Site Loader

Содержание

Удельное электрическое сопротивление | формула, объемное, таблица

Удельное электрическое сопротивление является физической величиной, которая показывает, в какой степени материал может сопротивляться прохождению через него электрического тока. Некоторые люди могут перепутать данную характеристику с обыкновенным электрическим сопротивлением. Несмотря на схожесть понятий, разница между ними заключается в том, что удельное касается веществ, а второй термин относится исключительно к проводникам и зависит от материала их изготовления.

Обратной величиной данного материала является удельная электрическая проводимость. Чем выше этот параметр, тем лучше проходит ток по веществу. Соответственно, чем выше сопротивление, тем больше потерь предвидится на выходе.

Формула расчета и величина измерения

Рассматривая, в чем измеряется удельное электрическое сопротивление, также можно проследить связь с не удельным, так как для обозначения параметра используются единицы Ом·м. Сама величина обозначается как ρ. С таким значением можно определять сопротивление вещества в конкретном случае, исходя из его размеров. Эта единица измерения соответствует системе СИ, но могут встречаться и другие варианты. В технике периодически можно увидеть устаревшее обозначение Ом·мм

2/м. Для перевода из этой системы в международного не потребуется использовать сложные формулы, так как 1 Ом·мм2/м равняется 10-6 Ом·м.

Формула удельного электрического сопротивления выглядит следующим образом:

R= (ρ·l)/S, где:

  • R – сопротивление проводника;
  • Ρ – удельное сопротивление материал;
  • l – длина проводника;
  • S – сечение проводника.

Зависимость от температуры

Удельное электрическое сопротивление зависит от температуры. Но все группы веществ проявляют себя по-разному при ее изменении. Это необходимо учитывать при расчете проводов, которые будут работать в определенных условиях. К примеру, на улице, где значения температуры зависят от времени года, необходимые материалы с меньшей подверженностью изменениям в диапазоне от -30 до +30 градусов Цельсия. Если же планируется применение в технике, которая будет работать в одних и тех же условиях, то здесь также нужно оптимизировать проводку под конкретные параметры. Материал всегда подбирается с учетом эксплуатации.

В номинальной таблице удельное электрическое сопротивление берется при температуре 0 градусов Цельсия. Повышение показателей данного параметра при нагреве материала обусловлено тем, что интенсивность передвижения атомов в веществе начинает возрастать. Носители электрических зарядов хаотично рассеиваются во всех направлениях, что приводит к созданию препятствий при передвижении частиц. Величина электрического потока снижается.

При уменьшении температуры условия прохождения тока становятся лучше. При достижении определенной температуры, которая для каждого металла будет отличаться, появляется сверхпроводимость, при которой рассматриваемая характеристика почти достигает нуля.

Отличия в параметрах порой достигают очень больших значений. Те материалы, которые обладают высокими показателями, могут использовать в качестве изоляторов. Они помогают защищать проводку от замыкания и ненамеренного контакта с человеком. Некоторые вещества вообще не применимы для электротехники, если у них высокое значение этого параметра. Этому могут мешать другие свойства. Например, удельная электрическая проводимость воды не будет иметь большого значения для данный сферы. Здесь приведены значения некоторых веществ с высокими показателями.

Материалы с высоким удельным сопротивлениемρ (Ом·м)
Бакелит
1016
Бензол1015…1016
Бумага1015
Вода дистиллированная104
Вода морская0.3
Дерево сухое1012
Земля влажная102
Кварцевое стекло1016
Керосин1011
Мрамор108
Парафин1015
Парафиновое масло1014
Плексиглас1013
Полистирол1016
Полихлорвинил1013
Полиэтилен1012
Силиконовое масло1013
Слюда1014
Стекло1011
Трансформаторное масло1010
Фарфор1014
Шифер1014
Эбонит1016
Янтарь1018

Более активно в электротехнике применяются вещества с низкими показателями. Зачастую это металлы, которые служат проводниками. В них также наблюдается много различий. Чтобы узнать удельное электрическое сопротивление меди или других материалов, стоит посмотреть в справочную таблицу.

Материалы с низким удельным сопротивлениемρ (Ом·м)
Алюминий2.7·10-8
Вольфрам5.5·10-8
Графит8.0·10-6
Железо1.0·10-7
Золото2.2·10-8
Иридий4.74·10-8
Константан5.0·10-7
Литая сталь1.3·10-7
Магний4.4·10-8
Манганин4.3·10-7
Медь1.72·10-8
Молибден5.4·10-8
Нейзильбер3.3·10-7
Никель8.7·10-8
Нихром1.12·10-6
Олово1.2·10-7
Платина1.07·10-7
Ртуть9.6·10-7
Свинец2.08·10-7
Серебро1.6·10-8
Серый чугун1.0·10
-6
Угольные щетки4.0·10-5
Цинк5.9·10-8
Никелин0,4·10-6

Удельное объемное электрическое сопротивление

Данный параметр характеризует возможность пропускать ток через объем вещества. Для измерения необходимо приложить потенциал напряжения с разных сторон материала, изделие из которого будет включено в электрическую цепь. На него подается ток с номинальными параметрами. После прохождения измеряются данные на выходе.

Использование в электротехнике

Изменение параметра при разных температурах широко применяется в электротехнике. Наиболее простым примером является лампа накаливания, где используется нихромовая нить. При нагревании она начинает светиться. При прохождении через нее тока она начинает нагреваться. С ростом нагрева возрастает и сопротивление. Соответственно, ограничивается первоначальный ток, который нужен был для получения освещения. Нихромовая спираль, используя тот же принцип, может стать регулятором на различных аппаратах.

Широкое применение коснулось и благородных металлов, которые обладают подходящими характеристиками для электротехники. Для ответственных схем, которым требуется быстродействие, подбираются серебряные контакты. Они обладают высокой стоимостью, но с учетом относительно небольшого количества материалов их применение вполне оправданно. Медь уступает серебру по проводимости, но обладает более доступной ценой, благодаря чему ее чаще используют для создания проводов.

В условиях, где можно использовать предельно низкие температуры, применяются сверхпроводники. Для комнатной температуры и уличной эксплуатации они не всегда уместны, так как при повышении температуры их проводимость начнет падать, поэтому для таких условий лидерами остаются алюминий, медь и серебро.

На практике учитывается много параметров и этот является одним из наиболее важных. Все расчеты проводятся еще на стадии проектирования, для чего и используются справочные материалы.

Читайте также:

Удельное объемное электрическое сопротивление — Справочник химика 21

    Для уменьшения удельного объемного электрического сопротивления диэлектрических жидкостей и растворов полимеров в них вводят растворимые антистатические присадки. [c.113]

    Удельное объемное электрическое сопротивление ом/см, не менее  [c.198]

    Удельное объемное электрическое сопротивление, ТОм-м……. .  [c.13]

    Теплостойкость по Мартенсу, °С. . 60—80 Удельное объемное электрическое сопротивление, ТОм-м…………1—20 

[c.45]


    Удельное объемное электрическое сопротивление в ом м. …. 1,8-10  [c.413]

    Удельное объемное электрическое сопротивление при 20° С, ом-см … Диэлектрическая проницаемость при 20 С [c.320]

    Теплостойкость по Мартенсу, С. не менее 125 Удельное объемное электрическое сопротивление, МОм-см, не менее…… 10  [c.62]

    Полиизобутилены характеризуются высокой водо- и газонепроницаемостью даже при повышенной температуре. Они обладают высокими электроизолирующими свойствами тангенс угла диэлектрических потерь 0,0004—0,0005, удельное объемное электрическое сопротивление > 10 Ом-см, электрическая прочность 23 МВ/м. Высокомолекулярные полиизобутилены могут перерабатываться на вальцах, каландрах, шприц-машинах, в прессах только при повышенных температурах 100—200 °С, так как при низких температурах переработки происходит механическая деструкция макромолекул. Причем чем выше молекулярная масса полиизобутилена, тем интенсивнее протекает деструкция. 

[c.338]

    Удельное объемное электрическое сопротивление при 25 °С, ТОм-м. … 1-10 -1-10 Тангенс угла диэлектрических потерь [c.75]

    УДЕЛЬНОЕ ОБЪЕМНОЕ ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ РАЗЛИЧНЫХ СТЕКОЛ [c.328]

    ЗАВИСИМОСТЬ УДЕЛЬНОГО ОБЪЕМНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ НАТРИЕВОСИЛИКАТНЫХ СТЕКОЛ ОТ СОДЕРЖАНИЯ ОКИСЛОВ ДВУХВАЛЕНТНЫХ [c.327]

    В остальных случаях скорости транспортирования и истечения жидкостей ограничивают таким образом, чтобы заряд, приносимый в приемную емкость потоком жидкости, не мог вызвать с ее поверхности искрового разряда, достаточного для воспламенения окружающей среды. Применяют следующие ограничения скорости транспортирования и истечения жидкостей с удельным объемным электрическим сопротивлением не более 0,1 МОм-м (метилацетат, метилэтилкетон, муравьиная кислота и др.) — до 10 м/с не более 10 МОм м (винилацетат, уксусная кислота, фенол и др.)—до 5 м/с более 10 МОм м (бензины, бензол, толуол, уайт-спирит, циклогексан и др.) — 1,2 м/с при диаметрах трубопроводов до 200 мм. [c.114]

    РАСЧЕТ УДЕЛЬНОГО ОБЪЕМНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ СТЕКОЛ [c.325]

    СОСТАВ СТЕКОЛ С НИЗКИМ УДЕЛЬНЫМ ОБЪЕМНЫМ ЭЛЕКТРИЧЕСКИМ СОПРОТИВЛЕНИЕМ [c.327]

    Удельное объемное электрическое сопротивление при 20 С. ………..  [c.340]

    Диэлектрическая проницаемость при 25° С и частоте 1 Л1г ……….. Удельное объемное электрическое сопротивление при 250° С, ом — см……. [c.341]

    Для снижения скорости истечения жидкостей с удельным объемным электрическим сопротивлением выше 10 МОм м в емкости (резервуары) и для релаксации (утечки) зарядов используют релаксационные емкости, представляющие собой горизонтальный участок трубопровода увеличенного диаметра, находящийся у входа в приемную емкость. Релаксационный эффект повышают, вводя в релаксационные емкости заземленные игольчатые электроды, стальные струны и др. [c.114]


    Пластмасса Полимерная основа Плотность р, кг/м Разрушающее напряжение 6, МПа Теплостойкость по Мартенсу (М) или Вика (В), «С Удельное объемное электрическое сопротивление г, Ом-М Диэлектрическая проницаемость при 10 Гц, е Тангенс угла диэлектрических потерь прн 10 Гц, 6Ф [c.262]

    При заполнении порожнего резервуара жидкости с удельным объемным электрическим сопротивлением более 0,1 МОм-м подают со скоростью не более 1 м/с до момента затопления конца загрузочной трубы. [c.114]

    Опубликованные в литературе данные об электрическом сопротивлении различных видов твердых топлив довольно скудны. Ниже сопоставлены значения удельного объемного электрического сопротивления pv (в Ом-см), полученные различными авторами [20, с. 185]  [c.201]

    Максимальная электризация наблюдается в жидкостях, содержащих мелкодиспергированные примеси, удельное объемное электрическое сопротивление которых значительно ниже сопротивления жидкости. Это означает, что электризация углеводородного потока, содержащего мелкие капли воды, кристаллы солей или частицы окалины железа, является максимальной. Например, при движении углеводородного топлива, содержащего до 0,1 кг мелких частичек окалины железа, наблюдалось усиление электризации в 1,6—1,7 раза. [c.124]

    С и относительной влажности 45-75 % удельное объемное электрическое сопротивление не менее 5,0-10 Ом-см, тангенс угла диэлектрических потерь при частоте 3 МГц не менее 0,001 диэлектрическая проницаемость при 3 МГц не более 3,0. [c.218]

    Удельное объемное электрическое сопротивление при 100 «С и 1,5-10 - [c.249]

    Кислотное число, мг КОН/г, не более Число омыления, мг КОН/г Температура вспышки, °С, не ниже Удельное объемное электрическое сопротивление при 20 °С, ОМ СМ Термоокислительная стабильность в присутствии ингибитора при 200 С в течение 10 ч кислотное число, мг КОН/г, не более Температура помутнения [c.431]

    В связи с этим нормируются его электроизоляционные характеристики удельное объемное электрическое сопротивление при 100 °С [c.479]

    Нормируются удельное объемное электрическое сопротивление при 20 °С — не менее 110 Ом см тангенс угла диэлектрических потерь при 20 °С и 10 Гц — не более 0,003 диэлектрическая проницаемость при 20 °С и 10 Гц — не более 2,5. [c.487]

    Метод заключается в определении сопротивления между электродами, приложенными к противоположным граням куба образца, реб ро которого равно единице (удельное объемное электрическое сопротивление р ) или к противоположным сторонам квадрата со стороной, равной единице на поверхности образца (удельное поверхностное электрическое сопротивление ра). Испытания проводятся при постоянном напряжении согласно ГОСТ 6433.2—71. [c.143]

    Средний молекулярный вес полибутадиеновых каучуков колеб- чется в пределах 80 000—250 000. Они растворимы в алиф тических и ароматических углеводородах, галоидопроизводных углеводородов, сероуглероде, отличаются хорошими диэлектрическими свойствами. Например, диэлектрическая постоянная натрийбутадиенового каучука составляет около 2,8, удельное объемное электрическое сопротивление 10 —10 ом см. Даже н растянутом состоянии большинство синтетических каучуков. выпускаемых в промышленных масштабах, находятся в аморфной фазе. При обычной температуре эти полимеры более напоминают пластичные, чем эластичные, материалы. [c.237]

    При достаточно высоких значениях удельного объемного электрического сопротивления образцов 10 Ом-см) их электретное состояние может сохраняться неопределенно долгое время даже в условиях повышенной относительной влажности воздуха. В настоящее время электретные полимерные пленки широко применяют при изготовлении микрофонов и для других целей. [c.194]

    Удельное объемное электрическое сопротивление (р ) — сопротивление между электродами, приложенными к противоположным граням куба вещества с длиной ребра в 1 м. Единицей измерения [c.136]

    Связи атома фтора с углеродом сильно полярные. Так как их дипольные моменты друг друга полностью компенсируют, суммарный дипольный момент макромолекулы политетрафторэтилена равен нулю. Это обусловливает очень хорошие диэлектрические свойства политетрафторэтилена и весьма малую зависимость их от частоты и температуры. Удельное объемное электрическое сопротивление политетрафторэтилена выше 10 ом см ло 10 ° ом-см). Диэлектрическая проницаемость при 60 гц и 10 ° гц 2,0—2,1. Тангенс угла диэлектрических потерь при 60 гц 0,0002—0,00025, при 10 ° гц 0,0002. Исключительной особенностью политетрафторэтилена является его способность длительно работать в чрезвычайно широком диапазоне температур — от —269 до +250° С. [c.144]

    Полимер нерастворим в органических растворителях, его т. стекл. 475 °С он стоек при нагревании до 600 °С. Его удельное объемное электрическое сопротивление З-Ю —Ом-см. Пироны стойки к действию ионизирующего излучения (до дозы 1-10 Дж/кг, или [c.422]

    Всесоюзным научно-исследовательским институтом техники безопасности проведены исследовательские работы по электризации органических жидкостей при движении по трубопроводам. Установлено, что органические жидкости, имеющие удельное объемное электрическое сопротивление менее 1 ГОм-м, практически не электризуются-при транспортировании по трубопроводам диаметром до 100 мм со скоростью до 5 м/с. Максимально возможную силу тока электризации для жидкостей, имеющих удельное объемное электрическое сопротивление выше 1 ГОм м, можно определить по упрощенной формуле Гэвиса—Казмона [c.343]


    Коэффициент линейного расширения на 1 °С (7,8—8,0)-10 Удельное объемное электрическое сопротивление, ТОмм. ……………….5-10  [c.52]

    Безопасные скорости транспортирования жпдкнх и пылевидных веществ в зависимости от удельного объемного электрического сопротивления (р -) нормируются Правилами защиты от статического электричества . Так, для жидкостей с рг = = 0,1 Мом-м установлена допустимая скорость м/с  [c.174]

    Удельное объемное электрическое сопротивление стекол Q (ом см) сильно изменяется с температурой. Свойство стекла как изолятора часто характеризуется температурой I при которой 0=100 AIoM см.  [c.325]

    Примечание. Для марки 80э удельное объемное электрическое сопротивление при 100 «С не менее 1 10 Ом-см тангенс угла диэлв1стрических потерь при 100 С и частоте 10ОО Гц не более 0,003 электрическая прочность при 100 С и частоте 50 Гц не менее 20 кВ/мм коррозионное воздействие на медную пластину — выдерживает. [c.477]


Удельное электрическое сопротивление стали. Что такое удельное электрическое сопротивление. Зависимость показателя сопротивления от температуры


    Удельное сопротивление железа, алюминия и других проводников

    Передача электроэнергии на дальние расстояния требует заботиться о минимизации потерь, происходящих от преодоления током сопротивления проводников, составляющих электрическую линию. Разумеется, это не значит, что подобные потери, происходящие уже конкретно в цепях и устройствах потребления, не играют роли.

    Поэтому важно знать параметры всех используемых элементов и материалов. И не только электрические, но и механические. И иметь в распоряжении какие-то удобные справочные материалы, позволяющие сравнивать характеристики разных материалов и выбирать для проектирования и работы именно то, что будет оптимальным в конкретной ситуации.В линиях передачи энергии, где задачей ставится наиболее продуктивно, то есть с высоким КПД, довести энергию до потребителя, учитывается как экономика потерь, так и механика самих линий. От механики — то есть устройства и расположения проводников, изоляторов, опор, повышающих/понижающих трансформаторов, веса и прочности всех конструкций, включая провода, растянутые на больших расстояниях, а также от выбранных для выполнения каждого элемента конструкции материалов, зависит и конечная экономическая эффективность линии, ее работы и затрат на эксплуатацию. Кроме того, в линиях, передающих электроэнергию, более высоки требования на обеспечение безопасности как самих линий, так и всего окружающего, где они проходят. А это добавляет затрат как на обеспечение проводки электроэнергии, так и на дополнительный запас прочности всех конструкций.

    Для сравнения данные обычно приводятся к единому, сопоставимому виду. Зачастую к таким характеристикам добавляется эпитет «удельный», а сами значения рассматриваются на неких унифицированных по физическим параметрам эталонах. Например, удельное электрическое сопротивление — это сопротивление (ом) проводника, выполненного из какого-то металла (меди, алюминия, стали, вольфрама, золота), имеющего единичную длину и единичное сечение в используемой системе единиц измерения (обычно в СИ). Кроме того, оговаривается температура, так как при нагревании сопротивление проводников может вести себя по-разному. За основу берутся нормальные средние условия эксплуатации — при 20 градусах Цельсия. А там, где важны свойства при изменении параметров среды (температуры, давления), вводятся коэффициенты и составляются дополнительные таблицы и графики зависимостей.

    Виды удельного сопротивления

    Так как сопротивление бывает:

    • активное — или омическое, резистивное, — происходящее от затрат электроэнергии на нагревание проводника (металла) при прохождении в нем электрического тока, и
    • реактивное — емкостное или индуктивное, — которое происходит от неизбежных потерь на создание всякими изменениями тока, проходящего через проводник электрических полей, то и удельное сопротивление проводника бывает двух разновидностей:
  1. Удельное электрическое сопротивление постоянному току (имеющее резистивный характер) и
  2. Удельное электрическое сопротивление переменному току (имеющее реактивный характер).

Здесь удельное сопротивление 2 типа является величиной комплексной, оно состоит из двух компонент ТП — активной и реактивной, так как резистивное сопротивление существует всегда при прохождении тока, независимо от его характера, а реактивное бывает только при любом изменении тока в цепях. В цепях постоянного тока реактивное сопротивление возникает только при переходных процессах, которые связаны с включением тока (изменение тока от 0 до номинала) или выключением (перепад от номинала до 0). И их учитывают обычно только при проектировании защиты от перегрузок.

В цепях же переменного тока явления, связанные с реактивными сопротивлениями, гораздо более многообразны. Они зависят не только от собственно прохождения тока через некоторое сечение, но и от формы проводника, причем зависимость не является линейной.


Дело в том, что переменный ток наводит электрическое поле как вокруг проводника, по которому протекает, так и в самом проводнике. И от этого поля возникают вихревые токи, которые дают эффект «выталкивания» собственно основного движения зарядов, из глубины всего сечения проводника на его поверхность, так называемый «скин-эффект» (от skin — кожа). Получается, вихревые токи как бы «воруют» у проводника его сечение. Ток течет в некотором слое, близком к поверхности, остальная толщина проводника остается неиспользуемой, она не уменьшает его сопротивление, и увеличивать толщину проводников просто нет смысла. Особенно на больших частотах. Поэтому для переменного тока измеряют сопротивления в таких сечениях проводников, где все его сечение можно считать приповерхностным. Такой провод называется тонким, его толщина равна удвоенной глубине этого поверхностного слоя, куда вихревые токи и вытесняют текущий в проводнике полезный основной ток.


Разумеется, уменьшением толщины круглых в сечении проводов не исчерпывается эффективное проведение переменного тока. Проводник можно утончить, но при этом сделать его плоским в виде ленты, тогда сечение будет выше, чем у круглого провода, соответственно, и сопротивление ниже. Кроме того, простое увеличение площади поверхности даст эффект увеличения эффективного сечения. Того же можно добиться, используя многожильный провод вместо одножильного, к тому же, многожилка по гибкости превосходит одножилку, что часто тоже бывает ценно. С другой стороны, принимая во внимание скин-эффект в проводах, можно сделать провода композитными, выполнив сердцевину из металла, обладающего хорошими прочностными характеристиками, например, стали, но невысокими электрическими. При этом поверх стали делается алюминиевая оплетка, имеющая меньшее удельное сопротивление.


Кроме скин-эффекта на протекание переменного тока в проводниках влияет возбуждение вихревых токов в окружающих проводниках. Такие токи называются токами наводки, и они наводятся как в металлах, не играющих роль проводки (несущие элементы конструкций), так и в проводах всего проводящего комплекса — играющих роль проводов других фаз, нулевых, заземляющих.

Все перечисленные явления встречаются во всех конструкциях, связанных с электричеством, это еще более усиливает важность иметь в своем распоряжении сводные справочные сведения по самым разным материалам.

Удельное сопротивление для проводников измеряется очень чувствительными и точными приборами, так как для проводки и выбираются металлы, имеющие самое низкое сопротивление -порядка ом *10-6 на метр длины и кв. мм. сечения. Для измерения же удельного сопротивления изоляции нужны приборы, наоборот, имеющие диапазоны очень больших значений сопротивления — обычно это мегомы. Понятно, что проводники обязаны хорошо проводить, а изоляторы хорошо изолировать.

Таблица

Железо как проводник в электротехнике

Железо — самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.

В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.

Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.

В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.

Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно

, где R – сопротивление, ρ – удельное сопротивление металла из таблицы, S – площадь сечения, L – длина.

Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.

После этого разрешим формулу относительно S

, будем подставлять значения из таблицы и получать площади сечений для разных металлов.

Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10-6. Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм2.

Как видим, сопротивление железа достаточно большое, проволока получается толстая.


Но существуют материалы, у которых оно еще больше, например, никелин или константан.

Похожие статьи:

domelectrik.ru

Таблица удельного электрического сопротивления металлов и сплавов в электротехнике

Главная > у >


Удельное сопротивление металлов.
Удельное сопротивление сплавов.
Значения даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава. comments powered by HyperComments

tab.wikimassa.org

Удельное электрическое сопротивление | Мир сварки

Удельное электрическое сопротивление материалов

Удельное электрическое сопротивление (удельное сопротивление) — способность вещества препятствовать прохождению электрического тока.

Единица измерения (СИ) — Ом·м; также измеряется в Ом·см и Ом·мм2/м.

Материал Температура, °С Удельное электрическоесопротивление, Ом·м
Металлы
Алюминий200,028·10-6
Бериллий200,036·10-6
Бронза фосфористая200,08·10-6
Ванадий200,196·10-6
Вольфрам200,055·10-6
Гафний200,322·10-6
Дюралюминий200,034·10-6
Железо200,097·10-6
Золото200,024·10-6
Иридий200,063·10-6
Кадмий200,076·10-6
Калий200,066·10-6
Кальций200,046·10-6
Кобальт200,097·10-6
Кремний270,58·10-4
Латунь200,075·10-6
Магний200,045·10-6
Марганец200,050·10-6
Медь200,017·10-6
Магний200,054·10-6
Молибден200,057·10-6
Натрий200,047·10-6
Никель200,073·10-6
Ниобий200,152·10-6
Олово200,113·10-6
Палладий200,107·10-6
Платина200,110·10-6
Родий200,047·10-6
Ртуть200,958·10-6
Свинец200,221·10-6
Серебро200,016·10-6
Сталь200,12·10-6
Тантал200,146·10-6
Титан200,54·10-6
Хром200,131·10-6
Цинк200,061·10-6
Цирконий200,45·10-6
Чугун200,65·10-6
Пластмассы
Гетинакс20109–1012
Капрон201010–1011
Лавсан201014–1016
Органическое стекло201011–1013
Пенопласт201011
Поливинилхлорид201010–1012
Полистирол201013–1015
Полиэтилен201015
Стеклотекстолит201011–1012
Текстолит20107–1010
Целлулоид20109
Эбонит201012–1014
Резины
Резина201011–1012
Жидкости
Масло трансформаторное201010–1013
Газы
Воздух01015–1018
Дерево
Древесина сухая20109–1010
Минералы
Кварц230109
Слюда201011–1015
Различные материалы
Стекло20109–1013
ЛИТЕРАТУРА
  • Альфа и омега. Краткий справочник / Таллин: Принтэст, 1991 – 448 с.
  • Справочник по элементарной физике / Н.Н. Кошкин, М.Г. Ширкевич. М., Наука. 1976. 256 с.
  • Справочник по сварке цветных металлов / С.М. Гуревич. Киев.: Наукова думка. 1990. 512 с.

weldworld.ru

Удельное сопротивление металлов, электролитов и веществ (Таблица)

Удельное сопротивление металлов и изоляторов

В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18-20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.

Таблица удельное сопротивление металлов

Чистые металлы

104 ρ (ом·см)

Чистые металлы

104 ρ (ом·см)

Алюминий

Дюралюминий

Платинит 2)

Аргентан

Марганец

Манганин

Вольфрам

Константан

Молибден

Сплав Вуда 3)

Сплав Розе 4)

Палладий

Фехраль 6)

Таблица удельное сопротивление изоляторов

Изоляторы

Изоляторы

Дерево сухое

Целлулоид

Канифоль

Гетинакс

Кварц _|_ оси

Стекло натр

Полистирол

Стекло пирекс

Кварц || оси

Кварц плавленый

Удельное сопротивление чистых металлов при низких температурах

В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).

Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.

В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.

Чистые металлы

Алюминий

Вольфрам

Молибден

Удельное сопротивление электролитов

В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М.: 1960.

infotables.ru

Удельное электрическое сопротивление — сталь

Cтраница 1

Удельное электрическое сопротивление стали возрастает с ростом температуры, причем наибольшие изменения наблюдаются при нагреве до температуры точки Кюри. После точки Кюри величина удельного электросопротивления изменяется незначительно и при температурах выше 1000 С практически остается постоянной.  

Ввиду большого удельного электрического сопротивления стали эти iuKii создают НсОольшое замедление в спадании потока. В контакторах на 100 а время отпадания составляет 0 07 сек, а в контакторах 600 а-0 23 сек. В связи с особыми требованиями, предъявляемыми к контакторам серии КМВ, которые предназначены для включения и отключения электромагнитов приводов масляных выключателей, электромагнитный механизм у этих контакторов допускает регулировку напряжения срабатывания и напряжения отпускания за счет регулировки силы возвратной пружины и специальной отрывной пружины. Контакторы типа КМВ должны работать при глубокой посадке напряжения. Поэтому минимальное напряжение срабатывания у этих контакторов может спускаться до 65 % UH. Такое низкое напряжение срабатывания приводит к тому, что при номинальном напряжении через обмотку протекает ток, приводящий к повышенному нагреву катушки.  

Присадка кремния увеличивает удельное электрическое сопротивление стали почти пропорционально содержанию кремния и этим способствует уменьшению потерь на вихревые токи, возникающие в стали при ее работе в переменном магнитном поле.  

Присадка кремния увеличивает удельное электрическое сопротивление стали, что способствует уменьшению потерь на вихревые токи, но одновременно кремний ухудшает механические свойства стали, делает ее хрупкой.  

Ом — мм2 / м — удельное электрическое сопротивление стали.  

Для уменьшения вихревых токов применяются сердечники, выполненные из сортов стали с повышенным удельным электрическим сопротивлением стали, содержащие 0 5 — 4 8 % кремния.  

Для этого на массивный ротор из оптимального сплава СМ-19 был надет тонкий экран из магнитно-мягкой стали. Удельное электрическое сопротивление стали мало отличается от удельного сопротивления сплава, а цг стали примерно на порядок выше. Толщина экрана выбрана по глубине проникновения зубцовых гармоник первого порядка и равна йэ 0 8 мм. Для сравнения приведены добавочные потери, Вт, при базовом короткозамкнутом роторе и двухслойном роторе с массивным цилиндром из сплава СМ-19 и с медными торцевыми кольцами.  

Основным магнитопроводящим материалом является листовая легированная электротехническая сталь, содержащая от 2 до 5 % кремния. Присадка кремния увеличивает удельное электрическое сопротивление стали, в результате чего уменьшаются потери на вихревые токи, сталь становится устойчивой к окислению и старению, но делается более хрупкой. В последние годы широко используется холоднокатаная текстурованная сталь с более высокими магнитными свойствами в направлении проката. Для уменьшения потерь от вихревых токов сердечник магнитопровода выполняется в виде пакета, собранного из листов штампованной стали.  

Электротехническая сталь является низкоуглеродистой сталью. Для улучшения магнитных характеристик в нее вводят кремний, который вызывает повышение удельного электрического сопротивления стали. Это приводит к уменьшению потерь на вихревые токи.  

После механической обработки магнитопровод отжигают. Так как в создании замедления участвуют вихревые токи в стали, следует ориентироваться на величину удельного электрического сопротивления стали порядка Рс (Ю-15) 10 — 6 ом см. В притянутом положении якоря магнитная система достаточно сильно насыщена, поэтому начальная индукция в различных магнитных системах колеблется в очень незначительных пределах и составляет для стали марки Э Вн1 6 — 1 7 гл. Указанное значение индукции поддерживает напряженность поля в стали порядка Ян.  

Для изготовления магнитных систем (магнитопроводов) трансформаторов применяются специальные тонколистовые электротехнические стали, имеющие повышенное (до 5 %) содержание кремния. Кремний способствует обезуглероживанию стали, что приводит к увеличению магнитной проницаемости, снижает потери на гистерезис и увеличивает ее удельное электрическое сопротивление. Увеличение удельного электрического сопротивления стали позволяет уменьшить потери в ней от вихревых токов. Кроме того, кремний ослабляет старение стали (увеличение потерь в стали с течением времени), уменьшает ее магнитострикцию (изменение формы и размеров тела при намагничивании) и, следовательно, шум трансформаторов. В то же время наличие кремния в стали приводит к повышению ее хрупкости и затрудняет ее механическую обработку.  

Страницы:      1    2

www.ngpedia.ru

Удельное сопротивление | Викитроника вики

Удельное сопротивление — характеристика материала, определяющая его способность проводить электрический ток. Определяется как отношение электрического поля к плотности тока. В общем случае является тензором, однако для большинства материалов, не проявляющих анизотропных свойств, принимается скалярной величиной.

Обозначение — ρ

$ \vec E = \rho \vec j, $

$ \vec E $ — напряжённость электрического поля, $ \vec j $ — плотность тока.

Единица измерения СИ — ом-метр (ом·м, Ω·m).

Сопротивление цилиндра или призмы (между торцами) из материала длиной l, и сечением S по удельному сопротивлению определяется следующим образом:

$ R = \frac{\rho l}{S}. $

В технике применяется определение удельного сопротивления, как сопротивление проводника единичного сечения и единичной длины.

Удельное сопротивление некоторых материалов, используемых в электротехнике Править

Материал ρ при 300 К, Ом·м ТКС, К⁻¹
серебро 1,59·10⁻⁸ 4,10·10⁻³
медь 1,67·10⁻⁸ 4,33·10⁻³
золото 2,35·10⁻⁸ 3,98·10⁻³
алюминий 2,65·10⁻⁸ 4,29·10⁻³
вольфрам 5,65·10⁻⁸ 4,83·10⁻³
латунь 6,5·10⁻⁸ 1,5·10⁻³
никель 6,84·10⁻⁸ 6,75·10⁻³
железо (α) 9,7·10⁻⁸ 6,57·10⁻³
олово серое 1,01·10⁻⁷ 4,63·10⁻³
платина 1,06·10⁻⁷ 6,75·10⁻³
олово белое 1,1·10⁻⁷ 4,63·10⁻³
сталь 1,6·10⁻⁷ 3,3·10⁻³
свинец 2,06·10⁻⁷ 4,22·10⁻³
дюралюминий 4,0·10⁻⁷ 2,8·10⁻³
манганин 4,3·10⁻⁷ ±2·10⁻⁵
константан 5,0·10⁻⁷ ±3·10⁻⁵
ртуть 9,84·10⁻⁷ 9,9·10⁻⁴
нихром 80/20 1,05·10⁻⁶ 1,8·10⁻⁴
канталь А1 1,45·10⁻⁶ 3·10⁻⁵
углерод (алмаз, графит) 1,3·10⁻⁵
германий 4,6·10⁻¹
кремний 6,4·10²
этанол 3·10³
вода, дистиллированная 5·10³
эбонит 10⁸
бумага твёрдая 10¹⁰
трансформаторное масло 10¹¹
стекло обычное 5·10¹¹
поливинил 10¹²
фарфор 10¹²
древесина 10¹²
ПТФЭ (тефлон) >10¹³
резина 5·10¹³
стекло кварцевое 10¹⁴
бумага вощёная 10¹⁴
полистирол >10¹⁴
слюда 5·10¹⁴
парафин 10¹⁵
полиэтилен 3·10¹⁵
акриловая смола 10¹⁹

ru.electronics.wikia.com

Удельное электрическое сопротивление | формула, объемное, таблица

Удельное электрическое сопротивление является физической величиной, которая показывает, в какой степени материал может сопротивляться прохождению через него электрического тока. Некоторые люди могут перепутать данную характеристику с обыкновенным электрическим сопротивлением. Несмотря на схожесть понятий, разница между ними заключается в том, что удельное касается веществ, а второй термин относится исключительно к проводникам и зависит от материала их изготовления.

Обратной величиной данного материала является удельная электрическая проводимость. Чем выше этот параметр, тем лучше проходит ток по веществу. Соответственно, чем выше сопротивление, тем больше потерь предвидится на выходе.

Формула расчета и величина измерения

Рассматривая, в чем измеряется удельное электрическое сопротивление, также можно проследить связь с не удельным, так как для обозначения параметра используются единицы Ом·м. Сама величина обозначается как ρ. С таким значением можно определять сопротивление вещества в конкретном случае, исходя из его размеров. Эта единица измерения соответствует системе СИ, но могут встречаться и другие варианты. В технике периодически можно увидеть устаревшее обозначение Ом·мм2/м. Для перевода из этой системы в международного не потребуется использовать сложные формулы, так как 1 Ом·мм2/м равняется 10-6 Ом·м.

Формула удельного электрического сопротивления выглядит следующим образом:

R= (ρ·l)/S, где:

  • R – сопротивление проводника;
  • Ρ – удельное сопротивление материал;
  • l – длина проводника;
  • S – сечение проводника.

Зависимость от температуры

Удельное электрическое сопротивление зависит от температуры. Но все группы веществ проявляют себя по-разному при ее изменении. Это необходимо учитывать при расчете проводов, которые будут работать в определенных условиях. К примеру, на улице, где значения температуры зависят от времени года, необходимые материалы с меньшей подверженностью изменениям в диапазоне от -30 до +30 градусов Цельсия. Если же планируется применение в технике, которая будет работать в одних и тех же условиях, то здесь также нужно оптимизировать проводку под конкретные параметры. Материал всегда подбирается с учетом эксплуатации.

В номинальной таблице удельное электрическое сопротивление берется при температуре 0 градусов Цельсия. Повышение показателей данного параметра при нагреве материала обусловлено тем, что интенсивность передвижения атомов в веществе начинает возрастать. Носители электрических зарядов хаотично рассеиваются во всех направлениях, что приводит к созданию препятствий при передвижении частиц. Величина электрического потока снижается.

При уменьшении температуры условия прохождения тока становятся лучше. При достижении определенной температуры, которая для каждого металла будет отличаться, появляется сверхпроводимость, при которой рассматриваемая характеристика почти достигает нуля.

Отличия в параметрах порой достигают очень больших значений. Те материалы, которые обладают высокими показателями, могут использовать в качестве изоляторов. Они помогают защищать проводку от замыкания и ненамеренного контакта с человеком. Некоторые вещества вообще не применимы для электротехники, если у них высокое значение этого параметра. Этому могут мешать другие свойства. Например, удельная электрическая проводимость воды не будет иметь большого значения для данный сферы. Здесь приведены значения некоторых веществ с высокими показателями.

Материалы с высоким удельным сопротивлениемρ (Ом·м)
Бакелит1016
Бензол1015…1016
Бумага1015
Вода дистиллированная104
Вода морская0.3
Дерево сухое1012
Земля влажная102
Кварцевое стекло1016
Керосин1011
Мрамор108
Парафин1015
Парафиновое масло1014
Плексиглас1013
Полистирол1016
Полихлорвинил1013
Полиэтилен1012
Силиконовое масло1013
Слюда1014
Стекло1011
Трансформаторное масло1010
Фарфор1014
Шифер1014
Эбонит1016
Янтарь1018

Более активно в электротехнике применяются вещества с низкими показателями. Зачастую это металлы, которые служат проводниками. В них также наблюдается много различий. Чтобы узнать удельное электрическое сопротивление меди или других материалов, стоит посмотреть в справочную таблицу.

Материалы с низким удельным сопротивлениемρ (Ом·м)
Алюминий2.7·10-8
Вольфрам5.5·10-8
Графит8.0·10-6
Железо1.0·10-7
Золото2.2·10-8
Иридий4.74·10-8
Константан5.0·10-7
Литая сталь1.3·10-7
Магний4.4·10-8
Манганин4.3·10-7
Медь1.72·10-8
Молибден5.4·10-8
Нейзильбер3.3·10-7
Никель8.7·10-8
Нихром1.12·10-6
Олово1.2·10-7
Платина1.07·10-7
Ртуть9.6·10-7
Свинец2.08·10-7
Серебро1.6·10-8
Серый чугун1.0·10-6
Угольные щетки4.0·10-5
Цинк5.9·10-8
Никелин0,4·10-6

Удельное объемное электрическое сопротивление

Данный параметр характеризует возможность пропускать ток через объем вещества. Для измерения необходимо приложить потенциал напряжения с разных сторон материала, изделие из которого будет включено в электрическую цепь. На него подается ток с номинальными параметрами. После прохождения измеряются данные на выходе.

Использование в электротехнике

Изменение параметра при разных температурах широко применяется в электротехнике. Наиболее простым примером является лампа накаливания, где используется нихромовая нить. При нагревании она начинает светиться. При прохождении через нее тока она начинает нагреваться. С ростом нагрева возрастает и сопротивление. Соответственно, ограничивается первоначальный ток, который нужен был для получения освещения. Нихромовая спираль, используя тот же принцип, может стать регулятором на различных аппаратах.

Широкое применение коснулось и благородных металлов, которые обладают подходящими характеристиками для электротехники. Для ответственных схем, которым требуется быстродействие, подбираются серебряные контакты. Они обладают высокой стоимостью, но с учетом относительно небольшого количества материалов их применение вполне оправданно. Медь уступает серебру по проводимости, но обладает более доступной ценой, благодаря чему ее чаще используют для создания проводов.

В условиях, где можно использовать предельно низкие температуры, применяются сверхпроводники. Для комнатной температуры и уличной эксплуатации они не всегда уместны, так как при повышении температуры их проводимость начнет падать, поэтому для таких условий лидерами остаются алюминий, медь и серебро.

На практике учитывается много параметров и этот является одним из наиболее важных. Все расчеты проводятся еще на стадии проектирования, для чего и используются справочные материалы.

Содержание:

Удельным сопротивлением металлов считается их способность к противодействию электрическому току, проходящему через них. Единицей измерения данной величины служит Ом*м (Ом-метр). В качестве символа используется греческая буква ρ (ро). Высокие показатели удельного сопротивления означают плохую проводимость электрического заряда тем или иным материалом.

Технические характеристики стали

Прежде чем подробно рассматривать удельное сопротивление стали, следует ознакомиться с ее основными физико-механическими свойствами. Благодаря своим качествам, этот материал получил широкое распространение в производственной сфере и других областях жизни и деятельности людей.

Сталь представляет собой сплав железа и углерода, содержащегося в количестве, не превышающем 1,7%. Кроме углерода, сталь содержит определенное количество примесей — кремния, марганца, серы и фосфора. По своим качествам она значительно лучше чугуна, легко поддается закаливанию, ковке, прокату и другим видам обработки. Все виды сталей отличаются высокой прочностью и пластичностью.

По своему назначению сталь подразделяется на конструкционную, инструментальную, а также с особыми физическими свойствами. В каждой из них содержится различное количество углерода, благодаря которому материал приобретает те или иные специфические качества, например, жаропрочность, жаростойкость, устойчивость к действию ржавчины и коррозии.

Особое место занимают электротехнические стали, выпускаемые в листовом формате и применяющиеся в производстве электротехнических изделий. Для получения этого материала производится легирование кремнием, способным улучшить его магнитные и электрические свойства.

Для того чтобы электротехническая сталь приобрела необходимые характеристики, необходимо соблюдение определенных требований и условий. Материал должен легко намагничиваться и перемагничиваться, то есть, обладать высокой магнитной проницаемостью. Такие стали имеют хорошую , а их перемагничивание осуществляется с минимальными потерями.

От соблюдения этих требований зависят габариты и масса магнитных сердечников и обмоток, а также коэффициент полезного действия трансформаторов и величина их рабочей температуры. На выполнение условий оказывают влияние многие факторы, в том числе и удельное сопротивление стали.

Удельное сопротивление и другие показатели

Величина удельного электрического сопротивления представляет собой отношение напряженности электрического поля в металле и плотности тока, протекающего в нем. Для практических расчетов используется формула: в которой ρ является удельным сопротивлением металла (Ом*м), Е — напряженностью электрического поля (В/м), а J — плотностью электротока в металле (А/м 2). При очень большой напряженности электрического поля и низкой плотности тока, удельное сопротивление металла будет высоким.

Существует еще одна величина, называемая удельной электропроводностью, обратная удельному сопротивлению, указывающая на степень проводимости электрического тока тем или иным материалом. Она определяется по формуле и выражается в единицах См/м — сименс на метр.

Удельное сопротивление тесно связано с электрическим сопротивлением. Однако они имеют различия между собой. В первом случае — это свойство материала, в том числе и стали, а во втором случае определяется свойство всего объекта. На качество резистора влияет сочетание нескольких факторов, прежде всего, формы и удельного сопротивления материала, из которого он изготовлен. Например, если для изготовления проволочного резистора использовалась тонкая и длинная проволока, то его сопротивление будет больше, чем у резистора, изготовленного из толстой и короткой проволоки одинакового металла.

В качестве другого примера можно привести резисторы из проволоки с одинаковым диаметром и длиной. Однако, если в одном из них материал имеет высокое удельное сопротивление, а в другом низкое, то соответственно в первом резисторе электрическое сопротивление будет выше, чем во втором.

Зная основные свойства материала, можно использовать удельное сопротивление стали для определения величины сопротивления стального проводника. Для вычислений, кроме удельного электрического сопротивления потребуется диаметр и длина самого провода. Расчеты выполняются по следующей формуле: , в которой R является (Ом), ρ — удельным сопротивлением стали (Ом*м), L — соответствует длине провода, А — площади его поперечного сечения.

Существует зависимость удельного сопротивления стали и других металлов от температуры. В большинстве расчетов используется комнатная температура — 20 0 С. Все изменения под влиянием этого фактора учитываются с помощью температурного коэффициента.

|
удельное электрическое сопротивление
СИ :L3MT-3I-2
СГС :T

Уде́льное электри́ческое сопротивле́ние , или просто удельное сопротивление вещества — физическая величина, характеризующая способность вещества препятствовать прохождению электрического тока.

Удельное сопротивление обозначается греческой буквой ρ. Величина, обратная удельному сопротивлению, называется удельной проводимостью (удельной электропроводностью). отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества.

Электрическое сопротивление однородного проводника с удельным сопротивлением ρ, длиной l и площадью поперечного сечения S может быть рассчитано по формуле (при этом предполагается, что ни площадь, ни форма поперечного сечения не меняются вдоль проводника). Соответственно, для ρ выполняется

Из последней формулы следует: физический смысл удельного сопротивления вещества заключается в том, что оно представляет собой сопротивление изготовленного из этого вещества однородного проводника единичной длины и с единичной площадью поперечного сечения.

  • 1 Единицы измерения
  • 2 Обобщение понятия удельного сопротивления
  • 3 Связь с удельной проводимостью
  • 4 Удельное электрическое сопротивление некоторых веществ
    • 4.1 Металлические монокристаллы
    • 4.2 Металлы и сплавы, применяемые в электротехнике
    • 4.3 Другие вещества
  • 5 Тонкие плёнки
  • 6 Примечания
  • 7 См. также
  • 8 Ссылки

Единицы измерения

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м. Из соотношения следует, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м².

В технике также применяется устаревшая внесистемная единица Ом·мм²/м, равная 10−6 от 1 Ом·м. Данная единица равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 мм², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом. Соответственно, удельное сопротивление какого-либо вещества, выраженное в этих единицах, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 мм².

Обобщение понятия удельного сопротивления

Кусок резистивного материала с электрическими контактами на обоих концах..

Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. этом случае оно является не константой, а скалярной функцией координат — коэффициентом, связывающим напряжённость электрического поля и плотность тока в данной точке. Указанная связь выражается законом Ома в дифференциальной форме:

Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства могут зависеть от направления. этом случае удельное сопротивление является зависящим от координат тензором второго ранга, содержащим девять компонент. анизотропном веществе векторы плотности тока и напряжённости электрического поля в каждой данной точке вещества не сонаправлены; связь между ними выражается соотношением

В анизотропном, но однородном веществе тензор от координат не зависит.

Тензор симметричен, то есть для любых и выполняется.

Как и для всякого симметричного тензора, для можно выбрать ортогональную систему декартовых координат, в которых матрица становится диагональной, то есть приобретает вид, при котором из девяти компонент отличными от нуля являются лишь три: , и. этом случае, обозначив как, вместо предыдущей формулы получаем более простую

Величины называют главными значениями тензора удельного сопротивления.

Связь с удельной проводимостью

В изотропных материалах связь между удельным сопротивлением и удельной проводимостью выражается равенством

В случае анизотропных материалов связь между компонентами тензора удельного сопротивления и тензора удельной проводимости имеет более сложный характер. Действительно, закон Ома в дифференциальной форме для анизотропных материалов имеет вид:

Из этого равенства и приведённого ранее соотношения для следует, что тензор удельного сопротивления является обратным тензору удельной проводимости. С учётом этого для компонент тензора удельного сопротивления выполняется:

где — определитель матрицы, составленной из компонент тензора. Остальные компоненты тензора удельного сопротивления получаются из приведённых уравнений в результате циклической перестановки индексов 1, 2 и 3.

Удельное электрическое сопротивление некоторых веществ

Металлические монокристаллы

В таблице приведены главные значения тензора удельного сопротивления монокристаллов при температуре 20 °C.

Металлы и сплавы, применяемые в электротехнике

Разброс значений обусловлен разной химической чистотой металлов, способов изготовления образцов, изученных разными учеными и непостоянством состава сплавов.

Значения даны при температуре t = 20 °C. Сопротивления сплавов зависят от их химического состава и могут варьироваться. Для чистых веществ колебания численных значений удельного сопротивления обусловлены различными методами механической и термической обработки, например, отжигом проволоки после волочения.

Другие вещества

Тонкие плёнки

Сопротивление тонких плоских плёнок (когда её толщина много меньше расстояния между контактами) принято называть «удельным сопротивлением на квадрат», Этот параметр удобен тем, что сопротивление квадратного куска проводящей плёнки не зависит от размеров этого квадрата, при приложении напряжения по противоположным сторонам квадрата. При этом сопротивление куска плёнки, если он имеет форму прямоугольника, не зависит от его линейных размеров, а только от отношения длины (измеренной вдоль линий тока) к его ширине L/W: где R — измеренное сопротивление. общем случае, если форма образца отличается от прямоугольной, и поле в пленке неоднородное, используют метод ван дер Пау.

Примечания

  1. 1 2 Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 93. — 240 с. — ISBN 5-7050-0118-5.
  2. 1 2 Чертов А. Г. Единицы физических величин. — М.: «Высшая школа», 1977. — 287 с.
  3. Давыдов А. С. Теория твёрдого тела. — М.: «Наука», 1976. — С. 191-192. — 646 с.
  4. Шувалов Л. А. и др. Физические свойства кристаллов // Современная кристаллография / Гл. ред. Б. К. Вайнштейн. — М.: «Наука», 1981. — Т. 4. — С. 317.

См. также

  • Электрическое сопротивление
  • Сверхпроводимость
  • Закон Ома
  • Удельная проводимость
  • Отрицательное сопротивление
  • Импеданс

Ссылки

удельное электрическое сопротивление

Удельное электрическое сопротивление Информацию О

В своей работе электрик часто сталкивается с вычислением различных величин и преобразований. Так для корректного подбора кабеля приходится подбирать нужное сечение. Логика выбора сечения основана на зависимости сопротивления от длины линии и площади сечения проводника. В этой статье мы рассмотрим, как выполняется расчет сопротивления провода по его геометрическим размерам.

Формула для расчета

Любые вычисления начинаются с формулы. Основной формулой для расчета сопротивления проводника является:

R=(ρ*l)/S

Где R – сопротивление в Омах, ρ – удельное сопротивление, l – длина в м, S – площадь поперечного сечения провода в мм 2 .

Эта формула подходит для расчета сопротивления провода по сечению и длине. Из неё следует, что в зависимости от длины изменяется сопротивление, чем длиннее – тем больше. И от площади сечения – наоборот, чем толще провод (большое сечение), тем меньше сопротивление. Однако непонятной остаётся величина, обозначенная буквой ρ (Ро).

Удельное сопротивление

Удельное сопротивление – это табличная величина, для каждого металла она своя. Она нужна для расчета и зависит от кристаллической решетки металла и структуры атомов.

Из таблицы видно, что самое меньшее сопротивление у серебра, для медного кабеля оно равняется 0,017 Ом*мм 2 /м. Такая размерность говорит нам, сколько приходится Ом при сечении в 1 миллиметр квадратный и длине в 1 метр.

Кстати, серебряное покрытие используется в контактах коммутационных аппаратов, автоматических выключателей, реле и прочего. Это снижает , повышает срок службы и уменьшает . При этом в контактах измерительной и точной аппаратуры используют позолоченные контакты из-за того, что они слабо окисляются или вообще не окисляются.

У алюминия, который часто использовался в электропроводке раньше, сопротивление в 1,8 раза больше чем у меди, равняется 2,82*10 -8 Ом*мм 2 /м. Чем больше сопротивление проводника, тем сильнее он греется. Поэтому при одинаковом сечении алюминиевый кабель может передать меньший ток, чем медный, это и стало основной причиной почему все современные электрики используют . У нихрома, который используется в нагревательных приборах оно в 100 раз больше чем у меди 1,1*10 -6 Ом*мм 2 /м.

Расчет по диаметру

На практике часто бывает так, что площадь поперечного сечения жилы не известна. Без этого значения ничего рассчитать не получится. Чтобы узнать её, нужно измерить диаметр. Если жила тонка, можно взять гвоздь или любой другой стержень, намотать на него 10 витков провода, обычной линейкой измерить длину получившейся спирали и разделить на 10, так вы узнаете диаметр.

Ну, или просто замерить штангенциркулем. Расчет сечения выполняется по формуле:

Обязательны ли расчеты?

Как мы уже сказали, сечение провода выбирают исходя из предполагаемого тока и сопротивления металла, из которого изготовлены жилы. Логика выбора заключается в следующем: сечение подбирают таким способом, чтобы сопротивление при заданной длине не приводило к значительным просадкам напряжения. Чтобы не проводить ряд расчетов, для коротких линий (до 10-20 метров) есть достаточно точные таблицы:

В этой таблице указаны типовые значения сечения медных и алюминиевых жил и номинальные токи через них. Для удобства указана мощность нагрузки, которую выдержит эта линия. Обратите внимание на разницу в токах и мощности при напряжении 380В, естественно, что это предполагается трёхфазная электросеть.

Расчет сопротивления провода сводится к использованию пары формул, при этом вы можете скачать готовые калькуляторы из Плэй Маркета для своего смартфона, например, «Electrodroid» или «Мобильный электрик». Эти знания пригодятся для расчетов нагревательных приборов, кабельных линий, предохранителей и даже популярных на сегодняшний день спиралей для электронных сигарет.

Материалы

Или электрической цепи электрическому току .

Электрическое сопротивление определяется как коэффициент пропорциональности R между напряжением U и силой постоянного тока I в законе Ома для участка цепи .

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом (1 Ом) — это сопротивление такого проводника, в котором при напряжении 1 В сила тока равна 1 А .

Удельное сопротивление.

Сопротивление однородного проводника постоянного сечения зависит от материала проводника, его длины l и поперечного сечения S и может быть определено по формуле:

где ρ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина , показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы следует, что

Величина, обратная ρ , называется удельной проводимостью σ :

Так как в СИ единицей сопротивления является 1 Ом. единицей площади 1 м 2 , а единицей длины 1 м , то единицей удельного сопротивления в СИ будет 1 Ом· м 2 /м, или 1 Ом·м. Единица удельной проводимости в СИ — Ом -1 м -1 .

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (мм 2) . В этом случае более удобной единицей удельного сопротивления является Ом·мм 2 /м. Так как 1 мм 2 = 0,000001 м 2 , то 1 Ом·мм 2 /м = 10 -6 Ом·м. Металлы обладают очень малым удельным сопротивлением — порядка (1·10 -2) Ом·мм 2 /м, диэлектрики — в 10 15 -10 20 большим.

Зависимость сопротивлений от температуры.

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на 1 °С к величине его сопротивления при 0 ºС:

.

Зависимость удельного сопротивления проводников от температуры выражается формулой:

.

В общем случае α зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов α = (1/273)К -1 . Для растворов электролитов α . Например, для 10% раствора поваренной соли α = -0,02 К -1 . Для константана (сплава меди с никелем) α = 10 -5 К -1 .

Зависимость сопротивления проводника от температуры используется в термометрах сопротивления.

Похожие статьи

РД 39-22-113-78. /Миннефтегазпром СССР Временные правила защиты от проявления статического электричества на производственных установках и сооружениях нефтяной и газовой промышленности. (44647)


2.10. Нормы радиационной безопасности. НРБ-69.

2.11. ГОСТ 6433.1-71. Материалы электроизоляционные твердые. Условия окружающей среды при нормализации, кондиционировании и испытании.

2.12. ГОСТ 6433-2-71. Материалы электроизоляционные твердые. Методы определения электрических сопротивлений при постоянном напряжении.

2.13. ГОСТ 6433-4-71. Материалы электроизоляционные твердые. Методы определения тангенса угла диэлектрических потерь и диэлектрической проницаемости при частоте 50 гц.

2.14. ГОСТ 16185-70. Пластмассы. Метод определения электростатических свойств.

2.15. ГОСТ 6581-66. Материалы электроизоляционные жидкие. Методы определения удельного объемного электрического сопротивления, тангенса угла диэлектрических потерь, диэлектрической проницаемости и электрической прочности при частоте 50 гц.

Приложение 3

Удельное объемное электрическое сопротивление некоторых веществ, Ом·м

Асбест

10-10

Ацетон

8 х 10

7х10(15 °С)

Бензин А-66

10-10

Бензин Б-70

10-10

Битумы (асфальты)

10-10

Дерево сухое

10-10

Дизельное топливо

10-10

Камень искусственный

10-10

Каучук натуральный

10-10

Керосин

10-10

Кислоты жирные технические с содержанием С- С

4х10

С- С

10-10

Линолеум

10-10

Мазут

3·10-5·10

Масло трансформаторное

10

Нефть с содержанием воды

10-10

Нефть (безводная)

10-10

Парафины

10-10

Пенопласт ПУ 102Т

1,2х10 (20°С)

1,2х10(80°С)

ПУ 102В

7,5х10 (20°С)

10 (80°С)

Поливинилхлориды

мягкая изоляционная лента

10

Реактивное топливо:

Т — 1

10-10

ТС-1

10-10

Резины на основе каучуков

СКН-18, СКН-26, наирита

10-10

Резина ни основе каучуков

СКД, СКИ-3

10-10

Сероводород

10(-62°С)

Сероуглерод (технический)

10-10

Стекло

10-10

Стекловата

10-10

Фторопласты

10-10

Определение удельных объемных электрических сопротивлений веществ производится по ГОСТ 6581-66, ГОСТ 6433-1-71, ГОСТ 6433.4-71 или ГОСТ и ТУ на определение электростатических свойств различных материалов, в частности ГОСТ 16185-70.

Приложение 4

Минимальная энергия (А) воспламенения некоторых парогазовоздушных смесей, мДж

Аммиак

6,8

Бензин Б 70

0,22

Бутан

0,25

Водород

0,011 (0,0106)

Гептан

0,24

Гексан

0,23

Керосин

0,48

Метан

0,28 (0,22)

Нефтяной газ =1,17 кг/м

0,26

Пропан

0,26

Пентан

0,18 (0,16)

Сероводород

0,077

Сероуглерод

0,009

Этан

0,24

Примечание: В скобках приведены значения минимальной энергии зажигания при динамическом режиме реализации энергии зарядов статического электричества. Энергия электростатического разряда определяется по формуле:

где А — энергия искры, Дж;

— заряд, К;

— напряжение, В;

С — емкость, Ф.

При динамическом режиме реализации энергии заряженной системы энергия зажигания определялась по формуле

где — начальная (максимальная) емкость системы, Ф;

— конечная (минимальная) емкость системы, Ф.

Заведующий кафедрой «Охрана труда» ГНИ к.т.н. доцент

А.И.Султанович

Отв. исполнитель

В.В.Меньшой

РАЗДЕЛ 1 ОБЩАЯ ЧАСТЬ

ГЛАВА 1.1 Назначение и область применения

ГЛАВА 1.2 Условия возникновения и оценка опасности накопления зарядов статического электричества

РАЗДЕЛ 2 Основные меры защиты от опасных проявлений зарядов статического электричества

ГЛАВА 2.1 Общие указания

ГЛАВА 2.2 Заземление

ГЛАВА 2.3 Отвод зарядов при операциях с жидкими нефтепродуктами

ГЛАВА 2.4 Отвод зарядов с неметаллического оборудования

ГЛАВА 2.5 Отвод зарядов с передвижного и вращающегося оборудования и нейтрализация зарядов, возникающих на людях

ГЛАВА 2.6 Меры по устранение опасности воспламенения парогазовых потоков электростатической искрой

ГЛАВА. 2.7 Защита от статического электричества при газонефтепроявлениях и ликвидации открытых нефтяных и газовых фонтанов

РАЗДЕЛ 3 Эксплуатация устройства защиты от статического электричества и ответственность за выполнение «Временных правил»

Приложение 1 Основные термины, используемые во «Временных правилах»

Приложение 2. Перечень правил, инструкций и других документов, регламентирующих выполнение специальных мероприятий, обязательных для обеспечения электростатической искробезопасности

Приложение 3 Удельное объемное электрическое сопротивление некоторых веществ, Ом·м

Приложение 4 Минимальная энергия (А(мин)) воспламенения некоторых парогазовоздушных смесей, мДж

Защита от статического электричества в химпроме => Приложение 6. Удельное поверхностное электрическое сопротивление пластмасс при внутреннем введении антистатиков в…

string(100) «/var/www/firenotes.ru/public_www/x_pravila/zasita-ot-staticeskogo/zasita-ot-staticeskogo_a_0006.html»

 

ПРИЛОЖЕНИЕ 6

 

Удельное поверхностное электрическое сопротивление пластмасс при внутреннем введении антистатиков в процессе вальцевания

 

Антистатик

Количество введенного антистатика, вес. %

Удельное поверхностное электрическое сопротивление, ом

полистирол

полиэтилен высокого давления

полиэтилен низкого давления

Без антистатика

1,0·1016

>8,0·1015

>8,0·1015

Алкамон ДЛ

2,0

1,9·1015 (9,1·1011)

Алкамон ОС-2

2,0

(4,6·1011)

Вещество ОП-7

2,0

(1,8·1010 -1,5·1011)

Диалкилмонатрийфосфат

2,0

(1,8·1010 -1,5·1011)

Оксамин

2,0

4,2·1010

Оксанол ЦС-17

2,0

2,2·1011

Синтамид-5

2,0

4,6·10*

Синтанол ДС-10 (марка Б)

4,0

5,2·1010

2,6·1010

Синтанол ЦС-20 (марка А)

2,0

2,5·1011

2,6·1011

Стеарокс-6

2,0

1,6·1011-2,1·1012

Сульфонат А

2,5

(7,3·1010 -2,7·1011)*

1,8·109

2,3·109

Триметилалкиламмонийхлорид

2,0

(1,1·108)*

2,2·108

1,8·109

Триэтаноламиновая соль лаурилсульфата

5,0

3,1·1010

2,1·1010

 

Примечания: 1. Измеряли по ГОСТ 6433-65 при 20±2° C и относительной влажности 65±3% через 2 суток после изготовления образцов.

2. В скобках даны значения rs пластмасс при введении антистатика в них при экструзии.

________________

* Данные для случая введения 1 вес. % антистатика.

 

 

ПРИЛОЖЕНИЕ 7

 

Удельное объемное электрическое сопротивление углеводородов и нефтепродуктов при 25° C и концентрации присадки 0,01%

 

Присадка

Удельное объемное электрическое сопротивление, ом·м

бензол

циклогексан

изооктан

бензин Б-70

бензин А-66

топливо ТС-1

керосин осветительный

Без присадки

0,2·1012

0,28·1012

1,0·1012

0,45·1012

0,17·1012

0,17·1012

0,48·1011

Олеат хрома

0,24·1012

1,2·109

0,4·109

0,59·108

0,32·108

0,56·108

0,9·108

Олеат кобальта

0,12·109

0,11·109

0,67·109

0,71·109

Нафтенат кобальта

0,18·1010

Нафтенат меди

0,14·1010

Соль хрома СЖК фр. С1720

0,23·109

0,25·109

Соль хрома СЖК фр. С1416

0,18·109

0,25·109

Олеатдисалицилат хрома

0,77·108

0,12·108

Диолеат хрома дикетона ферроцена

0,63·108

0,13·109

Диолеат хрома дикетона ЦТМ

0,14·109

0,22·109

Нафтенат хрома

1,1·109

0,83·109

0,45·109

0,19·109

Олеат меди

0,38·109

0,4·109

 

 

Удельное электрическое сопротивление: что это такое?

Большинство законов физики основано на экспериментах. Имена экспериментаторов увековечены в названиях этих законов. Одним из них был Георг Ом.

Опыты Георга Ома

Он установил в ходе экспериментов по взаимодействию электричества с различными веществами, в том числе металлами фундаментальную взаимосвязь плотности электрического тока, напряжённости электрического поля и свойства вещества, которое получило название «удельная проводимость». Формула, соответствующая этой закономерности, названная как «Закон Ома» выглядит следующим образом:

j= λE, в которой

  • j — плотность электрического тока;
  • λ — удельная проводимость, именуемая также как «электропроводность»;
  • E – напряжённость электрического поля.

В некоторых случаях для обозначения удельной проводимости используется другая буква греческого алфавита — σ. Удельная проводимость зависит от некоторых параметров вещества. На её величину оказывают влияние температура, вещества, давление, если это газ, и самое главное структура этого вещества. Закон Ома соблюдается только для однородных веществ.

Для более удобных расчётов используется величина обратная удельной проводимости. Она получила название «удельное сопротивление», что так же связано со свойствами вещества, в котором течёт электрический ток, обозначается греческой буквой ρ и имеет размерность Ом*м. Но поскольку для различных физических явлений применяются разные теоретические обоснования, для удельного сопротивления могут быть использованы альтернативные формулы. Они являются отображением классической электронной теории металлов, а также квантовой теории.

Формулы

В этих утомительных, для простых читателей, формулах появляются такие множители, как постоянная Больцмана, постоянная Авогадро и постоянная Планка. Эти постоянные применяются для расчетов, которые учитывают свободный пробег электронов в проводнике, их скорость при тепловом движении, степень ионизации, концентрацию и плотность вещества. Словом, всё довольно сложно для не специалиста. Чтобы не быть голословным далее можно ознакомиться с тем, как всё выглядит на самом деле:

Особенности металлов

Поскольку движение электронов зависит от однородности вещества, ток в металлическом проводнике течёт соответственно его структуре, которая влияет на распределение электронов в проводнике с учётом его неоднородности. Она определяется не только присутствием включений примесей, но и физическими дефектами – трещинами, пустотами и т.п. Неоднородность проводника увеличивает его удельное сопротивление, которое определяется правилом Маттисена.

Это несложное для понимания правило, по сути, говорит о том, что в проводнике с током можно выделить несколько отдельных удельных сопротивлений. А результирующим значением будет их сумма. Слагаемыми будут удельное сопротивления кристаллической решётки металла, примесей и дефектов проводника. Поскольку этот параметр зависит от природы вещества, для вычисления его определены соответствующие закономерности, в том числе и для смешанных веществ.

Несмотря на то, что сплавы это тоже металлы, они рассматриваются как растворы с хаотической структурой, причём для вычисления удельного сопротивления имеет значение, какие именно металлы входят в состав сплава. В основном большинство сплавов из двух компонентов, которые не принадлежат к переходным, а также к редкоземельным металлам попадают под описание законом Нодгейма.

Как отдельная тема рассматривается удельное сопротивление металлических тонких плёнок. То, что его величина должна быть больше чем у объёмного проводника из такого же металла вполне логично предположить. Но при этом для плёнки вводится специальная эмпирическая формула Фукса, которая описывает взаимозависимость удельного сопротивления и толщины плёнки. Оказывается, в плёнках металлы проявляют свойства полупроводников.

А на процесс переноса зарядов оказывают влияние электроны, которые перемещаются в направлении толщины плёнки и мешают перемещению «продольных» зарядов. При этом они отражаются от поверхности плёночного проводника, и таким образом один электрон достаточно долго совершает колебания между его двумя поверхностями. Другим существенным фактором увеличения удельного сопротивления является температура проводника. Чем выше температура – тем сопротивление больше. И наоборот, чем ниже температура, тем сопротивление меньше.

Металлы являются веществами с наименьшим удельным сопротивлением при так называемой «комнатной» температуре. Единственным неметаллом, который оправдывает своё применение как проводник, является углерод. Графит, являющийся одной из его разновидностей, широко используется для изготовления скользящих контактов. Он имеет очень удачное сочетание таких свойств как удельное сопротивление и коэффициент трения скольжения. Поэтому графит является незаменимым материалом для щёток электродвигателей и других скользящих контактов. Величины удельных сопротивлений основных веществ, используемых для промышленных целей, приведены в таблице далее.

Сверхпроводимость

При температурах соответствующих сжижению газов, то есть вплоть до температуры жидкого гелия, которая равна – 273 градуса по Цельсию удельное сопротивление уменьшается почти до полного исчезновения. И не только у хороших металлических проводников, таких как серебро, медь и алюминий. Практически у всех металлов. При таких условиях, которые называются сверхпроводимостью, структура металла не имеет тормозящего влияния на движение зарядов под действием электрического поля. Поэтому ртуть и большинство металлов становятся сверхпроводниками.

Но, как выяснилось, относительно недавно в 80-х годах 20-го века, некоторые разновидности керамики тоже способны к сверхпроводимости. Причём для этого не надо использовать жидкий гелий. Такие материалы назвали высокотемпературными сверхпроводниками. Однако уже прошло несколько десятков лет, и ассортимент высокотемпературных проводников существенно расширился. Но массового использования таких высокотемпературных сверхпроводящих элементов не наблюдается. В некоторых странах сделаны единичные инсталляции с заменой обычных медных проводников на высокотемпературные сверхпроводники. Для поддержания нормального режима высокотемпературной сверхпроводимости необходим жидкий азот. А это получается слишком дорогим техническим решением.

Поэтому, малое значение удельного сопротивления, дарованное Природой меди и алюминию, по-прежнему делает их незаменимыми материалами для изготовления разнообразных проводников электрического тока.

Удельное сопротивление что это — Морской флот

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ — электрическое, физическая величина , равная электрическому сопротивлению (см. СОПРОТИВЛЕНИЕ ЭЛЕКТРИЧЕСКОЕ) R цилиндрического проводника единичной длины (l = 1м) и единичной площади поперечного сечения (S =1 м2).. r = R S/l. В Си единицей… … Энциклопедический словарь

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ — (обозначение r), электрическое свойство материалов. Его величина вычисляется по формуле r=AR/l, где А плотность поперечного сечения ПРОВОДНИКА, l его длина, a R его СОПРОТИВЛЕНИЕ в ОМАХ. С повышением температуры ПРОВОДНИКА его удельное… … Научно-технический энциклопедический словарь

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ — сопротивление движению поезда, выраженное в килограммах на 1 т веса поезда. Различают след. виды сопротивления: основное сопротивление движению вагонов, локомотивов и пр. на прямом и горизонтальном пути; сопротивление при преодолении подъемов;… … Технический железнодорожный словарь

удельное сопротивление — Величина, характеризующая электропроводность вещества, скалярная для изотропного вещества и тензорная для анизотропного вещества, произведение которой на плотность электрического тока проводимости равно напряженности электрического поля. [ГОСТ Р… … Справочник технического переводчика

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ — сопротивление, оказываемое электрическому току проводником длиной в 1 м и поперечным сечением в 1 мм2 при t = 20° С. Выражается в омах и характеризует материал, из которого сделан проводник. Самойлов К. И. Морской словарь. М. Л.: Государственное… … Морской словарь

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ — электрическое, физ. величина r, равная электрическому сопротивлению цилиндрич. проводника единичной длины и единичной площади поперечного сечения. Обычно У. с. выражают в Ом•см или Ом•м. Физический энциклопедический словарь. М.: Советская… … Физическая энциклопедия

удельное сопротивление — объемное удельное электрическое сопротивление; объемное удельное сопротивление; удельное сопротивление Величина, обратная удельной проводимости … Политехнический терминологический толковый словарь

удельное сопротивление — savitoji elektrinė varža statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, išreiškiamas iš formulės E = ρJ; čia E – elektrinio lauko stiprio vektorius, J – elektros srovės tankio vektorius, ρ – savitoji elektrinė varža.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

удельное сопротивление — savitoji elektrinė varža statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, skaitine verte lygus kubo pav >Penkiakalbis aiškinamasis metrologijos terminų žodynas

удельное сопротивление — savitoji varža statusas T sritis fizika atitikmenys: angl. resistivity; specific resistance vok. spezifischer W >Fizikos terminų žodynas

Закон Ома устанавливает связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах. Формулировка для участка электрической цепи (проводника), не содержащего источников электродвижущей силы (ЭДС): сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Законы Ома для замкнутой неразветвлённой цепи: сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна полному сопротивлению цепи. Закон Ома справедлив для постоянных и квазистационарных токов. Был открыт немецким физиком Георгом Омом в 1826 году. * Современная энциклопедия

В случае переменного тока, величины, входящие в расчётные формулы – становятся комплексными.

Закон Ома в дифференциальной форме – описывает исключительно электропроводящие свойства материала, вне зависимости от геометрических размеров.

Удельное электрическое сопротивление вещества есть электросопротивление изготовленного из него куба со сторонами, равными единице (1метр), когда ток идёт перпендикулярно двум его противоположным граням, площадью 1 квадратный метр каждая.2/м] (SI – Ω·m, рус. – Ом-метр, англ. – ohm-meter). Для измерения проводниковых материалов разрешается использовать внесистемную единицу –
Ом·мм2/м (для миллиметрового сечения проводника, длиной 1 м., то есть – миллионную часть Ом-метра).

Физический смысл удельного сопротивления: материал (однородный и изотропный*) имеет удельное электрическое сопротивление один Ом·м, если изготовленный из этого материала куб со стороной 1 метр имеет сопротивление 1 Ом при измерении на противоположных гранях куба.
* Изотропность – идентичность физических свойств во всех направлениях.

Удельное сопротивление характеризует способность вещества проводить электрический ток и не зависит от формы и размеров вещества, но меняется, при отличии его температуры от 20 °C (то есть, от комнатной, при которой определялись табличные значения для справочников).

На практике, в технике чаще применяется единица, в миллион раз меньшая (миллиметровое токоведущее сечение), чем Ом·м:

1 мкОм·м (SI – µΩ·m, рус.-9 Ом•м)

Металлы высокой проводимости (не более 0,1 мкОм.м) – используются для изготовления проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Металлы и сплавы высокого сопротивления (не менее 0,3 микроом-метр) – применяются для производства образцовых резисторов, реостатов, электроизмерительных приборов, электронагревательных устройств, нитей ламп накаливания и т. п. Нагревательные сплавы должны выдерживать длительную работу на открытом воздухе – без разрушения при температурах не менее 1000 °С.

Таблица значений удельного электрического сопротивления,
мкОм·м (микроом-метр) = Ом·мм2/м (равные числовые величины)

при температуре окружающей среды 20 градусов по Цельсию

Серебро – 0,015-0,016
Медь – 0,0172-0,0180
Золото – 0,024
Алюминий – 0.026-0.030
Вольфрам – 0,053-0,055
Цинк 0,053-0,062
Никель – 0.068-0,073
Латунь (сплав меди с цинком) – 0,043 – 0,108
Железо – 0,098
Сталь – 0,10-0,14
Олово – 0,12
Оловяно-свинцовый припой – 0,14 – 0,16
Бронзовые сплавы – 0,02 – 0,2
Свинец – 0,217 – 0,227
Никелин – 0,4
Манганин – 0,42 – 0,48
Константан – 0,48 – 0,52
Нихром – 1,05-1,40
Фехраль – 1,15-1,35
Угольно-графитовые щётки для электрических машин – 20-50
Угольный сварочный электрод – 50-90 мкОм·м

Минералка (с минерализацией воды – 2-7 грамм на литр) – 1-4 *10^6 мкОм·м = 1-4 Ом•м
Вода грунтовая – 10-50 *10^6
Влажная / сырая садовая земля (верхний слой почвы, грунта – после поливки) – 20-60 *10^6

Почему в электросетях применяется высокое напряжение

В линии электропередачи, при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом, считается желательным, увеличение напряжения до величин в десятки (внутригородские воздушные и кабельные сети электропередач на 380 вольт, 6, 10, 20, 35, 110, 220 и 330 кВ) и сотни киловольт (магистральные электросети сверхвысокого – ЛЭП500-750 кВ и ультравысокого напряжения, 1150кВ и выше) на линиях переменного и постоянного (150, 400, 800 кВ) тока. Но, при таких параметрах эксплуатации, постоянно растущем потреблении электрической энергии и частых пиковых перегрузках, износ оборудования, отсутствие резервных мощностей, погодные аномалии, локальные несоответствия требованиям безопасности, непрофессионализм и элементарное разгильдяйство – могут стать причиной нештатных ситуаций и системных аварий (называемых теперь, на английский манер – блэкаут). По этой причине, муниципальные власти любого посёлка и города – имеют постоянную головную боль по обеспечению резервными источниками питания (аккумуляторами и дизель-генераторами) для бесперебойного электроснабжения социальных объектов по резервной схеме.

Спецсплавы на медной основе, в электротехнике

При больших токах, до 10 А – применяют проволочный резистор большой мощности, называемый реостатом. В качестве обмотки используют проволоку, изготовленную из термостабильного (с минимальным температурным коэффициентом) сплава с большим удельным сопротивлением, например, из константана (40% Ni, 1,2% Mn, 58,8% Cu). Если напряжение между соседними витками не превышает 1 вольта – такую проволку можно наматывать плотно, виток к витку, без особой изоляции между витками, благодаря наличию естественной плёнки окисла, образующейся на поверхности данного металла, при быстром (не более трёх секунд) нагреве до достаточно высокой температуры (порядка 900 °С).

В приборах высокого класса точности – применяется манганин (3%Ni, 12%Mn, 85%Cu), менее термоустойчивый, но, в отличие от константанового провода, имеющий очень малую термоЭДС (контактную разность электрических потенциалов) в паре с медью.

Обозначения рекомендуемых кратных и дольных величин от единиц СИ

10^9 Ом – гигаом ГОм GΩ
10^6 Ом – мегаом МОм MΩ
10^3 Ом = 1000 Ом – килоом кОм kΩ.-9 Ом – наноом нОм nΩ

Зависимость сопротивления от температуры.

При нагревании, электрическое сопротивление металлических проводников – возрастает, а при охлаждении – уменьшается. Для вычисления, по формуле, электросопротивления при определённой температуре – используют, так называемый, «температурный коэффициент сопротивления» (ТКС). Расчёты ведутся от некоторого начального уровня температуры. Для интервала температур, в пределах обычных погодных условий (в зимнее и летнее время года) окружающей среды, зависимость для проводника описывается математической формулой:

R2 = R1 * (1 + α * (t2 – t1)),

где R1 (начальное, известное значение, при нуле или 20 градусов по Цельсию, измеренное или посчитанное) и R2 (искомое) – сопротивления резистора соответственно при температурах t1 (0°С или 20°С) и t2; α – температурный коэффициент сопротивления (из справочной таблицы), равный относительному изменению электр. сопротивления (удельного или абсолютного) при изменении температуры на 1 °С. Так как значения ТКС очень малы, то в справочниках их указывают в единицах тысячных или миллионных долей (ppm/°С – Parts Per Million) относительного изменения сопротивления на градус.

Обычно, исходные, табличные значения различных физических постоянных – приводятся или к нормальной комнатной температуре +20 °С или к нулевой (в справочных таблицах проводниковых и реостатных материалов, применяемых в электрических аппаратах).

В металлических термометрах, изготавливаемых из медной или платиновой проволоки – электросопротивление, с повышением температуры (без экстремально высоких, для этих материалов, значений) увеличивается почти линейно. Но, при чрезмерно сильном нагреве, к примеру, тонкого медного провода до температуры красного каления, его активное электрическое сопротивление постоянному току возрастает многократно.

Пример расчёта для стометрового алюминиевого шинопровода, радиусом 40 мм, нагретого на 95°С:
R = (R1 * (1 + α * (t2–t1))) * L / S =
= 2,62*10 -8 Ом•м * (1 + 0,0042*95) * 100 / (3,14 * 40 2 * 10 -6 ) = 7,3 * 10 -4 Ом
где:
S – площадь сечения в м 2 (с вычетом толщины слоёв изоляции),
L – длина проводника в метрах.

Температурный коэффициент сопротивления х10 -3 , 1/градус:
Алюминий – 4,2
Бронза оловянистая твёрдотянутая – 0,6-0,7
Вольфрам – 4,2
Графит – -1,3
Дюраль – 2,2
Константан – 0,003-0,005
Латунь – 1,5
Манганин – 0,03-0,06 (при температуре до 250-300°С)
Медь – 4,3
Нихром – 0,14
Серебро – 4,0
Сталь – 9,0
Цинк – 4,2

2

Постоянные резисторы и их маркировка

В буквенно-цифровой (кодовой) маркировке резисторов – на их корпус наносится числовое значение электрического сопротивления и буквы, первая из которых обозначает множитель (R или Е – Ом,&nbsp K – килоом,&nbsp M – мегаом) и, заодно, определяет положение разделительной запятой десятичного знака.2)/4
с помощью своего калькулятора, находится диаметр (в миллиметрах) = корень квадратный из (4 * S / 3.14)

Длина провода, в единицах системы СИ (переводим в метры):
80 см = 0.8 м

Находим электр. сопротивление по формуле:
R = (p * L) / S = (0.017 * 0.8) / 0.2 = 0.068 Ом

Ответ: с точностью до второго знака после запятой, R = 0.07 Ом

Электромонтажные работы – монтаж электрики, подключение и обслуживание электропроводки. | Минисправочник по электрическим параметрам: соотношения Ом х мм2/м и мкОм x м (микроом), в технических расчётах.

В данной статье мы подробно разберем что такое удельное сопротивление и электропроводность, ясно опишем все формулы с помощью примеров задач, а так же дадим вам таблицу удельных сопротивлений некоторых проводников.

Описание

Закон Ома гласит, что, когда источник напряжения (V) подается между двумя точками в цепи, между ними будет протекать электрический ток (I), вызванный наличием разности потенциалов между этими двумя точками. Количество протекающего электрического тока ограничено величиной присутствующего сопротивления (R). Другими словами, напряжение стимулирует протекание тока (движение заряда), но это сопротивление препятствует этому.

Мы всегда измеряем электрическое сопротивление в Омах, где Ом обозначается греческой буквой Омега, Ω. Так, например: 50 Ом, 10 кОм или 4,7 МОм и т.д. Проводники (например, провода и кабели) обычно имеют очень низкие значения сопротивления (менее 0,1 Ом), и, таким образом, мы можем пренебречь ими, как мы предполагаем в расчетах анализа цепи, что провода имеют ноль сопротивление. С другой стороны, изоляторы (например, пластиковые или воздушные), как правило, имеют очень высокие значения сопротивления (более 50 МОм), поэтому мы можем их игнорировать и для анализа цепи, поскольку их значение слишком велико.

Но электрическое сопротивление между двумя точками может зависеть от многих факторов, таких как длина проводников, площадь их поперечного сечения, температура, а также фактический материал, из которого он изготовлен. Например, давайте предположим, что у нас есть кусок провода (проводник), который имеет длину L, площадь поперечного сечения A и сопротивление R, как показано ниже.

Электрическое сопротивление R этого простого проводника является функцией его длины, L и площади поперечного сечения A. Закон Ома говорит нам, что для данного сопротивления R ток, протекающий через проводник, пропорционален приложенному напряжению, поскольку I = V / R. Теперь предположим, что мы соединяем два одинаковых проводника вместе в последовательной комбинации, как показано на рисунке.

Здесь, соединив два проводника вместе в последовательной комбинации, то есть, к концу, мы фактически удвоили общую длину проводника (2L), в то время как площадь поперечного сечения A остается точно такой же, как и раньше. Но помимо удвоения длины, мы также удвоили общее сопротивление проводника, дав 2R как: 1R + 1R = 2R.

Таким образом , мы можем видеть , что сопротивление проводника пропорционально его длину, то есть: R ∝ L. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально больше, чем оно длиннее.

Отметим также, что, удваивая длину и, следовательно, сопротивление проводника (2R), чтобы заставить тот же ток I, чтобы течь через проводник, как и раньше, нам нужно удвоить (увеличить) приложенное напряжение I = (2 В) / (2R). Далее предположим, что мы соединяем два идентичных проводника вместе в параллельной комбинации, как показано.

Здесь, соединяя два проводника в параллельную комбинацию, мы фактически удвоили общую площадь, дающую 2А, в то время как длина проводников L остается такой же, как у исходного одиночного проводника. Но помимо удвоения площади, путем параллельного соединения двух проводников мы фактически вдвое сократили общее сопротивление проводника, получив 1 / 2R, поскольку теперь каждая половина тока протекает через каждую ветвь проводника.

Таким образом, сопротивление проводника обратно пропорционально его площади, то есть: R 1 / ∝ A или R ∝ 1 / A. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально меньше, чем больше его площадь поперечного сечения.

Кроме того, удваивая площадь и, следовательно, вдвое увеличивая суммарное сопротивление ветви проводника (1 / 2R), для того же тока, чтобы I протекал через параллельную ветвь провода, как раньше, нам нужно только наполовину уменьшить приложенное напряжение I = (1 / 2V) / (1 / 2R).

Надеемся, мы увидим, что сопротивление проводника прямо пропорционально длине (L) проводника, то есть: R ∝ L, и обратно пропорционально его площади (A), R ∝ 1 / A. Таким образом, мы можем правильно сказать, что сопротивление это:

Пропорциональность сопротивления

Но помимо длины и площади проводника, мы также ожидаем, что электрическое сопротивление проводника будет зависеть от фактического материала, из которого он изготовлен, потому что разные проводящие материалы, медь, серебро, алюминий и т.д., имеют разные физические и электрические свойства. Таким образом, мы можем преобразовать знак пропорциональности (∝) вышеприведенного уравнения в знак равенства, просто добавив «пропорциональную константу» в вышеприведенное уравнение, давая:

Уравнение удельного электрического сопротивления

Где: R — сопротивление в омах (Ω), L — длина в метрах (м), A — площадь в квадратных метрах (м 2 ), и где известна пропорциональная постоянная ρ (греческая буква «rho») — удельное сопротивление .

Удельное электрическое сопротивление

Удельное электрическое сопротивление конкретного материала проводника является мерой того, насколько сильно материал противостоит потоку электрического тока через него. Этот коэффициент удельного сопротивления, иногда называемый его «удельным электрическим сопротивлением», позволяет сравнивать сопротивление различных типов проводников друг с другом при определенной температуре в соответствии с их физическими свойствами без учета их длины или площади поперечного сечения. Таким образом, чем выше значение удельного сопротивления ρ, тем больше сопротивление, и наоборот.

Например, удельное сопротивление хорошего проводника, такого как медь, составляет порядка 1,72 х 10 -8 Ом (или 17,2 нОм), тогда как удельное сопротивление плохого проводника (изолятора), такого как воздух, может быть значительно выше 1,5 х 10 14 или 150 трлн.

Такие материалы, как медь и алюминий, известны низким уровнем удельного сопротивления, благодаря чему электрический ток легко проходит через них, что делает эти материалы идеальными для изготовления электрических проводов и кабелей. Серебро и золото имеют очень низкие значения удельного сопротивления, но по понятным причинам дороже делать из них электрические провода.

Тогда факторы, которые влияют на сопротивление (R) проводника в омах, могут быть перечислены как:

  • Удельное сопротивление (ρ) материала, из которого сделан проводник.
  • Общая длина (L) проводника.
  • Площадь поперечного сечения (А) проводника.
  • Температура проводника.

Пример удельного сопротивления № 1

Рассчитайте общее сопротивление постоянному току 100-метрового рулона медного провода 2,5 мм 2 , если удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 Ом метр.

Приведенные данные: удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 , длина катушки L = 100 м, площадь поперечного сечения проводника составляет 2,5 мм 2 , что дает площадь: A = 2,5 x 10 -6 м 2 .

Ответ: 688 МОм или 0,688 Ом.

Удельное электрическое сопротивление материала

Ранее мы говорили, что удельное сопротивление — это электрическое сопротивление на единицу длины и на единицу площади поперечного сечения проводника, таким образом, показывая, что удельное сопротивление ρ имеет размеры в Ом-метрах или Ом · м, как это обычно пишется. Таким образом, для конкретного материала при определенной температуре его удельное электрическое сопротивление определяется как.

Электрическая проводимость

Хотя как электрическое сопротивление (R), так и удельное сопротивление ρ, являются функцией физической природы используемого материала, а также его физической формы и размера, выраженных его длиной (L) и площадью его сечения ( А), Проводимость или удельная проводимость относится к легкости, с которой электрический ток проходит через материал.

Проводимость (G) является обратной величиной сопротивления (1 / R) с единицей проводимости, являющейся сименсом (S), и ей дается перевернутый символ омов mho, ℧. Таким образом, когда проводник имеет проводимость 1 сименс (1S), он имеет сопротивление 1 Ом (1 Ом). Таким образом, если его сопротивление удваивается, проводимость уменьшается вдвое, и наоборот, как: Сименс = 1 / Ом, или Ом = 1 / Ом.

В то время как сопротивление проводников дает степень сопротивления потоку электрического тока, проводимость проводника указывает на легкость, с которой он пропускает электрический ток. Таким образом, металлы, такие как медь, алюминий или серебро, имеют очень большие значения проводимости, что означает, что они являются хорошими проводниками.

Проводимость, σ (греческая буква сигма), является обратной величиной удельного сопротивления. Это 1 / ρ и измеряется в сименах на метр (S / m). Поскольку электропроводность σ = 1 / ρ, предыдущее выражение для электрического сопротивления R можно переписать в виде:

Электрическое сопротивление как функция проводимости

Тогда мы можем сказать, что проводимость — это эффективность, посредством которой проводник пропускает электрический ток или сигнал без потери сопротивления. Поэтому материал или проводник, который имеет высокую проводимость, будет иметь низкое удельное сопротивление, и наоборот, поскольку 1 сименс (S) равен 1 Ом -1 . Таким образом, медь, которая является хорошим проводником электрического тока, имеет проводимость 58,14 x 10 6 Симен на метр.

Пример удельного сопротивления №2

Кабель длиной 20 метров имеет площадь поперечного сечения 1 мм 2 и сопротивление 5 Ом. Рассчитать проводимость кабеля.

Приведенные данные: сопротивление постоянному току, R = 5 Ом, длина кабеля, L = 20 м, а площадь поперечного сечения проводника составляет 1 мм 2, что дает площадь: A = 1 x 10 -6 м 2 .

Ответ: 4 мега-симена на метр длины.

Таблица удельных сопротивлений проводников

0,050,070,10,20,30,40,50,711,522,54611
Наибольший допустимый ток, А0,711,32,53,545710141720253054
ПроводникУдельное сопротивление
ρ
Температурный коэффициент α
Алюминий0,0284,2
Бронза0,095 — 0,1
Висмут1,2
Вольфрам0,055
Железо0,16
Золото0,0234
Иридий0,0474
Константан0,50,05
Латунь0,025 — 0,1080,1-0,4
Магний0,0453,9
Манганин0,43 — 0,510,01
Медь0,01754,3
Молибден0,059
Нейзильбер0,20,25
Натрий0,047
Никелин0,420,1
Никель0,0876,5
Нихром1,05 — 1,40,1
Олово0,124,4
Платина0.1073,9
Ртуть0,941,0
Свинец0,223,7
Серебро0,0154,1
Сталь0,103 — 0,1371-4
Титан0,6
Фехраль1,15 — 1,350,1
Хромаль1,3 — 1,5
Цинк0,0544,2
Чугун0,5-1,01,0

Где: удельное сопротивление ρ измеряется в Ом*мм 2 /м и температурный коэффициент электрического сопротивления металлов α измеряется в 10 -3 *C -1 (или K -1 ) .

Краткое описание удельного сопротивления

Мы поговорили в этой статье об удельном сопротивлении, что удельное сопротивление — это свойство материала или проводника, которое указывает, насколько хорошо материал проводит электрический ток. Мы также видели, что электрическое сопротивление (R) проводника зависит не только от материала, из которого сделан проводник, меди, серебра, алюминия и т.д., но также от его физических размеров.

Сопротивление проводника прямо пропорционально его длине (L) как R ∝ L. Таким образом, удвоение его длины удвоит его сопротивление, в то время как последовательное удвоение проводника уменьшит вдвое его сопротивление. Также сопротивление проводника обратно пропорционально его площади поперечного сечения (A) как R ∝ 1 / A. Таким образом, удвоение его площади поперечного сечения уменьшило бы его сопротивление вдвое, тогда как удвоение его площади поперечного сечения удвоило бы его сопротивление.

Мы также узнали, что удельное сопротивление (символ: ρ) проводника (или материала) связано с физическим свойством, из которого он изготовлен, и варьируется от материала к материалу. Например, удельное сопротивление меди обычно дается как: 1,72 х 10 -8 Ом · м. Удельное сопротивление конкретного материала измеряется в единицах Ом-метров (Ом), которое также зависит от температуры.

В зависимости от значения удельного электрического сопротивления конкретного материала его можно классифицировать как «проводник», «изолятор» или «полупроводник». Обратите внимание, что полупроводники — это материалы, в которых их проводимость зависит от примесей, добавляемых в материал.

Удельное сопротивление также важно в системах распределения электроэнергии, так как эффективность системы заземления для системы электропитания и распределения сильно зависит от удельного сопротивления земли и материала почвы в месте расположения системы.

Проводимость — это имя, данное движению свободных электронов в форме электрического тока. Проводимость, σ является обратной величиной удельного сопротивления. Это 1 / ρ и имеет единицу измерения сименс на метр, S / m. Проводимость варьируется от нуля (для идеального изолятора) до бесконечности (для идеального проводника). Таким образом, сверхпроводник имеет бесконечную проводимость и практически нулевое омическое сопротивление.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Объемное сопротивление: удельное электрическое сопротивление пластика

Электрические свойства полимеров


Объемное удельное сопротивление полимерного материала измеряет, насколько сильно пластиковый материал противостоит прохождению электрического тока через объем кубического образца. Чем ниже удельное сопротивление, тем выше проводимость (электрические заряды имеют слабое сопротивление циркуляции).

Он также известен как удельное электрическое сопротивление, объемное сопротивление, удельное электрическое сопротивление, удельное объемное сопротивление или просто удельное сопротивление.

Объемное сопротивление измеряется в единицах: ом-метр (Ом-м или Ом-см).

  • Ниже 10 5 Ом-см материал считается проводящим.
  • Свыше 10 9 Ом-см материал считается электрическим изолятором.

Узнайте больше об объемном сопротивлении:

»Важность объемного сопротивления
» Как измерить объемное сопротивление?
»Объемное удельное сопротивление по отношению к поверхностному сопротивлению
» Факторы, влияющие на сопротивление изоляции
»Значения объемного удельного сопротивления некоторых пластмасс


Важность объемного сопротивления


Удельное сопротивление объемов можно использовать в качестве вспомогательного средства при проектировании изолятора для конкретного применения.Изменение удельного сопротивления в зависимости от температуры и влажности может быть большим и должно быть известно при проектировании для рабочих условий.

Объемные определения удельного сопротивления часто используются для проверки однородности изоляционного материала либо в отношении:

  • Обработка, либо
  • Обнаружение проводящих примесей, влияющих на качество материала

Объемные удельные сопротивления выше 10 21 Ом-см (10 19 Ом-м), рассчитанные на основе данных, полученных на образцах, испытанных в обычных лабораторных условиях, имеют сомнительную достоверность, учитывая ограничения обычно используемого измерительного оборудования.

Области применения:

  • Конструкция изолятора для конкретного применения
  • Экранирование токопроводящих паст
  • Определение приложений для проведения композитов

Как измерить объемное удельное сопротивление?


Наиболее распространенные методы испытаний для определения объемного удельного сопротивления пластмасс — это ASTM D257, ASTM D4496-04, ASTM D991-89 (2005) или IEC 60093 (конечно, существуют и другие методы!)

При обычном испытании между двумя электродами помещается образец стандартного размера.В течение шестидесяти секунд подается напряжение и измеряется сопротивление. Затем рассчитывается объемное удельное сопротивление и дается кажущееся значение для времени электризации 60 секунд. В качестве размера образца для испытания предпочтительнее использовать 4-дюймовый диск.

Объемное удельное сопротивление по отношению к удельному сопротивлению поверхности


Сопротивление, оказываемое изоляционным материалом электрическому току, представляет собой сложный эффект объемного и поверхностного сопротивлений, которые всегда действуют параллельно.
  • Объемное сопротивление — это сопротивление утечке, если электрический ток проходит через тело материала.
    • Это во многом зависит от материала

  • С другой стороны, сопротивление поверхности, то есть сопротивление утечке по поверхности материала, в значительной степени зависит от качества поверхности и чистоты.
    • Сопротивление поверхности снижается из-за наличия масла или влаги на поверхности, а также из-за шероховатости поверхности
    • А, очень гладкая или полированная поверхность дает большее поверхностное сопротивление

Сопротивление изоляции диэлектрика выражается его «объемным удельным сопротивлением» и «поверхностным сопротивлением».

Диапазон объемных удельных сопротивлений различных материалов показан ниже в «Спектре удельного сопротивления»

Источник: Справочник по технологиям пластмасс, пятое издание


Значения для пластмасс обычно находятся в диапазоне от 10 10 Ом-см для ацетата целлюлозы до примерно 10 19 Ом-см для высокопроизводительного полистирола.

Факторы, влияющие на сопротивление изоляции


Сопротивление изоляции большинства пластиков зависит от температуры и относительной влажности атмосферы

Сопротивление изоляции заметно падает с повышением температуры или влажности


Даже PS , который имеет очень высокое сопротивление изоляции при комнатной температуре, обычно становится неудовлетворительным при температуре выше 80 ° C (176 ° F).В этих условиях полимеры типа ПТФЭ и ПХТФЭ более подходят.

Пластмассы, обладающие высокой водостойкостью, относительно меньше подвержены влиянию высокой влажности.

Чем дольше подается напряжение (больше время электризации), тем выше измеряемое объемное удельное сопротивление.

Присутствие наполнителей в полимере влияет на объемное удельное сопротивление. Тип и количество наполнителя изменяют объемное удельное сопротивление.

Найдите товарные марки, соответствующие вашей цели, с помощью фильтра « Property Search — Объемное удельное сопротивление » в базе данных Omnexus Plastics:

Значения объемного сопротивления некоторых пластмасс


Щелкните здесь, чтобы найти полимер, который вы ищете:
A-C | E-M | PA-PC | PE-PL | ПМ-ПП | PS-X
Название полимера Мин. Значение (10 15 Ом.см) Максимальное значение (10 15 Ом · см)
ABS — Акрилонитрилбутадиенстирол 14,0 16,0
Огнестойкий ABS 14,0 15,0
АБС для высоких температур 16,0 16,0
Противоударный АБС 16,0 16,0
Смесь АБС / ПК — Смесь акрилонитрилбутадиенстирола / поликарбоната 14.0 17,0
Смесь АБС / ПК, 20% стекловолокна 16,0 17,0
Огнестойкий ABS / PC 16,0 17,0
ASA — Акрилонитрилстиролакрилат 14,0 15,0
Смесь ASA / PC — Смесь акрилонитрил-стиролакрилата / поликарбоната 13,05 15,0
ASA / PC огнестойкий 14.0 14,0
CA — Ацетат целлюлозы 12,0 12,0
CAB — Бутират ацетата целлюлозы 13,0 13,0
CP — пропионат целлюлозы 11,0 11,0
COC — Циклический олефиновый сополимер 14,0 15,0
ХПВХ — хлорированный поливинилхлорид 15,0 16.0
ECTFE — этиленхлортрифторэтилен 16,0 16,0
ETFE — Этилентетрафторэтилен 15,0 17,0
EVA — этиленвинилацетат 15,0 15,0
EVOH — Этиленвиниловый спирт 12,0 13,0
FEP — фторированный этиленпропилен 17,0 18.0
HDPE — полиэтилен высокой плотности 16,0 18,0
HIPS — ударопрочный полистирол 16,0 16,0
HIPS огнестойкий V0 15,0 16,0
Иономер (сополимер этилена и метилакрилата) 16,0 16,0
LCP — Жидкокристаллический полимер 16,0 16,0
LCP, армированный углеродным волокном -1.0 -8,0
LCP армированный стекловолокном 15,0 15,0
LCP Минеральное наполнение 12,0 16,0
LDPE — полиэтилен низкой плотности 0,917 0,940
ЛПЭНП — линейный полиэтилен низкой плотности 16,0 18,0
MABS — Акрилонитрилбутадиенстирол прозрачный 13.0 14,0
PA 46 — Полиамид 46 15,0 15,0
PA 46, 30% стекловолокно 10,0 13,0
PA 6 — Полиамид 6 14,0 14,0
PA 6-10 — Полиамид 6-10 14,0 14,0
PA 66 — Полиамид 6-6 14,0 14,0
PA 66, 30% стекловолокно 13.0 13,0
PA 66, 30% Минеральное наполнение 12,0 15,0
PA 66, ударно-модифицированная, 15-30% стекловолокна 12,0 13,0
PA 66, модифицированный при ударе 11,0 15,0
PAI — Полиамид-имид 12,0 17,0
PAI, 30% стекловолокно 14,0 17,0
PAR — Полиарилат 16.0 17,0
PARA (Полиариламид), 30-60% стекловолокна 15,0 15,0
PBT — полибутилентерефталат 14,0 17,0
PBT, 30% стекловолокно 16,0 16,0
ПК (поликарбонат) 20-40% стекловолокно 15,0 16,0
ПК (поликарбонат) 20-40% стекловолокно огнестойкое 15.0 17,0
PC — Поликарбонат, жаростойкий 15,0 16,0
Смесь ПК / ПБТ — Смесь поликарбоната / полибутилентерефталата 16,0 17,0
Смесь ПК / ПБТ, со стеклянным наполнением 15,0 16,0
PCTFE — Полимонохлортрифторэтилен 14,0 15,0
PE — Полиэтилен 30% стекловолокно 16.0 16,0
PEEK — Полиэфирэфиркетон 16,0 17,0
PEEK, армированный 30% углеродным волокном 1,0 8,0
PEEK, армированный стекловолокном, 30% 15,0 16,0
PEI — Полиэфиримид 5,0 18,0
PEI, 30% армированный стекловолокном 15,0 16,0
PEKK (Полиэфиркетонекетон), с низкой степенью кристалличности 1.0 1,0
PESU — Полиэфирсульфон 15,0 17,0
PESU 10-30% стекловолокно 15,0 16,0
ПЭТ — полиэтилентерефталат 16,0 16,0
ПЭТ, 30% армированный стекловолокном 15,0 16,0
ПЭТ, 30/35% армированный стекловолокном, модифицированный при ударе 0,0 2.0
PFA — перфторалкокси 16,0 18,0
PGA — Полигликолиды 1,400 1,600
PI — Полиимид 14,0 18,0
PMMA — Полиметилметакрилат / акрил 14,0 16,0
PMMA (акрил) High Heat 15,0 15,0
ПММА (акрил) с модифицированным ударным воздействием 14.0 16,0
PMP — Полиметилпентен 16,0 18,0
PMP, армированный 30% стекловолокном 16,0 17,0
PMP Минеральное наполнение 16,0 16,0
ПОМ — Полиоксиметилен (Ацеталь) 14,0 15,0
ПОМ (Ацеталь) с модифицированным ударным воздействием 15,0 16,0
ПОМ (Ацеталь) с низким коэффициентом трения 15.0 16,0
PP — полипропилен 10-20% стекловолокно 16,0 17,0
ПП, 10-40% минерального наполнителя 16,0 17,0
ПП, наполненный тальком 10-40% 16,0 17,0
PP, 30-40% армированный стекловолокном 16,0 17,0
Сополимер PP (полипропилен) 16,0 18.0
Гомополимер PP (полипропилен) 16,0 18,0
ПП, модифицированный при ударе 16,0 18,0
PPA — полифталамид 15,0 15,0
PPA, 30% минеральное наполнение 14,0 16,0
PPA, усиленный стекловолокном на 33% — High Flow 14,0 16,0
PPA, 45% армированный стекловолокном 14.0 16,0
PPE — Полифениленовый эфир 15,0 16,0
СИЗ, 30% армированные стекловолокном 15,0 16,0
СИЗ, огнестойкий 15,0 16,0
PPS — полифениленсульфид 15,0 16,0
PPS, армированный стекловолокном на 20-30% 16,0 16,0
PPS, армированный 40% стекловолокном 16.0 16,0
PPS, проводящий 1,0 3,0
PPS, стекловолокно и минеральное наполнение 15,0 16,0
PPSU — полифениленсульфон 14,0 16,0
ПС (полистирол) 30% стекловолокно 16,0 16,0
ПС (полистирол) Кристалл 16,0 17,0
PS, высокая температура 16.0 16,0
PSU — Полисульфон 15,0 17,0
Блок питания, 30% усиленное стекловолокном 15,0 16,0
PSU Минеральное наполнение 16,0 16,0
PTFE — политетрафторэтилен 17,0 18,0
ПТФЭ, армированный стекловолокном на 25% 16,0 18,0
ПВХ (поливинилхлорид), армированный 20% стекловолокном 15.0 16,0
ПВХ, пластифицированный 10,0 16,0
ПВХ, пластифицированный наполнитель 10,0 16,0
ПВХ жесткий 15,0 16,0
ПВДХ — поливинилиденхлорид 15,0 16,0
PVDF — поливинилиденфторид 5,0 14,0
SAN — Стиролакрилонитрил 16.0 16,0
SAN, армированный стекловолокном на 20% 15,0 17,0
SMA — малеиновый ангидрид стирола 16,0 16,0
SMA, армированный стекловолокном на 20% 15,0 15,0
SMMA — метилметакрилат стирола 15,0 15,0
UHMWPE — сверхвысокомолекулярный полиэтилен 16.0 17,0

Найдите коммерческие марки, соответствующие вашей цели, используя фильтр « Property Search — Volume Resistivity » в базе данных Omnexus Plastics:




Объемное и поверхностное сопротивление | НТС Материалы Испытания

Что такое объемное и поверхностное сопротивление

ASTM D257, IEC 60093

Объемное сопротивление представляет собой сопротивление изоляционного материала току утечки через его тело. Он вычисляет отношение градиента потенциала к току в материале с той же плотностью.Сопротивление постоянному току между противоположными гранями куба материала длиной один метр численно равно объемному удельному сопротивлению в СИ (Ом-м).

Поверхностное сопротивление — это сопротивление току утечки по поверхности изоляционного материала. Два параллельных электрода на расстоянии друг от друга, равном их контактной длине, контактируют с поверхностью материала для измерения удельного сопротивления поверхности. Следовательно, отношение градиента потенциала (В / м) и тока на единицу длины электрода (А / м) представляют собой удельное сопротивление.Длины поверхностного удельного сопротивления и коэффициента компенсации обычно измеряются в Омах, поскольку четыре конца электродов образуют квадрат. Однако в некоторых результатах тестов используются Ом на квадрат из-за его более наглядности.

Методы измерения объемного и поверхностного сопротивления

При тестировании удельного сопротивления измеряется сопротивление изолятора току утечки путем выполнения следующих шагов:

  • Подача известного напряжения на материал
  • Регистрация тока, создаваемого напряжением
  • Использование закона Ома для вычисления наблюдаемого сопротивления
  • Определение удельного сопротивления по физическим размерам образца

Окончательное измерение удельного сопротивления зависит от многих внешних факторов, в том числе:

  • Прикладное напряжение: Величина напряжения, приложенного к материалу, сильно влияет на окончательные результаты теста.Чтобы противостоять этому фактору, иногда испытание включает изменение напряжения для установления зависимости от напряжения.
  • Время электризации: Исследуемый материал заряжается с экспоненциальной скоростью при длительном воздействии напряжения. Следовательно, во время испытания удельное сопротивление образца увеличивается со временем. Это необходимо учитывать, чтобы получить точный расчет.
  • Факторы окружающей среды: Высокий уровень влажности создает более низкое удельное сопротивление по сравнению с более низким уровнем влажности.Условия тестовой среды имеют большое влияние на потенциальные результаты.

Из-за этих переменных эти условия должны оставаться постоянными между тестами при сравнении нескольких тестов. Стандарты ASTM рекомендуют обычно используемый метод приложения 500 В в течение 60 секунд, чтобы результаты легко сопоставимы друг с другом. По результатам этого теста можно измерить объемное и / или поверхностное удельное сопротивление, в зависимости от их применения.

Измерения и приложения для измерения объемного удельного сопротивления

Объемное сопротивление представляет собой электрическое сопротивление через куб изоляционного материала.Измеренное в Ом-сантиметрах, оно демонстрирует электрическое сопротивление через кубик образца размером один сантиметр. Точно так же при использовании Ом-дюймов это указывает на электрическое сопротивление через один-дюймовый куб материала.

Электронные устройства содержат различные химические вещества, предназначенные для изоляции или проведения. Тестирование объемного удельного сопротивления этих химикатов гарантирует, что электричество проходит через эти компоненты, как задумано. Определение удельного объемного сопротивления электрических потребительских товаров является важной частью испытаний на соответствие стандартам безопасности.Объемное удельное сопротивление в проводящих пастах и ​​других электронных компонентах может указывать на загрязнение, если желаемый уровень удельного сопротивления или проводимости не достигается.

Измерение удельного сопротивления поверхности и приложения

Удельное сопротивление поверхности определяет электрическое сопротивление фиксированной длины поверхности изоляционного материала. При этом измерении не учитываются такие физические размеры, как толщина и диаметр. Поскольку он определяет только удельное сопротивление поверхности, требуется только одно физическое измерение.Соответственно, поверхностное сопротивление измеряется между электродами вдоль поверхности изоляционного материала.

При испытании материалов это измерение может определять удельное поверхностное сопротивление пластмасс. В ситуациях, связанных с рассеянием статического электричества, например, при производстве электроники, идеальным вариантом является низкое удельное сопротивление поверхности. Сами по себе инженерные пластмассы обладают высоким уровнем поверхностного сопротивления. Чтобы увеличить проводимость, производители часто добавляют углерод или поверхностную обработку. В общем, проверка удельного поверхностного сопротивления редко применяется к металлам, потому что они уже обладают высокой проводимостью.

Испытания на объемное и поверхностное сопротивление от NTS

NTS использует только самые высокие стандарты тестирования для определения эффективности и соответствия продуктов и материалов в различных отраслях промышленности. Являясь одной из крупнейших сетей коммерческих лабораторных испытаний, мы можем помочь вам в достижении ваших производственных целей с помощью нашего передового оборудования и обучения. Наш обширный выбор стандартов тестирования позволяет нам оценивать несколько продуктов и следовать отраслевым критериям. Чтобы узнать больше о тестировании сопротивления и других наших услугах, свяжитесь с нашей командой онлайн.

Зависимость объемного удельного сопротивления от объемной проводимости от удельного поверхностного сопротивления

Когда клиенты смотрят техническое описание (TDS) объемной проводящей пленки LINQSTAT, их часто сбивают с толку электрические свойства. В материале 3M Velostat только объемное удельное сопротивление меньше 500 Ом-см, а в материале LINQSTAT указано объемное сопротивление, объемная проводимость и поверхностное сопротивление. Дело в том, что все они взаимосвязаны, и если вы знаете удельное объемное сопротивление материала и толщину пленки, вы можете рассчитать другие значения.

Поверхностное сопротивление (также называемое сопротивлением листа), умноженное на толщину материала в сантиметрах, равно объемному удельному сопротивлению.

Зависимость сопротивления от удельного сопротивления и проводимости от проводимости

Существует такая запутанная смесь сопротивления и удельного сопротивления в различных литературных источниках, доступных как в Интернете, так и в автономном режиме, что можно начать думать, что это две разные вещи. Проще говоря, неэлектропроводный материал имеет определенное сопротивление, и если вы его измеряете, вы измеряете удельное сопротивление материала.С другой стороны, если материал имеет очень низкое сопротивление, то его называют проводящим, он может иметь определенную проводимость, и вы можете измерить проводимость материала.

Проводимость противоположна сопротивлению?

Да. Проводимость противоположна сопротивлению, проводимость противоположна удельному сопротивлению, а проводимость противоположна резистивному. Материал с низким сопротивлением также можно назвать проводящим. Поскольку материалы объемной проводящей пленки LINQSTAT (VCF) представляют собой углеродные пластики, в которых полиэтилен является резистивным, но углерод является проводящим, пленки называют объемными проводящими пленками.

Что такое объемная проводимость?

То, что отличается как по величине, так и по методу испытаний, — это измеряемое удельное сопротивление типа . Поскольку пленки имеют одинаковую толщину, часто измеряется сопротивление листа. Это свойство также называется удельным сопротивлением листа, поверхностным сопротивлением или поверхностным сопротивлением. Все они одинаковы, но заметно отличаются от удельного объемного сопротивления материала (также называемого объемным сопротивлением, объемным сопротивлением или объемным сопротивлением).

Прежде чем мы перейдем к следующему разделу, позвольте нам убедиться, что мы ясно понимаем следующее:
Объемное сопротивление = Объемное сопротивление = Объемное сопротивление = Объемное сопротивление
И
Листовое сопротивление = Сопротивление листа = Поверхностное сопротивление = Поверхностное сопротивление

Все еще со мной? Хорошо, давайте объясним разницу между этими двумя свойствами.

Зависимость удельного сопротивления поверхности (или листа) от объемного сопротивления

Удельное сопротивление поверхности — это измерение удельного сопротивления материала вдоль плоскости или поверхности листа.Это полезное измерение при измерении тонкой пленки материала с однородной толщиной, такой как LINQSTAT VCF, потому что оно не зависит от толщины материала и может быть измерено в диапазоне (тонких) толщин, таких как наши 2 мил, 4 мил или 8. mil LINQSTAT VCF пленки. Сопротивление листа выражается в Ом / кв., Обозначается как «Ом на квадрат». Эта единица измерения используется только для измерения сопротивления листа, поскольку его размеры такие же, как у Ом, но не оставляют места для неправильного толкования, поскольку в противном случае можно было бы принять его за объемное сопротивление.

Объемное (объемное) удельное сопротивление в зависимости от удельного сопротивления поверхности (листа)

Объемное удельное сопротивление, следовательно, является мерой удельного сопротивления материала, перпендикулярного плоскости. Таким образом, мы можем умножить сопротивление листа на толщину материала (в сантиметрах), чтобы получить объемное удельное сопротивление в «Ом-см» или Ом-сантиметр. Точно так же объемное удельное сопротивление, деленное на толщину в сантиметрах, равняется удельному сопротивлению поверхности.

Объемное удельное сопротивление vs.Объемная проводимость

Объемное сопротивление также называется объемным сопротивлением, потому что оно является мерой удельного сопротивления по определенной толщине. Как упоминалось ранее, удельное сопротивление обратно пропорционально проводимости. Поскольку объемное удельное сопротивление измеряется в Ом-см или обозначается как «Ом-сантиметр», объемная проводимость измеряется на один Ом-см (1 / Ом ‑ см) и измеряется в См / см или произносится как «Симен на см». сантиметр ». Следовательно, объемное сопротивление 500 Ом-см равно объемной проводимости 1/500 или 0.4 Ом ‑ см). Если вас интересует более проводящий пластик, обратите внимание на серию XVCF, которая имеет более высокое содержание углерода, что делает его более проводящим.

  • VCF-2xxxxS-Series: 10000 Ом / квадрат (поверхностное сопротивление) x 2 мил (0,00508 см) = ~ 50 Ом-см (объемное сопротивление)
  • VCF-4xxxxS-Series: 10000 Ом / квадрат (поверхностное сопротивление) x 4 мил (0,01016 см) = ~ 100 Ом-см (объемное сопротивление)
  • VCF-8xxxxS-Series: 10000 Ом / квадрат (поверхностное сопротивление) x 8 мил (0.02032см) = ~ 200 Ом-см (объемное сопротивление)

Почему CAPLINQ дает значения «меньше» (например, 200 000 Ом на квадрат) вместо типичных значений?

Объемная проводящая пленка LINQSTAT — это полиэтилен с углеродным наполнением. Таким образом, неизбежны некоторые различия в проводимости по всей поверхности. Данные, предоставляемые CAPLINQ, представляют собой минимальное повторяемое значение, которое можно использовать при разработке конечного продукта.

Посмотрите это видео, чтобы узнать, как мы измеряем удельное поверхностное сопротивление в зависимости от объемного сопротивления.

В этом видео объясняется, как мы измеряем объемное и поверхностное удельное сопротивление наших электропроводящих пластиков LINQSTAT.

Посмотрите это видео, чтобы узнать разницу между удельным поверхностным сопротивлением и объемным удельным сопротивлением.

В этом видео объясняется разница между объемным и поверхностным удельным сопротивлением наших электропроводящих пластиков LINQSTAT.

CAPLINQ — это специализированный поставщик пластмасс, предлагающий широкий выбор проводящих материалов, включая наш широкий ассортимент электропроводящих пластиков, а также антистатических лент и пленок.Если у вас есть какие-либо вопросы, не стесняйтесь обращаться к нам, чтобы узнать, как мы можем вам помочь.

Нравится:

Нравится Загрузка…

Что такое объемное и поверхностное сопротивление

Объем удельное сопротивление представляет собой сопротивление изоляционного материала току утечки. через тело материала — это мера, используемая при тестировании электроизоляционные маты и листы, такие как покрытые BS921, BS EN IEC 61111, BS EN IEC 61112, ASTM D178 и ASTM F2320.Метод испытания вычисляет отношение градиента потенциала к ток в материале той же плотности. Сопротивление постоянному току между противоположными гранями метрового куба материала численно равняется к объемному сопротивлению в СИ (Ом-м). Объемное сопротивление представляет собой электрическое сопротивление через куб из изоляционного материала. Если измерять в Ом сантиметра, он показывает электрическое сопротивление через один сантиметр куб материала. Равно Ом-дюймов указывает на электрическое сопротивление. через кубик материала толщиной один дюйм.

Объем удельное сопротивление может указывать на загрязнение, если желаемый уровень удельного сопротивления или проводимость не достигается.

Удельное поверхностное сопротивление — сопротивление току утечки по изоляционной поверхность материала — эта мера в основном используется при испытании статических рассеивающие материалы, в том числе используемые во взрывоопасных среды, такие как подземные горные работы, а также для полов, столешниц и коврики рабочей станции протестированы в соответствии со стандартами, такими как IEC 61340-5-1, ASTM F150-06-2013, ANSI / ESD S20.20-2014, ANSI / ESD STM7.1-2013 и ANSI / ESD STM97.1-2015. Обычно используются два параллельных набора электродов. контакт с поверхностью материала для измерения удельного сопротивления поверхности. Следовательно, коэффициент градиента потенциала (В / м) и ток на единицу электрода длина (А / м) представляет собой удельное сопротивление.

Поверхностное сопротивление и коэффициент компенсации обычно измеряются в Ом, однако, поскольку четыре точки электродов образуют квадрат, некоторые испытания результаты используют Ом на квадрат из-за его более наглядного характера.Этот при измерении не учитываются такие физические размеры, как толщина и диаметр во внимание. Поскольку он определяет только удельное сопротивление поверхности, только требуется одно физическое измерение.

В приложениях, связанных с рассеиванием статического электричества, таких как производство электроники, низкое удельное поверхностное сопротивление является идеальным. В их базе форматные каучуки и пластмассы обладают высоким уровнем поверхностного сопротивления. Увеличить проводимость, производители добавят технический углерод или поверхностную обработку.

Испытания объемного и поверхностного сопротивления Методы

Методы испытаний, используемые в Европе для измерения удельного сопротивления, включают ISO14309, ISO340 и IEC60093. Тестирование удельного сопротивления измеряет удельное сопротивление изолятора. на ток утечки, выполнив следующие шаги:

  • Приложение известного напряжения к материалу

  • Запись тока, создаваемого напряжением

  • Использование закона Ома для расчета наблюдаемого сопротивления

  • Определение удельного сопротивления на основе от физических размеров образца

Окончательное измерение удельного сопротивления зависит от многих внешних факторов, в том числе:

  • Приложенное напряжение: Величина напряжения, приложенного к материалу, значительно изменяет окончательные результаты теста.Чтобы противостоять этому фактору, иногда тест включает в себя различные напряжение для установления зависимости от напряжения.

  • Время электрификации: Исследуемый материал заряжается по экспоненте скорость при длительном воздействии напряжения. Следовательно, удельное сопротивление образца увеличивается с течением времени во время теста. Это должно быть учтено получить точный расчет.

  • Факторы окружающей среды: Высокий уровень влажности снижает удельное сопротивление по сравнению с более низким уровнем влажности.Условия тестовой среды имеют большое влияние на потенциальные результаты.

Из-за этих переменных эти условия должны оставаться постоянными между тестами при сравнении нескольких тестов. Стандарты ASTM рекомендуют часто используемый метод 500 В применяется в течение 60 секунд, чтобы легко получить результаты сопоставимы друг с другом. По результатам этого теста можно измерить объем и / или удельное поверхностное сопротивление в зависимости от области применения.

MacLellan Rubber предлагает широкий спектр электроизоляционных и статических материалов. Диссипативная пленка и резиновые маты.

Электрическое сопротивление | Фиск Сплав

Электрическое сопротивление проводов обычно выражается в омах на единицу длины. В английской системе это Ω / mft (Ом на 1000 футов), в метрических Ω / км (Ом на 1000 метров) при стандартной температуре 20ºC (68ºF).

Измерение

Стандартная процедура измеряет сопротивление постоянному току на минимальной длине 5 футов (1,5 метра) и преобразует его в единицы Ω / mft или Ω / km. Использование резистивного моста предотвращает резистивный нагрев образца, особенно в меньших калибрах.

Определения

  • Удельное электрическое сопротивление
  • Электрическое сопротивление материала на единицу объема. Удельное сопротивление — это свойство материала, которое не зависит от его геометрии (площади поперечного сечения и длины). Высокое удельное сопротивление указывает на то, что материал плохо проводит электричество. Удельное электрическое сопротивление выражается в Ом-дюймах (или Ом-см) и т. Д.
  • Электропроводность
  • Обратное сопротивление. Это мера способности материала проводить электрический ток, обычно по сравнению с медью, и обычно выражается в% IACS (Международный стандарт отожженной меди).
  • Температурный коэффициент сопротивления
  • Константа, которая отражает изменение электрического сопротивления материала (удельного сопротивления) из-за изменения температуры на один градус. Выражается в единицах на градус Цельсия (или единицах на градус Фаренгейта).

Сопротивление проводника

R = ρL / A

где R — сопротивление в омах, ρ — объемное удельное сопротивление, L — длина образца, а A — площадь поперечного сечения образца.

Электропроводность и удельное сопротивление (ρ) обычных проводниковых сплавов

МАТЕРИАЛ ПРОВОДНИКА% 1ACS Ом-см · дюйм / фут
Медь (C110) 100 10.37
Percon 24 90 11,52
C18135 85 12.20
Percon 11 90 11,52
Percon 17 85 12.20
Percon 19 73 14,21
Кадмий Медь (C162) 85 12.20
Сталь плакированная медью (40%) 39 26.45

Температурная коррекция

Температура окружающей среды влияет на электрическое сопротивление большинства металлов. Как правило, более высокая температура увеличивает сопротивление. Для правильной интерпретации показания должны быть скорректированы до стандартной эталонной температуры, обычно 20ºC (68ºF).

Формула температурной коррекции:

RT = Rt / [1 + α (t-T)]

Где RT — сопротивление при эталонной температуре T, Rt — сопротивление, измеренное при температуре t, α — температурный коэффициент сопротивления, T — эталонная температура (обычно 20ºC (68ºF), а t — температура измерения.

Коэффициенты температурной коррекции (α) для обычных проводниковых сплавов при 20ºC (68ºF)

МАТЕРИАЛ ПРОВОДНИКА α (PER ºC)
Медь (C110) 0,00393
Percon 24 0,00342
C18135 0,00342
Percon 11 0,00354
Percon 17 0.00322
Percon 19 0,00305
Кадмий Медь (C162) 0,00322
Сталь плакированная медью (40%) 0,00378

Примечание: Коэффициент α зависит от материала, проводимости и диапазона температур. Значение для меди с проводимостью 100% IAC при 20ºC (68ºF) составляет 0,00393. Значения коэффициентов для других материалов, проводимости и температуры можно найти в NBS Handbook-100, таблица 2.

Испытание свойств поверхностного сопротивления пластмасс

Испытания на удельное сопротивление поверхности пластмасс

Поверхностное сопротивление пластика — это, как следует из названия, сопротивление прохождению электрического тока по его поверхности. Это контрастирует с объемным удельным сопротивлением (или просто удельным электрическим сопротивлением), которое представляет собой сопротивление потоку через трехмерный объем образца. Обычный тест в США — ASTM D257; другие методы испытаний включают IEC 93 — IEC 60093 и JIS K6911.На приведенном ниже рисунке из Quadrant Engineering Plastic Products показана геометрия теста.

ASTM D257:
Сопротивление электрическому току измеряется электродами на той же поверхности. Вид сбоку; верхний внутренний электрод и нижний (заземляющий) являются круглыми, а внешний верхний электрод — кольцевыми. Результаты представлены в омах.

Контроль факторов окружающей среды важен, потому что удельное поверхностное сопротивление полимера может быстро изменяться в ответ на изменения влажности.Подробный отчет о результатах испытаний чувствительных к влаге полимеров включает данные о температуре и влажности образца до и во время измерения.

Низкое удельное сопротивление поверхности важно в приложениях, где требуется рассеивание статического электричества. Инженерные пластмассы по своей природе являются очень хорошими изоляторами со значениями поверхностного сопротивления, как правило, в диапазоне от 10 14 до 10 18 Ом в основных смолах. Снижение удельного сопротивления (повышенная проводимость) часто придают пластмассам такие добавки, как проводящие углеродные волокна / технический углерод, или обработка поверхности готовой продукции.Объемные добавки предпочтительны, когда важна постоянство. Верхний предел удельного поверхностного сопротивления полимера, который считается «контролируемым статическим электричеством», составляет около 10 12 Ом.

Поверхностное сопротивление металлов почти никогда не измеряется из-за присущей им высокой проводимости — статическое накопление не является проблемой на голых металлических поверхностях — хотя удельное электрическое сопротивление через объем металлов является ключевым измерением свойств для многих приложений.

9.3 Удельное сопротивление и сопротивление — Университетская физика, том 2

Задачи обучения

К концу этого раздела вы сможете:

  • Различия между сопротивлением и удельным сопротивлением
  • Определите термин проводимость
  • Опишите электрический компонент, известный как резистор
  • Укажите взаимосвязь между сопротивлением резистора и его длиной, площадью поперечного сечения и удельным сопротивлением
  • Укажите взаимосвязь между удельным сопротивлением и температурой

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока.Все такие устройства создают разность потенциалов и называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В, , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на свободные заряды, вызывая ток. Величина тока зависит не только от величины напряжения, но и от характеристик материала, через который протекает ток. Материал может сопротивляться потоку зарядов, и мера того, насколько материал сопротивляется потоку зарядов, известна как удельное сопротивление .Это удельное сопротивление грубо аналогично трению между двумя материалами, которые сопротивляются движению.

Удельное сопротивление

Когда к проводнику прикладывается напряжение, создается электрическое поле E → E →, и заряды в проводнике ощущают силу, создаваемую электрическим полем. Полученная плотность тока J → J → зависит от электрического поля и свойств материала. Эта зависимость может быть очень сложной. В некоторых материалах, включая металлы при данной температуре, плотность тока приблизительно пропорциональна электрическому полю.В этих случаях плотность тока можно смоделировать как

где σσ — удельная электропроводность. Электропроводность аналогична теплопроводности и является мерой способности материала проводить или передавать электричество. Проводники имеют более высокую электропроводность, чем изоляторы. Поскольку удельная электропроводность σ = J / Eσ = J / E, единицы равны

. σ = [Дж] [Э] = А / м2В / м = АВ · м. σ = [Дж] [Э] = А / м2В / м = АВ · м.

Здесь мы определяем единицу, называемую ом с греческим символом омега в верхнем регистре, ΩΩ.Устройство названо в честь Георга Симона Ома, о котором мы поговорим позже в этой главе. ΩΩ используется, чтобы избежать путаницы с числом 0. Один Ом равен одному вольту на ампер: 1Ω = 1V / A1Ω = 1V / A. Таким образом, единицы электропроводности равны (Ом · м) -1 (Ом · м) -1.

Электропроводность — это внутреннее свойство материала. Другим внутренним свойством материала является удельное сопротивление или удельное электрическое сопротивление. Удельное сопротивление материала — это мера того, насколько сильно материал противостоит прохождению электрического тока.Символом удельного сопротивления является строчная греческая буква ро, ρρ, а удельное сопротивление — величина, обратная удельной электропроводности:

.

Единицей измерения удельного сопротивления в системе СИ является ом-метр (Ом · м) (Ом · м). Мы можем определить удельное сопротивление через электрическое поле и плотность тока,

Чем больше удельное сопротивление, тем большее поле необходимо для создания заданной плотности тока. Чем ниже удельное сопротивление, тем больше плотность тока, создаваемого данным электрическим полем. Хорошие проводники обладают высокой проводимостью и низким удельным сопротивлением.Хорошие изоляторы обладают низкой проводимостью и высоким удельным сопротивлением. В таблице 9.1 приведены значения удельного сопротивления и проводимости для различных материалов.

Материал Электропроводность, σσ
(Ом · м) −1 (Ом · м) −1
Удельное сопротивление, ρρ
(Ом · м) (Ом · м)
Температура
Коэффициент, αα
(° C) -1 (° C) -1
Проводники
Серебро 6.29 × 1076,29 × 107 1,59 × 10–81,59 × 10–8 0,0038
Медь 5,95 × 1075,95 × 107 1,68 × 10–81,68 × 10–8 0,0039
Золото 4,10 × 1074,10 × 107 2,44 × 10–82,44 × 10–8 0,0034
Алюминий 3,77 × 1073,77 × 107 2,65 × 10–82,65 × 10–8 0,0039
Вольфрам 1,79 × 1071,79 × 107 5.60 × 10–85,60 × 10–8 0,0045
Утюг 1,03 × 1071,03 × 107 9,71 × 10–89,71 × 10–8 0,0065
Платина 0,94 × 1070,94 × 107 10,60 × 10-810,60 × 10-8 0,0039
Сталь 0,50 × 1070,50 × 107 20,00 × 10-820,00 × 10-8
Свинец 0,45 × 1070,45 × 107 22,00 × 10–822,00 × 10–8
Манганин (сплав Cu, Mn, Ni) 0.21 × 1070,21 × 107 48,20 × 10-848,20 × 10-8 0,000002
Константан (сплав Cu, Ni) 0,20 × 1070,20 × 107 49,00 × 10–849,00 × 10–8 0,00003
Меркурий 0,10 × 1070,10 × 107 98,00 × 10-898,00 × 10-8 0,0009
Нихром (сплав Ni, Fe, Cr) 0,10 × 1070,10 × 107 100,00 × 10–8100,00 × 10–8 0,0004
Полупроводники [1]
Углерод (чистый) 2.86 × 1042,86 × 104 3,50 × 10–53,50 × 10–5 -0,0005
Углерод (2,86–1,67) × 10–6 (2,86–1,67) × 10–6 (3,5-60) × 10-5 (3,5-60) × 10-5 -0,0005
Германий (чистый) 600 × 10−3600 × 10−3 -0,048
Германий (1-600) × 10-3 (1-600) × 10-3 -0,050
Кремний (чистый) 2300 −0.075
Кремний 0,1−23000,1−2300 -0,07
Изоляторы
Янтарь 2,00 × 10–152,00 × 10–15 5 × 10145 × 1014
Стекло 10−9−10−1410−9−10−14 109−1014109−1014
Люцит <10-13 <10-13> 1013> 1013
Слюда 10-11-10-1510-11-10-15 1011−10151011−1015
Кварц (плавленый) 1.33 × 10–181,33 × 10–18 75 × 101675 × 1016
Резина (твердая) 10-13-10-1610-13-10-16 1013−10161013−1016
Сера 10-15 10-15 10151015
Тефлон TM <10-13 <10-13> 1013> 1013
Дерево 10-8-10-1110-8-10-11 108−1011108−1011

Стол 9.1 Удельное сопротивление и проводимость различных материалов при 20 ° C [1] Значения сильно зависят от количества и типов примесей.

Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют разную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться.Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.

Проверьте свое понимание 9,5

Проверьте свое понимание Медные провода обычно используются для удлинителей и домашней электропроводки по нескольким причинам.Медь имеет самый высокий рейтинг электропроводности и, следовательно, самый низкий рейтинг удельного сопротивления среди всех недрагоценных металлов. Также важна прочность на разрыв, где прочность на разрыв является мерой силы, необходимой для того, чтобы подтянуть объект к точке, где он сломается. Прочность материала на разрыв — это максимальная величина растягивающего напряжения, которое он может выдержать перед разрушением. Медь имеет высокий предел прочности на разрыв, 2 × 108 Нм22 × 108 Нм2. Третья важная характеристика — пластичность. Пластичность — это мера способности материала вытягиваться в проволоку и мера гибкости материала, а медь обладает высокой пластичностью.Подводя итог, можно сказать, что проводник является подходящим кандидатом для изготовления проволоки, по крайней мере, с тремя важными характеристиками: низким удельным сопротивлением, высокой прочностью на разрыв и высокой пластичностью. Какие еще материалы используются для электромонтажа и в чем преимущества и недостатки?

Температурная зависимость удельного сопротивления

Вернувшись к Таблице 9.1, вы увидите столбец «Температурный коэффициент». Удельное сопротивление некоторых материалов сильно зависит от температуры. В некоторых материалах, таких как медь, удельное сопротивление увеличивается с повышением температуры.Фактически, в большинстве проводящих металлов удельное сопротивление увеличивается с повышением температуры. Повышение температуры вызывает повышенные колебания атомов в решетчатой ​​структуре металлов, которые препятствуют движению электронов. В других материалах, таких как углерод, удельное сопротивление уменьшается с повышением температуры. Во многих материалах зависимость является приблизительно линейной и может быть смоделирована с помощью линейного уравнения:

ρ≈ρ0 [1 + α (T − T0)], ρ≈ρ0 [1 + α (T − T0)],

9,7

, где ρρ — удельное сопротивление материала при температуре T , αα — температурный коэффициент материала, а ρ0ρ0 — удельное сопротивление при T0T0, обычно принимаемое как T0 = 20.00 ° CT0 = 20,00 ° C.

Отметим также, что температурный коэффициент αα для полупроводников, перечисленных в Таблице 9.1, отрицателен, что означает, что их удельное сопротивление уменьшается с увеличением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения ρρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление

Теперь рассмотрим сопротивление провода или компонента.Сопротивление — это мера того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.

Для расчета сопротивления рассмотрим участок проводящего провода с площадью поперечного сечения A , длиной L и удельным сопротивлением ρ.ρ. Батарея подключается к проводнику, обеспечивая на нем разность потенциалов ΔVΔV (Рисунок 9.13). Разность потенциалов создает электрическое поле, которое пропорционально плотности тока, согласно E → = ρJ → E → = ρJ →.

Фигура 9,13 Потенциал, обеспечиваемый батареей, прикладывается к сегменту проводника с площадью поперечного сечения A и длиной L .

Величина электрического поля на отрезке проводника равна напряжению, деленному на длину, E = V / LE = V / L, а величина плотности тока равна току, деленному на поперечную площадь сечения, J = I / A.J = I / A. Используя эту информацию и вспоминая, что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:

E = ρJVL = ρIAV = (ρLA) I.E = ρJVL = ρIAV = (ρLA) I.

Сопротивление

Отношение напряжения к току определяется как сопротивление R :

Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, разделенную на площадь:

R≡VI = ρLA.R≡VI = ρLA.

9.9

Единица измерения сопротивления — ом, ОмΩ. Для заданного напряжения чем выше сопротивление, тем ниже ток.

Резисторы

Обычным компонентом электронных схем является резистор. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения. На рисунке 9.14 показаны символы, используемые для резистора в принципиальных схемах цепи. Два широко используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC).Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что упрощает чтение.

Фигура 9,14 Обозначения резистора, используемого в принципиальных схемах. (а) символ ANSI; (b) символ IEC.

Зависимость сопротивления от материала и формы

Резистор можно смоделировать как цилиндр с площадью поперечного сечения A и длиной L , изготовленный из материала с удельным сопротивлением ρρ (Рисунок 9.15). Сопротивление резистора R = ρLAR = ρLA.

Фигура 9.15 Модель резистора в виде единого цилиндра длиной L и площадью поперечного сечения A . Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше его площадь поперечного сечения A , тем меньше его сопротивление.

Наиболее распространенным материалом для изготовления резистора является углерод.Углеродная дорожка намотана на керамический сердечник, к нему прикреплены два медных провода. Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка сделана из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным. Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на рисунке 9.16.

Фигура 9,16 Многие резисторы имеют вид, показанный на рисунке выше.Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора. Третий цвет — множитель. Четвертый цвет обозначает допуск резистора. Показанный резистор имеет сопротивление 20 × 105 Ом ± 10% 20 × 105 Ом ± 10%.

Сопротивление может быть разным. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 1012 Ом 10 12 Ом или более. Сопротивление сухого человека может составлять 105 Ом 105 Ом, в то время как сопротивление человеческого сердца составляет около 103 Ом 103 Ом.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10-5 Ом10-5 Ом, а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.

Пример 9,5

Плотность тока, сопротивление и электрическое поле для токоведущего провода
Рассчитайте плотность тока, сопротивление и электрическое поле медного провода длиной 5 м и диаметром 2.053 мм (калибр 12), пропускающий ток I = 10 мА I = 10 мА.
Стратегия
Мы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, которая составляет A = 3,31 мм2, A = 3,31 мм2, и определив плотность тока J = IAJ = IA. Сопротивление можно найти, используя длину провода L = 5,00 м L = 5,00 м, площадь и удельное сопротивление меди ρ = 1,68 × 10–8 Ом · мρ = 1,68 × 10–8 Ом · м, где R = ρLAR = ρLA. Удельное сопротивление и плотность тока можно использовать для определения электрического поля.
Решение
Сначала рассчитываем плотность тока: J = IA = 10 × 10−3A3.31 × 10−6m2 = 3,02 × 103Am2.J = IA = 10 × 10−3A3,31 × 10−6m2 = 3,02 × 103Am2.

Сопротивление провода

R = ρLA = (1,68 × 10–8 Ом · м) 5,00 м3,31 × 10–6 м2 = 0,025 Ом. R = ρLA = (1,68 × 10–8 Ом · м) 5,00 м3,31 × 10–6 м2 = 0,025 Ом.

Наконец, мы можем найти электрическое поле:

E = ρJ = 1,68 × 10–8 Ом · м (3,02 × 103Am2) = 5,07 × 10–5Vm. E = ρJ = 1,68 × 10–8 Ом · м (3,02 × 103Am2) = 5,07 × 10–5Vm.
Значение
Исходя из этих результатов, неудивительно, что медь используется для проводов, проводящих ток, потому что сопротивление довольно мало. Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.

Сопротивление объекта также зависит от температуры, поскольку R0R0 прямо пропорционально ρ.ρ. Для цилиндра мы знаем, что R = ρLAR = ρLA, поэтому, если L и A не сильно изменяются с температурой, R имеет такую ​​же температурную зависимость, что и ρ.ρ. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ.) ρ.) Таким образом,

R = R0 (1 + αΔT) R = R0 (1 + αΔT)

9.10

— это температурная зависимость сопротивления объекта, где R0R0 — исходное сопротивление (обычно принимаемое равным 20,00 ° C) 20,00 ° C), а R — сопротивление после изменения температуры ΔT.ΔT. Цветовой код показывает сопротивление резистора при температуре T = 20,00 ° CT = 20,00 ° C.

Многие термометры основаны на влиянии температуры на сопротивление (рисунок 9.17). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Фигура 9,17 Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.

Пример 9,6

Расчет сопротивления
Хотя следует соблюдать осторожность при применении ρ = ρ0 (1 + αΔT), ρ = ρ0 (1 + αΔT) и R = R0 (1 + αΔT) R = R0 (1 + αΔT) для температурных изменений более 100 ° C 100 ° C , для вольфрама уравнения достаточно хорошо работают при очень больших изменениях температуры.Вольфрамовая нить накала при 20 ° C20 ° C имеет сопротивление 0,350 Ом 0,350 Ом. Каким будет сопротивление при повышении температуры до 2850 ° C 2850 ° C?
Стратегия
Это прямое применение R = R0 (1 + αΔT) R = R0 (1 + αΔT), поскольку исходное сопротивление нити накала задается как R0 = 0,350ΩR0 = 0,350Ω, а изменение температуры составляет ΔT = 2830 ° CΔT. = 2830 ° С.
Решение
Сопротивление более горячей нити накала R получается путем ввода известных значений в приведенное выше уравнение: R = R0 (1 + αΔT) = (0.350 Ом) [1+ (4,5 × 10−3 ° C) (2830 ° C)] = 4,8 Ом.R = R0 (1 + αΔT) = (0,350 Ом) [1+ (4,5 × 10−3 ° C) ( 2830 ° C)] = 4,8 Ом.
Значение
Обратите внимание, что сопротивление изменяется более чем в 10 раз, когда нить накала нагревается до высокой температуры, а ток через нить зависит от сопротивления нити и приложенного напряжения. Если нить накаливания используется в лампе накаливания, начальный ток через нить накала при первом включении лампы будет выше, чем ток после того, как нить накала достигнет рабочей температуры.

Проверьте свое понимание 9,6

Проверьте свое понимание Тензодатчик — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги. Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?

Пример 9,7

Сопротивление коаксиального кабеля
Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов.Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения. Коаксиальные кабели состоят из внутреннего проводника с радиусом riri, окруженного вторым внешним концентрическим проводником с радиусом roro (рисунок 9.18). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки.Определите сопротивление коаксиального кабеля длиной L .

Фигура 9,18 Коаксиальные кабели состоят из двух концентрических жил, разделенных изоляцией. Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.

Стратегия
Мы не можем напрямую использовать уравнение R = ρLAR = ρLA. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной dr и интегрируем.
Решение
Сначала мы находим выражение для dR , а затем интегрируем от riri до roro, dR = ρAdr = ρ2πrLdr, R = ∫rirodR = ∫riroρ2πrLdr = ρ2πL∫riro1rdr = ρ2πLlnrori.dR = ρAdr = ρ2πrLdr, R = ∫rirodR = ∫riroρ2πrLdr = ρ2πL∫riro1rdr = ρ2πLlnrori.
Значение
Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника. Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *