Размерности физических величин в системе СИ — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 февраля 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 февраля 2019; проверки требует 1 правка.В таблице приведены размерности различных физических величин в Международной системе единиц (СИ).
В столбцах «Показатели степени» указаны показатели степени в выражении единицы измерения через соответствующие основные единицы СИ. Например, для фарада указано ( −2 | −1 | 4 | 2 | | ), значит
- 1 фарад = м−2·кг−1·с4·A2.
Название и обозначение величины | Единица измерения | Обозначение | Формула | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
русское | международное | м | кг | с | А | К | кд | ||||
Длина | L | метр | м | m | L | 1 | |||||
Масса | m | килограмм | кг | kg | m | 1 | |||||
Время | t | секунда | с | s | t | 1 | |||||
Сила электрического тока | I | ампер | А | A | I | 1 | |||||
Термодинамическая температура | T | кельвин | К | K | T | 1 | |||||
Сила света | Iv | кандела | кд | cd | J | 1 | |||||
Площадь | S | м² | м | m2 | S | 2 | |||||
Объём | V | м³ | м3 | m3 | V | 3 | |||||
Частота | f | герц | Гц | Hz | f = 1/t | −1 | |||||
Скорость | v | м/с | m/s | v = dL/dt | 1 | −1 | |||||
Ускорение | a | м/с2 | m/s2 | ε = d2L/dt2 | 1 | −2 | |||||
Плоский угол | φ | рад | rad | φ | |||||||
Угловая скорость | ω | рад/с | rad/s | ω = dφ/dt | −1 | ||||||
Угловое ускорение | ε | рад/с2 | rad/s2 | ε = d2φ/dt2 | −2 | ||||||
Сила | F | ньютон | Н | N | F = ma | 1 | 1 | −2 | |||
Давление | p | паскаль | Па | Pa | P = F/S | −1 | 1 | −2 | |||
Работа, энергия | A | Дж | J | A = F·L | 2 | 1 | −2 | ||||
Импульс | p | кг·м/с | kg·m/s | p = m·v | 1 | 1 | −1 | ||||
Мощность | N | ватт | Вт | W | N = A/t | 2 | 1 | −3 | |||
Удельная теплоемкость | с | Дж/(кг*К) | J/(kg*K) | с=ΔQ/(m*ΔT) | 2 | -2 | -1 | ||||
Электрический заряд | q | кулон | Кл | C | q = I·t | 1 | 1 | ||||
Электрическое напряжение, электрический потенциал | U | вольт | В | V | U = A/q | 2 | 1 | −3 | −1 | ||
Напряжённость электрического поля | E | В/м | V/m | E = U/L | 1 | 1 | −3 | −1 | |||
Электрическое сопротивление | R | ом | Ом | Ω | R = U/I | 2 | 1 | −3 | −2 | ||
Электрическая ёмкость | C | фарад | Ф | F | C = q/U | −2 | −1 | 4 | 2 | ||
Магнитная индукция | B | тесла | Тл | T | B = F/I·L | 1 | −2 | −1 | |||
Напряжённость магнитного поля | H | А/м | A/m | −1 | 1 | ||||||
Магнитный поток | Ф | вебер | Вб | Wb | Ф = B·S | 2 | 1 | −2 | −1 | ||
Индуктивность | L | генри | Гн | H | L = U·dt/dI | 2 | 1 | −2 | −2 |
Основные единицы СИ — Википедия
Семь основных единицОсновные единицы СИ определяет Международное бюро мер и весов (МБМВ). Полное официальное описание основных единиц СИ, а также СИ в целом вместе с её толкованием, содержится в действующей редакции Брошюры СИ, опубликованной МБМВ и представленной на его сайте
В таблице представлены все основные единицы СИ вместе с их определениями, российскими и международными обозначениями, физическими величинами, к которым они относятся, а также с кратким обоснованием их происхождения.
Единица | Обозначение | Величина | Определение[4] | Историческое происхождение, обоснование |
---|---|---|---|---|
Секунда | с s | Время | Величина секунды устанавливается фиксацией численного значения частоты сверхтонкого расщепления основного состояния атома цезия-133 при температуре 0 К равным в точности 9 192 631 770, когда она выражена единицей СИ с | Солнечные сутки разбиваются на 24 часа, каждый час разбивается на 60 минут, каждая минута разбивается на 60 секунд. Секунда — это 1⁄(24 × 60 × 60) часть солнечных суток. Современное определение принято на XIII Генеральной конференции по мерам и весам (ГКМВ) в 1967 году. |
Метр | м m | Длина | Величина метра устанавливается фиксацией численного значения скорости света в вакууме равным в точности 299 792 458, когда она выражена единицей СИ м·с−1. | 1⁄10 000 000 расстояния от экватора Земли до северного полюса на меридиане Парижа. |
Килограмм | кг kg | Масса | Величина килограмма устанавливается фиксацией численного значения постоянной Планка h равным в точности 6,626 070 15 × 10−34, когда она выражена в Дж⋅с. | Масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря. В течение более чем двухсот лет эталоном килограмма служили материальные образцы — Архивный килограмм, затем Международный прототип килограмма. |
Ампер | А A | Сила электрического тока | Величина ампера устанавливается фиксацией численного значения элементарного заряда e равным 1,602 176 634 × 10−19, когда он выражен в кулонах. | Предыдущее определение, восходящее к изначальному: ампер есть сила не изменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2⋅10−7ньютонов. |
Кельвин | К K | Термодинамическая температура | Величина кельвина устанавливается фиксацией численного значения постоянной Больцмана k равным в точности 1,380 649 × 10−23, когда она выражена в Дж/К. | В 1967—2019 годах определялся как 1/273,16 части термодинамической температуры тройной точки воды[к 1]. Шкала Кельвина использует тот же шаг, что и шкала Цельсия, но 0 кельвинов — это температура абсолютного нуля, а не температура плавления льда. Согласно современному определению ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге шкалы Цельсия и Кельвина сдвинуты на 273,15[6]: T [°C] = T [K] − 273,15. |
Моль | моль mol | Количество вещества | Один моль содержит ровно 6,022 140 76 × 1023 элементов[к 2]. Это число — фиксированное значение постоянной Авогадро NA, выраженной в единицах моль−1, и называется числом Авогадро. | Атомный вес или молекулярный вес, деленный на постоянную молярной массы, 1 г/моль. В 1971—2019 годах определялся как количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 12 г. |
Кандела | кд cd | Сила света | Величина канделы устанавливается фиксацией численного значения световой эффективности монохроматического излучения частотой 540·1012 Гц равным в точности 683, когда она выражена единицей СИ м−2·кг−1·с3·кд·ср или кд·ср·Вт−1, что эквивалентно лм·Вт−1. | Сила света (англ. Candlepower, устар. Британская единица силы света), испускаемая горящей свечой. Современное определение установлено XVI ГКМВ в 1979 г. |
Наименования и обозначения основных единиц, так же как и всех других единиц СИ, пишутся маленькими буквами (например, метр и его обозначение м). У этого правила есть исключение: обозначения единиц, названных фамилиями учёных, пишутся с заглавной буквы (например, ампер обозначается символом А).
Остальные единицы СИ являются производными и образуются из основных с помощью уравнений, связывающих друг с другом физические величины используемой в СИ Международной системы величин.
Основная единица может использоваться и для производной величины той же размерности. Например, количество осадков определяется как частное от деления объёма на площадь и в СИ выражается в метрах. В этом случае метр используется в качестве когерентной производной единицы[2][к 3].
Определение СИ через фиксацию констант, вообще говоря, не требует различать основные и производные единицы. Тем не менее, это разделение сохраняется по историческим причинам и для удобства[7].
С момента принятия Метрической конвенции в 1875 году определения основных единиц измерения несколько раз изменялись. С переопределения метра (1960 год) килограмм остался последней единицей, которая определяется не как свойство природы, а как физический артефакт. Тем не менее, поскольку моль, ампер и кандела были привязаны к килограмму, то и они оказывались привязанными к изготовленному людьми эталону килограмма. Длительное время метрология искала пути для определения килограмма на основе фундаментальных физических констант, так же, как метр определяется через скорость света.
В начале XXI века Международной бюро мер и весов готовило новые определения основных единиц СИ, не привязанные к материальным артефактам (эталонам). Эта работа была окончательно завершена к 2018 году, когда на XXVI Генеральной конференции по мерам и весам были приняты новые определения СИ и её основных единиц. Изменения вступили в силу в 2019 году.
Содержательно изменились определения четырёх основных единиц СИ: килограмма, ампера, кельвина и моля. Новые определения этих единиц основаны на фиксированных численных значениях следующих фундаментальных физических постоянных: постоянной Планка, элементарного электрического заряда, постоянной Больцмана и числа Авогадро, соответственно. Всем этим величинам приписаны точные значения, основанные на результатах наиболее точных измерений, рекомендованных Комитетом по данным для науки и техники (CODATA).
Формально новые определения отменили все предыдущие[8], однако новые определения метра, секунды и канделы равносильны старым и изменены лишь для поддержания единства стиля. Определения метра и секунды уже были связаны с точными значениями таких постоянных, как скорость света и величина расщепления основного состояния атома цезия. Определение канделы хотя и не привязано к какой-либо фундаментальной постоянной, тем не менее, также может рассматриваться как связанное с точным значением инварианта природы.
Новый облик СИ[править | править код]
Согласно вступившему в силу в 2019 году определению, СИ — это система единиц, в которой[9]:
- частота сверхтонкого расщепления основного состояния атома цезия-133 в точности равна 9 192 631 770 Гц;
- скорость света в вакууме c в точности равна 299 792 458 м/с;
- постоянная Планка ℎ в точности равна 6,626 070 15⋅10−34 Дж·с;
- элементарный электрический заряд e в точности равен 1,602 176 634⋅10−19 Кл;
- постоянная Больцмана k в точности равна 1,380 649⋅10−23 Дж/К;
- число Авогадро NA в точности равно 6,022 140 76⋅1023 моль−1;
- световая эффективность Kcd монохроматического излучения частотой 540⋅1012 Гц в точности равна 683 лм/Вт.
- ↑ В 2005 г. Международный комитет мер и весов установил требования к изотопному составу воды при реализации температуры тройной точки воды: 0,00015576 моля 2H на один моль 1Н, 0,0003799 моля 17О на один моль 16О и 0,0020052 моля 18О на один моль 16О[5]
- ↑ При применении моля структурные элементы должны быть специфицированы (оговорены) и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.
- ↑ Когерентные производные единицы — производные единицы, которые образуются по уравнениям, не содержащим коэффициент пропорциональности. Благодаря отсутствию коэффициента при расчётах, если выражать значения всех величин в единицах СИ, в формулы не требуется вводить коэффициенты, зависящие от выбора единиц. БСЭ-3[уточните ссылку (уже 239 дней)].
- ↑ Брошюра СИ, 2019, с. 18, 130.
- ↑ 1 2 Международный словарь по метрологии: основные и общие понятия и соответствующие термины / Пер. с англ. и фр.. — 2-е изд., испр. — СПб.: НПО «Профессионал», 2010. — С. 20. — 82 с. — ISBN 978-5-91259-057-3.
- ↑ Брошюра СИ, 2019.
- ↑ Брошюра СИ, 2019, с. 18—23, 130—135.
- ↑ Брошюра СИ, 2019, с. 76, 184.
- ↑ ГОСТ 8.417—2002. Межгосударственный стандарт. Государственная система обеспечения единства измерений (ГСИ). Единицы величин (неопр.) (недоступная ссылка). М.: Стандартинформ (2010). — ГОСТ введён в действие с 1 сентября 2003 года. Дата обращения 9 июля 2012. Архивировано 10 ноября 2012 года.
- ↑ Брошюра СИ, 2019, с. 17, 129.
- ↑ Брошюра СИ, 2019, с. 93, 198.
- ↑ Брошюра СИ, 2019, с. 15—16, 127—128.
Единицы измерения объёма — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 ноября 2015; проверки требуют 20 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 ноября 2015; проверки требуют 20 правок.Единицы измерения объёма — единицы измерения размера пространства, занимаемого твёрдым, сыпучим или жидким. В СИ объём измеряется в кубических метрах]] (м³, метр в кубе). Применяются также кратные и дольные приставки, увеличивающие или уменьшающие размер стандартной единицы — кубический сантиметр (10-6 м3), кубический дециметр(10-3 м3) и т. д.
Внесистемные единицы измерения объёма жидкостей, газов и сыпучих тел[править | править код]
- литр — внесистемная единица объёма жидких и газообразных тел, допускаемая к применению наравне с единицами СИ во всех областях применения. Равна одному кубическому дециметру (10-3 м3)[1][2][3]. Используются также миллилитры (1 мл = 10-3 л = 1 см3 ).
- аам — старинная мера ёмкости в Нидерландах, Бельгии и Прибалтике, применялась преимущественно для измерения объёма вина и спирта (140-220 литров)
- анкер — старинная мера объёма, использовавшаяся в разных странах для вина, коньяка и масла.
- ка — вавилонская мера ёмкости (=0,84 л, иногда 0,42 л)
- арбата
- бочка виленская — мера объёма в Великом княжестве Литовском
- шоппен — старинная мера жидкостей (в том числе напитков) и сыпучих тел сначала в Южной Германии, затем в ряде других германских, швейцарских и французских регионов.
Английская система мер[править | править код]
- баррель — единица английской системы мер, применяется для измерения объёма нефти (= 158,983 л)
- галлон — единица английской системы мер, применяется для измерения объёма жидкостей (редко твёрдых тел). Примерно равен 4 литрам, размер зависит от страны и разновидности галлона[4].
- пинта — единица английской системы мер, 1/8 галлона, примерно 1/2 литра.
- кварта — единица английской системы мер, 1/4 галлона, примерно литр.
- кубический дюйм — единица английской системы мер, 1,64·10−5 м³
- кубический фут[5]
Производные величины | Символ | Описание | Единица СИ | Примечания |
---|---|---|---|---|
Площадь | S | Протяженность объекта в двух измерениях. | м2 | |
Объём | V | Протяжённость объекта в трёх измерениях. | м3 | экстенсивная величина |
Скорость | v | Быстрота изменения координат тела. | м/с | вектор |
Ускорение | a | Быстрота изменения скорости объекта. | м/с² | вектор |
Импульс | p | Произведение массы и скорости тела. | кг·м/с | экстенсивная, сохраняющаяся величина |
Сила | F | Действующая на объект внешняя причина ускорения. | кг·м/с2 (ньютон, Н) | вектор |
Механическая работа | A | Скалярное произведение силы и перемещения. | кг·м2/с2 (джоуль, Дж) | скаляр |
Энергия | E | Способность тела или системы совершать работу. | кг·м2/с2 (джоуль, Дж) | экстенсивная, сохраняющаяся величина, скаляр |
Мощность | P | Скорость изменения энергии. | кг·м2/с3 (ватт, Вт) | |
Давление | p | Сила, приходящаяся на единицу площади. | кг/(м·с2) (паскаль, Па) | интенсивная величина |
Плотность | ρ | Масса на единицу объёма. | кг/м3 | интенсивная величина |
Поверхностная плотность | ρA | Масса на единицу площади. | кг/м2 | |
Линейная плотность | ρl | Масса на единицу длины. | кг/м | |
Количество теплоты | Q | Энергия, передаваемая от одного тела к другому немеханическим путём | кг·м2/с2 (джоуль, Дж) | скаляр |
Электрический заряд | q | А·с (кулон, Кл) | экстенсивная, сохраняющаяся величина | |
Напряжение | U | Изменение потенциальной энергии, приходящееся на единицу заряда. | м2·кг/(с3·А) (вольт, В) | скаляр |
Электрическое сопротивление | R | сопротивление объекта прохождению электрического тока | м2·кг/(с3·А2) (ом, Ом) | скаляр |
Магнитный поток | Φ | Величина, учитывающая интенсивность магнитного поля и занимаемую им область. | кг/(с2·А) (вебер, Вб) | |
Частота | ν | Число повторений события за единицу времени. | с−1 (герц, Гц) | |
Угол | α | Величина изменения направления. | радиан (рад) | |
Угловая скорость | ω | Скорость изменения угла. | с−1 (радиан в секунду) | |
Угловое ускорение | ε | Быстрота изменения угловой скорости | с−2 (радиан на секунду в квадрате) | |
Момент инерции | I | Мера инертности объекта при вращении. | кг·м2 | тензорная величина |
Момент импульса | L | Мера вращения объекта. | кг·м2/c | сохраняющаяся величина |
Момент силы | M | Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы. | кг·м2/с2 | вектор |
Телесный угол | Ω | стерадиан (ср) |
что такое n в физике? :: SYL.ru
Изучение физики в школе длится несколько лет. При этом ученики сталкиваются с проблемой, что одни и те же буквы обозначают совершенно разные величины. Чаще всего этот факт касается латинских букв. Как же тогда решать задачи?
Пугаться такого повтора не стоит. Ученые постарались ввести их в обозначение так, чтобы одинаковые буквы не встретились в одной формуле. Чаще всего ученики сталкиваются с латинской n. Она может быть строчной или прописной. Поэтому логично возникает вопрос о том, что такое n в физике, то есть в определенной встретившейся ученику формуле.
Что обозначает прописная буква N в физике?
Чаще всего в школьном курсе она встречается при изучении механики. Ведь там она может быть сразу в дух значениях – мощность и сила нормальной реакции опоры. Естественно, что эти понятия не пересекаются, ведь используются в разных разделах механики и измеряются в разных единицах. Поэтому всегда нужно точно определить, что такое n в физике.
Мощность — это скорость изменения энергии системы. Это скалярная величина, то есть просто число. Единицей ее измерения служит ватт (Вт).
Сила нормальной реакции опоры — сила, которая оказывает действие на тело со стороны опоры или подвеса. Кроме числового значения, она имеет направление, то есть это векторная величина. Причем она всегда перпендикулярна поверхности, на которую производится внешнее воздействие. Единицей измерения этой N является ньютон (Н).
Что такое N в физике, помимо уже указанных величин? Это может быть:
постоянная Авогадро;
увеличение оптического прибора;
концентрация вещества;
число Дебая;
полная мощность излучения.
Что может обозначать строчная буква n в физике?
Список наименований, которые могут за ней скрываться, достаточно обширен. Обозначение n в физике используется для таких понятий:
показатель преломления, причем он может быть абсолютным или относительным;
нейтрон — нейтральная элементарная частица с массой незначительно большей, чем у протона;
частота вращения (используется для замены греческой буквы «ню», так как она очень похожа на латинскую «вэ») — число повторения оборотов за единицу времени, измеряется в герцах (Гц).
Что означает n в физике, кроме уже указанных величин? Оказывается, за ней скрываются основное квантовое число (квантовая физика), концентрация и постоянная Лошмидта (молекулярная физика). Кстати, при вычислении концентрации вещества требуется знать величину, которая также записывается латинской «эн». О ней будет идти речь ниже.
Какая физическая величина может быть обозначена n и N?
Ее название происходит от латинского слова numerus, в переводе оно звучит как «число», «количество». Поэтому ответ на вопрос о том, что значит n в физике, достаточно прост. Это количество любых предметов, тел, частиц — всего, о чем идет речь в определенной задаче.
Причем «количество» — одна из немногих физических величин, которые не имеют единицы измерения. Это просто число, без наименования. Например, если в задаче идет речь о 10 частицах, то n будет равно просто 10. Но если получается так, что строчная «эн» уже занята, то использовать приходится прописную букву.
Формулы, в которых фигурирует прописная N
Первая из них определяет мощность, которая равна отношению работы ко времени:
N = А : t.
В молекулярной физике имеется такое понятие, как химическое количество вещества. Обозначается греческой буквой «ню». Чтобы его сосчитать, следует разделить количество частиц на число Авогадро:
ν = N : NА.
Кстати, последняя величина тоже обозначается столь популярной буквой N. Только у нее всегда присутствует нижний индекс — А.
Чтобы определить электрический заряд, потребуется формула:
q = N × e.
Еще одна формула с N в физике – частота колебаний. Чтобы ее сосчитать, нужно их число разделить на время:
ν = N : t.
Появляется буква «эн» в формуле для периода обращения:
Т = t : N.
Формулы, в которых встречается строчная n
В школьном курсе физики эта буква чаще всего ассоциируется с показателем преломления вещества. Поэтому важным оказывается знание формул с ее применением.
Так, для абсолютного показателя преломления формула записывается следующим образом:
n = с : v.
Здесь с — скорость света в вакууме, v — его скорость в преломляющей среде.
Формула для относительного показателя преломления несколько сложнее:
n21 = v1 : v2 = n2 : n1,
где n1 и n2 — абсолютные показатели преломления первой и второй среды, v1 и v2 — скорости световой волны в указанных веществах.
Как найти n в физике? В этом нам поможет формула, в которой требуется знать углы падения и преломления луча, то есть n21= sin α : sin γ.
Чему равно n в физике, если это показатель преломления?
Обычно в таблицах приводятся значения для абсолютных показателей преломления различных веществ. Не стоит забывать, что эта величина зависит не только от свойств среды, но и от длины волны. Табличные значения показателя преломления даются для оптического диапазона.
Среда | Абсолютный показатель преломления |
воздух | 1,00029 |
лед | 1,31 |
вода | 1,33298 |
спирт этиловый | 1,36 |
сахар | 1,56 |
алмаз | 2,419 |
Итак, стало ясно, что такое n в физике. Чтобы не осталось каких-либо вопросов, стоит рассмотреть некоторые примеры.
Задача на мощность
№1. Во время пахоты трактор тянет плуг равномерно. При этом он прилагает силу 10 кН. При таком движении в течение 10 минут он преодолевает 1,2 км. Требуется определить развиваемую им мощность.
Перевод единиц в СИ. Начать можно с силы, 10 Н равны 10000 Н. Потом расстояние: 1,2 × 1000 = 1200 м. Осталось время — 10 × 60 = 600 с.
Выбор формул. Как уже было сказано выше, N = А : t. Но в задаче нет значения для работы. Для ее вычисления пригодится еще одна формула: А = F × S. Окончательный вид формулы для мощности выглядит так: N = (F × S) : t.
Решение. Вычислим сначала работу, а потом – мощность. Тогда в первом действии получится 10 000 × 1 200 = 12 000 000 Дж. Второе действие дает 12 000 000 : 600 = 20 000 Вт.
Ответ. Мощность трактора равна 20 000 Вт.
Задачи на показатель преломления
№2. Абсолютный показатель преломления у стекла равен 1,5. Скорость распространения света в стекле меньше, чем в вакууме. Требуется определить, во сколько раз.
В СИ переводить данные не требуется.
При выборе формул остановиться нужно на этой: n = с : v.
Решение. Из указанной формулы видно, что v = с : n. Это значит, что скорость распространения света в стекле равна скорости света в вакууме, деленному на показатель преломления. То есть она уменьшается в полтора раза.
Ответ. Скорость распространения света в стекле меньше, чем в вакууме, в 1,5 раза.
№3. Имеются две прозрачные среды. Скорость света в первой из них равна 225 000 км/с, во второй — на 25 000 км/с меньше. Луч света идет из первой среды во вторую. Угол падения α равен 30º. Вычислить значение угла преломления.
Нужно ли переводить в СИ? Скорости даны во внесистемных единицах. Однако при подстановке в формулы они сократятся. Поэтому переводить скорости в м/с не нужно.
Выбор формул, необходимых для решения задачи. Потребуется использовать закон преломления света: n21= sin α: sin γ. А также: n = с : v.
Решение. В первой формуле n21 — это отношение двух показателей преломления рассматриваемых веществ, то есть n2 и n1. Если записать вторую указанную формулу для предложенных сред, то получатся такие: n1= с : v1 и n2 =с : v2. Если составить отношение двух последних выражений, получится, что n21 = v1 : v2. Подставив его в формулу закона преломления, можно вывести такое выражение для синуса угла преломления: sin γ = sin α × (v2 : v1).
Подставляем в формулу значения указанных скоростей и синуса 30º (равен 0,5), получается, что синус угла преломления равен 0,44. По таблице Брадиса получается, что угол γ равен 26º.
Ответ. Значение угла преломления — 26º.
Задачи на период обращения
№4. Лопасти ветряной мельницы вращаются с периодом, равным 5 секундам. Вычислите число оборотов этих лопастей за 1 час.
Переводить в единицы СИ нужно только время 1 час. Оно будет равно 3 600 секундам.
Подбор формул. Период вращения и число оборотов связаны формулой Т = t : N.
Решение. Из указанной формулы число оборотов определяется отношением времени к периоду. Таким образом, N = 3600 : 5 = 720.
Ответ. Число оборотов лопастей мельницы равно 720.
№5. Винт самолета вращается с частотой 25 Гц. Какое время потребуется винту, чтобы совершить 3 000 оборотов?
Все данные приведены с СИ, поэтому переводить ничего не нужно.
Необходимая формула: частота ν = N : t. Из нее необходимо только вывести формулу для неизвестного времени. Оно является делителем, поэтому его полагается находить делением N на ν.
Решение. В результате деления 3 000 на 25 получается число 120. Оно будет измеряться в секундах.
Ответ. Винт самолета совершает 3000 оборотов за 120 с.
Подведем итоги
Когда ученику в задаче по физике встречается формула, содержащая n или N, ему нужно разобраться с двумя моментами. Первый — из какого раздела физики приведено равенство. Это может быть ясно из заголовка в учебнике, справочнике или слов учителя. Потом следует определиться с тем, что скрывается за многоликой «эн». Причем в этом помогает наименование единиц измерения, если, конечно, приведено ее значение. Также допускается еще один вариант: внимательно посмотрите на остальные буквы в формуле. Возможно, они окажутся знакомыми и дадут подсказку в решаемом вопросе.
Физическая величина — Википедия
Материал из Википедии — свободной энциклопедии
У этого термина существуют и другие значения, см. Величина. Электромагнитное поле и его величиныФизи́ческая величина́ — измеряемое качество, признак или свойство материального объекта или явления[1], общее в качественном отношении для класса материальных объектов или процессов, явлений, но в количественном отношении индивидуальное для каждого из них[2]. Физические величины имеют род, размер, единицу(измерения) и значение.
Для обозначения физических величин[3][4] применяются прописные и строчные буквы латинского или греческого алфавита[5]. Часто к обозначениям добавляют верхние или нижние индексы, указывающие, к чему относится величина, например Eп часто обозначает потенциальную энергию, а cp — теплоёмкость при постоянном давлении.
Устойчивые, повторяющиеся во множестве опытов связи между физическими величинами, присущие самой природе, называются физическими законами[1].
Качественная определённость величины называется родом. Например, однородными величинами являются длина и ширина[2]. Количественная определённость величины, присущая конкретному объекту или явлению, называется размером. Индивидуальность размеров совпадающих(однородных) величин объектов или явлений позволяет сравнивать и различать их.
Одна из реализаций единицы длины — метраПри измерении размер определяемой величины сравнивается с размером условной единицы[2]. Результатом такого сравнения является измеренное значение величины, показывающее во сколько раз размер величины больше или меньше размера единицы. Следовательно, значение является целью и результатом измерения.
X={x}[x]{\displaystyle X=\{x\}[x]}, где X — измеряемая величина объекта или явления, {x} — численное значение, [x] — единица величины.[6]
Численное значение самой единицы [x] всегда тождественно равно 1. Размер величины не зависит от выбранной единицы, а значение изменяется при выборе другой единицы. Например, гиря массой в 1 килограмм, также имеет массу 2,2 фунта или 0,001 тонны. Значения однородных величин применяются для сравнения объектов измерения.
Различают три вида значений величин, объединённые общим термином «опорное значение»[2].
- Истинное значение — идеальное, единственное значение величины. Термин используется тогда, когда можно пренебречь неопределённостью значения на микроуровне[2].
- Действительное значение — получается экспериментальным путём, достаточно близко к истинному значению[2].
- Принятое значение — значение, приписанное величине[2].
Разнообразие физических величин упорядочивается при помощи систем физических величин. В системе ограниченный перечень величин принимается за основные, а другие, производные, величины выводятся из них при помощи уравнений связи. В Международной системе величин (англ. International System of Quantities, ISQ) в качестве основных выбрано семь величин[7]:
При анализе связей между величинами применяется понятие размерности физической величины. Так называют степенной одночлен, состоящий из произведений символов основных величин в различных степенях[2]. При определении размерности, применяются стандартные математические операции — умножение, деление и сокращение степеней. Если после всех операций сокращений в размерности величины не осталось сомножителей с ненулевыми степенями, то величина называется безразмерной[2].
Физические величины, которые характеризуют объекты и явления в твёрдой Земле, а также в её жидких и газовых оболочках называются геофизическими величинами. Измерение геофизических величин в лаборатории или в полевых условиях позволяет лучше понять внутреннюю структуру планеты, а также искать и разведывать месторождения полезных ископаемых. Наука, основанная на измерениях физических величин горных пород в лабораторных условиях, называется петрофизикой[8].
- Аддитивные и неаддитивные[2]
- аддитивные величины — величины, значения которых могут быть суммированы, умножены на константу или разделены друг на друга. Например масса, длина, площадь.
- неаддитивные величины — величины, для которых суммирование значений бессмысленно, хотя и возможно математически. К таким величинами относится температура, плотность, удельное сопротивление.
- Скалярные, векторные, тензорные величины
- скалярные величины имеют значение, выражаемое только одним числом, для них не определено направление[9]. Ярким примером скалярной величины является потенциальная энергия.
- векторные величины описываются последовательностью из трёх (или двух) независимых значений, которые называются компонентами. Векторные величины имеют скалярный модуль и направление. Векторными величинами является сила, давление, скорость и ускорение.
- тензорные величины объединяют все остальные классы. Они возникают в материальных уравнениях для сред, например в теории упругости для описания деформаций, электромагнитной теории для уравнений материальной среды, в общей теории относительности для описания метрики.
Электрические величины[править | править код]
Электрические величины характеризуют электрический ток — направленное движение заряженных частиц. К электрическим величинам относят:
- РМГ 29-2013 ГСИ. Метрология. Основные термины и определения.
Фи — Википедия
Материал из Википедии — свободной энциклопедии
Символы со сходным начертанием: ɸ · Ф · ф · ȹ · · · Փ · ቀ · ႴБуква греческого алфавита фи | |
---|---|
Φφϕ | |
Изображения | |
Φ: greek capital letter phi φ: greek small letter phi ϕ: greek phi symbol | |
Юникод | Φ: U+03A6 φ: U+03C6 ϕ: U+03D5 |
HTML-код | Φ: или
φ: или
ϕ: или
|
UTF-16 | Φ: 0x3A6 φ: 0x3C6 ϕ: 0x3D5 |
Φ: %CE%A6 φ: %CF%86 ϕ: %CF%95 | |
Мнемоника | Φ: Φ φ: φ |
Φ, φ (название: фи, греч. φι, др.-греч. φῖ) — 21-я буква греческого алфавита. В системе греческой алфавитной записи чисел имеет числовое значение 500. От буквы фи произошла кириллическая буква Ф.
У строчной буквы начертание двоякое[1]: φ и ϕ; орфографического значения различие не несёт (определяется, как правило, типом шрифта, так же, как варианты начертания букв эпсилон и каппа).
В древнейших вариантах греческого алфавита буква фи отсутствовала. В отличие от большинства других греческих букв, которые происходят от финикийских, φ не имеет финикийского прообраза, и её происхождение неясно.
В современном греческом языке буква φ обозначает глухой губно-зубной спирант, [f]. В древнегреческом обозначала звук [pʰ], глухой билабиальный смычный согласный с придыханием, образовавшийся в протогреческом в результате оглушения придыхательных из [bʰ]; латинским алфавитом часто передаётся сочетанием «ph».
Прописная Φ[править | править код]
Строчная φ[править | править код]
- в географии, картографии, навигации — широта.
- в физике — угол поворота.
В Юникоде представлено несколько форм буквы фи:
В некоторых старых шрифтах, не совместимых со спецификацией Unicode 3.0 1998 года, символ U+03D5 (greek phi symbol) мог быть представлен «петлеобразным» символом φ{\displaystyle \varphi }[2]. Это более не считается корректным. Символ U+03C6 (greek small letter phi) может быть представлен и «перечеркнутым» вариантом ϕ{\displaystyle \phi }, но предпочтительно — «петлеобразным» вариантом φ{\displaystyle \varphi }[2].
HTML-мнемоники для прописной и строчной фи — это Φ
и φ
(Φ и φ, соответственно).
В LaTeX имеются математические символы \Phi
, \phi
и \varphi
(Φ{\displaystyle \Phi }, ϕ{\displaystyle \phi } и φ{\displaystyle \varphi }, соответственно).