Site Loader

Управление тиристором в цепи постоянного тока — Dudom

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

15.4. Закрывание тиристора в цепи постоянного тока

Как было отмечено выше, в схеме выпрямителя тиристор автоматически закрывается при поступлении отрицательной полуволны синусоиды (смене полярности напряжения анод-катод). Если же тиристор применяется в цепях постоянного тока, смены полярности не происходит, и для закрывания тиристора приходится применять специальные схемы запирания, в которых формируется или встречный ток, или встречное напряжение. Схемы запирания тиристора представлены на рис. 15.6.

а)

б)

Рис. 15.6. Схемы запирания тиристоров в цепях постоянного тока:

а – схема встречного напряжения; б – схема встречного тока

Каждая схема содержит коммутирующий конденсатор С, который предварительно заряжается от дополнительного источника питания. В момент времени, когда нужно закрыть тиристор, замыкается ключ К, в качестве которого может быть использован дополнительный тиристор или транзистор.

На схеме встречного напряжения конденсатор разряжается на тиристор, в результате чего к тиристору прикладывается встречное напряжение. Закрываются переходы П1 и П3, рассасываются заряды в переходе П2, и тиристор закрывается. Главное условие – запасённого в конденсаторе С заряда должно хватить, чтобы поддерживать достаточное по величине встречное напряжение на время завершения переходного процесса закрывания тиристора (см. раздел 14.2). Преимущество схемы – простое исполнение. Недостаток – в момент коммутации происходит бросок напряжения в нагрузке на величину напряжения заряженного конденсатора С.

На схеме встречного тока конденсатор разряжается на трансформатор тока, включённый в анодную цепь тиристора. На вторичной обмотке трансформатора формируется ток, направленный встречно току анодной цепи тиристора. В результате ток становится меньше тока удержания, рассасываются заряды в переходе П2, и тиристор закрывается. Главное условие – запасённого в конденсаторе С заряда должно хватить, чтобы поддерживать достаточный по величине встречный ток на время завершения переходного процесса закрывания тиристора. Преимущество схемы — в момент коммутации не происходит броска напряжения в нагрузке. Недостаток – применение трансформатора тока (трудность технологического исполнения и большая стоимость изделия).

Контрольные вопросы

1. Приведите примеры использования динистора и тиристора в электронных схемах?

2. Нарисуйте схему ГПН и поясните принцип работы.

3. Чем отличается регулируемый выпрямитель от нерегулируемого? Напишите формулу регулировочной характеристики.

4. Почему в схеме управляемого выпрямителя тиристор закрывается автоматически?

5. Как происходит закрывание тиристора в цепях постоянного тока? Какие схемы применяются для этого?

Лекция 16. Запираемые тиристоры. Симметричные тиристоры – симисторы

16.1. Запираемые тиристоры

Тиристор, способный не только открываться, но и закрываться под воздействием сигнала на управляющем электроде, называется запираемыйтиристор. Условное графическое обозначение и схема замещения запираемого тиристора представлены на рис. 16.1.

а)

б)

Рис. 16.1. Запираемый тиристор:

а – условное графическое обозначение; б – схема замещения

Рассмотрим принцип работы запираемого тиристора, воспользовавшись схемой замещения. Согласно выражению (14.3) ток во внешней цепи зависит от коэффициентов передачи тока эмиттера транзисторов VT1 иVT2. Ток управленияI

У, поступая на базу транзистораVT2, увеличивает для него ток базы и коэффициент передачи тока2. Тиристор открывается, когда 1 – (1+2) = 0. Более конкретно это описывается выражением

. (16.1)

Если теперь ток управления уменьшить до нуля (IУ= 0), тиристор останется открытым, при условии, что ток анода будет больше тока удержания.

Для закрывания тиристора на управляющий электрод необходимо подать напряжение отрицательной полярности. Тогда ток коллектора VT1 будет протекать по цепи управляющего электрода, а ток базы транзистораVT2 уменьшится, что приведёт к снижению коэффициентов передачи тока

1и2и прекращению регенеративного процесса. ТранзисторVT2 можно вывести из насыщения при условии

, (16. 2)

где IЗ– ток запирания тиристора по управляющему электроду.

Способность тиристора к запиранию по управляющему электроду характеризуется коэффициентом запирания

. (16.3)

Из выражения (16.3) следует, что коэффициент запирания зависит от коэффициентов передачи тока 1и2и будет тем больше, чем больше2. Это означает, что чем меньше степень насыщения перехода П2 тиристора, тем легче его закрыть по сигналу управляющего электрода. Степень насыщения перехода П2 зависит от тока через тиристор в открытом состоянии, поэтому коэффициент запирания также будет зависеть от тока анода тиристора (рис. 16.2)

Рис. 16.2. Зависимость коэффициента запирания от тока анода

Схема управления запираемым тиристором должна формировать импульсы положительной (для открывания) и отрицательной (для закрывания) полярности относительно катода.

Наиболее просто это можно сделать, если в цепь управляющего электрода включить конденсатор (рис. 16.3).

Рис. 16.3. Простейшая схема управления запираемым тиристором

При разомкнутом ключе К конденсатор С заряжается через резистор R1, и на управляющий электрод тиристора поступает импульс положительной полярности. Когда процесс заряда конденсатора закончится, ток управляющего электрода станет равным нулю. Если теперь замкнуть ключ К, начнётся разряд конденсатора С через резисторR2, и на управляющий электрод тиристора поступит импульс отрицательной полярности. Чтобы произошло закрывание тиристора, необходимо выполнить условие

;, (16.4)

где UЗ– напряжение на управляющем электроде, необходимое для запирания тиристора;

IЗ– ток управляющего электрода, необходимый для запирания тиристора;

tЗ– длительность запирающего импульса.

Существуют более сложные схемы управления, в которых для запирания тиристора применяется отдельный источник питания, а также специальные драйверы управления, как, например, в мощных запираемых тиристорах, сведения о которых можно прочитать в литературе [6, 11, 17].

Управление двигателем постоянного тока с помощью тиристора

Тиристоры представляют собой полупроводниковые устройства, предназначенные для коммутации больших мощностей. Как и тиристоры, транзисторы также используются в качестве переключающих устройств. Транзисторы — это крошечные электронные компоненты, которые изменили мир. Мы можем найти их в каждом устройстве, таком как телевизоры, мобильные телефоны, ноутбуки, калькуляторы, наушники и т. д. Текущий. Основные разница между транзистором и тиристором составляет . Транзистор нуждается в постоянном переключении питания, чтобы оставаться включенным, но в случае тиристора нам нужно запустить его только один раз, и он останется включенным. Для приложений, таких как схема сигнализации, которая должна срабатывать один раз и оставаться включенной навсегда, мы не можем использовать транзистор. Итак, для преодоления этих проблем мы используем Тиристор .

Тиристор работает только в режиме переключения. Тиристор может использоваться для управления большими постоянными токами и нагрузками. Тиристор ведет себя как Электронная защелка при использовании в качестве переключателя, потому что при однократном срабатывании она остается в состоянии проводимости до тех пор, пока не будет сброшена вручную. В этом проекте мы собираемся показать вам , как управлять нагрузкой или двигателем постоянного тока с помощью тиристора . Вы можете заменить двигатель постоянного тока любой другой нагрузкой постоянного тока и управлять любой цепью постоянного тока.

 

Необходимый материал
  • Источник питания 9 В постоянного тока
  • Тиристор – TYN612
  • Двигатель постоянного тока (в качестве нагрузки постоянного тока)
  • Резистор (510, 1 кОм)
  • Переключатель
  • Кнопка
  • Соединительные провода

 

Схема цепи

Переключатель S1 в цепи используется для сброса цепи или для выключения тиристора. Кнопка Push S2 используется для запуска тиристора путем подачи импульса затвора через него. Положение переключателя S1 можно заменить нормально разомкнутым переключателем на тиристоре.

 

Тиристор — TYN612

Здесь, в названии Тиристор TYN612 , «6» указывает значение повторяющегося пикового напряжения в закрытом состоянии, V DRM и V RRM равно «1000 В» и значение среднеквадратичного значения тока в открытом состоянии, I T (RMS) , составляет 12 А. Тиристор TYN612 подходит для всех режимов управления, таких как защита от перенапряжения, схема управления двигателем, схемы ограничения пускового тока, схемы зажигания емкостного разряда и схемы регулирования напряжения. . Диапазон тока срабатывания затвора (I

GT ) составляет от 5 мА до 15 мА. Диапазон рабочих температур от -40 до 125 °C.

Схема контактов тиристора TYN612

 

Конфигурация контактов тиристора TYN612

0

Номер контакта.

Название контакта

Описание

1

К

Катод тиристора

2

А

Анод тиристора

3

Г

Тиристорные ворота, используемые для срабатывания

 

Управление двигателем постоянного тока с помощью тиристорной схемы

Первоначально переключатели S1 и S2 остаются в нормально замкнутом и нормально разомкнутом состоянии соответственно. Когда питание включено, тиристор остается смещенным в обратном направлении до подачи импульса затвора. Для подачи стробирующего импульса мы должны использовать кнопку S2. Когда переключатель S2 замыкается, SCR включается и фиксируется, даже если мы отпускаем кнопку S2.

Если тиристор самостоятельно зафиксировался во включенном состоянии, единственный способ отключить тиристор от проводимости — отключить подачу питания. Для этого мы используем переключатель S1, который отключает питание схемы, а тиристор сбрасывается или выключается.

Сопротивление R1 используется для обеспечения достаточного тока затвора для включения SCR. Сопротивление R2 используется для уменьшения чувствительности затвора и увеличения способности dv/dt. Таким образом, он предотвращает ложное срабатывание тиристора. Узнайте больше о тиристорах и способах их срабатывания здесь.

Тиристорное управление двигателями — EEEGUIDE.COM

Тиристорное управление двигателями. Для управления двигателями были разработаны различные схемы управления тиристорами в зависимости от типа питания (переменный/постоянный ток), а также типа и размера двигателя. .

Для управления двигателем постоянного тока регулируемая мощность постоянного тока от источника переменного тока постоянного напряжения получается с помощью управляемых выпрямителей или преобразователей , использующих тиристоры и диоды. Управление постоянным напряжением достигается за счет включения тиристоров под регулируемым углом по отношению к приложенному напряжению. Этот угол известен как угол обжига а схема управления называется фазовым управлением . Другой базовый метод управления известен как интегрально-цикловое управление . Здесь ток пропускают от источника переменного тока в течение нескольких полных циклов, а затем гасят в течение еще нескольких циклов, при этом процесс повторяется непрерывно. Управление осуществляется путем регулировки соотношения длительности включения и выключения. Этот метод подходит для управления двигателями постоянного тока мощностью в несколько десятков кВт. Линейная коммутация легко применяется для обеих этих схем управления.

Методы фазового управления и управления с интегральным циклом также применимы для двигателей переменного тока, для которых не требуется схема преобразователя.

Управление двигателями постоянного тока, питающимися от источника постоянного тока, осуществляется с помощью схемы тиристорного переключения, называемой прерывателем . Контроллер прерывателя периодически открывается и закрывается, при этом управление средним напряжением достигается путем изменения продолжительности включения и выключения. Это обеспечивает эффективное и бесступенчатое управление двигателями. Тиристорное управление двигателями также может работать в режиме рекуперативного торможения. Контроллер прерывателя требует принудительной коммутации тиристора.

Для управления двигателями переменного тока, питающимися от источника постоянного тока, используются инверторы на основе тиристоров, транзисторов или полевых МОП-транзисторов. Эти схемы переключения передают энергию от источника постоянного тока к нагрузке переменного тока с переменной частотой и/или переменным напряжением. Из-за операции переключения формы сигналов переменного напряжения ступенчатые, гармоники которых отфильтровываются двигателем переменного тока. Поскольку источником питания обычно является переменный ток, полная схема получения мощности с переменным напряжением и частотой включает использование как инвертора, так и преобразователя.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *