Страничка эмбеддера » Трансформатор тока
Иногда нужно узнать – какой ток течет в электрической цепи. Если ток небольшой, для этого можно использовать простой резистор. Если-же ток достигает неприличных величин (к примеру, как в трансформаторах Тесла), приходится искать другие методы измерения. Один из таких методов – использование трансформатора тока.
Что это такое?
Трансформатор тока, для краткости будем называть его ТТ, используется повсеместно. К примеру, в электросчетчиках и на подстанциях. Мы-же будем рассматривать то, как его можно использовать для измерения тока в импульсных источниках питания – сварочных аппаратах, трансформаторах Тесла итп. Стоит сразу обратить внимание, что с помощью ТТ можно измерять только переменный ток, но никак не постоянный!
Итак, ТТ позволяет нам измерять очень большой ток. Чем-же ТТ отличается от обычного трансформатора? А вот ничем! Название придумали из-за области применения и характерной конструкции – катушка на тороидальном сердечнике, через которую пропущен провод.
ТТ преобразует проходящий через него ток в пропорциональное напряжение. К примеру, если через трансформатор проходит 100А, то он выдает 1В, а если проходит 200А, то на выходе мы получим 2В.
Основные соотношения
Проделав нехитрые математические выкладки, можно убедиться, что для токов в обмотках ТТ с очень большим коэффициентом трансформации по напряжению и с короткозамкнутой вторичной обмоткой действует такой закон для тока в обмотках:
Для того, чтобы преобразовать ток в напряжение, используют обычный резистор. Типичная схема включения ТТ:
Напряжение, падающее на резисторе R, согласно закону Ома, равно E=IR. Таким образом, зависимость выходного напряжения ТТ от тока определяется простым выражением:
К примеру, рассмотрим трансформатор Тесла, где через ТТ течет ток в 500А. Если у нас 1 виток в первичной обмотке ( да, просто пропущенный через кольцо провод считается за один виток), а во вторичной обмотке — 1000 витков, то ток во вторичной обмотке окажется равным 0.5А. Если мы возьмем сопротивление R1 = 2ом, то при полном токе на нем будет падать 1вольт.
Просто? Еще-бы!
Применения
Раз мы уже знаем, что такое токовый трансформатор, давайте подумаем куда его можно всунуть. Кроме того, что можно измерять большие токи, можно еще строить автогенераторы с обратной связью по току. Практически все DRSSTC являются именно такими. Можно также организовывать защиту от превышения тока, без такой защиты большинство импульсных блоков питания являются ”живыми мертвецами”.
Запаздывание по фазе
Для автогенераторного применения важна еще одна характеристика ТТ – задержка сигнала.
Запаздывание сигнала может произойти из-за таких факторов
Индукция рассеяния ТТ вместе с выходным резистором образует ФНЧ.
Межвитковая емкость в ТТ может стать причиной сдвига фазы.
Для анализа обоих этих ситуация, я набросал простую модель в SWCad’е.
Для предыдущего примера с трансформатором Тесла, возьмем сердечник R25.3 из материала N87 фирмы Epcos. В качестве паразитной емкости, возьмем 1нФ. Не спрашивайте, откуда такая емкость. Мне она кажется значительно большей, чем может возникнуть в любой реальной ситуации. Модель выглядит так:
Результаты симуляции при к. связи = 1
К. связи = 0.5
Как видно, отличаются только амплитуды. Сигнала. Никакого запаздывания нет в обоих случаях. Такое поведение сохраняется вплоть до очень высоких частот и до очень маленьких коэффициентов связи. Таким образом, можно сделать вывод, что фаза сигнала практически не зависит от паразитных параметров.
Каскадирование токовых трансформаторов
Люди всегда были ленивыми. Некоторым лениво встать из-за компа, а некоторым – мотать тысячи витков в ТТ. Поэтому придумали соединять трансформаторы последовательно. Решение спорное, и поэтому попробуем его проанализировать при помощи того-же симулятора. Включим последовательно два трансформатора на том-же сердечнике с обмоткой по 33 витка на каждом. Замечу, что паразитная емкость в каждом из трансформаторов сильно уменьшилась, что не удивительно.
Результаты симуляции очень похожи на одиночный трансформатор. Никакого запаздывания нет. Только амплитуда становится немного менее предсказуемая – она определяется произведением коэффициентов связи в обоих трансформаторах.
Вывод – в подавляющем большинстве случаев можно применять несколько ТТ, включенных последовательно.
Прямоугольный выходной сигнал
Часто необходимо получить прямоугольный выходной сигнал из синусоиды, выдаваемой ТТ. Конечно, это можно сделать с помощью компаратора, однако быстродействующие компараторы дороги и требуют особых навыков от разработчика. Проще собрать следующую, уже почти ставшую стандартом, схему:
Для чего такие сложности? Стабилитроны – очень медленные устройства. Для повышения быстродействия ограничителя, к ним добавлены диоды Шоттки. Когда напряжение меняет полярность – диоды Шоттки быстро закрываются и не дают стабилитронам испортить сигнал. Такой ограничитель выдает сигнал +-5 вольт. Замечу, что сигнал нужно обязательно ограничивать симметрично, иначе произойдет сдвиг фазы.
Далее идет диодная “вилка” которая защищает вход последующей микросхемы от пробоя отрицательным напряжением.
Диодную вилку нельзя поставить сразу после ТТ, потому, как выбросы из силовой части преобразователя попадут в чувствительные цепи управляющей электроники.
Конструкция
Заметьте, что ТТ работает как источник тока, и чем больше витков вы намотаете, тем ближе ТТ будет к идеальному источнику тока и тем точнее будут показания. Также, чем больше витков, тем меньше ток течет через резистор, а значит, уменьшается рассеиваемая на нем мощность. Именно предельная мощность на резисторе обычно является определяющим факторов для количества витков в любительских конструкциях.
Для того, чтобы сделать коэффициент трансформации побольше, первичную обмотку обычно делают всего из одного витка, а во вторичной мотают порядка тысяч.
Проблема насыщения сердечника очень редко проявляется в токовых трансформаторах. Что такое насыщение и как с ним бороться, можно прочитать в статье о GDT.
Чем больше проницаемость сердечника, тем больше к. связи и точнее показания, однако больше становится и паразитная индуктивность, добавляемая в измеряемые цепи. Это часто нежелательно. На практике, в качестве сердечника для ТТ может использоваться практически любой феррит, работающий на необходимой частоте. Для низкочастотных применений используют обычное трансформаторное железо.
В качестве проволоки для вторичной обмотки стоит выбирать проволоку с наибольшим возможным сечением – так уменьшается погрешность измерения.
Промышленные ТТ
Естественно, промышленность выпускает громаднейший ассортимент токовых трансформаторов. Они хорошо настроены и могут быть использованы для точных измерений. Естественно, есть проблемы с доставабельностью в неэпических количествах. К примеру, в киеве, несколько ТТ я видел в магазине “радиомаг”
http://www.rcscomponents.kiev.ua/modules.php?name=Asers_Shop&s_op=viewproduct&cid=236
Еще почитать
К моему удивлению, материалов по ТТ очень мало. Но википедия, все-же, знает, что это такое.
http://ru.wikipedia.org/wiki/Трансформатор_тока
Привенение ТТ в электросчетчиках. Там-же описывается немного теории.
http://www.eltranstech.ru/aspect.php
Чем отличается трансформатор тока от трансформатора напряжения и их назначение
Содержание:
Трансформаторы тока
Чтобы понять, чем отличается трансформатор тока от трансформатора напряжения, необходимо знать особенности первого и второго устройства. Трансформаторы тока созданы — в первую очередь — как измерительные или же защитные приборы.
- Защитные трансформаторы
Основную функцию данных трансформаторов легко понять. Они строго «следят» за тем, чтобы каждый, кто залез в электрическую сеть, не получил смертельный удар. Отличительной особенностью является строгое контролирование. В самой электрической системе для комфортной работы приборов поддерживается очень высокое напряжение. Однако любая техника рано или поздно может дать сбой, поэтому обязательно нужно оставить окно, через которое специалисты-ремонтники смогут проверять состояние сети, проводить профилактические работы. Происходит это за счет трансформатора тока, который в определенном месте дает максимально безопасный доступ.
- Измерительные трансформаторы
Измерительные трансформаторы представляют собой особые приборы. Основная их задача — преобразовывать переменный ток, в итоге получается такой же переменный, но уже с допустимыми для измерения значениями. С помощью данного устройства можно подключить к цепи вольтметр, амперметр или любой другой измерительный прибор.
Также имеется дополнительная функция — возможность подключить любую технику, не испортив ее, а также получить максимально точный и правильный результат измерений (иногда даже десятые доли могут радикально изменить картину).
Независимо от конкретного типа основная особенность трансформатора тока заключается в особой точности, а также в возможности образовывать некоторую необходимую безопасную изоляцию.
Трансформаторы напряжения ↑
Трансформаторы тока и напряжения имеют разное предназначение.
Вторые созданы для изменения напряжения с высокого на низкое и наоборот. Это отличный способ «подогнать» определенную электрическую сеть под нужный стандарт.
Подобные трансформаторы позволяют достичь необходимого уровня безопасности, предотвратить огромное количество чрезвычайных происшествий, спасти жизни и здоровье людей, а также оставить огромное количество приборов исправными.
Мало кто знает, что трансформаторы напряжения присутствуют практически в каждом приборе для того, чтобы защитить его от внезапного повышения напряжения, например, при ударе молнии или же в случае нарушения правил эксплуатации.
Основное отличие ↑
Основное отличие этих двух трансформаторов (напряжения и тока) заключается именно в их предназначении и функциях, которые они надежно выполняют.
Основная задача устройства для тока состоит в защите или в обеспечении точности, которая просто необходима для различных измерений или же любого обслуживания электрических сетей как в конкретном месте, так и в комплексе.
Назначение же трансформатора напряжения связано не с проверками и измерениями и даже не с ремонтом и профилактикой, а непосредственно с эксплуатацией. Невозможно запустить сеть без данного аппарата. Обязательно нужно преобразовывать напряжение с пониженного на повышенное. Именно с помощью подобных трансформаторов можно использовать везде универсальную электрическую сеть, ток в которой изменяется данным аппаратом и подходит под любую технику, будь то бытовые приборы или же устройства промышленного назначения.
Также стоит отдельно отметить опасность каждого трансформатора. Угрожает безопасности отсутствие или неработоспособность устройства, регулирующего напряжение: если неожиданно единица измерения повысится в большую сторону, то могут быть очень серьезные последствия, которые чреваты разнообразными трагедиями — от пожаров до других бедствий. Также отсутствие изоляции угрожает ремонтникам, а отсутствие точных измерений может нарушить работу; но слишком серьезных последствий практически невозможно добиться.
Предназначение в электрической сети ↑
Присутствие и одного, и другого трансформатора в электрической сети незаменимо. Трансформатор напряжения встречается практически везде. Он может быть встроен в каждый бытовой прибор. Обязательно находится в общедомовой сети, не говоря уже о более серьезных промышленных объектах. Отличительной особенностью работы трансформатора тока является то, что он не нужен на каждом мелком объекте, он подходит для достаточно крупных предприятий, куда подводится сеть очень большой мощности. Настолько большой, что необходима дополнительная изоляция даже для того, чтобы просто измерить все величины.
Не стоит путать эти трансформаторы, это может иметь очень печальные последствия. Нужно грамотно разбираться в данной технике для того, чтобы устанавливать и ремонтировать ее, правильно пользоваться и знать все опасности.
Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения диагностики трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!
Если хотите заказать диагностику трансформаторов или задать вопрос, звоните по телефону: +7 (495) 181-50-34.
Встроенные трансформаторы тока трансформаторов
Трансформаторы тока (ТТ) предназначены для контроля и измерения токов в электрических цепях . Первичная обмотка ТТ включается последовательно в контролируемую цепь; вторичная обмотка вырабатывает ток, пропорциональный первичному, в соответствии с требуемым коэффициентом трансформации. Цепь вторичной обмотки замыкается либо на измерительные приборы, либо на устройства контроля и защиты электрических цепей.
В ТТ, предназначенных для установки в цепях высокого напряжения, первичная обмотка изолирована от вторичной на полное рабочее напряжение. Вторичная обмотка ТТ обычно заземляется и имеет нулевой потенциал. Это позволяет контролировать параметры сети приборами низкого напряжения, доступными для непосредственного наблюдения обслуживающим персоналом.
Встроенные ТТ используются в качестве элементов других устройств, в частности трансформаторов. Встроенные ТТ трансформаторов устанавливаются на вводах ВН или СН. Встроенные ТТ трансформаторов имеют только вторичную обмотку — функции первичной обмотки здесь выполняет токоведущий элемент линейного ввода (отвода), который охватывается встроенным трансформатором тока.
Конструктивно ТТ состоит из обмотки, намотанной на кольцевой магнитопровода, и имеющей отпайки, соответствующие различным коэффициентам трансформации.
Рис. 3. Установка трансформаторов тока в адаптерах: 1 — корпус адаптера; 2 — трансформатор тока; 3 — распорные клинья; 4 — крышка адаптера; 5 — ввод; 6— фланец адаптера для установки ввода; 7— болты крепления ввода; 8 — фланец адаптера крепления к крышке бака; 9 — коробка зажимов обмотки ТТ; 10 — перегородка; 11 — отводы; 12 — лючок; 13 — сальник; 14— крышка бака трансформатора; 15 — фланец; 16 — люк адаптера к клеммнику.
Встраиваемые в силовые трансформаторы ТТ предназначены для номинальных напряжений 35; 110; 220; 330; 500; 750; 1150 кВ. При этом вторичный ток является заданной величиной. Наиболее употребительным является вторичный ток 5А; другими употребляемыми вторичными токами являются 2,5 А, 10 А, 1 А. В основном, применяются ТТ на следующие номинальные первичные токи при следующих коэффициентах трансформации (табл. 1).
Для обеспечения необходимой точности измерений и надежной работы максимальных и дифференциальных защит, применяемых в 3-фазных сетях, требуется определенная идентичность параметров трансформаторов тока и нормирование их токовых и угловых погрешностей. Согласно ГОСТ 7746—89, разность между абсолютными значениями первичного и вторичного тока характеризует токовую погрешность; угловая погрешность определяется углом между векторами первичного и вторичного токов ТТ.
Требования к точности ТТ, работающих в схемах максимальных защит, обычно невысоки (класса точности 3). Дифференциальная защита должна срабатывать при авариях внутри защищаемого участка или элемента, и не должна срабатывать при аварии за пределами этого участка. Требования к точности ТТ дифференциальных защит выше, их характеристики должны быть идентичными, чтобы исключить возникновение при сквозных токах короткого замыкания токов небаланса во вторичной цепи за счет неодинаковых токовых и угловых погрешностей.
Таблица 1
Номинальный первичный ток, А | Первичный ток при различных коэффициентах трансформации, А |
300 | 100-150-200-300 |
600 | 200-300-400-600 |
1000 | 400-600-750-1000 |
1500 | 500-750-1000-1500 |
2000 | 1000-1500-2000 |
3000 | 1000-1500-2000-3000 |
4000 | 1000-2000-3000-4000 |
6000 | 6000 |
12 000 | 12 000 |
Таблица 2
Класс точности | Первичный ток, % номинального | Предельное значение | Пределы вторичной нагрузки, % ном, cos φ 0,8 | |
Токовой погр., % | Угловой погр., мин | |||
0,5 | 10 20 100-120 | ±1,00 ±0,75 ±0,50 | ±60 ±45 ±30 | 25-100 |
1 | 10 20 100-120 | ±2,00 ±1,50 ±1,00 | ±120 ±90 ±60 | 25-100 |
3 | 50-120 | ±3,00 | Не нормируется | 50-100 |
10 |
| ±10,00 |
|
|
Для ТТ установлены номинальные классы точности 0,5; 1; 3; 10, характеризующие предельные погрешности ТТ при различных значениях первичного тока и заданном токе вторичной обмотки.
Предельные значения погрешностей ТТ для различных классов точности приведены в табл. 2.
В обозначениях ТТ, предназначенных для дифференциальной защиты, вместо класса точности указывается буква Д. Каждый новый тип ТТ классов точности 0,5 и 1 для питания измерительных приборов проходит государственные испытания. Перед монтажом ТТ на трансформаторе, каждый из них подвергается испытаниям в объеме, согласно требованиям НТД.
Во время работы ТТ его вторичные обмотки всегда должны быть замкнуты на приборы или, в противном случае — закорочены.
Чем отличается трансформатор тока от трансформатора напряжения: разница, особенности
Настолько ли важно знать: чем отличаются трансформаторы тока от трансформаторов напряжения? На практике при проведении замеров, в том числе радиолюбительской, должна решаться задача изолирования (отделения) измерительного прибора и самого себя от цепей с высоким электрическим потенциалом. Нередко требуется понизить ↔ повысить напряжение переменного тока, согласовать выходное сопротивление каскадов с нагрузкой, сделать гальваническую развязку от питающей сети
Разберемся в определениях
С первой задачей успешно справляются трансформаторы тока (ТТ), а все последующие решают трансформаторы напряжения (ТН).
Преобразователи тока предназначены для изменения I2 во вторичной обмотке. Во вторичке протекает тот же переменный ток, только с комфортными (безопасными) для проведения измерений значениями. Существуют измерительные, защитные и лабораторные исполнения, специально предназначенные для подключения в электрическую цепь приборов с высоким импедансом токовых катушек.
Преобразователи напряжения меняют U2 на низкое или, наоборот, его повышают. Это отличный способ «подгонки» электрической сети под стандарт электроприемника. Электрическая мощность с высоким КПД способом электромагнитной индукции передается с первичной обмотки в нагрузку электроприемника.
Трансформатор напряжения
Номенклатура изделий ТН очень разнообразна. Существует много позиций 5-ти типов изделий, отличающихся по своему назначению.
Силовой
В бытовой технике наиболее широко применяется силовой вид устройств, предназначенных для питания от сети 220В 50Гц. Это классические устройства, состоящие из W1 и одной или нескольких обмоток W2 на железном сердечнике. В зависимости от конфигурации магнитопровода бывают стержневые, кольцевые и тороидальные силовые ТН.
Измерительный
Этот аппарат аналогичен по принципу исполнения силовому, только рассчитан на подключение измерительных приборов, реле защиты и автоматики. Он позволяет использовать стандартные измерительные приборы для замеров высокого напряжения без вмешательства в конструктив.
Согласующий
Тип СТ согласовывает импеданс источника сигнала с импедансом нагружаемого каскада. Изделия подобного типа служат для согласования различных узлов в широком диапазоне частот (НЧ, СВЧ).
Лабораторный
Эти устройства задействуются для проведения различных экспериментов, отладки РЭА, активно используются в радиолюбительстве. Они представляют ступенчатые регуляторы U. В отличие от ЛАТРа, достойной альтернативой которому является, устройство имеет гальваническую развязку от сети 220В, 50 В.
Высоковольтный
Представляет однофазное и трехфазное электромагнитное устройство в открытом или литом блочном исполнении. Обычно номинальная мощность устройства ≤ 600 кВА, входное U1 не превышает 20 кВ, а выходное U2 ≤ 15 кВ.
Трансформатор тока
ТТ – это преобразователь тока, состоящий из первичной катушки, подключенной к источнику тока, а также вторичной, соединенной с нагрузкой. ТТ используется для подключения приборов и устройств с малым внутренним сопротивлением.
Измерительные
Измерительные аппараты преобразовывают уровень I в удобное для проведения замеров значение. Обмотка W1 включается в разрыв измеряемой цепи АС, а к вторичке W2 подключаются измерительные приборы. Полученное значение параметра пересчитывается и приводится к значению первичной катушки.
Защитные
Защитные или быстронасыщающиеся трансформаторы (БННТ) отличаются от измерительных аналогов высокой индукцией в сердечнике, даже при номинальном токе. Поэтому при сравнительно небольшом росте рабочего тока они входят в насыщение, защищая подключаемые к W2 приборы от пробоя сверхтоком. БННТ обычно применяются в средствах релейной защиты.
Лабораторные
Измерительные ТТ с высоким классом точности. Особенностью аппарата является наличие нескольких отпаек от витков с разными коэффициентами трансформации. Они позволяют снимать показания измерительными приборами с разными входными сопротивлениями.
Ключевое отличие ТТ от ТН
Трансформаторы I по конструктиву значительно отличаются от трансформаторов U. По внешнему виду ТН ассоциируется с трансформатором в общепринятом понимании, то есть с многовитковой первичной и вторичной обмоткой. ТТ больше напоминает дроссель ввиде W2, одетой на провод большого сечения.
Первичная обмотка может состоять не из нескольких, а из одного неполного витка на магнитопроводе.
Назначение
Преобразователи U предотвращают массу происшествий с техникой по причине девиаций параметров сети: порчи от низкого вольтажа или экстремально высокого U2. Тем самым они увеличивают степень безопасности и предотвращают порчу приборов от нестабильных параметров электропитания, поскольку в трансформаторных блоках питания СБТ рабочее напряжение снижается в несколько раз.
Разница заключается в том, что преобразователи I сконструированы под измерительную аппаратуру или выступают в качестве защитного устройства.
Место в электрической цепи
ТТ в основном они применяются для понижения I до величины, пригодной для измерения. Они используются в тех местах локализации проводников, где требуется определить значение силы переменного тока. Подключение первичной обмотки производится в разрыв цепи, а вторичную катушку электромагнитного устройства подключают к эталонному резистору с известным номиналом.
С помощью амперметра и вольтметра производят замеры параметров, которые после несложного пересчета дают значение искомой силы тока в первичной обмотке. ТТ используют в силовых распределительных щитах, электрических счетчиках, устройствах релейной защиты.
Различие по месту в электрической цепи
ТТ от ТН связано с применением последних аппаратов в качестве:
- гальванической развязки цепей с высоким напряжением от каскадов с низким вольтажом;
- повышающих или понижающих напряжение устройств;
- устройств согласования каскадов с разным импедансом.
ТН применяются как в качестве мощных трансформаторов подстанций и промышленных объектов, так и среднемощного электросварочного оборудования, блоков питания СБТ и маломощных бытовых электроприемников.
Режим работы
Благоприятным режимом работы ТН является режим, приближенный к холостому ходу, тогда нагрузка на выходную катушку минимальная. Оптимальным сопротивлением нагрузки ТН считается та, которая равна или до 1,5 раз больше сопротивления вторичной обмотки.
Напротив, ТТ нельзя включать без нагрузки во вторичной обмотке. Потому что при «бесконечном» сопротивлении на ней будет очень высокое (теоретически «бесконечное») напряжение, способное вызвать пробой изоляции и вывести аппарат из строя.
Трансформаторы тока (ТТ) встроенные | Контрольные и сигнальные устройства трансформаторов
Страница 5 из 5
ГОСТ 11677-75 устанавливает, что силовые трансформаторы должны обязательно снабжаться встроенными ТТ. При этом вторичные токи ТТ должны быть одинаковыми. На каждой фазе силового трансформатора один ТТ предназначен для подключения приборов измерения, а другой — приборов защиты; ТТ устанавливают на вводах стороны ВН, а в трехобмоточных трансформаторах с обмоткой СН классов напряжения 35 кВ и выше — также на стороне СН. Трансформаторы классов напряжения ниже 110 кВ мощностью 2,5 MB-А и более, а также класса напряжения 110 кВ мощностью менее 6,3 MB-А снабжаются встроенными ТТ, если это специально оговаривается ГОСТ или ТУ.
Рис. 14. Встроенный ТТ типа ТВТ.
1 — кольцевой сердечник из рулонной холоднокатаной электротехнической стали; 2— обмотка; 3 — изоляционный каркас; 4 — гетинаксовые клинья; 5 — выводы обмотки.
Номинальный первичный ток ТТ, устанавливаемых на линейных вводах обмоток класса напряжения 110 кВ и выше силовых трансформаторов, обычно принимается трехкратным по отношению к номинальному току трансформатора с округлением до ближайшего большего значения. На нейтральных вводах трансформаторов устанавливают ТТ на номинальный первичный ток 600 А. В нейтраль обмотки СН класса напряжения 35 кВ ТТ не встраивают. Во встроенных ТТ номинальный вторичный ток равен 1 или 5 А.
Встроенный ТТ (рис. 14) представляет собой кольцевой сердечник 1 из электротехнической стали с наложенной на него вторичной обмоткой 2. Сердечник и об- мотка имеют маслостойкую изоляцию, способную длительное время работать в горячем трансформаторном масле. Изоляция 3 между обмоткой и сердечником выдерживает испытательное напряжение 2 кВ в течение 1 мин. Первичной обмоткой ТТ является токоведущий элемент ввода или отвод силового трансформатора. Сверху и снизу на сердечнике установлены гетинаксо- вые клинья 4, служащие для закрепления ТТ и придания ему необходимой жесткости. На ТТ нанесена надпись «Верх», определяющая его положение. На боковой поверхности ТТ установлен щиток с его техническими данными и обозначением расположения выводов 5 обмотки 2.
Вторичная обмотка ТТ может иметь несколько секций с отпайками, соответствующими различным коэффициентам трансформации. Подключение ТТ допускается лишь к одной секции. Предназначены ТТ для длительной работы при температуре окружающего воздуха от —40°С (эпизодически —45°С) до +40°С. Встраиваемые в силовые трансформаторы ТТ рассчитаны на номинальные напряжения 35; 110; 150; 220; 330 и 500 кВ. В основном применяют ТТ на следующие номинальные первичные токи: 300, 600; 1000; 1500; 2000; 3000; 4000; 6000 и 12 000 А. Ступени трансформации следующие:
Номинальный первичный ток, А
300 600 1000 1500 2000 3000 4000 6000 12 000
Первичный ток при различных коэффициентах трансформации, А
100—150—200—300 200—300—400—600 400—600—750—1000 500—750—1000—1500 1000—1500—2000 1000— 1500—2000—3000 1000—2000—3000—4000 6000 12 000
Для ТТ установлены номинальные классы точности 0,5; 1; 3 и 10, характеризующие предельные погрешности ТТ при различных значениях первичного тока и заданной вторичной нагрузке. Цифра, обозначающая класс точности, соответствует предельно допустимому значению токовой погрешности при номинальном первичном токе. Класс точности необходимо учитывать для тех ТТ, вторичная обмотка которых предназначена для подключения измерительных приборов. Для ТТ, предназначенных для дифференциальной защиты, вместо класса точности указывается буква Д.
Предельную кратность /Сю (наибольшее отношение первичного тока к его номинальному значению, при котором полная погрешность при заданной вторичной нагрузке не превышает 10%) необходимо учитывать для тех ТТ, вторичная обмотка которых предназначена для подключения приборов релейной защиты. Предельная кратность — это основная характеристика защитных ТТ, которая определяет четкость и надежность работы защитных приборов в момент протекания тока короткого замыкания (КЗ). Для обеспечения нормальной работы защиты ТТ выбираются с таким расчетом, чтобы гарантируемая предприятием-изготовителем их предельная кратность при заданной вторичной нагрузке была выше наибольшей кратности сквозного тока КЗ. Предельная кратность проверяется при типовых испытаниях ТТ по схеме, установленной ГОСТ 7746-68.
Таблица 1
Класс точности | Первичный ток, % номинального | Предельное значение | Пределы вторичной нагрузки % номинальной, при COS <ра=0,8 | |
токовой погрешности, % | угловой погрешности, мин | |||
0,5 | 10 20 100—120 | + 1,0 | +60 +45 ±30 | 25—100 |
1 | 10 20 100—120 | ±2,0 +1,5 ±1.0 | +120 | 25—100 |
3 | 50-120 | ±3,0 | Не нормируется | 50—100 |
10 | ±10 |
Предельные значения погрешностей ТТ для различных классов точности приведены в табл. 1.
Токовая погрешность — это разность между вторичным током и приведенным ко вторичной цепи первичным током, выраженная в процентах приведенного ко вторичной цепи первичного тока.
Угловая погрешность — это угол между векторами первичного и вторичного токов. Угловая погрешность считается положительной, когда вектор вторичного тока опережает вектор первичного тока.
Номинальная вторичная нагрузка ТТ — это полное сопротивление его внешней вторичной цепи, выраженное в омах при коэффициенте мощности 0,8. Вторичная нагрузка может характеризоваться также кажущейся мощностью в вольт-амперах, потребляемой ею при коэффициенте мощности 0,8 и при номинальном вторичном токе. У ТТ, встраиваемых в силовые трансформаторы, номинальная вторичная нагрузка находится в пределах 10—75 В-А.
Изоляция вторичных обмоток ТТ должна выдерживать в течение 1 мин испытательное напряжение, равное 2 кВ. Его прикладывают между каждой из вторичных обмоток, замкнутой накоротко, и заземленными частями, к которым присоединяются замкнутые накоротко прочие обмотки испытываемого ТТ. Наибольшая допустимая температура нагрева ТТ должна быть не выше 90°С. Превышение температуры частей над температурой окружающего воздуха (-j-40°C) должно быть не более 50°С.
Для встроенных ТТ гарантируется ток термической стойкости, т. е. наибольшее действующее значение тока КЗ за промежуток времени, которое ТТ выдерживает в течение этого промежутка времени без нагрева токоведущих частей до температур, превышающих допустимые при токах КЗ и без повреждений, препятствующих его дальнейшей работе:
для ТТ на напряжение 330 кВ и выше — односекундный ток термической стойкости;
для ТТ на напряжения 110; 150 и 220 кВ — трехсекундный ток термической стойкости;
для ТТ на напряжение до 35 кВ включительно — четырехсекундный ток термической стойкости.
На ТТ применяется определенная маркировка выводных концов вторичной обмотки.
Каждый новый тип ТТ классов точности 0,5 и 1 со вторичной обмоткой, предназначенной для питания измерительных приборов, проходит государственные испытания в органах Государственного комитета стандартов Совета Министров России (ГОСТ 7746-68).
Рис. 15. Установка ТТ в адаптерах.
1 — стальной цилиндр; 2 — TT; 3— распорные буковые клинья; 4 — крышка адаптера; 5 — ввод BH; 6— фланец на адаптере для подсоединения ввода; 7 — болты для крепления ввода; в —фланец для крепления адаптера к крышке; 9 — коробка вторичных зажимов ТТ; 10 — перегородка коробки зажимов, отделяющая масло от воздуха; 11 — вводы 0,5 кВ, к которым подсоединяются вторичные зажимы ТТ; 12 — люк для подсоединения вторичных зажимов; 13 — сальник; 14 — крышка бака трансформатора; 15— фланец на крышке; 16 — передний люк коробки зажимов.
При установке ТТ на отводах они располагаются в баке силового трансформатора в большинстве случаев в верхней части под крышкой. При установке ТТ на вводах их помещают в специальные кожухи («адаптеры»), которые устанавливают на крышке силового трансформатора. Адаптер (рис. 15) представляет собой стальной цилиндр 1 или два сваренных друг с другом цилиндра разных диаметров. В цилиндре большего диаметра (верхнем) помещаются два ТТ 2. Диаметр этого цилиндра зависит от внешнего диаметра ТТ с учетом расстояния от его обмотки до стенки цилиндра, в котором располагаются клинья 3 из электроизоляционного материала (бук) или другие приспособления, раскрепляющие ТТ в цилиндре, так чтобы он не перемещался. Верхний цилиндр имеет крышку 4 с отверстием, в которое проходит ввод 5. На крышке приварен фланец 6, служащий для крепления ввода при помощи болтов 7. Нижний цилиндр меньшего диаметра служит для крепления адаптера вместе с вводом на крышке 14 силового трансформатора, имеющего фланец 15. Сбоку верхнего цилиндра приварена коробка зажимов 9. Она имеет наклонную перегородку 10, в отверстия которой устанавливают вводы 11 на напряжение 0,5 кВ. Перегородка делит коробку зажимов на две части. Верхняя часть заполнена маслом, и здесь концы отпаек обмоток ТТ присоединяют к вводам через люк 12 в верхней части коробки, который во время эксплуатации закрыт заглушкой. В нижней части коробки зажимов к вводам присоединяют провода, соединяющие ТТ с защитными и измерительными приборами. Провода вводятся в коробку через сальник 13, расположенный на боковой стенке коробки. Провода присоединяют через передний люк 16. На крышке люка крепится щиток с техническими данными ТТ. Существуют также адаптеры, имеющие наклон относительно вертикальной оси. Они применяются для наклонной установки вводов на силовом трансформаторе.
Транспортируются ТТ в тех же адаптерах, в которых они устанавливаются на силовой трансформатор, закрепляются там в рабочем положении или, если это требуется для обеспечения неподвижности ТТ, дополнительно расклиниваются и заливаются маслом. Адаптер должен быть герметичным. Иногда допускается отправление ТТ для комплектной поставки заводу-заказчику без масла в деревянных ящиках, защищенных от непосредственного попадания влаги внутрь. Перед установкой ТТ в адаптер его предварительно просушивают при остаточном давлении не ниже 9300 Па и при 100—110°С в течение 8 ч, а затем адаптер заполняют маслом.
Трансформаторы тока до монтажа хранят в адаптерах, залитых маслом, в сухом помещении или, в крайнем случае, под навесом в положении, соответствующем надписи на крышке адаптера «Верх». Непосредственно перед монтажом из адаптера сливают масло, ТТ осматривают и испытывают, а затем устанавливают на силовом трансформаторе. При этом общее время пребывания ТТ без масла не должно превышать 24 ч.
Испытания ТТ проводят в следующем порядке: 1) проверяют коэффициент трансформации на всех ответвлениях; 2) проверяют междувитковую изоляцию индуктированным напряжением U—12к22н, где /2к — вторичный ток, соответствующий номинальной предельной кратности; Z2H — номинальная вторичная нагрузка. Проверку проводят следующим образом: вторичную обмотку замыкают на вольтметр с сопротивлением не менее 2 кОм/В; ток в первичной обмотке плавно повышают до значения, при котором показания вольтметра станут равными U, выдерживают в течение 1 мин, после чего напряжение снижают; 3) проверяют отсутствие витковых замыканий (снимают несколько точек кривой намагничивания по данным паспорта и сравнивают полученные данные с паспортными). Допускается отклонение от заводских данных не более чем на ±10%; 4) измеряют электрическое сопротивление обмоток и сравнивают результаты с заводскими данными. При всех режимах работы силового трансформатора ТТ должен находиться в масле.
После испытаний ТТ должен быть размагничен.
Во время работы ТТ его вторичные обмотки всегда замкнуты на приборы или накоротко. Размыкание вторичных обмоток под током недопустимо, так как на разомкнутой обмотке возникает высокое напряжение. Размыкание вторичной обмотки приводит к остаточному намагничиванию сердечника, которое вызывает увеличение погрешностей ТТ. Поэтому в коробке зажимов устанавливают табличку с надписью: «Внимание! Опасно! На разомкнутой обмотке высокое напряжение!».
Тороидальные трансформаторы ТТ
Тороидальные трансформаторы ТТ
Тороидальные трансформаторы – это однофазные силовые повышающие или понижающие трансформаторы, которые оснащены тороидальным сердечником с двумя и более обмотками. Принцип действия данного оборудования похож на принцип действия стержневой и броневой модели.
Общий вид трансформатора ТТ
Тороидальные трансформаторы ТТ служат для преобразования электрической энергии, а именно одна величина напряжения преобразовывается в другую. При этом масса и размеры трансформаторов существенно уменьшены за счет использования тороидального сердечника, также в следствии этого значительно улучшаются технико-экономические показатели.
Особенности тороидальных трансформаторов
Одна из главных особенностей тороидальных трансформаторов серии ТТ – это малый объем. При сравнении с оборудованием, имеющем шихтованные сердечники, объем трансформаторов ТТ уменьшен да 60%. Так же данные трансформаторы гораздо легче монтируются внутрь любого радиоэлектронного устройства за счет гибких выводов.
Кольцевая форма сердечника – это не менее важная особенность трансформаторов ТТ. Использование сердечника данной формы позволяет значительно уменьшить расход материалов. Обмотка симметрично распределяется по всей поверхности сердечника. Как следствие величина сопротивления обмотки снижается, а КПД увеличивается.
Следующая особенность – возможность применять ток более высокой плотности. Так как обмотки эффективно охлаждаются по всей поверхности сердечника. Незначительные потери в железе позволяют достичь минимальных значений тока намагничивания. В следствии этого повышается тепловая нагрузочная способность тороидального трансформатора.
Вид сверху
Установка трансформаторов серии ТТ – это легкий и не продолжительный процесс.
Технические характеристики
Наименование | Мощность, Ва | Напряжение первичная/вторичная обмотка | Габаритные размеры, мм | Масса, кг |
ТТ-1000 | 1000 | 220-12/24/36/42/110/127/220/380 | Уточняются при заказе | Уточняются при заказе |
ТТ-850 | 850 | 220-12/24/36/42/110/127/220/380 | Уточняются при заказе | Уточняются при заказе |
ТТ-600 | 600 | 220-12/24/36/42/110/127/220/380 | 165/86 | 5,85 |
ТТ-500 | 500 | 220-12/24/36/42/110/127/220/380 | 160/86 | 5,15 |
ТТ-450 | 450 | 220-12/24/36/42/110/127/220/380 | 147/75 | 4,48 |
ТТ-400 | 400 | 220-12/24/36/42/110/127/220/380 | 145/70 | 4,18 |
ТТ-350 | 350 | 220-12/24/36/42/110/127/220/380 | 140/67 | 3,33 |
ТТ-300 | 300 | 220-12/24/36/42/110/127/220/380 | 120/65 | 3 |
ТТ-250 | 250 | 220-12/24/36/42/110/127/220/380 | 118/60 | 2,65 |
ТТ-200 | 200 | 220-12/24/36/42/110/127/220/380 | 105/47 | 2,49 |
ТТ-150 | 150 | 220-12/24/36/42/110/127/220/380 | 102/43 | 2,07 |
ТТ-100 | 100 | 220-12/24/36/42/110/127/220/380 | 100/38 | 1,18 |
Напряжение обмоток может быть изготовлено под заказ и отличаться от значений приведенных в таблице характеристик.
58721-14: ТТ Трансформаторы тока — Производители и поставщики
Трансформаторы тока ТТ Назначение средства измерений
Трансформаторы тока ТТ (далее — трансформаторы тока) предназначены для контроля и передачи сигнала измерительной информации приборам измерения, защиты, автоматики, сигнализации и управления в электрических цепях переменного тока промышленной частоты.
Описание
Принцип действия трансформаторов тока заключается в преобразовании переменного тока промышленной частоты в переменный ток для измерения с помощью стандартных измерительных приборов, а также обеспечения электрической изоляции измерительных устройств от цепей высокого напряжения.
Трансформаторы тока выполнены в виде конструкции шинного типа, с литой изоляцией. Первичной обмоткой служит шина, пропускаемая через окно трансформатора.
Трансформаторы имеют одну вторичную обмотку предназначенную для измерения и учета электроэнергии. Выводы вторичной обмотки расположены на корпусе трансформатора и закрываются защитной крышкой.
Корпус трансформаторов выполнен из эпоксидного компаунда, является главной изоляцией и обеспечивает защиту обмоток от климатических и механических воздействий.
Трансформаторы тока крепятся на шине с помощью винтов и планки.
Трансформаторы тока идентичны по принципу действия, отличаются по габаритными размерам, метрологическими и техническими характеристиками, указанными в таблице 1.
Внешний вид трансформаторов тока и места пломбировки от несанкционированного доступа приведены на рисунке 1.
Основные метрологические и технические характеристики трансформаторов тока ТТ представлены в таблице 1.
Таблица 1
Характеристика |
Значение |
ТТ | |
Номинальное рабочее напряжение, кВ |
0,66 |
Номинальный первичный ток, А |
200; 300; 400; 500; 600; 800; 1000; 1200; 1500; 2000; 2500 |
Номинальный вторичный ток, А |
1,5 |
Номинальная вторичная нагрузка, В-А |
2,5; 3; 5;10 |
Классы точности: |
0,2s; 0,2; 0,5s; 0,5; 1 |
Номинальная частота, Гц |
50,60 |
Габаритные размеры, мм: — длина |
56 |
— ширина |
114 |
— высота |
200 |
Масса, кг, не более |
2,0 |
Климатическое исполнение по ГОСТ 15150-69 |
У2, У3, Т3 |
Номинальный коэффициент безопасности вторичной обмотки, |
не более 9 |
-^Бном |
Знак утверждения типа
Знак утверждения типа наносят на титульный лист паспорта, руководства по эксплуатации методом печати и на трансформатор тока методом наклейки.
Комплектность
В комплект поставки входят:
— Трансформатор тока — 1 шт.;
— Паспорт — 1 экз.;
— Руководство по эксплуатации — 1 экз. на заказ;
— Планка крепления шины- 1 шт.;
— Винт М5х14 — 2 шт.;
— Г айка М5 — 2 шт.;
Поверка
Поверка осуществляется по ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки».
Перечень основных средств, применяемых при поверке:
— трансформатор тока измерительный лабораторный ТТИ-5000.5, номинальное рабочее напряжение, кВ: 0,66, номинальные значения первичного тока, А: от 5 до 5000, класс точности
0,05; (№270007-04)
— прибор сравнения КТ-01, предел измерения токовой погрешности, %: ± 19,99,предел измерения угловой погрешности, угловых мин: ± 1999; класс точности 0,001 (№18287-99)
— нагрузочное устройство МР 3027 (№34915-07)
Метод измерений с помощью трансформаторов тока ТТ указан в документе «Трансформаторы тока ТТ. Руководство по эксплуатации».
Нормативные и технические документы, устанавливающие требования к трансформаторам тока ТТ
1. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».
2. Техническая документация изготовителя ТУ 3414-043-05755476-2014.
Рекомендации к применению
— выполнение государственных учетных операций и учет количества энергетических ресурсов.