра, сопротивление которого может быть изменено вручную, варистор меняет свое сопротивления автоматически с изменением напряжения на его контактах, что делает его сопротивление зависимым от напряжения, другими словами его можно охарактеризовать как нелинейный резистор.

В настоящее время резистивный элемент варистора изготавливают из полупроводникового материала. Это позволяет использовать его как в цепях переменного, так и постоянного тока.


Варистор во многом похож по размеру и внешнему виду на конденсатор и его часто путают с ним. Тем не менее, конденсатор не может подавлять скачки напряжения таким же образом, как варистор.

Не секрет, что когда в цепи электропитания схемы какого-либо устройства возникает импульс высокого напряжения, то исход зачастую бывает плачевным. Поэтому применение варистора играет важную роль в системе защиты чувствительных электронных схем от скачков напряжения и высоковольтных переходных процессов.

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…


Мультиметр — RICHMETERS RM101

Richmeters RM101 — удобный цифровой мультиметр с автоматическим изменен…


Мультиметр — MASTECH MY68

Измерение: напряжения, тока, сопротивления, емкости, частоты…


Всплески напряжения возникают в различных электрических схемах независимо от того, работают они от сети переменного или постоянного тока. Они часто возникают в самой схеме или поступают в нее от внешних источников. Высоковольтные всплески напряжения могут быстро нарастать и доходить до нескольких тысяч вольт, и именно от этих импульсов напряжения необходимо защищать электронные компоненты схемы.

Один из самых распространенных источников подобных импульсов – индуктивный выброс, вызванный переключением катушек индуктивности, выпрямительных трансформаторов, двигателей постоянного тока, скачки напряжения от включения люминесцентных ламп и так далее.

Форма волны переменного тока в переходном процессе

Варисторы подключаются непосредственно к цепям электропитания (фаза — нейтраль, фаза-фаза) при работе на переменном токе, либо плюс и минус питания при работе на постоянном токе и должны быть рассчитаны на соответствующее напряжение. Варисторы также могут быть использованы для стабилизации постоянного напряжения и главным образом для защиты электронной схемы от высоких импульсов напряжения.

Статическое сопротивление варистора

 

При нормальной работе, варистор имеет очень высокое сопротивление, поэтому его работа схожа с работой стабилитрона. Однако, когда на варисторе напряжение превышает номинальное значение, его эффективное сопротивление сильно уменьшается, как показано на рисунке выше.

Мы знаем из закона Ома, что ток и напряжение имеют прямую зависимость при постоянном сопротивлении. Отсюда следует, что ток прямо пропорционален разности потенциалов на концах резистора.

Но ВАХ (вольт-амперная характеристика) варистора не является прямолинейной, поэтому в результате небольшого изменения напряжения происходит значительное изменение тока. Ниже приведена кривая зависимости тока от напряжения для типичного варистора:


Мы можем видеть сверху, что варистор имеет симметричную двунаправленную характеристику, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоиды, подобно работе стабилитрона.
Когда нет всплесков напряжения, в квадранте IV наблюдается постоянное значение тока, это ток утечки, составляющий всего несколько мкА, протекающий через варистор.

Из-за своего высокого сопротивления, варистор не оказывает влияние на цепь питания, пока напряжение находится на номинальном уровне. Номинальный уровень напряжения (классификационное напряжение) — это такое напряжение, которое необходимо приложить на выводы варистора, чтобы через него проходил ток в 1 мА. В свою очередь величина этого напряжения будет отличаться в зависимости от материала, из которого изготовлен варистор.

При превышении классификационного уровня напряжения, варистор совершает переход от изолирующего состояния в электропроводящее состояние. Когда импульсное напряжение, поступающее на варистор, становится больше, чем номинальное значение, его сопротивление резко снижается за счет лавинного эффекта в полупроводниковом материале. При этом малый ток утечки, протекающий через варистор, быстро возрастает, но в тоже время напряжение на нем остается на уровне чуть выше напряжения самого варистора. Другими словами, варистор стабилизирует напряжение на самом себе путем пропускания через себя повышенного значения тока, которое может достигать не одну сотню ампер.

Емкость варистора

Поскольку варистор, подключаясь к обоим контактам питания, ведет себя как диэлектрик, то при нормальном напряжении он работает скорее как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет определенную емкость, которая прямо пропорциональна его площади и обратно пропорциональна его толщине.

При применении в цепях постоянного тока, емкость варистора остается более-менее постоянной при условии, что приложенное напряжение не больше номинального, и его емкость резко снижается при превышении номинального значения напряжения. Что касается схем на переменном токе, то его емкость может влиять на стабильность работы устройств.

Подбор варистора

Чтобы для конкретного устройства правильно подобрать варистор, желательно знать сопротивление источника и мощность импульсов переходных процессов. Варисторы на основе оксидов металлов имеют широкий диапазон рабочего напряжения, начиная от 10 вольт и заканчивая свыше 1000 вольт переменного или постоянного тока. В общем необходимо знать на каком уровне напряжения нужно защитить схему электроприбора и взять варистор с небольшим запасом, например для сети 230 вольт подойдет варистор на 260 вольт.

Максимальное значение тока (пиковый ток) на которое должен быть рассчитан варистор, определяется длительностью и количеством повторений всплесков напряжения. Если варистор установлен с малым пиковым током, то это может привести к его перегреву и выходу из строя. Таким образом, для безотказной работы, варистор должен быстро рассеивать поглощенную им энергию переходного импульса и безопасно возвращаться в исходное состояние.

Варианты подключения варистора

 

Подведем итог

В данной статье мы узнали, что варистор это тип полупроводникового резистора, имеющий нелинейную ВАХ. Он является надежным и простым средством обеспечения защиты от перегрузки и скачков напряжения. Варисторы применяются в основном в чувствительных электронных схемах. В случае если питающее напряжение неожиданно превышает нормальное значение, варистор защищает схему за счет резкого снижения собственного сопротивления, шунтируя цепь питания и пропуская через себя пиковый ток, доходящий порой до сотен ампер.

Классификационное напряжение варистора — это напряжение на самом варисторе при протекании через него тока в 1 мА. Эффективность работы варистора в электронной или электрической цепи зависит от правильного его выбора в отношении напряжения, тока и силы энергии всплесков.

Скачать справочные материалы по зарубежным варисторам (3,0 MiB, скачано: 4 948)

Что такое варистор и для чего он нужен?

Рассмотрение конструкции, принципа работы и назначения варисторов. Как выбрать варистор и какие характеристики у этого защитного элемента.


В электронике можно выделить группу компонентов, задача которых ограничение всплесков напряжения. Один из таких элементов — варистор. Чаще всего данный аппарат можно встретить в большинстве хороших блоков питания. В этой статье мы поговорим о том, как работают и где применяются варисторы. Содержание:

Принцип действия

Варистор — это полупроводниковый прибор с симметричной нелинейной вольтамперной характеристикой. По ее форме можно сделать вывод о том, что варистор работает и в переменном и в постоянном токе. Рассмотрим её подробнее.

В нормальном состоянии ток через варистор предельно мал, его называют током утечки. Его можно рассматривать как диэлектрический компонент с определенной электрической емкостью и можно говорить, что он не пропускает ток. Но, при определенном напряжении (на картинке это + — 60 Вольт) он начинает пропускать ток.

Другими словами, принцип работы варистора в защитных цепях напоминает разрядник, только в полупроводниковом приборе не возникает дугового разряда, а изменяется его внутреннее сопротивление. При уменьшении сопротивления, ток с единиц микроампер возрастает до сотен или тысяч Ампер.

Условное графическое изображение варистора в схемах:

Обозначение элемента на схемах напоминает обычный резистор, но перечеркнутый по диагонали линией, на которой может быть нанесена буква U. Чтобы найти на плате или в схеме этот элемент – обращайте внимание на подписи, чаще всего они обозначаются, как RU или VA.

Внешний вид варистора:

Варистор устанавливают параллельно цепи для ее защиты. Поэтому при импульсе напряжения защищаемой цепи — энергия поступает не в устройство, а рассеивается в виде тепла на варисторе. Если энергия импульса слишком велика — варистор сгорит. Но понятие сгорит размазано, варианта развития два. Либо варистор просто разорвет на части, либо его кристалл разрушится, а электроды замкнутся накоротко. Это приведет к тому, что выгорят дорожки и проводники, или произойдет возгорание элементов корпуса и других деталей.

Чтобы этого избежать перед варистором, последовательно со всей цепью на сигнальный или питающий провод устанавливают предохранитель. Тогда в случае сильного импульса напряжения и долговременного срабатывания или перегорания варистора сгорит и предохранитель, разорвав цепь.

Если сказать вкратце, для чего нужен такой компонент — его свойства позволяют защитить электрическую цепь от губительных всплесков напряжения, которые могут возникать как на информационных линиях, так и на электрических линиях, например, при коммутации мощных электроприборов. Мы обсудим этот вопрос немного ниже.

Устройство

Варисторы устроены достаточно просто — внутри есть кристалл полупроводникового материала, чаще всего это Оксид Цинка (ZiO) или Карбид Кремния (SiC). Прессованный порошок этих материалов подвергают высокотемпературной обработке (запекают) и покрывают диэлектрической оболочкой. Встречаются либо в исполнении с аксиальными выводами, для монтажа в отверстия на печатной плате, а также в SMD-корпусе.

На рисунке ниже наглядно изображено внутреннее устройство варистора:


Основные параметры

Чтобы правильно подобрать варистор, нужно знать его основные технические характеристики:

  1. Классификационное напряжение, может обозначаться как Un. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА, при дальнейшем превышении ток лавинообразно увеличивается. Именно этот параметр указывают в маркировке варистора.
  2. Номинальная рассеиваемая мощность P. Определяет, сколько может рассеять элемент с сохранением своих характеристик.
  3. Максимальная энергия одиночного импульса W. Измеряется в Джоулях.
  4. Максимальный ток Ipp импульса. При том что фронт нарастает в течении 8 мкс, а общая его длительность — 20 мкс.
  5. Емкость в закрытом состоянии — Co. Так как в закрытом состоянии варистор представляет собой подобие конденсатора, ведь его электроды разделены непроводящим материалом, то у него есть определенная емкость. Это важно, когда устройство применяется в высокочастотных цепях.

Также выделяют и два вида напряжений:

  • Um~ — максимальное действующее или среднеквадратичное переменное;
  • Um= — максимальное постоянное.

Маркировка и выбор варистора

На практике, например, при ремонте электронного устройства приходится работать с маркировкой варистора, обычно она выполнена в виде:

20D 471K

Что это такое и как понять? Первые символы 20D — это диаметр. Чем он больше и чем толще — тем большую энергию может рассеять варистор. Далее 471 — это классификационное напряжение.

Могут присутствовать и другие дополнительные символы, обычно указывают на производителя или особенность компонента.

Теперь давайте разберемся как правильно выбрать варистор, чтобы он верно выполнял свою функцию. Чтобы подобрать компонент, нужно знать в цепи с каким напряжением и родом тока он будет работать. Например, можно предположить, что для защиты устройств, работающих в цепи 220В нужно применять варистор с классификационным напряжением немного выше (чтобы срабатывал при значительных превышениях номинала), то есть 250-260В. Это в корне не верно.

Дело в том, что в цепях переменного тока 220В — это действующее значение. Если не углубляться в подробности, то амплитуда синусоидального сигнала в корень из 2 раз больше чем действующее значение, то есть в 1,41 раза. В результате амплитудное напряжение в наших розетках равняется 300-310 В.

240*1,1*1,41=372 В.

Где 1,1 – коэффициент запаса.

При таких расчетах элемент начнет срабатывание при скачке действующего напряжения больше 240 Вольт, значит его классификационное напряжение должно быть не менее 370 Вольт.

Ниже приведены типовые номиналы варисторов для сетей переменного тока с напряжением в:

  • 100В (100~120)– 271k;
  • 200В (180~220) – 431k;
  • 240В (210~250) – 471k;
  • 240В (240~265) – 511k.

Применение в быту

Назначение варисторов — защита цепи при импульсах и перенапряжениях на линии. Это свойство позволило рассматриваемым элементам найти свое применение в качестве защиты:

  • линий связи;
  • информационных входов электронных устройств;
  • силовых цепей.

В большинстве дешевых блоков питания не устанавливают никаких защит. А вот в хороших моделях по входу устанавливают варисторы.

Кроме того, все знают, что компьютер нужно подключать к питанию через специальный удлинитель с кнопкой — сетевой фильтр. Он не только фильтрует помехи, в схемах нормальных фильтров также устанавливают варисторы.

Часто электрики рекомендуют защитить китайские светодиодные лампы, установив варистор параллельно патрону. Также защищают и другие устройства, некоторые монтируют варистор в розетку или в вилку, чтобы обезопасить подключаемую технику.

Чтобы защитить всю квартиру — вы можете установить варистор на дин-рейку, в хороших устройствах в корпусе расположены настоящие мощные варисторы диаметром с кулак. Примером такого устройства является ОИН-1, который изображен на фото ниже:

В заключение хотелось бы отметить, что назначение варистора – защитить какую-либо электрическую цепь. Принцип работы основан на изменении сопротивления полупроводниковой структуры под воздействием высокого напряжения. Напряжение, при котором через элемент начинает течь ток силой 1 мА называют классификационным. Это и диаметр элемента есть основными параметрами при выборе. Пожалуй, мы доступно объяснили, что такое варистор и для чего он нужен, задавайте вопросы в комментариях, если вам что-то непонятно.

Напоследок рекомендуем просмотреть полезные видео по теме статьи:

Наверняка вы не знаете:

  • Какие бывают помехи в электросети
  • Принцип работы УЗИП
  • Как сделать сетевой фильтр своими руками
  • Как проверить резистор в домашних условиях


НравитсяЧто такое варистор и для чего он нужен?0)Не нравитсяЧто такое варистор и для чего он нужен?0)

Варистор, варисторная защита — принцип действия, применение

Варисторная защита, построенная на использовании полупроводниковых резисторов нелинейного типа, служит прекрасным средством для защиты от импульсных перенапряжений.

Варистор отличает резко-выраженная вольт-амперная характеристика нелинейного вида. Благодаря этому свойству с помощью варисторной защиты успешно решаются задачи по защите различных бытовых устройств и производственных объектов.

Принцип действия варистора

Варисторная защита подключается параллельно основному оборудованию, которое необходимо защитить. После возникновения импульса напряжения, благодаря наличию нелинейной характеристики, варистор шунтирует нагрузку и уменьшает величину сопротивления до нескольких долей Ома. Энергия, при перенапряжении, поглощается и рассеивается в виде тепла. Варистор как бы срезает импульс опасного перенапряжения, поэтому защищаемое устройство остается невредимым, что возможно даже с низким уровнем изоляции.

 

Рис. №1. Конструктивная схема варистора и его характеристика.

Условное обозначение варистора, например, СНI-1-1-1500. СН означает, нелинейное сопротивление, первая цифровое значение – материал, вторая – конструкцию ( 1- стержневой; 2 – дисковый), третья цифра – номер разработки, последняя цифра обозначает значение падения напряжения.

 

Таблица классификации варисторов

Конструктивные особенности варисторов

Наиболее технологически востребованные материалы для изготовления варистора оксид цинка или порошок карбида кремния, он позволяет успешно поглощать импульсы напряжения с высокоэнергетическими импульсами. Процесс изготовления строится на основе «керамической» технологии, которая заключается на запрессовке элементов с обжигом, установкой электродов, выводов и покрытие приборов электроизоляцией и влагозащитным слоем. Благодаря стандартной технологии варисторы можно делать по индивидуальному заказу.

Параметры варисторов

  1. Номинальное классификационное напряжение Uкл – считается постоянным показателем, при этом значении через прибор проходит расчетный ток.
  2. Максимально допустимое значение напряжения импульса, для варисторов стержневого типа входит в границы от 1,2 В до 2 В, для дисковых устройств в пределы от 3 до 4 В.
  3. Коэффициент нелинейности β – он показывает отношение сопротивления варистора к постоянному току к его сопротивлению переменному току.
  4. Быстродействие или время срабатывания, обозначает переход из высокоомного положения в низкоомное и может составить несколько нс, примерно, 25 нс.

 

Защита варисторами

Варисторы защитного типа, марок: ВР-2, ВР-2; СН2-1; СН2-2 рассчитаны на напряжение в границах от 68В до 1500 В, энергия рассеивания в диапазоне от 10 до 114 Дж, коэффициент нелинейности должен превышать значение 30.

Напряжение варисторов защитного класса удовлетворяет показателям максимально возможного пикового напряжения силовой связи, обязательно должно учитываться границы нестабильности напряжения до 10% и разброс величин классификационного напряжения в зависимости от технологических условий.

Uкл ≥ Uном *  *1,1 * 1,1

Для сети U = 220В, Uкл ≥ 375 В.

Для трехфазной сети напряжением Uном = 380 В; Uкл ≥ 650 В

Сфера применения варисторов

Приборы используются в устройствах стабилизирующих высоковольтные источники напряжения в телевизорах, для обеспечения стабильного протекания токов в отклоняющих катушках кинескопов, они используются для размагничивания цветных кинескопов и в системах автоматического регулирования.

Варистор применяется в конструкции сетевого фильтра, он производит блокировку импульса перенапряжения и осуществляет защиту и по фазной, и по нулевой цепи.

 

Рис. №2. Сетевой фильтр с использованием варисторной защиты от импульсных перенапряжений, современная защита может погасить выброс энергии до 3400 Дж, это условие обеспечивает защиту от любых экстренных неожиданных ситуаций.

Большое распространение варисторы получили в конструкции мобильных телефонов для предохранения их от статичного электричества.

Автомобильная электроника и телекоммуникационные сети, еще одна распространенная  сфера применения варисторов. Варисторы используются для люминесцентного освещения для защиты от перенапряжения ЭПРА.

Аналогом варисторной защиты служит молниезащита ОПН от перенапряжений и от гроз в высоковольтных цепях, на воздушных линиях и подстанциях.

Внутренняя электросеть в здании оборудуется шкафами от импульсных перенапряжений.

 

 

Рис. №3. ЩЗИП – щит от импульсного перенапряжения.

Конструктивная особенность защиты от перенапряжений в здании и размещения ее в щите.  Это разнос шины заземления и фазного провода на большое расстояние друг от друга более 1 метра.  Подборка элементов в шкафу и установка УЗИП  требует внимательного расчета и выбирается в индивидуальном порядке для каждой определенной электроустановки.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Варистор — Википедия

Материал из Википедии — свободной энциклопедии

Обозначение на схеме Вольт-амперные характеристики варисторов: синие — на основе ZnO, красные — на основе SiC. Разные варисторы

Вари́стор (лат. vari(able) — переменный (resi)sto — резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать своё сопротивление с миллиардов до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины[1]. При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).

Изготовление

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника, преимущественно порошкообразного карбида кремния (SiC) или оксида цинка (ZnO), и связующего вещества (например, глина, жидкое стекло, лаки, смолы). Далее две поверхности полученного элемента металлизируют (обычно электроды имеют форму дисков) и припаивают к ним металлические проволочные выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Свойства

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:

λ = R R d = U I : d U d I ≈ c o n s t {\displaystyle \lambda ={\frac {R}{R_{d}}}={\frac {U}{I}}:{\frac {dU}{dI}}\approx const} ,

где U — напряжение, I — ток варистора

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления (ТКС) варистора — отрицательная величина.

Применение

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,0001 до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.

Материалы варисторов

Тирит, вилит, лэтин, силит — полупроводниковые материалы на основе карбида кремния с разными связками. Оксид цинка — новый материал для варисторов.

Параметры

При описании характеристик варисторов в основном используются следующие параметры[1]:

  • Классификационное напряжение Un — напряжение при определённом токе (обычно 1 мА), условный параметр для маркировки изделий;
  • Максимально допустимое напряжение Um для постоянного тока и для переменного тока (среднеквадратичное или действующее значение), диапазон — от нескольких В до нескольких десятков кВ; может быть превышено только при перенапряжениях;
  • Номинальная средняя рассеиваемая мощность P — мощность в ваттах (Вт), которую варистор может рассеивать в течение всего срока службы при сохранении параметров в заданных пределах;
  • Максимальный импульсный ток Ipp (Peak Surge Current) в амперах (А), для которого нормируется время нарастания и длительность импульса;
  • Максимальная допустимая поглощаемая энергия W (Absorption energy) в джоулях (Дж), при воздействии одиночного импульса;
  • Ёмкость Co, измеренная в закрытом состоянии при заданной частоте; зависит от приложенного напряжения — когда варистор пропускает через себя большой ток, она падает до нуля.

Рабочее напряжение варистора выбирается исходя из допустимой энергии рассеяния и максимальной амплитуды напряжения. Рекомендуется, чтобы на переменном напряжении оно не превышало 0,6 Un, а на постоянном — 0,85 Un. Например, в сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380…430 В.

См. также

Примечания

Литература

  • В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков. Основы промышленной электроники: Учебник для вузов / Под ред. В. Г. Герасимова. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1978.
  • Электроника: Энциклопедический словарь / В. Г. Колесников (главный редактор). — 1-е изд. — М.: Сов. энциклопедия, 1991. — С. 54. — ISBN 5-85270-062-2.
  • И. П. Шелестов. Полезные схемы. Книга 5. — М.: СОЛОН-Р, 2002. — 240 с. — (Радиолюбителям). — 7000 экз. — ISBN 5-93455-167-1.

Варистор — Википедия. Что такое Варистор

Обозначение на схеме Вольт-амперные характеристики варисторов: синие — на основе ZnO, красные — на основе SiC. Разные варисторы

Вари́стор (лат. vari(able) — переменный (resi)sto — резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать своё сопротивление с миллиардов до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины[1]. При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).

Изготовление

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника, преимущественно порошкообразного карбида кремния (SiC) или оксида цинка (ZnO), и связующего вещества (например, глина, жидкое стекло, лаки, смолы). Далее две поверхности полученного элемента металлизируют (обычно электроды имеют форму дисков) и припаивают к ним металлические проволочные выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Свойства

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:

λ = R R d = U I : d U d I ≈ c o n s t {\displaystyle \lambda ={\frac {R}{R_{d}}}={\frac {U}{I}}:{\frac {dU}{dI}}\approx const} ,

где U — напряжение, I — ток варистора

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления (ТКС) варистора — отрицательная величина.

Применение

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,0001 до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.

Материалы варисторов

Тирит, вилит, лэтин, силит — полупроводниковые материалы на основе карбида кремния с разными связками. Оксид цинка — новый материал для варисторов.

Параметры

При описании характеристик варисторов в основном используются следующие параметры[1]:

  • Классификационное напряжение Un — напряжение при определённом токе (обычно 1 мА), условный параметр для маркировки изделий;
  • Максимально допустимое напряжение Um для постоянного тока и для переменного тока (среднеквадратичное или действующее значение), диапазон — от нескольких В до нескольких десятков кВ; может быть превышено только при перенапряжениях;
  • Номинальная средняя рассеиваемая мощность P — мощность в ваттах (Вт), которую варистор может рассеивать в течение всего срока службы при сохранении параметров в заданных пределах;
  • Максимальный импульсный ток Ipp (Peak Surge Current) в амперах (А), для которого нормируется время нарастания и длительность импульса;
  • Максимальная допустимая поглощаемая энергия W (Absorption energy) в джоулях (Дж), при воздействии одиночного импульса;
  • Ёмкость Co, измеренная в закрытом состоянии при заданной частоте; зависит от приложенного напряжения — когда варистор пропускает через себя большой ток, она падает до нуля.

Рабочее напряжение варистора выбирается исходя из допустимой энергии рассеяния и максимальной амплитуды напряжения. Рекомендуется, чтобы на переменном напряжении оно не превышало 0,6 Un, а на постоянном — 0,85 Un. Например, в сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380…430 В.

См. также

Примечания

Литература

  • В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков. Основы промышленной электроники: Учебник для вузов / Под ред. В. Г. Герасимова. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1978.
  • Электроника: Энциклопедический словарь / В. Г. Колесников (главный редактор). — 1-е изд. — М.: Сов. энциклопедия, 1991. — С. 54. — ISBN 5-85270-062-2.
  • И. П. Шелестов. Полезные схемы. Книга 5. — М.: СОЛОН-Р, 2002. — 240 с. — (Радиолюбителям). — 7000 экз. — ISBN 5-93455-167-1.

Варистор — Википедия

Материал из Википедии — свободной энциклопедии

Обозначение на схеме Вольт-амперные характеристики варисторов: синие — на основе ZnO, красные — на основе SiC. Разные варисторы

Вари́стор (лат. vari(able) — переменный (resi)sto — резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать своё сопротивление с миллиардов до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины[1]. При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).

Изготовление

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника, преимущественно порошкообразного карбида кремния (SiC) или оксида цинка (ZnO), и связующего вещества (например, глина, жидкое стекло, лаки, смолы). Далее две поверхности полученного элемента металлизируют (обычно электроды имеют форму дисков) и припаивают к ним металлические проволочные выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Свойства

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:

λ = R R d = U I : d U d I ≈ c o n s t {\displaystyle \lambda ={\frac {R}{R_{d}}}={\frac {U}{I}}:{\frac {dU}{dI}}\approx const} ,

где U — напряжение, I — ток варистора

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления (ТКС) варистора — отрицательная величина.

Применение

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,0001 до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.

Материалы варисторов

Тирит, вилит, лэтин, силит — полупроводниковые материалы на основе карбида кремния с разными связками. Оксид цинка — новый материал для варисторов.

Параметры

При описании характеристик варисторов в основном используются следующие параметры[1]:

  • Классификационное напряжение Un — напряжение при определённом токе (обычно 1 мА), условный параметр для маркировки изделий;
  • Максимально допустимое напряжение Um для постоянного тока и для переменного тока (среднеквадратичное или действующее значение), диапазон — от нескольких В до нескольких десятков кВ; может быть превышено только при перенапряжениях;
  • Номинальная средняя рассеиваемая мощность P — мощность в ваттах (Вт), которую варистор может рассеивать в течение всего срока службы при сохранении параметров в заданных пределах;
  • Максимальный импульсный ток Ipp (Peak Surge Current) в амперах (А), для которого нормируется время нарастания и длительность импульса;
  • Максимальная допустимая поглощаемая энергия W (Absorption energy) в джоулях (Дж), при воздействии одиночного импульса;
  • Ёмкость Co, измеренная в закрытом состоянии при заданной частоте; зависит от приложенного напряжения — когда варистор пропускает через себя большой ток, она падает до нуля.

Рабочее напряжение варистора выбирается исходя из допустимой энергии рассеяния и максимальной амплитуды напряжения. Рекомендуется, чтобы на переменном напряжении оно не превышало 0,6 Un, а на постоянном — 0,85 Un. Например, в сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380…430 В.

См. также

Примечания

Литература

  • В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков. Основы промышленной электроники: Учебник для вузов / Под ред. В. Г. Герасимова. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1978.
  • Электроника: Энциклопедический словарь / В. Г. Колесников (главный редактор). — 1-е изд. — М.: Сов. энциклопедия, 1991. — С. 54. — ISBN 5-85270-062-2.
  • И. П. Шелестов. Полезные схемы. Книга 5. — М.: СОЛОН-Р, 2002. — 240 с. — (Радиолюбителям). — 7000 экз. — ISBN 5-93455-167-1.


Варистор — Википедия. Что такое Варистор

Обозначение на схеме Вольт-амперные характеристики варисторов: синие — на основе ZnO, красные — на основе SiC. Разные варисторы

Вари́стор (лат. vari(able) — переменный (resi)sto — резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать своё сопротивление с миллиардов до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины[1]. При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).

Изготовление

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника, преимущественно порошкообразного карбида кремния (SiC) или оксида цинка (ZnO), и связующего вещества (например, глина, жидкое стекло, лаки, смолы). Далее две поверхности полученного элемента металлизируют (обычно электроды имеют форму дисков) и припаивают к ним металлические проволочные выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Свойства

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:

λ = R R d = U I : d U d I ≈ c o n s t {\displaystyle \lambda ={\frac {R}{R_{d}}}={\frac {U}{I}}:{\frac {dU}{dI}}\approx const} ,

где U — напряжение, I — ток варистора

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления (ТКС) варистора — отрицательная величина.

Применение

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,0001 до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.

Материалы варисторов

Тирит, вилит, лэтин, силит — полупроводниковые материалы на основе карбида кремния с разными связками. Оксид цинка — новый материал для варисторов.

Параметры

При описании характеристик варисторов в основном используются следующие параметры[1]:

  • Классификационное напряжение Un — напряжение при определённом токе (обычно 1 мА), условный параметр для маркировки изделий;
  • Максимально допустимое напряжение Um для постоянного тока и для переменного тока (среднеквадратичное или действующее значение), диапазон — от нескольких В до нескольких десятков кВ; может быть превышено только при перенапряжениях;
  • Номинальная средняя рассеиваемая мощность P — мощность в ваттах (Вт), которую варистор может рассеивать в течение всего срока службы при сохранении параметров в заданных пределах;
  • Максимальный импульсный ток Ipp (Peak Surge Current) в амперах (А), для которого нормируется время нарастания и длительность импульса;
  • Максимальная допустимая поглощаемая энергия W (Absorption energy) в джоулях (Дж), при воздействии одиночного импульса;
  • Ёмкость Co, измеренная в закрытом состоянии при заданной частоте; зависит от приложенного напряжения — когда варистор пропускает через себя большой ток, она падает до нуля.

Рабочее напряжение варистора выбирается исходя из допустимой энергии рассеяния и максимальной амплитуды напряжения. Рекомендуется, чтобы на переменном напряжении оно не превышало 0,6 Un, а на постоянном — 0,85 Un. Например, в сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380…430 В.

См. также

Примечания

Литература

  • В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков. Основы промышленной электроники: Учебник для вузов / Под ред. В. Г. Герасимова. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1978.
  • Электроника: Энциклопедический словарь / В. Г. Колесников (главный редактор). — 1-е изд. — М.: Сов. энциклопедия, 1991. — С. 54. — ISBN 5-85270-062-2.
  • И. П. Шелестов. Полезные схемы. Книга 5. — М.: СОЛОН-Р, 2002. — 240 с. — (Радиолюбителям). — 7000 экз. — ISBN 5-93455-167-1.

Что такое варистор? Определение, конструкция, работа, характеристики, преимущества, недостатки и применение Варистора

Определение : Варистор — это полупроводниковое устройство с двумя выводами, которое защищает электрические и электронные устройства от переходных процессов перенапряжения. Его сопротивление зависит от приложенного входного напряжения.

Слово варистор образовано объединением варистора и resi stor . Он также известен как резистор, зависящий от напряжения , VDR , сопротивление которого изменяется автоматически при соответствующем изменении напряжения на нем.

Он всегда подключается к защищаемому устройству. В основном это делается для защиты схемы от скачков напряжения.

На рисунке ниже показано символическое изображение варистора: Symbol of varistor

Они в основном используются для защиты схемы от колебаний высокого напряжения.

Конструкция варистора

Варисторы образуются при вдавливании кристаллов карбида кремния или оксидов металлов в керамический материал.

После высыхания материала производится спекание при высокой температуре.Электрические характеристики устройства зависят от температуры и атмосферных условий.

Для обеспечения хороших электрических контактов контакты материала металлизируются серебром или медью. Затем к контактам припаиваются выводы, комплектуются и кодируются варисторы.

На рисунке ниже показан варистор дискового типа: silicon carbide disc type varistor

В настоящее время это самые распространенные клещи , которые могут использоваться в широком диапазоне напряжений.Это нелинейное устройство , которое поглощает разрушительную энергию и рассеивает ее в виде тепла, чтобы предотвратить повреждение системы.

Обычно при его производстве используется оксид цинка , , поэтому он также известен как варистор на основе оксида металла .

На рисунке ниже показана структура металлооксидного варистора:

structure of metal oxide varistor

Здесь варистор на 90% состоит из оксида цинка, а остальное — из присадочного материала , образующего переход.Стандартный карбид кремния отличается от варистора на основе оксида металла тем, что MOV имеет меньший ток утечки и его рабочая скорость выше.

Работа и характеристики варистора

Прежде чем приступить к работе, давайте сначала поймем взаимосвязь между напряжением и сопротивлением варисторов.

На рисунке ниже показана кривая зависимости сопротивления от напряжения для варистора: resistance curve of varistor

Варисторы проявляют необычное поведение в случае сопротивления.Здесь мы видим, что когда напряжение низкое, сопротивление на нем высокое. Но сопротивление быстро падает с увеличением напряжения выше номинального.

Давайте теперь посмотрим на подробное описание работы варистора:

Когда на устройство подается определенное низкое напряжение, оно оказывает высокое сопротивление, из-за чего через него проходит очень низкий ток. Когда напряжение увеличивается и достигает напряжения фиксации, то есть номинального напряжения, ток увеличивается.

В это время замечается изменение работы варисторов. Таким образом, после этого напряжения устройство, которое до сих пор работало как изолятор, теперь начинает вести себя как проводник. Таким образом, после номинального напряжения сопротивление, предлагаемое им, станет очень низким, позволяя очень сильному току проходить через него.

Таким образом, говорят, что напряжение имеет нелинейную характеристику с током .

На рисунке ниже показана вольт-амперная характеристика варистора: characteristic curve of varistor

Здесь, как мы видим, пока не будет достигнуто напряжение фиксации, устройство остается в непроводящем состоянии.Таким образом, мы можем видеть линейную зависимость между напряжением и током. В это время через него проходит ток утечки очень небольшого значения. Из-за оказываемого им высокого сопротивления.

Однако после этого конкретного уровня напряжения варисторы достигают проводящего состояния. Таким образом, мы видим, что сопротивление стало очень низким и через него проходит большой ток даже после того, как напряжение ограничено после номинального напряжения.

Преимущества варистора

  • Обеспечивает отличную защиту от перенапряжения.
  • Поскольку не показывает полярного эффекта , таким образом легко достигается двунаправленность.

Недостаток варистора

Применение варистора

Он показывает широкое применение в защите устройств, таких как защита линии связи, микропроцессора и защиты источников питания. В защите переменного тока и кабельного телевидения от перенапряжения и т. Д.

.Учебное пособие по варистору

или резистору, зависящему от напряжения

Электрический резистор можно определить как базовый компонент электрических и электронных схем. Резисторы в основном используются для управления электрическими параметрами (напряжением и током) в цепи, используя свойство резистора, называемое сопротивлением.

Существуют различные типы резисторов, такие как постоянные резисторы из углерода (составные резисторы, углеродные пленочные резисторы, металлооксидные пленочные резисторы, проволочные резисторы, тонкопленочные резисторы, металлопленочные резисторы) и переменные резисторы (проволочные переменные резисторы, потенциометры. , переменные резисторы из металлокерамики, реостаты, переменные резисторы из токопроводящей пластмассы), резисторы с выводами (все резисторы с выводами) и без проводов (резисторы для поверхностного монтажа), а также специальные типы резисторов, такие как стержневой резистор, светозависимый резистор (LDR), зависимый от напряжения резистор (VDR) и так далее.

Здесь, в этой статье, давайте подробно обсудим варистор, работу варистора, схему варистора, функцию варистора и применение варистора. Но, прежде всего, мы должны знать, что такое варистор.

Что такое варистор?

Специальный тип резистора, сопротивление которого можно изменять путем изменения приложенного напряжения, называется резистором, зависящим от напряжения (VDR), а также просто варистором. Это нелинейный полупроводниковый элемент, название которого происходит от слов «переменный резистор».Varistor Varistor

Эти варисторы используются в качестве защитных устройств, чтобы избежать чрезмерных переходных напряжений, чтобы защитить компоненты цепей и контролировать условия работы цепей. Конструкция и размер варистора почти аналогичны конденсатору, поэтому будет немного запутаться, чтобы идентифицировать варистор и конденсатор.

Варистор рабочий

В обычных условиях работы схемы варистор имеет высокое сопротивление. Когда переходные напряжения начинают увеличиваться, сопротивление варистора начинает уменьшаться.Таким образом, когда он начинает проводиться, переходное напряжение ограничивается до безопасного уровня.

PCBWay PCBWay

Несмотря на то, что существуют различные типы варисторов, металлооксидные варисторы наиболее часто используются на практике. В большинстве практических приложений функция варистора заключается в защите схемы от чрезмерных переходных напряжений. Эти переходные напряжения обычно возникают из-за электростатических разрядов и грозовых скачков.

Voltage vs Resistance Curves of Varistor Voltage vs Resistance Curves of Varistor Кривые зависимости напряжения от сопротивления варистора

Работу варистора можно легко понять, взглянув на кривую статического сопротивления варистора, которая проводится между сопротивлением VDR (резистора или варистора, зависящего от напряжения) и приложенным напряжением.Приведенный выше график показывает, что при нормальном рабочем напряжении (например, низком напряжении) сопротивление очень велико, и если приложенное напряжение превышает номинальное значение варистора, его сопротивление начинает уменьшаться.

V-I Characteristics of Varistor V-I Characteristics of Varistor ВАХ варистора

ВАХ варистора, показанные на приведенном выше рисунке, показывают, что небольшое изменение приложенного напряжения вызывает значительное изменение тока. Как показано на V-I характеристиках, он действует как два стабилитрона, соединенных спина к спине, и работает в первом и третьем квадрантах (в обоих направлениях).

Уровень напряжения, при котором ток, протекающий через варистор, составляет 1 мА, на этом уровне варисторы начинают менять свое состояние с изолирующего на проводящее. Это связано с тем, что всякий раз, когда приложенное напряжение больше или равно номинальному напряжению, лавинный эффект полупроводникового материала варисторов превращает их в проводники за счет уменьшения сопротивления.

Таким образом, даже несмотря на быстрое увеличение небольшого тока утечки, напряжение будет чуть выше номинального значения.Таким образом, функция варистора сама регулирует переходное напряжение в зависимости от приложенного напряжения.

Применение варистора
Varistor Applicaiton with Varistor Circuit Varistor Applicaiton with Varistor Circuit Применение варистора со схемой варистора

На приведенном выше рисунке показано применение варистора в различных системах защиты энергосистем. Каждое применение варистора поясняется ниже со схемой варистора.

Varistor Circuit for Single Phase Line to Line Protection Varistor Circuit for Single Phase Line to Line Protection Схема варистора для защиты однофазной линии от линии

Схема варистора, показанная на рисунке 1 выше, представляет собой систему защиты однофазной линии от линии.В этой системе варистор подключается к электрической цепи, которая должна быть защищена. Если между линией и линейными выводами электрической цепи возникает какой-либо переходный процесс напряжения, то резистор, зависимый от напряжения, снижает свое сопротивление и, таким образом, защищает электрическую цепь.

Varistor Circuit for Single Phase Line to Line and Line to Ground Protection Varistor Circuit for Single Phase Line to Line and Line to Ground Protection Схема варистора для защиты однофазной линии от линии и от линии к земле

Схема варистора, показанная на рисунке 2 выше, представляет собой систему защиты однофазной линии от линии и между фазой и землей.В этой системе варистор подключается к электрической цепи и к клеммам питания, которые должны быть защищены. Как и в приведенной выше схеме, здесь в этой схеме резисторы, зависящие от напряжения, подключены как к клеммам «линия к линии», так и к клеммам заземления.

Varistor Circuit for Semiconductor Switching Protection Varistor Circuit for Semiconductor Switching Protection Схема варистора для защиты от переключения полупроводников

Схема варистора, показанная на рисунке 3 выше, представляет собой систему защиты от переключения полупроводников. В этой системе варистор подключается к полупроводниковому коммутационному устройству (например, транзистору или тиристору), которое предназначено для защиты.В этой схеме резистор, зависящий от напряжения, подключен к полупроводниковым переключающим устройствам, чтобы защитить их от избыточного переходного напряжения.

Varistor Circuit for Contact Arcing Protection Varistor Circuit for Contact Arcing Protection Цепь варистора для защиты от дуги контакта

Цепь варистора, показанная на рисунке 4 выше, представляет собой систему защиты от дуги контакта. В этой системе варистор подключается к контактам реле, подключенного к двигателю. Реле защищено от переходных процессов перенапряжения резистором, зависимым от напряжения.

Знаете ли вы практическое применение варисторной схемы в проектах электроники в реальном времени? Затем разместите свои мнения, комментарии, предложения и идеи в разделе комментариев ниже.

.

Рекомендации по применению многослойных варисторов

% PDF-1.7 % 118 0 объект >>> / Метаданные 258 0 R / Контуры 110 0 R / Страницы 115 0 R / Тип / Каталог / Viewer Настройки >>> endobj 175 0 объект > / Шрифт >>> / Поля [] >> endobj 258 0 объект > поток Ложь 11.0 8,5 2 2018-11-13T14: 30: 16.682-05: 00 Библиотека Adobe PDF 15.0 Eaton 3a2512fce12151a3a9cd0caab3238e01164164d8 191911 Рекомендации по применению многослойных варисторов | Техническая нота 4047 | Eaton Библиотека Adobe PDF 15.0 ложный Adobe InDesign CC 2015 (Windows) 2018-10-30T09: 29: 07.000-07: 00 2018-10-30T12: 29: 07.000-04: 00 2017-01-10T12: 17: 05.000-05: 00 application / pdf

  • Рекомендации по применению многослойных варисторов | Техническая нота 4047 | Eaton
  • 2018-11-13T14: 33: 07.463-05: 00
  • Eaton
  • Рекомендации по применению многослойных варисторов
  • uuid: 18999481-789f-41c3-87df-459a91517dec uuid: adf0bf0e-2bb0-473d-98c3-b267bcf99b13
  • eaton: language / en-us
  • eaton: классификация продуктов / электроника / защита цепей / защита от перенапряжения / mlva-r-overvoltage-esd-protection
  • eaton: классификация продуктов / электроника / защита цепей / защита от перенапряжения / mlvb-overvoltage-esd-protection
  • eaton: ресурсы / технические ресурсы / заметки по применению
  • конечный поток endobj 110 0 объект > endobj 115 0 объект > endobj 119 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / Tabs / W / Thumb 41 0 R / TrimBox [0 0 612 792] / Type / Page> > endobj 1 0 obj > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / Tabs / W / Thumb 42 0 R / TrimBox [0 0 612 792] / Type / Page> > endobj 2 0 obj > поток HWko [K_q>:> C * Pn] + 㸍 IzŸ ޵ HPdVff ~ {m; # 7hԭ? -L5 [_- o6 ۋ dm * Drozqi / r \ 3 / —

    v x% / _ AkCc 層 NdҖ} \ 6WztuˡxQ } 3vv2 {ҹ’u / ڇ: ‘ݗ nCGģ թ 2 O + T_nN {QI_yx & ۷o1w7n {: | dv @ a ܗ vN $ 0> a͵O! T) l {+ ӭ # kC_lrV8’ƽ8 ^.A ~ $ Spv2E3I; «+ } ꩙ [P} A> | BWTHvQi6Gq ֗

    .

    % PDF-1.5 % 116 0 объект > endobj xref 116 167 0000000016 00000 н. 0000004449 00000 н. 0000004563 00000 н. 0000006133 00000 п. 0000006200 00000 н. 0000006339 00000 н. 0000006478 00000 н. 0000006617 00000 н. 0000006756 00000 н. 0000006895 00000 н. 0000007034 00000 п. 0000008222 00000 п. 0000008474 00000 п. 0000009669 00000 н. 0000010865 00000 п. 0000012639 00000 п. 0000013981 00000 п. 0000016076 00000 п. 0000016113 00000 п. 0000016279 00000 н. 0000016372 00000 п. 0000017707 00000 п. 0000017821 00000 п. 0000017933 00000 п. 0000018023 00000 п. 0000018107 00000 п. 0000019438 00000 п. 0000021238 00000 п. 0000024403 00000 п. 0000024518 00000 п. 0000027295 00000 п. 0000030492 00000 п. 0000031695 00000 п. 0000031962 00000 п. 0000035012 00000 п. 0000036333 00000 п. 0000037536 00000 п. 0000037702 00000 п. 0000039510 00000 п. 0000041915 00000 п. 0000044472 00000 п. 0000046748 00000 н. 0000047304 00000 п. 0000061407 00000 п. 0000063981 00000 п. 0000078136 00000 п. 0000092229 00000 н. 0000117341 00000 п. 0000131375 00000 н. 0000163519 00000 н. 0000163558 00000 н. 0000166207 00000 н. 0000182863 00000 н. 0000184066 00000 н. 0000200225 00000 н. 0000202319 00000 н. 0000203640 00000 н. 0000204839 00000 н. 0000206160 00000 н. 0000207356 00000 н. 0000207395 00000 н. 0000207418 00000 н. 0000207496 00000 н. 0000207572 00000 н. 0000207649 00000 н. 0000207770 00000 н. 0000207919 00000 н. 0000208266 00000 н. 0000208332 00000 н. 0000208448 00000 н. 0000208471 00000 н. 0000208549 00000 н. 0000208670 00000 н. 0000208819 00000 н. 0000209168 00000 н. 0000209234 00000 н. 0000209350 00000 н. 0000209373 00000 н. 0000209451 00000 н. 0000209526 00000 н. 0000209602 00000 н. 0000209723 00000 н. 0000209872 00000 н. 0000210219 00000 п. 0000210285 00000 н. 0000210401 00000 п. 0000210424 00000 н. 0000210502 00000 н. 0000210851 00000 п. 0000210917 00000 п. 0000211033 00000 н. 0000211056 00000 н. 0000211134 00000 п. 0000211482 00000 н. 0000211548 00000 н. 0000211664 00000 н. 0000211687 00000 н. 0000211765 00000 н. 0000212114 00000 п. 0000212180 00000 н. 0000212296 00000 н. 0000213142 00000 п. 0000213399 00000 н. 0000237139 00000 н. 0000237178 00000 н. 0000259601 00000 н. 0000259640 00000 н. 0000295547 00000 н. 0000295586 00000 н. 0000332560 00000 н. 0000332599 00000 н. 0000368534 00000 н. 0000368573 00000 н. 0000404480 00000 н. 0000404519 00000 н. 0000441493 00000 н. 0000441532 00000 н. 0000446109 00000 н. 0000446148 00000 н. 0000450725 00000 н. 0000450764 00000 н. 0000470269 00000 н. 0000470308 00000 п. 0000472766 00000 н. 0000472805 00000 н. 0000475263 00000 н. 0000475302 00000 п. 0000494807 00000 н. 0000494846 00000 н. 0000516154 00000 н. 0000516193 00000 н. 0000552128 00000 н. 0000552167 00000 н. 0000552554 00000 н. 0000552941 00000 н. 0000553062 00000 н. 0000553208 00000 н. 0000553324 00000 н. 0000553470 00000 н. 0000553700 00000 н. 0000553821 00000 п 0000553967 00000 н. 0000554088 00000 н. 0000554234 00000 н. 0000554621 00000 н. 0000555008 00000 н. 0000555129 00000 н. 0000555275 00000 н. 0000555662 00000 п. 0000556049 00000 н. 0000556170 00000 н. 0000556316 00000 н. 0000556392 00000 н. 0000556513 00000 н. 0000556659 00000 н. 0000556805 00000 н. 0000560012 00000 н. 0000584031 00000 н. 0000585874 00000 н. 0000587765 00000 н. 0000587886 00000 н. 0000588033 00000 н. 0000588173 00000 н. 0000588293 00000 н. 0000588439 00000 н. 0000588578 00000 н. 0000003636 00000 н. трейлер ] / Назад 1040617 >> startxref 0 %% EOF 282 0 объект > поток ч ތ KLQ-2Ng } ڦ B [D #) qlLFX @ Lhq! D | qG;]; L; -Dc

    .

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *