Site Loader

Пример решения задачи на определение силы и времени торможения автомобиля

Известно, что грузовой автомобиль массой пять тысяч килограмм движется по горизонтальному пути со скоростью семьдесят два километра в час (20 метров в секунду).
Необходимо: определить силу и время торможения автомобиля, если тормозной путь составил пять метров.

Дано: m=5000 кг; v=20 м/сек; s=5 м
Найти: F-?; t-?

Решение

Исходя из того, что работа силы торможения численно равна изменению кинетической энергии движущегося автомобиля , получаем формулу для определения силы торможения

Подставив в формулу численные значения, рассчитаем силу торможения грузового автомобиля

н

Из формулы , при условии, что vt=0: , где , получаем формулу времени торможения

Время торможения автомобиля

сек

Ответ: сила торможения автомобиля составила двести тысяч ньютон, время торможения равно половине секунды.

Поделитесь с друзьями:

Пример решения задачи на определение силы и времени торможения автомобиля

Известно, что грузовой автомобиль массой пять тысяч килограмм движется по горизонтальному пути со скоростью семьдесят два километра в час (20 метров в секунду).
Необходимо: определить силу и время торможения автомобиля, если тормозной путь составил пять метров.

Дано: m=5000 кг; v=20 м/сек; s=5 м
Найти: F-?; t-?

Решение

Исходя из того, что работа силы торможения численно равна изменению кинетической энергии движущегося автомобиля F*s={m*v^2}/2, получаем формулу для определения силы торможения

F={m*v^2}/{2*s}

Подставив в формулу численные значения, рассчитаем силу торможения грузового автомобиля


F={5000*20^2}/{2*5}=200000н

Из формулы v_t=v+at, при условии, что vt=0: t=-{v/a}, где a=-{v^2/{2*s}}, получаем формулу времени торможения


t={2*s}/v

Время торможения автомобиля

t={2*5}/20=0,5сек

Ответ: сила торможения автомобиля составила двести тысяч ньютон, время торможения равно половине секунды.



Торможение (автотранспорт) — Википедия

Материал из Википедии — свободной энциклопедии

Торможение (автотранспорт) — уменьшение скорости автотранспортного средства при помощи тормозной системы.

Максимальное значение тормозной силы зависит от коэффициента сцепления шин автомобиля с дорогой и нормальной нагрузки на колеса. Установлены стандарты тормозного пути и замедления автомобиля, являющиеся частью правил дорожного движения. Ускорение автомобиля при торможении определяют при помощи деселерометра.[1]

Общий тормозной путь автомобиля до его остановки (остановочный путь) вычисляется по формуле:

S0=(t1+t2)va+Keva22gφ{\displaystyle S_{0}=(t_{1}+t_{2})v_{a}+{\frac {K_{e}v_{a}^{2}}{2g\varphi }}}

Здесь: t1{\displaystyle t_{1}} — время реакции водителя, t2{\displaystyle t_{2}} — время срабатывания тормозов, Ke{\displaystyle K_{e}} — коэффициент эффективности торможения, va{\displaystyle v_{a}} — скорость движения автомобиля, φ{\displaystyle \varphi } — коэффициент сцепления, g{\displaystyle g} — ускорение свободного падения.

При неумелом применении может сопровождаться нежелательными и опасными явлениями (занос и т.д.). Разработан ряд рекомендаций по безопасному применению торможения автотранспортных средств[2][3].

Сила торможения автомобиля достигает максимума не при полной остановке вращения его колёс (когда они скользят по дороге и сила трения падает), а при их замедленном вращении, близком к остановке и переходу к скольжению. Поэтому для уменьшения тормозного пути необходимо добиваться одновременной остановки вращения колёс и прекращения поступательного движения автомобиля[2].

Использовать торможение при езде по скользкой дороге необходимо очень осторожно. Для предотвращения полной остановки колёс автомобиля и сохранения их сцепления с поверхностью дороги рекомендуется использование импульсного (многократно, очень кратко и резко нажимать на педаль тормоза) метода торможения. Допускается использование при определённых условиях стояночного тормоза и ряда других приёмов управления автомобилем[3][4].

Основы теории торможения

ОСНОВЫ ТЕОРИИ ТОРМОЖЕНИЯ

Образование тормозной силы

Рассмотрим силовые процессы, происходящие после прижатия колодки к катящемуся колесу. Нажатие на вращающееся колесо колодки с силой К вызывает появление силы трения Т между колодкой и колесом, которая действует от колодки на колесо против его вращения, т. е. стремится остановить это вращение. Тормозить поступательное движение поезда сила трения Т

не может, так как это внутренняя сила по отношению к поезду — колодка является частью самого поезда и движется вместе с ним.

Однако под действием внутренней силы Т колесо начинает «цепляться» за рельс в точке контакта О1. Возникает сила сцепления колеса с рельсом В, равная по величине силе Т. Сила В стремится утащить рельс за собой (сдвинуть его по ходу движения поезда). Так как рельс прикреплен к шпалам, то он остается неподвижным (в путевом хозяйстве хорошо известно явление угона рельсов под действием сил сцепления В). Особенно интенсивно угон рельсов происходит в местах, где обычно производится служебное торможение поездов. В свою очередь, неподвижный рельс тормозит катящееся по нему колесо с силой

Вт, являющейся реакцией рельса на силу В. Сила Вт является внешней силой по отношению к поезду и направлена против направления его движения, поэтому она является тормозной силой.
Тормозная сила выполняет еще одну важную функцию: являясь реакцией рельса на силу Т и направленная по направлению вращения катящегося колеса, она уравновешивает эту силу трения Т, заставляя колесо продолжать вращение, препятствуя переходу колесной пары на юз.
Итак, колодки прижимаются к колесам для того, чтобы возникшая сила трения Т вызывала появление равной ей внешней силы Вт, которая, будучи направленной по вращению колеса, препятствует переходу его на юз и в то же время, имея направление против движения поезда, тормозит его. Чтобы облегчить представление этой картины, достаточно мысленно приподнять тормозимые колесные пары над рельсами, и тогда станет ясно, что колесные пары, потеряв сцепление с рельсами, под действием сил трения Т сразу прекратят вращение, но сам поезд будет продолжать движение вперед. Точно так же торможение самолетов колесами их шасси возможно только после приземления на посадочную полосу.

Коэффициент трения тормозных колодок

Сила трения Т между колесом и колодкой оказывается в несколько раз меньше силы К нажатия колодки на колесо. Отношение φк в механике называется «коэффициент трения» и обозначается в тормозных расчетах φк.
Если известна величина коэффициента трения, то сила трения определяется из равенства Т = φк, а тормозная сила Вт одиночного колеса (без учета влияния инерции вращающихся масс) численно равна силе трения, то есть В =Т.
Величины коэффициентов трения определяют опытным путем на специальных стендах или посредством торможения составов из нескольких одинаковых вагонов. Этот сцеп разгоняется локомотивом-толкачом до максимальной скорости, после чего толкач отстает, а поезд тормозится с определенной силой нажатия колодок. Следующий такой опыт проводят с другой силой нажатия колодок и т. д. По записям, полученным на специальной скоростемерной ленте, рассчитывают тормозные силы в интервалах скоростей по 10 или 5 км/ч.

На основании опытов составляют графики зависимости коэффициентов трения от скорости движения для различных сил нажатия колодок.

Зависимость действиетльного коэффициента трения
колодок от действительного нажатия на колодку и скорости движения

Затем по полученным результатам выводят эмпирическую (опытную) формулу. Эти формулы утверждены МПС для дальнейшего использования при всех практических расчетах. Например, формула (1.1) применяется для расчета действительных коэффициентов трения композиционных колодок, а формула (1.2) — для чугунных.

Основными факторами, влияющими на величину коэффициентов трения, являются скорость движения, удельная сила нажатия колодки на колесо и материал колодки. Из графикаи приведенных выше формул видно, что с уменьшением скорости коэффициент трения увеличивается. Машинистам это хорошо известно практически: по мере уменьшения скорости ощущается усиление тормозного эффекта (замедление поезда), особенно при чугунных колодках. С увеличением силы нажатия

К коэффициент трения снижается, но это не значит, что с ростом К сила трения Т уменьшается — она увеличивается, но не пропорционально К.
Поясним на примере. При скорости V=70 км/ч и нажатии К = 1 тс коэффициент трения чугунной колодки φк = 0.146. Значит, сила трения колодки Т= φкК = 0.146 тс. При увеличении силы нажатия в два раза. т. е.
К=2 тс
. при той же скорости 70 км/ч коэффициент трения оказывается меньше: φк =0.115. Сила же трения составит Т= 0.230 тс., т. е. увеличилась, но не в два раза, а только в 1,57 раз. При увеличении силы нажатия в пять раз (К=5тс) коэффициент трения при той же скорости V=70 км/ч оказывается всего φк = 0.09. а сила трения Т = 0.450 тс., т. е. увеличивается, но всего в 3 раза.
Из сравнения графиков коэффициентов трения чугунных и композиционных колодок видно, что у последних значения φк выше, а сами графики более пологие, т. е. интенсивность снижения коэффициента трения при увеличении скорости значительно меньше.

Коэффициент сцепления

Качение колеса по рельсу без проскальзывания происходит за счет силы сцепления Вс , действующей со стороны рельса на колесо в точке их контакта.

зависимость коэффициента трения от нажатия на колодку и скорости движения

Сцепление колес с рельсами представляет сложный процесс, при котором происходит преодоление механического зацепления микронеровностей поверхностей колеса и рельса и их молекулярного притяжения.
Коэффициент сцепления зависит в основном от осевой нагрузки. состояния поверхностей колеса и рельса, скорости движения, площади контакта, типа тягового привода и может изменяться в широких пределах (0.04 — 0.30). Наиболее неблагоприятное сцепление имеет место при моросящем дожде, образовании на рельсах инея или при загрязнении рельсов перевозимыми нефтепродуктами, смазкой, торфяной пылью. Простым и эффективным способом повышения коэффициента сцепления является подача песка под колесные пары.

Условие безъюзового торможения

Явление, когда колесо прекращает свое вращение и начинает скользить по рельсу при продолжающемся движении поезда, называется заклиниванием или юзом.
Как правило, заклинивание колесной пары не происходит мгновенно. Предварительно колесная пара начинает проскальзывать, скорость ее становится меньше поступательной скорости подвижного состава. Это приводит к увеличению тормозной силы

Вт за счет повышения коэффициента трения φк . В точке к контакта колеса с рельсом кинетическая энергия превращается в тепловую, что может привести к сдвигу металла на поверхности катания колеса при проскальзывании (образование навара) или образованию овальной площадки (ползуна) при скольжении. Поэтому максимальная величина тормозной силы ограничивается условиями сцепления колес с рельсами. Следовательно, во избежание юза максимальное тормозное нажатие принимают таким, чтобы тормозная сила не превышала силу сцепления колеса с рельсом. Для этого должно выполняться правило:

зависимость коэффициента трения от нажатия на колодку и скорости движения

где:

  • φк — коэффициент трения;
  • К — сила нажатия колодок на ось;
  • Ψк — коэффициент сцепления колеса с рельсом;
  • q — осевая нагрузка.

В этом случае максимальное нажатие колодок на ось равно:

зависимость коэффициента трения от нажатия на колодку и скорости движения

Отношение φк / Ψк = δ называют коэффициентом нажатия тормозной колодки. При заданной осевой нагрузке допустимые значения коэффициента нажатия будут зависеть от значении Ψк и φк, которые в свою очередь зависят от скорости движения и материала колодок. При расчетах значения 6 для локомотивов принимают в пределах 0.5-0.6.

На рисунке показана зависимость коэффициентов трения чугунной тормозной колодки и сцепления колеса с рельсом при различных скоростях движения. Из приведенных графиков видно, что при снижении скорости в процессе торможения значения φк становятся больше Ψк., следовательно, вероятность заклинивания колесных пар выше при низких скоростях движения; при высоких скоростях значения Ψк больше φк, и значит, опасность юза практически исключается, а силу нажатия колодки на колесо можно увеличить для реализации большей тормозной силы.

Способы регулирования величины тормозной силы

Важной характеристикой тормоза является его способность максимально использовать коэффициент сцепления колес с рельсами. Неполное использование сцепления имеет место в процессе наполнения тормозных цилиндров, то есть когда тормозная сила еще не достигла максимальной величины. Поэтому при допустимых условиях по величинам продольных динамических усилий в поезде и заклиниванию колесных пар стремятся к минимальному времени наполнения тормозных цилиндров.
Коэффициент сцепления уменьшается с ростом скорости движения, что вызывает необходимость изменения тормозной силы (в первую очередь для подвижного состава, оборудованного чугунными тормозными колодками). Для грузовых тормозов большое значение в использовании сцепления имеет соответствие между величиной тормозной силы и весом вагона, поскольку сила сцепления зависит от нагрузки от колесной пары на рельс. Поэтому с целью исключения заклинивания колесных пар применяется весовое и скоростное регулирование величины тормозной силы.

Весовое регулирование. Соответствие между величиной тормозной силы и весом вагона в тормозах грузового типа достигается ручным переключением режимов торможения или применением на грузовых вагонах авторежимов, которые автоматически регулируют тормозное нажатие в зависимости от загрузки вагона. Воздухораспределитель грузового типа имеет три режима торможения: порожний, средний и груженный. Переключение режимов выполняется вручную в зависимости от загрузки вагона, приходящейся на ось.Каждому режиму торможения соответствует определенное давление в тормозном цилиндре.
Автоматический регулятор режимов торможения (авторежим) позволяет избежать ошибки при установке требуемого режима торможения.Корпус авторежима крепится к подрессоренной хребтовой балке вагона, а упор соприкасается с плитой, укрепленной на необрессоренной части тележки. По мере загрузки вагона расстояние между корпусом авторежима и опорной плитой уменьшается вследствие прогиба рессор вагона. Колебания кузова вагона не сказываются на давлении в тормозном цилиндре, так как демпфирующие пружины и дроссельное отверстие гасят колебания подвижной части авторежима.
Загрузку вагона можно оценить по положению клина амортизатора относительно фрикционной планки рессорного подвешивания вагона. Вагон считается порожним, если верхняя плоскость клина амортизатора находится выше фрикционной планки.

Скоростное регулирование тормозной силы. Изменение тормозной силы при уменьшении коэффициента сцепления при высоких скоростях движения сводится к увеличению нажатия на колодку за счет повышения давления в тормозном цилиндре.

В процессе уменьшения скорости при торможении переключение с высокого нажатия (К2) на пониженное (К1) выполняется автоматически специальными скоростными регуляторами при достижении конкретной скорости перехода (например, при V=50 км/ч). Регулятор устанавливается на буксе колесной пары тележки. Регулирование тормозной силы осуществляется в случае применения полного торможения. При полных торможениях и малых скоростях движения величина тормозной силы может превысить значение силы может превысить значение силы сцепления Вс колеса с рельсом, что резко повышает вероятность заклинивания колесных пар.Наличие в составе поезда разнотипных вагонов с различными значениями К делает расчет тормозной сипы с использованием формул 1.1. и 1.2. для определения коэффициентов трения весьма трудоемким. Для упрощения тормозных расчетов пользуются методом приведения, при котором действительные значения К и φк заменяются расчетными значениями К и φкр, а коэффициент трения определяется при одном, условно выбранном тормозном нажатии Ку, но при этом обеспечивалось бы равенство:

зависимость тормозной силы от скорости движения

Значения Ку принимают: для чугунных колодок — 2.7 тс. для композиционных колодок — 1.6 тс. Подставляя значения Ку в формулы 1.1. и 1.2. получим значения расчетных коэффициентов трения соответственно для чугунных и композиционных колодок:

зависимость тормозной силы от скорости движения 

После подстановки значений φк и φкр в выражение 1.6. получим формулы для определения расчетных сил нажатия чугунных и композиционных колодок:

зависимость тормозной силы от скорости движения 

Если в поезде используются тормоза с разными типами тормозных колодок (например, чугунными и композиционными), то необходимо привести расчетное нажатие к одной системе нажатий. Это приведение выполняют умножением величины нажатия на соответствующий коэффициент эффективности, которые зависят от скорости движения. Коэффициенты эффективности определяют исходя из равенства длины тормозного пути при действии колодок разного типа. На железных дорогах России за основную принята система расчетных значений нажатий чугунных тормозных колодок, для которых установлены все тормозные нормативы и действующие номограммы и таблицы зависимости тормозных путей от скорости начала торможения, удельных расчетных нажатий и крутизны уклонов.

Расчет тормозного пути

В настоящее время существует три метода тормозных расчетов:

  • аналитический метод Правил тяговых расчетов;
  • метод численного интегрирования уравнения движения поезда по интервалам времени;
  • графический способ.

С помощью аналитического метода ПТР решают задачи, в которых реализуется полная тормозная сила:

  • при определении расстояния ограждения мест препятствий движению поезда – экстренное торможение;
  • при выборе расстояния между постоянными сигналами — полное служебное торможение;
  • при проверке расчета выбора расстояния между постоянными сигналами – автостопное торможение.

Тормозной путь при полном служебном торможении рассчитывается так же как при экстренном торможении, но значение тормозного коэффициента принимается равным 0.8 от его полного значения.В практике часто возникает необходимость точного расчета тормозного пути или скорости движения поезда при ступенчатых торможениях, во время безостановочного следования по переломному не спрямляемому профилю пути и при других разнообразных условиях торможения. В таких случаях тормозные задачи решают численным интегрированием уравнения движения поезда не по интервалам скорости, а по интервалам времени.

Расчет тормозного пути методом ПТР

Полный тормозной путь , проходимый поездом от начала торможения до остановки, принимается равным сумме пути подготовки тормозов к действию Sп и действительного пути торможения

зависимость тормозной силы от скорости движения

где:

  • Vнт — скорость поезда в момент начала торможения, км/ч;
  • tп — время подготовки тормозов поезда к действию, с;
  • 3.6 – переводной коэффициент. 

Время подготовки тормозов к действию определяется из условия замены медленного, реального процесса наполнения тормозного цилиндра среднего вагона, мгновенным наполнением до полной величины, при условии равенства тормозных путей, проходимых поездом при реальном и условном наполнении тормозных цилиндров.

В зависимости от рода подвижного состава и его длины время подготовки тормозов к действию определяется по формуле 

условное и действительное возрастание давления в ЕЦ

Величины коэффициентов а и б зависят от рода движения, вида управления тормозами в пассажирском поезде, от длины поезда в осях и принимаются по таблице

Условия выбора величины коэффициента

а

б

Пассажирский поезд :  
С пневматическими тормозами

4

5

С электропневматическими тормозами

2

3

Грузовой поезд длиной :
до 200 осей

7

10

до 300 осей

10

15

до 400 осей

12

18

до 400 осей, если все ВР усл. № 483

6

8

Величина действительного пути торможения определяется суммированием величин пути торможения в выбираемых интервалах скорости при условии постоянства величин удельных сил, действующих на поезд в этом интервале, по формуле 1.14 

условное и действительное возрастание давления в ЕЦ

 

Удельная тормозная сила определяется по формуле

условное и действительное возрастание давления в ЕЦ

Расчетный тормозной коэффициент поезда с учетом веса и нажатия локомотива вычисляется по формуле 

условное и действительное возрастание давления в ЕЦ

Сумма расчетных сил нажатия тормозных колодок поезда подсчитывается по формуле или берется из справки формы ВУ-45 

условное и действительное возрастание давления в ЕЦ

При определении тормозного коэффициента грузового груженого поезда на спусках до 20 ‰ вес локомотива и нажатие его колодок не учитываются.
Основное удельное сопротивление движению поезда при холостом ходе локомотива может быть подсчитано по формуле жатие его колодок

условное и действительное возрастание давления в ЕЦ

 

условное и действительное возрастание давления в ЕЦ

Действительный тормозной путь при автостопном торможении определяют так же, как при экстренном торможении, а время подготовки тормозов к действию рассчитывают с учетом дополнительных 12 с, необходимых для срабатывания электропневматического клапана (ЭПК) автостопа.
По результатам расчетов тормозных путей при экстренном торможении строят специальные графики (номограммы) или таблицы, в которых указываются длины тормозных путей в зависимости от расчетного нажатия колодок на 100 тс веса состава или поезда (или в зависимости от расчетного тормозного коэффициента) для различных начальных скоростей и уклонов.Эти номограммы и таблицы приведены соответственно в Правилах тяговых расчетов и в Инструкции по эксплуатации тормозов подвижного состава железных дорог.

условное и действительное возрастание давления в ЕЦ

Анимация (мультик) по схемам прямодействующего, непрямодействующего тормоза и ЭПТ. Для скачивания проги кликните по картинке

условное и действительное возрастание давления в ЕЦ

Отличное пособие по новому воздухораспределителю пассажирских вагонов № 242.
С анимацией и дикторским сопровождением. Для скачивания PDF кликните по картике

Крылов Автоматические тормоза

Справочник по тормозам

Локомотивные устройства безопасности

Тормозные свойства автомобиля | Теория

Торможение — процесс создания и изме­нения искусственного сопротивления дви­жению автомобиля с целью уменьшения его скорости или удержания неподвиж­ным относительно дороги.

Тормозные свойства — совокупность свойств, определяющих максимальное за­медление автомобиля при его движении на различных дорогах в тормозном режи­ме, предельные значения внешних сил, при действии которых заторможенный автомобиль надежно удерживается на месте или имеет необходимые минималь­ные установившиеся скорости при движе­нии под уклон.

Тормозной режим — режим, при котором ко всем или нескольким колесам под­водятся тормозные моменты.

Тормозные свойства относятся к важ­нейшим из эксплуатационных свойств, определяющих активную безопасность ав­томобиля, под которой понимается сово­купность специальных конструктивных ме­роприятий, обеспечивающих снижение ве­роятности возникновения ДТП.

В виду большого значения свойств, определяющих безопасность движения ав­томобиля, их регламентация является предметом ряда международных докумен­тов.

Проверка эффективности действия тормозных систем автомобиля производится измерением тормозных усилий, развиваемых на колесах (величина общей удельной тормозной силы рабочей и стояночной тормозных систем; коэффициент неравномерности тормозных сил колес оси; усилие, прикладываемое к педали тормоза), а также осмотром и проверкой отдельных составных частей систем.

Значение коэффициента осевой неравномерности тормозных сил Кн определяют отдельно для каждой оси автомобиля по формуле:

где – максимальные усилия, развиваемые тормозами соответственно на правом и левом колесе каждой оси автомобиля. Значения Кн для легковых автомобилей должны быть не более 0,09.

Значение общей тормозной силы γт определяется по формуле:

γт = ΣРт/М

где – ΣРт сумма максимальных тормозных сил на колесах автотранспортного средства кг.
М – полная масс автотранспортного средства, кг.

Величины тормозных сил корректируются с учетом затрат на усилие проворачивания колес, т.е. данных полученных перед проверкой тормозных сил.

Время срабатывания тормозов определяется как интервал времени от начала торможения до момента, в который замедление становится постоянным, т. е. тормозная сила достигает своего максимального значения и дальше остается постоянной.

Сила на органе управления (тормозной педали): для одиночных АТС категорий М1– 490Н, М2, М3, N1, N2, N3 – 686 Н; автопоездов М1 – 490Н, М2, М3, N1, N2, N3 – 686 Н.

Общая удельная тормозная сила одиночных транспортных средств не менее М1 – 0,64; М2, М3 – 0,55; N1, N2, N3 – 0,46; автопоездов М1 – 0,47; М2 –0,42; М3 – 0,51; N1 – 0,38; N2, N3 – 0,46.

Время срабатывания тормозной системы не более, с М1 – 0,5; М2,М3 – 0,8; N1 – 0.7; N2, N3 – 0,8; автопоездов с М1 – 0,5; М2 – 0,8; М3 – 0,9; N1 – 0,9; N2 – 0,7; N3 – 0,9.

Коэффициент неравномерности тормозных сил колес оси не более М1; М2 – 0,09; М3,N1, N2, N3 – 0,11; автопоездов – с М1, М2 – 0,09; М3 – 1-я ось – 0,09, последующие оси 0,13; N1 – 0,11; N2, N3 – 1-я ось – 0,09, последующие оси 0,13.

Значение общей удельной тормозной силы стояночной тормозной системы должно быть не менее 16% относительно допустимой максимальной массы одиночного автомобиля и не менее 12% относительно максимально допустимой массы комбинированного автомобиля.

В процессе эксплуатации допускается оценка тормозных качеств по величине тормозного пути и замедления автомобиля.

Тормозной путь — это расстояние, которое проходит автомобиль от начала торможения до полной остановки и определяется по формуле:

S=kv2/ 254φ

где:
k – коэффициент эффективности торможения. Он учитывает непропорциональность тормозных сил на колесах нагрузкам, приходящимся на них, а также износ, регулировку и загрязненность тормозов. Этот коэффициент показывает, во сколько раз действительное замедление подвижного состава меньше теоретического, максимально возможного на данной дороге. Величина k для грузовых автомобилей и автобусов 1,4…1,6, для легковых автомобилей 1,2
v – скорость движения в км/ч
φ – коэффициент сцепления колес с дорогой.

Замедление это величина, на которую уменьшается скорость автомобиля за единицу времени.

Табл. Нормы эффективности по тормозным качествам и замедлению (ПДД)

Наименование транспортных средств

Тормозной путь (м, не более)

Замедление

(м/с2, не более)

Легковые автомобили и их модификации для перевозки грузов

12,2 (14,6)

6,8 (6,1)

Автобусы с максимальной массой:

до 5 т включительно

свыше 5 т

13,6 (18,7)

16,8 (19,9)

5,7 (5,0)

5,7 (5,0)

Грузовые автомобили с максимальной массой :

до 3,5 т включительно

от 3,5 до 12 т включительно

свыше 12 т

15,1 (19,0)

17,3 (18,4)

16,0 (17,7)

5,7 (5,4)

5,7 (5,7)

6,2 (6,1)

Двухколесные мотоциклы и мопеды

7,5 (7,5)

5,5 (5,5)

Мотоциклы с прицепом

8,2 (8,2)

5,0 (5,0)

Автопоезда, тягачами которых являются легковые автомобили и их модификации для перевозки грузов

13,6 (14,5)

5,9 (6,1)

Автобусы с максимальной массой:

до 5 т включительно

свыше 5 т

15,2 (18,7)

18,4 (19,9(

5,7 (5,5)

5,5 (5,0)

Грузовые автомобили с максимальной массой:

до 3,5 т включительно

от 3,5 т до 12 т включительно

свыше 12 т

17,7 (22,7)

18,8 (22,1)

18,4 (21,9)

4,6 (4,7)

5,5 (4,9)

5,5 (5,0)

  1. Величины тормозного пути и установившегося замедления, приведенные в скобках, распространяются на транспортные сред­ства, производство которых было начато до 1 января 1981 г.
  2. Испытания проводятся на горизонтальном участке дороги с ровным, сухим, чистым цементно- или асфальтобетонным покры­тием при начальной скорости торможения 40 км/ч для автомоби­лей, автобусов и автопоездов и 30 км/ч для мотоциклов и мопедов. Транспортные средства испытывают в снаряженном со­стоянии с водителем путем однократного воздействия на орган управления рабочей тормозной системы.
  3. Эффективность рабочей тормозной системы автотранспортных средств может быть оценена и по другим показателям в соответствии с ГОСТ 25478-91.

Стояночная тормозная система не обеспечивает неподвижного состояния:

  • транспортных средств с полной нагрузкой — на уклоне до 16% включительно
  • легковых автомобилей и автобусов в снаряженном состоянии — на уклоне до 23% включительно
  • грузовых автомобилей и автопоездов в снаряженном состоянии — на уклоне до 31% включительно

Рычаг (рукоятка) управления стояночной тормозной си­стемой не удерживается запирающим устройством.

сила торможения — это… Что такое сила торможения?


сила торможения

3.4 сила торможения (braking force) Fmax, кН: Максимальная сила, измеряемая в анкерной точке крепления или на анкерной линии в течение периода торможения при испытании динамической нагрузкой.

[ЕН 363:2002]

3.5 сила торможения (braking force): Максимальная сила Fmax в килоньютонах, измеренная на анкерной точке в течение периода торможения при динамическом испытании для определения рабочих характеристик.

Примечание — Динамическое испытание для определения рабочих характеристик смотрите в 5.6.2.

3.7 сила торможения (braking force) Fmax, кН: Максимальное усилие, измеренное в анкерной точке крепления или на анкерной линии в течение периода торможения при испытании динамической нагрузкой.

[ЕН 363-2002]

3.8 сила торможения (braking force) Fмакс, кН: Максимальная сила, измеренная в точке крепления или на анкерной линии во время торможения, при испытании динамических характеристик (ЕН 363).

3.4 сила торможения (braking force) Fmax кН: Максимальное усилие, измеренное в анкерной точке крепления или на анкерной линии в течение периода торможения при испытании динамической нагрузкой.

[ЕН 363-2002]

2.25 сила торможения (braking force) Fmax, кН: Максимальная сила, измеряемая в анкерной точке крепления или на анкерной линии в течение периода торможения при испытании динамической нагрузкой.

3.6 сила торможения (braking force): Максимальная сила Fmax, измеренная в течение периода торможения при динамическом испытании для определения рабочих характеристик.

Примечание — Максимальную силу Fmax указывают в килоньютонах.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • Сила сопротивления качению колеса
  • сила трения

Смотреть что такое «сила торможения» в других словарях:

  • сила торможения — тормозить — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы тормозить EN drag …   Справочник технического переводчика

  • сила торможения — stabdymo jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Jėga, kurios veikiamas kūnas sustoja. atitikmenys: angl. retarding force; stopping power vok. Bremskraft, f rus. сила торможения, f; тормозящая сила, f pranc. force de… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • сила торможения — stabdymo jėga statusas T sritis fizika atitikmenys: angl. brake force vok. Bremskraft, f rus. сила торможения, f pranc. force de freinage, f …   Fizikos terminų žodynas

  • Сила инерции — (также инерционная сила)  термин, широко применяемый в различных значениях в точных науках, а также, как метафора, в философии, истории, публицистике и художественной литературе. В точных науках сила инерции обычно представляет собой понятие …   Википедия

  • СИЛА — физическое воздействие, приводящее или стремящееся привести к изменению состояния покоя или движения материального тела. Действие любых сил на тело подчиняется трем основным законам, сформулированным И. Ньютоном (1643 1727). Согласно первому из… …   Энциклопедия Кольера

  • СИЛА НЕРВНОЙ ВОЛНЫ — свойство нервной системы, характеризующее ее выносливость, работоспособность и проявляющееся в следующем: 1) способности нервной системы, не переходя в тормозное состояние (торможение) выдерживать либо очень сильное, либо длительное (хотя и не… …   Энциклопедический словарь по психологии и педагогике

  • СИЛА НЕРВНОЙ СИСТЕМЫ — одно из основных качеств нервной системы, отражающее предел работоспособности клеток коры головного мозга, т.е. их способность выдерживать, не переходя в состояние торможения, либо очень сильное, либо длительно действующее возбуждение; С. н. п.… …   Психомоторика: cловарь-справочник

  • ГОСТ Р 41.13-99: Единообразные предписания, касающиеся официального утверждения транспортных средств категорий M, N и O в отношении торможения — Терминология ГОСТ Р 41.13 99: Единообразные предписания, касающиеся официального утверждения транспортных средств категорий M, N и O в отношении торможения оригинал документа: 2.11 автоматическое торможение: Торможение одного из нескольких… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 41.13-Н-99: Единообразные предписания, касающиеся официального утверждения легковых автомобилей в отношении торможения — Терминология ГОСТ Р 41.13 Н 99: Единообразные предписания, касающиеся официального утверждения легковых автомобилей в отношении торможения: 2.1. антиблокировочная система: Элемент системы рабочего тормоза, который во время торможения… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 41.13-H-99: Единообразные предписания, касающиеся официального утверждения легковых автомобилей в отношении торможения — Терминология ГОСТ Р 41.13 H 99: Единообразные предписания, касающиеся официального утверждения легковых автомобилей в отношении торможения: 2.1 антиблокировочная система: Элемент системы рабочего тормоза, который во время торможения автоматически …   Словарь-справочник терминов нормативно-технической документации

Книги

  • Журнал «Знание – сила» №2/2010, Отсутствует. Журнал «Знание – сила», основанный в 1926 году, – известное научно-популярное издание, публикующее материалы о достижениях в различных отраслях знаний – физике, астрономии, космологии,… Подробнее  Купить за 44.95 руб электронная книга

3.1. Силы и режимы движения

Монография «ТЯГОВЫЕ РАСЧЕТЫ»

3. СИЛЫ, ДЕЙСТВУЮЩИЕ НА ПОЕЗД


3. СИЛЫ, ДЕЙСТВУЮЩИЕ НА ПОЕЗД

 

3.1. СИЛЫ И РЕЖИМЫ ДВИЖЕНИЯ

 

[ПСОТП, ОТПОсип] В процессе движения поезда на него действуют различные внутренние и внешние силы. Как известно из механики, внутренние силы уравновешиваются внутри системы и не влияют на ее движение. На характер поступательного движения системы влияют только внешние силы или их составляющие, направленные по ходу движения или в противоположную сторону.

Рис.3.1-1. Силы, действующие на поезд

К внешним силам, действующим на поезд, относятся:

— касательная сила тяги Fк, создаваемая локомотивом во взаимодействии с рельсами и приложенная к ободам ведущих колес;

— тормозная сила Вт, создаваемая тормозными средствами поезда во взаимодействии с рельсами и приложенная к ободам тормозных колес;

— силы сопротивления движению W — все остальные внешние силы, приведенные к ободам колес подвижного состава.

Силу тяги и тормозные силы называют управляемыми, т.к. их можно регулировать. На силы сопротивления движению воздействовать нельзя, поэтому их называют неуправляемыми.

Сила тяги направлена по движению поезда, тормозная сила действует в противоположном направлении. Силы сопротивления, как правило, также действуют против движения. Исключение составляет случай движения по спуску.

По законам механики несколько сил, действующих на точку или механическую систему, можно заменить одной силой, которую в теории тяги поездов называют ускоряющей Fу или равнодействующей Fд силой:

Fy = Fд = Fк — W — Bт.     (3.1-1)

Одновременно три составляющие равнодействующей силы на поезд не действуют, т.к. в один и тот же момент времени не имеет смысла тратить топливо (электроэнергию) на реализацию силы тяги локомотивом и использовать тормозную систему локомотива или вагонов. В зависимости от того, какие силы действуют в данный момент на поезд, различают следующие режимы движения:

— режим тяги, когда действуют сила тяги Fк и силы сопротивления движению W: Fд = Fк — W;

— режим выбега (холостого хода), когда на поезд действуют только силы сопротивления движению: Fд = -W,

— режим торможения, когда к силам сопротивления движению прибавляется тормозная сила Вт: Fд = — (W + Вт).

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *