В чём измеряется электричество?
Опубликовано 22.06.2015 | Полезно знать
Поделиться статьей:Международная система единиц подскажет любому человеку, в чём измеряется электроэнергия. Такая информация нужна для того, чтобы правильно и безопасно использовать в домашних условиях электрические бытовые приборы.
Единицы измерения напряжения
Напряжение измеряется в вольтах. Чтобы снабдить электроэнергией частные дома используется однофазная сеть с напряжением 220 Вольт.
Но, существует также и трёхфазная сеть, для которой напряжение равно 380 Вольт. В 1000 Вольтах состоит 1 киловольт. Согласно этому показателю, напряжение 220 и 380 Вольт равно 0,22 и 0,4 киловольт.
Измерение силы тока
Сила тока представляет собой потребляемую нагрузку, которая возникает во время работы бытовых приборов или оборудования. Её измеряют в амперах.
Измерение сопротивления
Сопротивление является важным показателем, который показывает, с каким противодействием материалу проходит электроток. При замере сопротивления специалист сможет сказать, рабочий ли электрический прибор или же он вышел из строя. Сопротивление измеряется в Омах.
Человеческое тело имеет сопротивление от двух до десяти килоОм.
Для оценки сопротивляемости материалов, чтобы в дальнейшем их использовать для производства электротехнических продуктов используется показатель удельного сопротивления проводника. Такой показатель зависит от площади поперечного сечения и длины проводника.
Измерение мощности
Количество электроэнергии, которую потребляют приборы за определённую единицу времени, называют мощностью. Она измеряется в Ваттах, киловаттах, мегаваттах, гигаваттах.
Измерение электроэнергии по счётчику
Чтобы просчитать, сколько электроэнергии потребляет семья за определённый период времени (например, за месяц) устанавливаются электрические счётчики. На больших предприятиях устанавливают счётчики реактивной энергии.
Для определения потребления электроэнергии в квартире или доме используют такое измерение как 1 киловатт за 60 минут. Когда проводится запись потребления электричества важно мощность умножить на время, чтобы правильно измерить электроэнергию.
Теперь вам известно, в чём измеряется электричество. Теперь без труда сможете определить мощность прибора и какое напряжение в розетке, чтобы не вывести его из строя. Благодаря описанным показателям можно избежать серьёзных и опасных ошибок в использовании электрических приборов.
Метки:
Количества электричества, единицы измерения — Справочник химика 21
Единицей измерения количества электричества является кулон — количество электричества, проходящее через проводник при токе силой 1 а за время В кулонометрическом анализе могут быть использованы различные типы кулонометров, основанные на измерении количества Продуктов электрохимических реакций или на непосредственном интегрировании тока. И в том и в другом случае эти приборы должны находиться в цепи электролиза и быть последовательно присоединенными к ячейке с испытуемым раствором. Так как в любой части цепи величина тока одна и та же, через эти приборы в единицу времени протекает такой же ток, как и через анализируемый раствор, следовательно, одно и то же количество электричества.
В результате избытка или недостатка электронов на поверхности данного тела (проводника) возникает некоторое количество электричества — так называемый заряд тела. Стандартной единицей измерения количества электричества и электрического заряда служит кулон (к, с). Размерность кулона а-сек. Заряд в 1 КУЛОН соответствует заряду 6,24-10 электронов. При силе [c.23]
При экспериментальном измерении емкости двойного слоя поверхность металла и раствор получают от источника электрической энергии некоторые малые количества электричества ДQ и — А . Этому соответствует изменение потенциала Ае, которое измеряют. Величина емкости при пересчете на единицу поверхности равна
Необходимо, однако, отметить, что для некоторых электродов, например платинового, в щелочных растворах перенапряжение в зависимости от концентрации щелочи не подчиняется уравнению замедленного разряда. Поэтому возникла необходимость в экспериментальной проверке скорости процесса разряда, что и было осуществлено Б. В. Эршлером, П. И. Долиным и А. Н. Фрумкиным, которые показали, что в некоторых случаях удается подобрать такие условия, когда при измерении скорости суммарной электрохимической реакции можно непосредственно измерять скорость одного этапа реакции, например разряда иона с переходом его в адсорбированный атом. Для этого платиновый электрод в определенном интервале потенциалов покрывают адсорбированными атомами водорода количество этих атомов на единице поверхности платинового электрода зависит от потенциала электрода. По мере увеличения анодной поляризации количество их убывает. При потенциале на одну десятую вольта положительнее, чем потенциал обратимого водородного электрода, выделение молекулярного водорода практически прекращается таким образом, можно полагать, что по сравнению с другими процессами оно не играет существенной роли. Если теперь такому электроду сообщить через раствор некоторое количество электричества, то единственно возможной электродной реакцией становится реакция разряда ионов водорода с переходом их в адсорбированные атомы. Дальнейшие стадии — образование молекул водорода — здесь не могут протекать. Для определения скорости процесса разряда удобнее применять переменный ток различной частоты. В самом деле, если электрод включить в цепь переменного тока, то он будет вести себя подобно конденсатору, т. -в. электроду будет эквивалентна электрическая схема, в котором емкость с и омическое сопротивление R включены параллельно.
Когда структура пленки и ее плотность не ясны, толщину пленки выражают обычно в единицах количества электричества, т. е. в кулонах на квадратный сантиметр = О/у А). Пример. измерений приведен на рис. 65.
Открытый в 1834 г. Фарадеем закон, устанавливающий зависимость между количеством электричества, необходимым для электрохимического превращения вещества в процессе окисления или восстановления на электроде, и массой образовавшегося продукта, был положен в свое время в основу кулонометрии — метода электрохимического анализа, название которого связано с единицей измерения электрического заряда. [c.516]
Наименование Единица измерения Количество вещества или электричества [c.15]
Единицей измерения силы тока служит ампер (1 А = 1 Кл/с). Ток в сплощной среде удобнее характеризовать его плотностью I — количеством электричества, перемещаемого за единицу времени через единицу площади, ориентированной перпендикулярно к направлению тока в проводящей среде (размерность — А/ м ).
Сравним мысленно прохождение электрического тока по проволоке с точением воды в трубке. Количество воды измеряется в литрах или кубических метрах количество электричества обычно измеряют в кулонах или эл.ст.ед. Скорость течения или поток воДы, т.е. количество ее, проходящее в данной точке трубки в единицу времени, измеряют в литрах в секунду или в кубических метрах в секунду силу электрического тока измеряют в амперах (кулонах в секунду) или в эл.ст.ед. в секунду. Скорость движения воды в трубке зависит от разности давления на концах трубки это давление выражается в килограммах на квадратны11 сантиметр. Сила электрического тока в проволоке зависит от электрической разности давления или от разности потенциалов (падения напряжения) между концами проволоки, обычно измеряемой в вольтах или эл.ст.ед. Единица измерения количества электричества (кулон) и единица измерения электрического потенциала (вольт) были приняты произвольно но международному соглашению.
За единицу поглощенной дозы принят рад. Рад=Ю-2 Дж/кг (100 эрг/г). За единицу измерения экспозиционной дозы излучения принят рентген (Р). Это доза рентгеновского или -излучения, при которой в 1 см сухого воздуха при температуре 0°С и давлении 760 мм рт. ст. образуется такое число пар ионов, суммарный заряд которых составляет одну электростатическую единицу количества электричества каждого знака. За единицу эквивалентной дозы принят биологический эквивалент рентгена — бэр. Бэр — это количество энергии любого вида излучения, поглощенного в ткани, биологическое действие которого эквивалентно действию 1 рада рентгеновских или у-лучей.
При рассмотрении энергетических изменений, происходящих при химических и физических процессах, обычно пользуются различными единицами измерения энергии, что характерно и для данной книги. Калория, или малая калория,— это приблизительно то количество тепла, которое требуется, чтобы нагреть 1 г воды на один градус точное определение калории связано с единицами измерения электричества.
&
4 Единицы измерения электричества
— Вольт (часто обозначается просто V) — это величина напряжения, которое толкает ток по цепи. В Европе ток, снабжающий домашние строения, обычно имеет напряжение в 240 вольт, хотя напряжение может варьировать до 14 вольт выше или ниже этой величины.
— Ампер (амп. или А, для сокращения) — это величина, которая используется для измерения силы тока, т.е. количества электрических заряженных частиц, называемых электронами, которые проходят через данную точку цепи каждую секунду. Биллионы электронов необходимы, чтобы получить один ампер. Величина, выраженная в амперах, определяется частично напряжением и частично сопротивлением.
— Ом — величина, служащая для измерения сопротивления. Она названа в честь немецкого физика 19 века Георга Симона Ома, который установил закон, гласящий, что сила тока, проходящего через проводник, обратно пропорциональна сопротивлению. Этот закон можно выразить уравнением: Вольты/Омы = Амперы. Следовательно, если вам известны две из названных величин, вы можете вычислить и третью.
— Ватт (W) — это величина энергии, показывающая, какое количество тока в приборе потребляется в любой момент. Соотношение между вольтами, амперами и ваттами выражено другим уравнением, которое поможет вам сделать любые расчеты. Они вам могут понадобиться для вычислений в данной книге:
Вольты х Амперы = Ватты
Принято пользоваться киловаттом (kW) как единицей энергии для крупных вычислений. Один киловатт равен одной тысяче ваттов.
— Киловатт-час — это величина для измерения полного количества потребляемой энергии. Например, если вы из расходуете 1 kW энергии за 1 час, это будет отражено на счетчике, и это значение израсходованной электроэнергии будет включено в вашу книгу расчета за электричество.
5 Единицы измерения тепловой энергии
Значение потребленной тепловой энергии (количества теплоты) может выводиться измерения – Гкал, ГДж, МВтч, кВтч. тепловая энергия может передаваться потребителю с помощью двух видов теплоносителей: горячая вода или водяной пар.
Тепловая энергия может быть измерена в виде:
теплоты (количество теплоты), которая является характеристикой процесса теплообмена и определяется количеством энергии, получаемым (отдаваемым) телом в процессе теплообмена; в международной системе единиц (СИ) измеряется в джоулях (Дж), устаревшая единица — калория (1 кал = 4,18 Дж)).
энтальпии теплоносителя, которая является термодинамическим потенциалом (или функцией состояния) и определяется массой, температурой и давлением теплоносителя, в международной системе единиц (СИ) измеряется в калориях
Энтальпию теплоносителя, используют в качестве меры (количественной характеристики) тепловой энергии. Технологические особенности тепловой энергии предопределяют своеобразие его отпуска и приемки и, как следствие, порядок учета тепловой энергии, который зависит, во-первых, от вида теплоносителя, с помощью которого передается тепловая энергия; во-вторых, от системы теплоснабжения, подразделяющейся на открытые водяные (или паровые) и закрытые.
Измерение тепловой энергии и ее учет не являются тождественными понятиями, поскольку измерение есть нахождение значения физической величины опытным путем при помощи средств измерения, а учет тепловой энергии — использование результатов измерения.
Счётчик электрической энергии — Википедия
Устройство советского индукционного однофазного электросчётчика СО-И446. Крышки и механический индикатор снятыСчётчик электрической энергии (электрический счётчик) — прибор для измерения расхода электроэнергии переменного или постоянного тока (обычно в кВт·ч или А·ч).
История создания счётчиков связана с изобретениями электротехнических устройств XIX века. Самые разные исследователи независимо и беспрестанно изучали электромагнетизм, внося собственную лепту в создание и последующее развитие счётчиков электроэнергии. Вот лишь некоторые этапы продолжительного пути развития. Всплеск теоретических открытий в области явлений, устанавливающих связь между магнитными и электрическими свойствами вещества, уже в 1-й половине XIX века.
Во второй половине XIX века к авторам теоретических трудов присоединились практики. В течение непродолжительного периода времени были изобретены гидротурбина, счётчик, трансформатор тока, электродвигатель, динамо-машина, электрическая лампа. Как считали первооткрыватели, само время дарило просветление, позволяя почти в одно и то же время свершаться схожим открытиям в противоположных концах света. В этом был, к примеру, уверен создатель индукционного электрического счётчика Отто Титус Блати, венгр по происхождению, который также являлся соизобретателем трансформатора. Аньош Йедлик и Вернер фон Сименс, каждый в своё время, придумали динамо-машину. Что, в свою очередь, позволило превратить электричество в коммерческий продукт массового спроса. Развитие систем освещения потребовало применения устройств измерения и стандартизации учёта электроэнергии.
Развитие систем передачи электроэнергии по пути создания систем высокого напряжения тормозилось главным недостатком цепей постоянного тока — невозможностью преобразования одного уровня напряжения в другой. И давний спор сторонников распределительных сетей постоянного и переменного тока окончательно решился в пользу последних; этому также способствовало изобретение трансформатора (1885 год). Попытки решить задачу учёта электрической энергии переменного тока привели к целому ряду открытий. Созданию индукционных счётчиков электроэнергии предшествовало обнаружение эффекта вращающегося магнитного поля (Никола Тесла — 1883 год, Галилео Феррарис[1] — 1885 год, Оливер Шелленбергер — 1888 год). Первый счётчик электроэнергии для переменного тока разработан Оливером Б. Шелленбергером в 1888 году. Уже в 1889 году запатентован «Электрический счётчик для переменных токов» венгра Отто Титуц Блати (для компании «Ganz»). А в 1894 году Шелленбергер по заказу компании Westinghouse создал индукционный счётчик ватт-часов. Счётчик ватт-часов активной энергии переменного тока типа «А» появился в 1899 году, создатель Людвиг Гутман. Был дан старт непрерывным усовершенствованиям индукционных счётчиков электроэнергии. Счётчики, берущие начало от счётчика Блати и индукционных счётчиков Феррариса, вследствие великолепной надёжности и малой себестоимости, до сих пор массово изготовляются, именно с их помощью производят большую часть измерений электроэнергии.
- Виды электросчётчиков
-
Трёхфазный электронный многотарифный электросчётчик с ЖК-дисплеем
Трёхфазный электронный однотарифный электросчётчик с механическим индикатором, установливаемый на DIN-рейку
Счётчики электроэнергии, включённые с АСКУЭ (особенностью таких счётчиков является подключение дополнительного кабеля для передачи данных)
-
Однофазный двухтарифный электронный электросчётчик с ЖК-дисплеем
Для учёта активной электроэнергии переменного тока служат индукционные одно- и трёхфазные приборы, для учёта расхода электроэнергии постоянного тока (электрический транспорт, электрифицированная железная дорога) — электродинамические счётчики. Число оборотов подвижной части прибора, пропорциональное количеству электроэнергии, регистрируется счётным механизмом.
В электрическом счётчике индукционной системы подвижная часть (алюминиевый диск) вращается во время потребления электроэнергии, расход которой определяется по показаниям счётного механизма. Диск вращается за счёт вихревых токов, наводимых в нём магнитным полем катушки счётчика, — вихревые токи взаимодействуют с магнитным полем постоянного магнита счётчика.
Устройство счётчика подобно устройству асинхронного двигателя, вращающий момент которого должен быть пропорционален мощности потребителя. Поэтому вращающееся поле счётчика создаётся двумя магнитными потоками, из которых один пропорционален напряжению потребителя, а другой — его току. Счётчик имеет две обмотки. Одна из обмоток присоединяется непосредственно к сети, а по другой пропускается ток потребителя. Так как диск вращается относительно поля постоянного магнита, то в нём будет индуктироваться ток, величина которого будет тем больше, чем больше скорость вращения диска. Этот ток всегда направлен таким образом, что стремится затормозить диск, и он может быть уподоблен механической нагрузке асинхронного двигателя. Но эта «нагрузка» не может остановить диска, так как при уменьшении числа оборотов будет уменьшаться тормозящее усилие. В итоге устанавливается равновесие между вращающим моментом (он пропорционален мощности потребителя) и тормозящим моментом (он пропорционален скорости вращения диска).
Следовательно, скорость вращения будет пропорциональна произведению силы тока I{\displaystyle I} на напряжение U{\displaystyle U} и на косинус фазового сдвига — то есть активной мощности. С помощью механической передачи вращающийся диск связан со счётным механизмом.
В электрическом счётчике электронного типа переменный ток и напряжение воздействуют на твердотельные (электронные) элементы для создания на выходе импульсов, число которых пропорционально измеряемой активной энергии.
Модели трёхфазных счётчиковСчётчики электроэнергии можно классифицировать по типу измеряемых величин, типу подключения и по типу конструкции, электрические счётчики различаются между собой максимальной и рабочей пропускной мощностью.[2]
Импульсный электросчётчик с электромеханическим счётным механизмом, работающим от шагового электромагнитного привода.По типу подключения все счётчики разделяют на приборы прямого включения в силовую цепь и приборы трансформаторного включения, подключаемые к силовой цепи через специальные измерительные трансформаторы.
По измеряемым величинам электросчётчики разделяют на однофазные (измерение переменного тока 220 В, 50 Гц) и трёхфазные (380 В, 50 Гц). Все современные электронные трёхфазные счётчики поддерживают однофазный учёт.
Также существуют трёхфазные счётчики на напряжение 100 В, которые применяются только с трансформаторами напряжения и тока в высоковольтных (напряжением выше 660 В) цепях.
По конструкции: индукционным (электромеханическим электросчётчиком) называется электросчётчик, в котором магнитное поле неподвижных токопроводящих катушек влияет на подвижный элемент из проводящего материала. Подвижный элемент представляет собой диск, по которому протекают токи, индуцированные магнитным полем катушек. Количество оборотов диска в этом случае прямо пропорционально потреблённой электроэнергии.
Индукционные (механические) счётчики электроэнергии постепенно заменяются электронными счётчиками из-за отдельных недостатков: отсутствие дистанционного автоматического снятия показаний, однотарифный учёт, невысокий класс точности (как правило 2.0, реже 1.0), плохая защита от краж электроэнергии, значительные габариты и масса по сравнению с современными электронными приборами. Вместе с тем, индукционные счётчики обладают высокой надёжностью и хорошо подходят для квартир с низким энергопотреблением.
Электронным (статическим электросчётчиком) называется электросчётчик, в котором переменный ток и напряжение воздействуют на твердотельные (электронные) элементы для создания на выходе импульсов, число которых пропорционально потребляемой мощности. Измерение активной энергии такими электросчётчиками основано на преобразовании значения мощности в частоту следования электрических импульсов, которые поступают на счётный механизм. Этот механизм представляет собой электромеханическое (имеет преимущество в областях с холодным климатом, при условии установки прибора на улице) или электронное устройство, содержащее как запоминающее устройство, так и дисплей. Электронные счётчики хорошо подходят для квартир с высоким энергопотреблением и для предприятий.
Основными достоинствами электронных электросчётчиков является возможность учёта электроэнергии по дифференцированным тарифам (одно-, двух- и более тарифный), то есть возможность запоминать и показывать количество использованной электроэнергии в зависимости от запрограммированных периодов времени, многотарифный учёт достигается за счёт набора счётных механизмов, каждый из которых работает в установленные интервалы времени, соответствующие различным тарифам. Электронные электросчётчики имеют больший межповерочный период (4-16 лет) и класс точности (от 1.0 до 0.2)
Гибридные счётчики электроэнергии — редко используемый промежуточный вариант с цифровым интерфейсом, измерительной частью индукционного или электронного типа, механическим отсчётным устройством.
- Лебедев И. А. Электрический счётчик // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Счётчик электрический // Большая Советская энциклопедия (в 30 т.) / Гл. ред. А. М. Прохоров. — 3-е изд. — М.: «Советская Энциклопедия», 1976. — Т. XXV. — С. 131–132. — 600 с.
- Счётчик электрической энергии // Краткая энциклопедия домашнего хозяйства / под ред. А. И. Ревина. — М.: Советская энциклопедия, 1960. — Т. 2. — С. 614. — 770 с.
Количество электричества Википедия
Электри́ческий заря́д (коли́чество электри́чества) — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. То есть, согласно этому определению, электрический заряд — это способность взаимодействовать с электрическими зарядами. Впервые электрический заряд был введён в законе Кулона в 1785 году. Электрический заряд не существует без носителя заряда.
Единица измерения электрического заряда в Международной системе единиц (СИ) — кулон — совокупный электрический заряд носителей элементарных электрических зарядов, проходящих через поперечное сечение проводника с током 1 А за время 1 с. Электрический заряд в один кулон очень велик. Если бы два тела, каждое из которых обладает электрическим зарядом (q1 = q2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9⋅109H, то есть с силой равной по величине силе, с которой гравитация Земли притягивает предмет массой порядка 1 миллиона тонн.
История
Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество.Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.
В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным» соответственно. Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.
В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда.
Электростатика
Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.
Величина электрического заряда (иначе, просто электрический заряд) может принимать и положительные, и отрицательные значения; она является численной характеристикой носителей заряда и заряженных тел. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.
Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6⋅10−19Кл[1] в системе СИ или 4,8⋅10−10ед. СГСЭ[2]. Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11⋅10−31 кг). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон[3]. Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67⋅10−27 кг) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.
Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени её жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.
Взаимодействие зарядов
Взаимодействие электрически заряженных тел: одноимённо заряженные тела отталкиваются, разноимённо — притягиваются друг к другуСамое простое и повседневное явление, в котором обнаруживается факт существования в природе носителей электрических зарядов, — электризация тел при соприкосновении[4]. Способность носителей электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух различных видов электрических зарядов[5]. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.
При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.
При электризации тела через влияние в нём нарушается равномерное распределение носителей зарядов. Они перераспределяются так, что в одной части тела возникает избыток носителей положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.
Закон сохранения электрического заряда
Совокупный электрический заряд замкнутой системы[6] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.
В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолирована, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда сохраняется.
Закон сохранения электрического заряда — один из основополагающих законов физики. Он был впервые экспериментально подтверждён в 1843 году английским учёным Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.
Свободные носители заряда
В зависимости от концентрации свободных носителей электрических зарядов тела делятся на проводники, диэлектрики и полупроводники.
- Проводники — тела, в которых носители электрического заряда могут перемещаться по всему его объёму. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перемещение носителей элементарных электрических зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос носителей зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.
- Диэлектрики (например стекло, пластмасса) — тела, в которых практически отсутствуют свободные носители электрического заряда.
- Полупроводники (например, германий, кремний) занимают промежуточное положение между проводниками и диэлектриками.
Измерение
Простейший электроскопДля обнаружения и измерения совокупного электрического заряда тела применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным телом носители электрического заряда стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.
Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая способна вращаться вокруг горизонтальной оси. При соприкосновении электрически заряженного тела со стержнем электрометра носители электрического заряда распределяются по стержню и стрелке, и силы отталкивания, действующие между носителями одноимённых электрических зарядов на стержне и стрелке, вызывают её поворот. Для измерения малых электрических зарядов используются более чувствительные электронные электрометры.
См. также
Литература
Примечания
- ↑ Или, более точно, 1,602176487(40)⋅10−19 Кл.
- ↑ Или, более точно, 4,803250(21)⋅10−10 ед СГСЭ.
- ↑ Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
- ↑ Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
- ↑ Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — С. 16. — 656 с. — ISBN 5-9221-0227-3.
- ↑ Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).
Направление и величина электрического тока. Количество электричества
Мы неоднократно подчеркивали, что электроны в электрическом поле перемещаются от точек с более низким потенциалом к точкам с более высоким потенциалом. Следовательно, и в электрической цепи, показанной на рис. 1, электроны движутся от отрицательного полюса источника электрической энергии к положительному: поэтому следовало бы считать, что электрический ток идет от минуса (—) к плюсу ( + ).
Рисунок 1. Простейшая электрическая цепь
Однако до объяснения электрических явлений с точки зрения электронной теории, т. е. когда природа электрического тока не была достаточно изучена, полагали, что ток идет от положительного полюса источника к отрицательному.
Чтобы не менять этого установившегося и прочно вошедшего в практику положения, решили сохранить такую условность и считать, что ток идет от плюса к минусу, как показано на рис. 2. В действительности же в металлических проводниках ток проходит в обратном направлении.
Рисунок 2. Направление движения электронов в проводнике и направление тока
С ростом напряженности внешнего электрического поля увеличивается сила, действующая на электроны в проводнике. Электроны начинают перемещаться по проводнйку быстрее, а значит, увеличивается количество электричества, проходящее через поперечное сечение проводника в единицу времени.
Для характеристики интенсивности движения электрических зарядов в проводниках вводится понятие о силе тока или токе.
Определение: Силой тока называется количество электричества, проходящее через поперечное сечение проводника в единицу времени.
Сила тока (ток) обозначается буквой I или i.
Если за время t через поперечное сечение проводника прошло количество электричества q, то ток в проводнике можно определить по формуле:
За единицу тока принимается ампер (сокращенно обозначается буквой А). В ГОСТ приведено следующее определение этой основной электрической единицы: «ампер — сила неизменяющегося тока, который, проходя по двум параллельным прямоугольным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2*10-7 единицы силы на каждый метр длины».
Следует подчеркнуть, что ампер — единственная основная электрическая единица. Все остальные единицы, используемые при электрических и магнитных измерениях, определяются через четыре основные единицы Международной системы единиц (метр — килограмм — секунда — ампер).
Единица измерения тока названа по имени французского физика и математика Андре Мари Ампера (1775—1836), открывшего закон взаимодействия электрических токов и предложившего новую гипотезу для объяснения магнитных свойств вещества.
В радиотехнике часто приходится иметь дело с токами, величина которых в тысячи и даже миллионы раз меньше одного ампера. Такие токи измеряются в миллиамперах (сокращенно обозначается мА или mА) или в микроамперах (сокращенно обозначается мкА или μА). Миллиампер одна тысячная доля ампера, т. е.
1 мА = 0,001 А, или 1 А = 1000 мА.
Микроампер — это одна миллионная доля ампера или одна тысячная доля миллиампера, т. е.
1 мкА = 0,001 мА = 0,000001 А.
Полезно запомнить также следующие соотношения:
1 мА= 1000 мкА = 0,001 А; 1 А = 1000 мА = 1 000 000 мкА.
При рассмотрении вопросов взаимодействия зарядов мы сказали, что количество электричества измеряется в кулонах. При этом количество электричества в 1 кулоне соответствует приблизительно общему заряду 6 • 1018 электронов. Сейчас можно дать более строгое определение кулона:
Определение: кулон — это количество электричества, проходящее через поперечное сечение проводника в течение 1 секунды при неизменяющемся токе в 1 ампер.
Эта единица количества электричества часто называется ампер-секундой (сокращенное обозначение А-с). На практике количество электричества измеряется в ампер-часах (А-ч).
Если известен ток I в проводнике, то количество электричества q, прошедшее через поперечное сечение проводника за время t, можно определить по формуле:
где q — в кулонах; I— в амперах; t — в секундах.
Для измерения тока в цепи применяются приборы, называемые амперметрами. Амперметр включается в цепь так, чтобы через него проходил весь измеряемый им ток (рис. 3).
Рисунок 3. Схема включения амперметра в электрическую цепь. Б — источник напряжения; PA — амерметр; EL — нагрузка (лампа).
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Единицы измерения электричества
Сегодня современный житель мегаполиса не может представить свою жизнь без электричества. С помощью электроэнергии работает такая нужная нам бытовая техника: холодильник, стиральная машина, котел отопления, электрочайник, утюг, фен и пр.
Всем известны полезные функции электричества, но не все знают, как измерить электрическую энергию, какие единицы используются для этого.Потребление электрической энергии измеряется с помощью специальной, наиболее употребляемой в быту единицы — киловатт-час.
Для учета израсходованной энергии предназначен бытовой прибор — счетчик электричества.
В целом термин «расход электроэнергии» применим только в быту, в физике энергия в закрытой цепи не может потребляться — только преобразовываться.
Единицы измерения электричества:
— вольт — эта величина показывает напряжение в электрической цепи. Обычно напряжение, поставляемый для нужд бытовых потребителей, имеет значение 220 В.
— ампер — единица, которая используется для измерения силы тока.
— ом — величина, которая служит для измерения сопротивления.
— ватт — эта физическая величина показывает количество электроэнергии, которое потребляет какой-либо электроприбор за единицу времени (мощность).
Все эти единицы измерения электроэнергии тесно связаны между собой.
Энергия, которую отдает источник тока или получает электрический прибор за 1 сек. называется мощностью. Она определяется путем умножения напряжения на силу тока.
Единица измерения мощности (ватт) — это мощность, которая создается силой тока 1 ампер при напряжении 1 вольт.
Измерение электрической мощности выполняется с помощью специальных приборов — ваттметров.
Мощность может измеряться в более крупных единицах — киловаттах (1000 Вт), мегаваттах (1 млн. Вт) и гигаваттах (миллиард ватт).
Такие единицы измерения электроэнергии применяются в основном для промышленных предприятий.
Элементарные знания единиц измерения электроэнергии могут понадобиться вам, к примеру, при покупке бытовых электроприборов.
Существует электрооборудование, которое может работать, к примеру, при напряжении в сети 380 В, тогда как в жилые дома поставляется ток напряжением 220 В.
Такие нюансы надо обязательно учитывать, приобретая электроприборы.
Еще по теме: