§ 7 учебника К.Ю. Богданова для 11 класса
§ 7. электромагнитное поле
Электрическое и магнитное поля, взаимосвязанные между собой, являются проявлениями электромагнитного поля, особой формы материи, осуществляющей взаимодействие между заряженными частицами.
Многие экспериментальные факты демонстрируют тесную связь между электрическим и магнитным полями. При этом электрическое поле может возникать в двух случаях: (1) из-за наличия электрических зарядов (см. «Электростатическое поле» в курсе физики для 10 класса), (2) при изменении магнитного поля (§ 5). В то же время магнитное поле, как нам известно, возникает только в одном случае - при движении электрических зарядов (§ 1). Считая, что электрическое и магнитное поля являются лишь частными проявлениями единого электромагнитного поля, Максвелл выдвинул гипотезу (впоследствии подтвержденную на опыте) о том, что магнитное поле может возникать не только при движении зарядов, но и при любом изменении электрического поля.
Согласно гипотезе Максвелла изменяющееся электрическое поле создаёт вихревое магнитное поле аналогично тому, как изменяющееся магнитное поле приводит к возникновению вихревого электрического поля. На рис. 7 показано, как возникает вихревое магнитное поле между обкладками плоского конденсатора при его зарядке током I. Видно, что при изменении электрического поля между пластинами конденсатора возникает магнитное поле, похожее на то, как если бы между пластинами протекал электрический ток.
Гипотеза Максвелла дала возможность построить полную систему взаимосвязей между электрическими и магнитными полями – теорию электромагнитного поля
Явление электромагнитной индукции и гипотеза Максвелла убеждают нас в том, что электрическое и магнитное поле не могут существовать отдельно друг от друга. Например, нельзя создать переменное магнитное поле, не создав при этом переменное электрическое поле, так как согласно закону электромагнитной индукции переменное магнитное поле вызовет переменное электрическое поле. И наоборот, создавая переменное электрическое поле, мы обязательно создадим переменное магнитное поле.
Существование в данной точке только магнитного или только электрического поля зависит от системы отсчёта, в которой мы ведём наблюдения. Например, покоящийся электрический заряд создает только электрическое поле. Но если тот же заряд движется относительно наблюдателя или наблюдатель движется относительно заряда, то поле в данной точке оказывается уже не только электрическим, но отчасти и магнитным, так как движение заряда создаёт вокруг магнитное поле. То же касается и поля, создаваемого постоянным магнитом – в системе отсчёта, связанной с магнитом, регистрируется только магнитное поле, а в системе отсчёта, движущейся относительно магнита, присутствует ещё и вихревое электрическое поле.
Электромагнитное поле – особая форма материи, осуществляющая взаимодействие между заряженными частицами, проявление которой зависит от выбранной системы отсчёта.
Вопросы для повторения:
· Какие опыты демонстрируют тесную связь между электрическими и магнитными полями?
· В каких случаях возникают электрические и магнитные поля?
· В чём состоит гипотеза Максвелла?
· Почему, говоря о существовании только электрического или только магнитного поля в данной точке, надо всегда указывать систему отсчёта?
Рис. 7. К объяснению гипотезы Максвелла. Возникновение магнитного поля при изменении электрического поля между пластинами конденсатора при его зарядке.
раскрыта тайна магнитного поля Земли
Как устроена магнитосфера Земли
© giphy
Планета находится в гигантском облаке смертоносных частиц, идущих от Солнца и от всей Галактики в целом. И мы живём на этой планете потому, что данные частицы на нас не обрушиваются: сильное магнитное поле Земли заставляет их огибать её и следовать дальше в космос. Притом мощный солнечный ветер как бы сплющивает магнитосферу с той стороны, которая смотрит на светило. Но даже при этом она простирается на 70 тысяч километров — это добрый десяток радиусов Земли. А с другой стороны магнитное поле образует и вовсе исполинский шлейф на пару сотен земных радиусов.
Что создаёт магнитное поле Земли
© giphy
В 1905 году Альберт Эйнштейн назвал этот вопрос одной из главных загадок физики XX века. Надо признать, спустя сто лет нельзя сказать, что она разгадана окончательно. Мы знаем, что магнитное поле возникает там, где есть электрический ток. Значит, планета Земля представляет собой гигантский электрогенератор. Спрашивается, как в недрах возникает это электричество? Самой убедительной считают теорию динамо: сначала от трения потоков расплавленное вещество электризуется, возникает ток — и вместе с ним магнитное поле, а потом эти же потоки проходят сквозь поле — и из-за этого опять возникает ток. И так далее бесконечно. А трение возникает, например, потому, что в жидких (или, скорее, вязких) слоях планеты идёт конвекция: более горячее вещество поднимается кверху, менее горячее опускается вниз. К тому же планета вращается вокруг своей оси, а это неизбежно означает какие-то движения в её разнородных недрах.
Сибирская сила. Что на самом деле сдвигает «северный» магнитный полюс
Где рождается земной магнетизм
© giphy
До сих пор мы были уверены, что, разумеется, в ядре. Оно состоит из двух частей: внешней жидкой оболочки из расплавленного железа и сердцевины — она тоже железная, но из-за неимоверного давления твёрдая. И вот при взаимодействии твёрдой и жидкой частей возникает теплообмен, конвективные потоки и, как следствие, электричество. Как известно, железо прекрасно проводит ток, так что всё сходится.
Впрочем, как выясняется, всё, да не всё. Дело в том, что сердцевина стала твёрдой сравнительно недавно — полтора миллиарда лет назад. Но учёные убеждены, что магнитное поле Земли возникло никак не позже 4,2 миллиарда лет назад. По сути, оно родилось вскоре после самой планеты — ей как раз примерно четыре с половиной миллиарда лет. Возник вопрос, что создавало магнетизм на ранних этапах эволюции Земли.
Зацепка появилась в 2007 году. Тогда французские учёные заявили, что нижний слой земной мантии оставался жидким примерно пару миллиардов лет. Сейчас, надо сказать, мантия почти вся твёрдая, опять же из-за давления. Лишь в самой верхней части остаётся вязкая магма, которая иногда вырывается на поверхность из жерл вулканов.
Проблема в том, что даже в виде пластичной жижи мантийное вещество всегда считали очень плохим проводником электричества. Но дело в том, что тестировать его где-то в лаборатории — это совсем не то, что понаблюдать за ним в недрах Земли. Поэтому учёные из Калифорнийского университета в Сан-Диего решили всё выяснить самым, вероятно, продвинутым на сегодняшний день способом — путём вычислений, основанных на принципах квантовой механики. Это позволило смоделировать поведение вещества не здесь, на поверхности, а именно у самого земного ядра. Так вот, выяснилось, что на такой глубине мантия вполне себе электропроводна — во всяком случае, динамо поддерживать может.
Значит, именно мантия изначально защищала Землю своим покрывалом. И без неё жизни на планете могло и не быть.
Самое интересное из мира науки и технологий — в телеграм-канале автора.
Что такое магнетизм? Факты о магнитных полях и магнитной силе
(Изображение предоставлено: TEK IMAGE через Getty Images)Магнетизм — это сила природы, создаваемая движущимися электрическими зарядами. Иногда эти движения микроскопические и происходят внутри материала, известного как магниты. Магниты или магнитные поля, создаваемые движущимися электрическими зарядами, могут притягивать или отталкивать другие магниты и изменять движение других заряженных частиц.
Магнитное поле воздействует на частицы силой, известной как сила Лоренца, согласно веб-сайту HyperPhysics Университета штата Джорджия . Сила, действующая на электрически заряженную частицу в магнитном поле, зависит от величины заряда, скорости частицы и напряженности магнитного поля. Сила Лоренца обладает тем специфическим свойством, что заставляет частицы двигаться под прямым углом к их первоначальному движению.
Некоторые материалы, такие как железо, известны как постоянные магниты, что означает, что они могут поддерживать постоянное магнитное поле. Это наиболее распространенные формы магнитов, встречающиеся в повседневной жизни. Другим материалам, таким как железо, кобальт и никель, можно придать временное магнитное поле, поместив их в более мощное поле, но в конечном итоге эти материалы потеряют свой магнетизм.
Как работает магнетизм
Магнитное поле Земли. (Изображение предоставлено: alxpin через Getty Images)Согласно HyperPhysics, магнитные поля генерируются движением электрических зарядов. Все электроны обладают фундаментальным квантово-механическим свойством углового момента, известным как «спин». Внутри атомов большинство электронов имеют тенденцию образовывать пары, в которых один из них имеет «спин вверх», а другой — «спин вниз», или, другими словами, их угловые моменты направлены в противоположные стороны. В этом случае магнитные поля, созданные этими спинами, направлены в противоположные стороны, поэтому они компенсируют друг друга. Однако некоторые атомы содержат один или несколько неспаренных электронов, и эти неспаренные электроны создают крошечное магнитное поле. По данным Ресурсного центра неразрушающего контроля (НК), направление их вращения определяет направление магнитного поля. Когда значительное большинство неспаренных электронов выровнены со своими спинами в одном и том же направлении, они объединяются, чтобы создать магнитное поле, достаточно сильное, чтобы его можно было наблюдать в макроскопическом масштабе.
Источники магнитного поля диполярны, то есть имеют северный и южный полюса. По словам Джозефа Беккера из Университета штата Сан-Хосе, противоположные полюса (N и S) притягиваются, а одинаковые полюса (N и N или S и S) отталкиваются. Это создает тороидальное поле или поле в форме пончика, поскольку направление поля распространяется наружу от северного полюса и входит через южный полюс.
Земля сама по себе является гигантским магнитом. По данным НАСА, планета получает свое магнитное поле от циркулирующего электрического тока внутри расплавленного металлического ядра . Компас указывает на север, потому что маленькая магнитная стрелка в нем подвешена так, что она может свободно вращаться внутри корпуса, выравниваясь с магнитным полем Земли. Как это ни парадоксально, то, что мы называем магнитным северным полюсом, на самом деле является южным магнитным полюсом, потому что он притягивает северные магнитные полюса стрелок компаса.
История магнетизма
Магнетит (также известный как магнитный камень) является самым магнитным из всех встречающихся в природе минералов на Земле. (Изображение предоставлено Александром Победимским через Shutterstock)Если выравнивание неспаренных электронов сохраняется без приложения внешнего магнитного поля или электрического тока, оно создает постоянный магнит. Постоянные магниты являются результатом ферромагнетизма . Приставка «ферро» относится к железу, потому что постоянный магнетизм впервые наблюдали в форме природной железной руды, называемой магнетитом, Fe3O4. Кусочки магнетита можно найти разбросанными по поверхности Земли или вблизи нее, и иногда один из них будет намагниченным. Эти природные магниты называются магнитами. Хотя ученые не знают точно, как образуются магниты, «большинство ученых считают, что магнетит — это магнетит, в который ударила молния», согласно Университету Аризоны .
Вскоре люди узнали, что они могут намагничивать железную иглу, проводя по ней магнитным камнем, в результате чего большинство неспаренных электронов в игле выстраиваются в одном направлении. По данным НАСА , примерно в 1000 году нашей эры китайцы обнаружили, что магнит, плавающий в чаше с водой, всегда выстраивается в направлении север-юг. После этого магнитный компас стал огромным помощником в навигации, особенно днем и ночью, когда звезды были скрыты облаками.
Другие металлы, помимо железа, могут обладать ферромагнитными свойствами. К ним относятся никель, кобальт и некоторые редкоземельные металлы , такие как самарий или неодим, которые используются для изготовления сверхсильных постоянных магнитов.
Другие формы магнетизма
Магнетизм принимает множество других форм, но, за исключением ферромагнетизма, они обычно слишком слабы, чтобы их можно было наблюдать, кроме как с помощью чувствительных лабораторных приборов или при очень низких температурах. Антон Бругнамс впервые обнаружил диамагнетизм в 1778 году, когда использовал постоянные магниты в поисках материалов, содержащих железо. По словам Джеральда Кюстлера, широко публикуемого независимого немецкого исследователя и изобретателя, в своей статье «Диамагнитная левитация — исторические вехи» , опубликованной в «Румынском журнале технических наук», Бругнамс заметил: «Только темные и почти Фиолетовый висмут продемонстрировал в исследовании особое явление: когда я положил его кусочек на круглый лист бумаги, плавающий поверх воды, он оттолкнулся от обоих полюсов магнита».
Диамагнетизм вызван орбитальным движением электронов внутри атомов, создающим крошечные токовые петли, которые создают слабые магнитные поля, согласно HyperPhysics . Когда к материалу прикладывается внешнее магнитное поле, эти токовые петли имеют тенденцию выстраиваться таким образом, чтобы противодействовать приложенному полю. Это заставляет все материалы отталкиваться от постоянного магнита; однако результирующая сила обычно слишком слаба, чтобы ее можно было заметить. Однако есть несколько заметных исключений.
Пироуглерод, вещество, похожее на графит, демонстрирует даже более сильный диамагнетизм, чем висмут, хотя и только вдоль одной оси, и фактически может левитировать над сверхсильным редкоземельным магнитом. Некоторые сверхпроводящие материалы демонстрируют еще более сильный диамагнетизм ниже своей критической температуры (температуры, при которой они становятся сверхпроводящими), и поэтому редкоземельные магниты могут парить над ними. (Теоретически из-за их взаимного отталкивания один может левитировать над другим. )
Парамагнетизм возникает, когда материал временно становится магнитным при помещении в магнитное поле и возвращается в свое немагнитное состояние, как только внешнее поле удаляется. Когда приложено магнитное поле, некоторые спины неспаренных электронов выравниваются с полем и подавляют противоположную силу, создаваемую диамагнетизмом. Однако эффект заметен только при очень низких температурах, говорит Дэниел Марш, профессор физики Южного государственного университета Миссури.
Другие, более сложные формы включают антиферромагнетизм, при котором магнитные поля атомов или молекул располагаются рядом друг с другом; и поведение спинового стекла, которое включает как ферромагнитные, так и антиферромагнитные взаимодействия. Кроме того, ферримагнетизм можно рассматривать как комбинацию ферромагнетизма и антиферромагнетизма из-за многих общих черт между ними, но он все же имеет свою уникальность, по данным Калифорнийского университета в Дэвисе. .
Электричество и магнетизм
Инфографика, показывающая, как работает правило правой руки Флеминга. (Изображение предоставлено: fridas через Shutterstock)Связанный контент
Когда проводник перемещается в магнитном поле, поле индуцирует ток в проводе. И наоборот, магнитное поле создается электрическим зарядом в движении, например, когда по проводу течет ток. Таким образом, все электрические провода в вашем доме создают крошечные магнитные поля. Эта взаимосвязь между электричеством и магнетизмом описывается законом индукции Фарадея , который лежит в основе электромагнитов, электродвигателей и генераторов. Заряд, движущийся по прямой линии, как по прямому проводу, создает магнитное поле, которое закручивается по спирали вокруг провода. Когда этот провод превращается в петлю, поле принимает форму пончика или тора.
Постоянный ток также может создавать постоянное поле в одном направлении, которое может включаться и выключаться вместе с током. Затем это поле может отклонить подвижный железный рычаг, вызывая слышимый щелчок. Это основа телеграфа, изобретенного в 1830-х годах Сэмюэлем Ф. Б. Морзе , который позволял осуществлять связь на большие расстояния по проводам с использованием двоичного кода, основанного на длинных и коротких импульсах, согласно Библиотеке. Конгресса (откроется в новой вкладке). Опытные операторы посылали импульсы, быстро включая и выключая ток с помощью подпружиненного переключателя мгновенного действия или ключа. Затем другой оператор на принимающей стороне переводил слышимые щелчки обратно в буквы и слова.
Катушку вокруг магнита также можно заставить двигаться по схеме с различной частотой и амплитудой, чтобы индуцировать ток в катушке. Это основа для ряда устройств, в первую очередь для микрофона (откроется в новой вкладке). Звук заставляет диафрагму двигаться внутрь и наружу вместе с меняющимися волнами давления. Если диафрагма соединена с подвижной магнитной катушкой вокруг магнитного сердечника, она будет производить переменный ток, аналогичный падающим звуковым волнам. Затем этот электрический сигнал может быть усилен, записан или передан по желанию. Крошечные сверхсильные редкоземельные магниты используются для изготовления миниатюрных микрофонов для сотовых телефонов, сказал Марш в интервью Live Science.
Когда этот модулированный электрический сигнал подается на катушку, он создает колеблющееся магнитное поле, которое заставляет катушку перемещаться внутри и снаружи магнитного сердечника по той же схеме. Затем катушка прикрепляется к подвижному конусу динамика, чтобы он мог воспроизводить слышимые звуковые волны в воздухе. По данным Смитсоновского института, первым практическим применением микрофона и динамика стал телефон, запатентованный Александром Грэмом Беллом в 1876 году. Хотя эта технология была улучшена и усовершенствована, она по-прежнему является основой для записи и воспроизведения звука.
Применение электромагнитов почти бесчисленно. Закон индукции Фарадея формирует основу для многих аспектов нашего современного общества, включая не только электродвигатели и генераторы, но и электромагниты всех размеров. Тот же принцип, который используется гигантским краном для подъема старых автомобилей на свалку, также используется для выравнивания микроскопических магнитных частиц на жестком диске компьютера для хранения двоичных данных, и каждый день разрабатываются новые приложения.
Штатный писатель Таня Льюис внесла свой вклад в этот отчет.
Дополнительные ресурсы
- Национальная лаборатория сильных магнитных полей (открывается в новой вкладке) — крупнейшая и самая мощная магнитная лаборатория в мире. Исследователи бесплатно пользуются оборудованием для изучения материалов, энергии и жизни.
- Образовательный курс по физике плазмы в Интернете (открывается в новой вкладке) содержит интерактивный модуль, посвященный основным понятиям, связанным с электричеством и магнетизмом.
- В Центре космических полетов имени Годдарда НАСА представлены уроки «Ранняя история электричества и магнетизма (открывается в новой вкладке)» и «Исследование магнитосферы Земли (открывается в новой вкладке)».
Библиография
НАСА, «Магнитосфера Земли», https://www.nasa.gov/magnetosphere (открывается в новой вкладке)
«Магнетизм». ОТКРЫТИЕ НАУКИ. Gale Research, 1996. Воспроизведено в Discovering Collection. Фармингтон-Хиллз, Мичиган: Gale Group. Декабрь 2000 г. http://galenet.galegroup.com/servlet/DC/ (открывается в новой вкладке)
Гриффитс, Дэвид Дж. (1998). Введение в электродинамику (3-е изд.) (открывается в новой вкладке). Прентис Холл. ISBN 978-0-13-805326-0. OCLC 40251748.
Пол М. Саттер — профессор-исследователь в области астрофизики в Университете Стоуни-Брук Университета штата Нью-Йорк и Институте Флэтайрон в Нью-Йорке. Он регулярно появляется на телевидении и в подкастах, в том числе «Спросите космонавта». Он является автором двух книг: «Твое место во Вселенной» и «Как умереть в космосе», а также регулярно публикуется на Space.com, Live Science и других ресурсах. Пол получил докторскую степень по физике в Университете Иллинойса в Урбана-Шампейн в 2011 году и провел три года в Парижском институте астрофизики, после чего прошел стажировку в Триесте, Италия.
Physics4Kids.com: Электричество и магнетизм: Магнитные поля
Магнитные поля отличаются от электрических полей. Хотя оба типа полей взаимосвязаны, они выполняют разные функции. Идея линий магнитного поля и магнитных полей была впервые рассмотрена Майклом Фарадеем , а затем Джеймсом Клерком Максвеллом . Оба этих английских ученых сделали великие открытия в области электромагнетизма .
Магнитные поля — это области, в которых объект проявляет магнитное влияние. Поля воздействуют на соседние объекты вдоль так называемых силовых линий магнитного поля. Магнитный объект может притягивать или отталкивать другой магнитный объект. Вы также должны помнить, что магнитные силы НЕ связаны с гравитацией. Величина гравитации зависит от массы объекта, а магнитная сила зависит от материала, из которого сделан объект.
Если вы поместите объект в магнитное поле, он будет затронут, и эффект будет происходить вдоль силовых линий. Многие школьные эксперименты смотрят маленькие кусочки из железо (Fe) выстраиваются вокруг магнитов вдоль силовых линий. Магнитные полюса — это точки, в которых начинаются и заканчиваются силовые линии магнитного поля. Силовые линии сходятся или сходятся на полюсах. Вы, наверное, слышали о полюсах Земли. Эти полюса — места, где линии поля наших планет сходятся. Мы называем эти полюса северным и южным, потому что именно там они расположены на Земле. Все магнитные объекты имеют силовые линии и полюса. Он может быть маленьким, как атом, или большим, как звезда.
Вы знаете о заряженных частицах. Есть положительные и отрицательные заряды. Вы также знаете, что положительные заряды притягиваются к отрицательным зарядам. Французский ученый по имени Андре-Мари Ампер изучал взаимосвязь между электричеством и магнетизмом. Он обнаружил, что магнитные поля создаются движущимися зарядами (током). А на движущиеся заряды действуют магниты.
Магниты являются простыми примерами естественных магнитных полей. Но знаете что? Земля имеет огромное магнитное поле. Поскольку ядро нашей планеты заполнено расплавленным железом (Fe), существует большое поле, которое защищает Землю от космической радиации и частиц, таких как солнечного ветра . Когда вы смотрите на крошечные магниты, они работают аналогичным образом. Вокруг магнита есть поле.
Как отмечалось ранее, ток в проводах создает магнитный эффект. Вы можете увеличить силу этого магнитного поля, увеличив ток через провод. Мы можем использовать этот принцип для создания искусственных регулируемых магнитов, называемых 9.0084 электромагниты , делая катушки из проволоки, а затем пропуская ток через катушки.