Site Loader

Содержание

Электрическая емкость • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыИмпульс (количество движения)Импульс силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Сенсорный экран этого планшета выполнен с использованием проекционно-емкостной технологии.

Общие сведения

Использование емкости

Конденсаторы — устройства для накопления заряда в электронном оборудовании

Историческая справка

Маркировка конденсаторов

Примеры конденсаторов

Ионисторы

Емкостные сенсорные экраны

Поверхностно-емкостные экраны

Проекционно-емкостные экраны

Общие сведения

Измерение емкости конденсатора номинальной емкостью 10 мкФ с помощью осциллографа-мультиметра

Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:

C = Q/∆φ

Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).

В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.

Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).

Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.

В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.

Использование емкости

Конденсаторы — устройства для накопления заряда в электронном оборудовании

Условные обозначения конденсаторов на принципиальных схемах

Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту.

Примеры изображения конденсаторов на электрических схемах приведены на рисунке.

Параллельная RLC-цепь, состоящая из резистора, конденсатора и катушки индуктивности

Историческая справка

Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.

В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.

В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.

Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.

Примеры конденсаторов

Оксидные конденсаторы в блоке питания сервера.

Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.

Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.

Вторым по важности параметром конденсаторов является его рабочее напряжение. Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.

Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.

Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ). Он даёт представление об изменении ёмкости в условиях изменения температур.

В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).

Маркировка конденсаторов

Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.

Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.

Оксидный конденсатор собран из двух алюминиевых лент и бумажной прокладки с электролитом. Одна из алюминиевых лент покрыта слоем оксида алюминия и служит анодом. Катодом служит вторая алюминиевая лента и бумажная лента с электролитом. На алюминиевых лентах видны следы электрохимического травления, позволяющего увеличить их площадь поверхности, а значит и емкость конденсатора.

Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.

Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.

Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.

Трехсекционный воздушный конденсатор переменной емкости

Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.

Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.

Имеются и другие типы конденсаторов.

Ионисторы

В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.

С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.

Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.

Электромобиль А2В Университета Торонто. Общий вид

В бытовой электронике ионисторы применяются для стабилизации основного питания и в качестве резервного источника питания таких приборов как плееры, фонари, в автоматических коммунальных счетчиках и в других устройствах с батарейным питанием и изменяющейся нагрузкой, обеспечивая питание при повышенной нагрузке.

В общественном транспорте применение ионисторов особенно перспективно для троллейбусов, так как становится возможна реализация автономного хода и увеличения маневренности; также ионисторы используются в некоторых автобусах и электромобилях.

Электромобиль А2В Университета Торонто. Под капотом

Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии.

Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.

Поверхностно-емкостные экраны

Cенсорный экран iPhone выполнен по проекционно-емкостной технологии.

Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.

Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.

Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.

Проекционно-емкостные экраны

Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.

Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.

Автор статьи: Sergey Akishkin, Tatiana Kondratieva

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Емкость и заряд конденсатора

Емкость конденсатора определяется как способность конденсатора накапливать максимальный электрический заряд (Q) в своем теле. Заряд хранится в виде электростатической энергии. Емкость конденсаторов измеряется в  единицах СИ- фарадах. Эти единицы могут быть обозначены в микрофарадах, нанофарадах, пикофарадах или фарадах. Формула для определения емкости конденсатора следующая:

C = Q/V = ​​εA/d = ε0 εr A/d

Где,

C — емкость,

Q — заряд,

V — разность потенциалов между пластинами,

А — площадь между пластинами,

d — расстояние между пластинами.

ε — диэлектрическая проницаемость диэлектрика

ε0 — диэлектрическая проницаемость свободного пространства

εr — относительная диэлектрическая проницаемость свободного пространства

Собственная емкость

Свойство собственной емкости относится к конденсаторам с изолированным проводником. Как видно из названия, емкость — это свойство изолированного проводника повышать разность потенциалов до одного В. Обычно нормальные проводники имеют взаимную емкость. Это также измеряется в единицах СИ, то есть в фарадах.

Собственная емкость проводящей сферы радиусом R определяется выражением:

C = 4 π ɛ o R

Ниже приведены некоторые примеры значения собственной емкости:

  • Для верхней пластины генератора Ван де Графа, имеющей радиус 20 см, собственная емкость составляет 22,24 пФ.
  • Для планеты Земля собственная емкость составляет 710 мкФ.

Паразитная емкость

Паразитная емкость — это нежелательная емкость, т.е. шум. Даже такие компоненты, как резисторы, катушки индуктивности и провод, имеют свою некоторую емкость. Обычно на высоких частотах это приводит к появлению шума в цепи.

Паразитную емкость нельзя полностью устранить, но ее можно уменьшить. Разработчики схем должны позаботиться о паразитной емкости при проектировании схемы. Разделение и расстояние между компонентами и дорожками платы должно строго соблюдаться для уменьшения нежелательной емкости.

Она также измеряется в единицах СИ, то есть в фарадах.

Примерами являются: емкость между витками катушки, емкость между двумя соседними проводниками.

Емкость простых схем

Расчет емкости не что иное , как решение теоремы Лапласа  ∇ 2 φ = 0 с постоянным потенциалом на поверхности конденсатора. Ниже приведены значения емкости для некоторых простых схем:

Заряд конденсатора

Способность конденсатора накапливать максимальный заряд (Q) на своих металлических пластинах называется его значением емкости (C). Полярность накопленного заряда может быть отрицательной или положительной, например, положительный заряд (+ ve) на одной пластине и отрицательный заряд (-ve) на другой пластине конденсатора. Выражения для заряда, емкости и напряжения приведены ниже.

C = Q/V, Q = CV, V = Q/C

Таким образом, заряд конденсатора прямо пропорционален его емкости и разности потенциалов между пластинами конденсатора. Заряд измеряется в кулонах. Один кулон заряда конденсатора можно определить как емкость в одну фараду между двумя проводниками, которые работают с напряжением в один вольт.

Заряд Q, накопленный в конденсаторе, имеющем емкость C, разность потенциалов V и воздух в качестве его диэлектрика, определяется выражением:

Q = CV = (ε × (A × V))/d

Где,

ε0 — диэлектрическая проницаемость свободного пространства,

εr — относительная диэлектрическая проницаемость диэлектрического материала,

ε — диэлектрическая проницаемость диэлектрического материала.

Из двух вышеупомянутых случаев мы можем наблюдать:

Заряд конденсатора прямо пропорционален площади пластин, диэлектрической проницаемости диэлектрического материала между пластинами и обратно пропорционален расстоянию между пластинами. Таким образом, чем больше площадь пластин, тем больше заряд конденсатора, а чем больше расстояние между пластинами, тем меньше заряд конденсатора.

Параллельный пластинчатый конденсатор

На приведенном выше рисунке показана схема конденсатора с параллельными пластинами. Как мы знаем, емкость прямо пропорциональна площади пластин (A) и обратно пропорциональна расстоянию (d) между двумя металлическими пластинами. Значение емкости конденсатора с параллельными пластинами определяется выражением:

C = k ε0A/d

Где, k — диэлектрическая проницаемость, а ε0 — диэлектрическая проницаемость свободного пространства, равная 8,854 · 10 -12 Ф/м. Диэлектрическая постоянная (k) — это параметр, связанный с диэлектрическим материалом, который увеличивает емкость по сравнению с воздухом. Чем больше площадь поверхности пластин, тем больше значение емкости, и наоборот. Еще один пример схемы конденсатора с параллельными пластинами показан на рисунке ниже.

Пример емкости №1

Теперь мы рассчитаем емкость конденсатора с параллельными пластинами в пикофарадах, у которого площадь поверхности пластин составляет 200 см2, и они разделены воздухом в качестве его диэлектрического материала с расстоянием 0,4 см.

Уравнение емкости конденсатора с параллельными пластинами выглядит следующим образом:

C = A/d

ε = 8,854 X 10-12Ф / м.

A = 200 см2 = 0,02 м2

D = 0,4 см = 0,004 м

Теперь мы подставляем эти значения в приведенное выше уравнение:

C = 8,854 X 10-12 * (0,02 м2 / 0,004 м) = 44,27 пФ

И получаем, емкость конденсатора с параллельными пластинами составляет 44,27 пФ.

Зарядка и разрядка конденсатора

Схема ниже используется для объяснения заряда и разряда конденсатора. Предположим, что конденсатор, который показан на схеме, полностью разряжен. В этой схеме емкость конденсатора составляет 100 мкФ, а напряжение питания, подаваемое на эту схему, составляет 12 В.

Теперь переключатель, который подключен к конденсатору в цепи, перемещается в точку A. Затем конденсатор начинает заряжаться зарядным током (i). Напряжение зарядки на конденсаторе равно напряжению питания, когда конденсатор полностью заряжен, то есть VS = VC = 12 В. Когда конденсатор полностью заряжен, это означает, что конденсатор поддерживает заряд с постоянным напряжением, даже если напряжение питания отключено от цепи.

В случае идеальных конденсаторов, заряд на конденсаторе остается постоянным, но в случае обычных конденсаторов полностью заряженный конденсатор медленно разряжается из-за его тока утечки.

Когда переключатель перемещается в положение B, конденсатор медленно разряжается за счет включения лампы, которая помещена в цепь. Наконец-то он полностью разряжен до нуля. Сначала лампа ярко светится, когда конденсатор полностью заряжен, но яркость лампы уменьшается по мере уменьшения заряда конденсатора.

Пример заряда конденсатора №2

Теперь давайте вычислим заряд конденсатора в приведенной выше схеме. Уравнение заряда конденсатора имеет следующий вид:

Q = CV

C = 100 мкФ

V = 12V

Теперь мы подставляем эти значения в приведенное выше уравнение:

Q = 100 мкФ * 12 В = 1,2 мкФ

Следовательно, заряд конденсатора в приведенной выше схеме составляет 1,2 мКл.

Ток протекающий через конденсатор

Ток (i), протекающий через любую электрическую цепь, — это скорость заряда (Q), протекающего через нее, относительно времени. Но заряд конденсатора прямо пропорционален приложенному через него напряжению. Соотношение между зарядом, током и напряжением конденсатора приведено в уравнении ниже:

I (t) = d Q (t) / dt = C dV (t) / dt

Мы знаем, что:

Q = CV

V = Q / C

V (t) = Q (t) / C

Q (t) = CV (t)

Отношение тока к напряжению определяется выражением:

I (t) = C dV (t) / dt

Из этого соотношения мы можем заметить, что ток, протекающий через конденсатор в цепи, является произведением емкости и скорости изменения напряжения, приложенного к цепи. Ток, протекающий через конденсатор, прямо пропорционален емкости конденсатора и величине напряжения.

Чем больше ток, тем выше емкость цепи и чем выше приложенное напряжение, тем больше ток, протекающий по цепи. Если напряжение постоянное, то и заряд постоянен, поэтому заряд не протекает. Следовательно, ток, протекающий по цепи, станет нулевым.

Единица емкости (Фарад)

Джозия Латимер Кларк в 1861 году впервые использовал термин Фарад. Фарад — стандартная единица измерения емкости. Это очень большая единица измерения емкости.

Емкость одна фарада определяется как емкость с одним кулоном заряда, работающая при напряжении в один вольт.

C = Q / V

1Фарад = 1Кулон / 1В

Сейчас доступны конденсаторы с большой емкостью в сотни фарад. Эти конденсаторы с высокими значениями емкости называются «суперконденсаторами». В этих конденсаторах используется большая площадь поверхности для передачи высокой энергии, поскольку они имеют высокие значения емкости.

При низком напряжении суперконденсаторы обладают способностью накапливать большую энергию с высокими значениями емкости. Эти высокоэнергетические суперконденсаторы используются в переносных портативных устройствах для замены больших, тяжелых и дорогих конденсаторов литиевого типа, поскольку они хранят большую энергию, как батареи. Эти конденсаторы также используются в аудио- и видеосистемах в транспортных средствах для замены высоковольтных батарей.

Разделение Фарада

Стандартная единица измерения емкости — фарады. Но это очень большая единица измерения емкости. В этом фараде есть несколько дополнительных единиц; это микрофарады (мкФ), нанофарады (нФ) и пикофарады (пФ).

1 мкФ (мкФ) = (1/1000000) Ф = 10-6 Ф

1нано-Фарад (мкФ) = (1/1000000000) Ф = 10-9 Ф

1 пико-Фарад (мкФ) = (1/1000000000000) Ф = 10-12 Ф

Теперь мы увидим некоторые преобразования между единицами измерения емкости,

(i) преобразование 33 пФ в нФ => 33 пФ = 0,033 нФ

(ii) преобразование 22 нФ в мкФ => 22 нФ = 0,022 мкФ

(iii) преобразование 11 мкФ в Ф => 11 мкФ = 0,11 Ф

Энергия в конденсаторе

Энергия — это количество некоторой работы против электростатического поля для полной зарядки конденсатора. В конденсаторе на начальной стадии зарядки заряд Q передается между пластинами с одной пластины на другую. Этот заряд либо + Q, либо –Q меняется местами между двумя пластинами конденсатора. После преобразования некоторого заряда между пластинами образуется электрическое поле, в этом случае нам потребуется дополнительная работа, чтобы зарядить конденсатор полностью. Эта дополнительная работа называется энергией, запасенной в конденсаторе. Энергия измеряется в джоулях (Дж). Теперь мы приведем уравнения для этой энергии и работы:

dW = V dQ

dW = (Q / C) dQ

После интегрирования приведенного выше уравнения:

W = Q 2 / 2C

W = (CV) 2 / 2C

W = CV 2 /2 Джоулей

Наконец, мы получаем, что энергия, хранящаяся в конденсаторе, равна:

Энергия (W) = CV 2 /2 Джоулей

Теперь посчитаем энергию, запасенную в конденсаторе емкостью 200 мкФ, работающего с напряжением 12 В.

W = CV 2 /2

W = (200 × 10-6 × 12 2 ) / 2 = 14,4 м Дж

Вот и все, что вам нужно было знать о емкости и заряде конденсатора. Если вам нравятся наши статьи, то оставляйте свои комментарии.

С Уважением, МониторБанк

404: Страница не найдена

Страница, которую вы пытались открыть по этому адресу, похоже, не существует. Обычно это результат плохой или устаревшей ссылки. Мы приносим свои извинения за доставленные неудобства.

Что я могу сделать сейчас?

Если вы впервые посещаете TechTarget, добро пожаловать! Извините за обстоятельства, при которых мы встречаемся. Вот куда вы можете пойти отсюда:

Поиск
  • Пожалуйста, свяжитесь с нами, чтобы сообщить, что эта страница отсутствует, или используйте поле выше, чтобы продолжить поиск
  • Наша страница «О нас» содержит дополнительную информацию о сайте, на котором вы находитесь, WhatIs.com.
  • Посетите нашу домашнюю страницу и просмотрите наши технические темы

Просмотр по категории

Сеть

  • доступность сети

    Доступность сети — это время безотказной работы сетевой системы в течение определенного интервала времени.

  • NFV MANO (управление и оркестрация виртуализации сетевых функций)

    NFV MANO (управление виртуализацией и оркестровкой сетевых функций), также называемый MANO, представляет собой архитектурную основу для …

  • Сетевой коммутатор

    Сетевой коммутатор соединяет устройства в сети друг с другом, позволяя им общаться путем обмена пакетами данных.

Безопасность

  • GPS-глушение

    Подавление сигналов GPS — это использование устройства, передающего частоту, для блокирования или создания помех радиосвязи.

  • контрольная сумма

    Контрольная сумма — это значение, представляющее количество битов в передаваемом сообщении, которое используется ИТ-специалистами для обнаружения …

  • информация о безопасности и управление событиями (SIEM)

    Управление информацией о безопасности и событиями (SIEM) — это подход к управлению безопасностью, объединяющий информацию о безопасности . ..

ИТ-директор

  • доказательство концепции (POC)

    Доказательство концепции (POC) — это упражнение, в котором работа сосредоточена на определении того, можно ли превратить идею в реальность.

  • зеленые ИТ (зеленые информационные технологии)

    Green IT (зеленые информационные технологии) — это практика создания и использования экологически устойчивых вычислений.

  • ориентир

    Контрольный показатель — это стандарт или точка отсчета, которые люди могут использовать для измерения чего-либо еще.

HRSoftware

  • самообслуживание сотрудников (ESS)

    Самообслуживание сотрудников (ESS) — это широко используемая технология управления персоналом, которая позволяет сотрудникам выполнять множество связанных с работой …

  • платформа обучения (LXP)

    Платформа обучения (LXP) — это управляемая искусственным интеллектом платформа взаимного обучения, предоставляемая с использованием программного обеспечения как услуги (. ..

  • Поиск талантов

    Привлечение талантов — это стратегический процесс, который работодатели используют для анализа своих долгосрочных потребностей в талантах в контексте бизнеса …

Обслуживание клиентов

  • привлечения клиентов

    Вовлечение клиентов — это средство, с помощью которого компания устанавливает отношения со своей клиентской базой, чтобы повысить лояльность к бренду и …

  • прямой электронный маркетинг

    Прямой маркетинг по электронной почте — это формат кампаний по электронной почте, в котором отдельные рекламные объявления рассылаются целевому списку …

  • полезные сведения

    Практическая информация — это выводы, сделанные на основе данных, которые можно превратить непосредственно в действие или ответ.

электростатика — Емкость конденсатора

спросил

Изменено 9 лет, 7 месяцев назад

Просмотрено 886 раз

$\begingroup$

Почему емкость конденсатора увеличивается, если расстояние между двумя пластинами плоского конденсатора уменьшается? Я думаю, что с уменьшением расстояния между двумя пластинами сила притяжения между зарядами на двух пластинах будет увеличиваться, и в результате будет накапливаться больше заряда.

  • электростатика
  • емкость

$\endgroup$

$\begingroup$

Рассмотрим незаряженный конденсатор, подключенный к батарее в RC-цепи.

При включении цепи конденсатор начнет накапливать заряд. Когда это прекратится? Посмотрите на верхнюю пластину конденсатора на схеме. По мере того, как верхняя пластина накапливает все больше и больше заряда, носители заряда, поступающие через верхнюю проволоку, будут все больше и больше отталкиваться от накапливающегося заряда на верхней пластине. Однако в то же время те же отталкиваемые заряды также будут «притягиваться» к верхней пластине за счет накопления противоположного заряда на нижней пластине. Когда пластины расположены близко друг к другу, входящие заряды, движущиеся к верхней пластине, будут чувствовать более сильное притяжение к нижней пластине, потому что противоположные заряды на нижней пластине будут ближе к входящим зарядам на верхней пластине. Если пластины находятся далеко друг от друга, то «притяжение» от другой пластины не будет очень сильным, и только небольшое количество заряда должно накопиться на верхней пластине, прежде чем локальное отталкивание станет доминирующим и пластина станет «полной». «. Поскольку в сценарии с близко расположенными пластинами входящие заряды испытывают большее «притяжение», чем когда пластины далеко друг от друга, их больше может накапливаться на пластине до того, как конденсатор заполнится.

Надеюсь, это поможет.

$\endgroup$

1

$\begingroup$

as $C=E_0\cdot A / d$, близость пластин увеличивает емкость.

при уменьшении d емкость $C$ увеличивается.

$\endgroup$

1

$\begingroup$

1) Емкость – это отношение накопленного заряда Q (+ на одной пластине, – на другой) к напряжению между пластинами.

2) Электрическое поле между пластинами пропорционально поверхностной плотности заряда пластины $\sigma = Q/A$, где $A$ — площадь пластины.

3) Таким образом, если сдвинуть пластины ближе друг к другу, удерживая заряд фиксированным (без внешних цепей), а) электрическое поле также остается фиксированным (на 2 выше), б) напряжение (= электрическое поле x расстояние) уменьшается потому что расстояние уменьшается, и в) емкость ($C=Q/V$) увеличивается.

$\endgroup$

0

$\begingroup$

Емкость конденсатора зависит от максимального напряжения на пластинах $C_{\text{max}}=\frac Q{\Delta V_{\text{max}}}$.

Напряжение между пластинами зависит от напряженности поля между пластинами. Напряженность электрического поля между пластинами равна напряжению между пластинами, деленному на расстояние между пластинами $E=\frac {\Delta V}{\Delta x}$.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *