Глава 21. Стабилитроны . Введение в электронику
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Описать назначение и характеристики стабилитрона.
• Нарисовать схематическое обозначение стабилитрона и пометить его выводы.
• Объяснить, как работает стабилитрон в качестве регулятора напряжения.
• Описать процедуру проверки стабилитронов.
Стабилитроны очень похожи на диоды с р-n переходом. Они сконструированы для пропускания, главным образом, обратного тока. Стабилитроны широко применяются для управления напряжением в цепях любого типа.
21-1. ХАРАКТЕРИСТИКИ СТАБИЛИТРОНОВ
Как установлено ранее, высокое напряжение обратного смещения, приложенное к диоду, может создать сильный обратный ток, который перегреет диод и приведет к пробою диода. Обратное напряжение, при котором наступает пробой, называется
Когда напряжение обратного смещения достаточно велико для того, чтобы вызвать пробой стабилитрона, через него течет высокий обратный ток (IZ), до наступления пробоя обратный ток невелик. После наступления пробоя обратный ток резко возрастает. Эго происходит потому, что сопротивление стабилитрона уменьшается при увеличении обратного напряжения.
Напряжение пробоя стабилитрона (Ez) определяется удельным сопротивлением диода. Оно, в свою очередь, зависит от техники легирования, использованной при изготовлении диода. Паспортное напряжение пробоя — это обратное напряжение при токе стабилизации (IZT). Ток стабилизации несколько меньше максимального обратного тока диода. Напряжение пробоя обычно указывается с точностью от 1 до 20 %.
Способность стабилитрона рассеивать мощность уменьшается при увеличении температуры. Следовательно, рассеиваемая стабилитроном мощность
Стабилитроны выпускаются в таких же корпусах, что и обычные диоды (рис. 21-1).
Рис. 21-1. Корпуса стабилитронов.
Рис. 21-2. Схематическое обозначение стабилитрона.
21-1. Вопросы
1. Какова уникальная особенность стабилитрона?
2. Как стабилитрон включается в цепь?
4. Что надо учитывать при определении мощности, рассеиваемой стабилитроном?
5. Нарисуйте схематическое обозначение стабилитрона и пометьте его выводы.
21-2. ПАРАМЕТРЫ СТАБИЛИТРОНА
Максимальный ток стабилизации (IZM) — это максимальный обратный ток, который может течь через стабилитрон без превышения рассеиваемой мощности указанной производителем. Обратный ток (IR) представляет собой ток утечки перед началом пробоя.
Стабилитроны с напряжением стабилизации 5 вольт или более имеют положительный температурный коэффициент напряжения стабилизации, который означает, что напряжение стабилизации увеличивается при увеличении температуры. Стабилитроны, имеющие напряжение стабилизации менее 4 вольт, имеют отрицательный температурный коэффициент напряжения стабилизации, который означает, что напряжение стабилизации уменьшается при увеличении температуры. Стабилитроны, имеющие напряжение стабилизации между 4 и 5 вольтами, могут иметь как положительный, так и отрицательный температурный коэффициент напряжения стабилизации.
Температурно компенсированный стабилитрон образован последовательным соединением стабилитрона и обычного диода, причем диод смещен в прямом направлении, а стабилитрон — в обратном. Тщательно выбирая диоды, можно добиться равенства температурных коэффициентов по величине, по знаку они будут противоположны. Для полной компенсации может понадобиться более одного диода.
21-2. Вопросы
1. Что определяет максимальный ток стабилизации стабилитрона?
2. В чем разница между максимальным током стабилизации и обратным током стабилитрона?
3. Что означает положительный температурный коэффициент напряжения стабилизации?
4. Что означает отрицательный температурный коэффициент напряжения стабилизации?
5. Как можно температурно скомпенсировать стабилитрон?
21-3. РЕГУЛИРОВКА НАПРЯЖЕНИЯ С ПОМОЩЬЮ СТАБИЛИТРОНОВ
Стабилитрон можно использовать для стабилизации или регулировки напряжения. Например, он может быть использован для компенсации изменений напряжения линии питания или при изменении резистивной нагрузки, питаемой постоянным током.
На рис. 21-3 показана типичная регулирующая цепь со стабилитроном.
Рис. 21-3. Типичная регулирующая цепь со стабилитроном.
Стабилитрон соединен последовательно с резистором Rs. Резистор позволяет протекать через стабилитрон такому току, чтобы он работал в режиме пробоя (стабилизации). Входное постоянное напряжение должно быть выше, чем напряжение стабилизации стабилитрона.
Падение напряжения на стабилитроне равно напряжению стабилизации стабилитрона. Стабилитроны выпускают с определенным напряжением пробоя, которое часто называют
Входное напряжение может увеличиваться или уменьшаться. Это обусловливает соответствующее увеличение или уменьшение тока через стабилитрон. Когда стабилитрон работает при напряжении стабилизации, или в области пробоя, при увеличении входного напряжения через него может течь большой ток. Однако напряжение на стабилитроне останется таким же. Стабилитрон оказывает противодействие увеличению входного напряжения, так как при увеличении тока его удельное сопротивление падает. Это позволяет выходному напряжению на стабилитроне оставаться постоянным при изменениях входного напряжения. Изменение входного напряжения проявляется только в изменении падения напряжения на последовательно включенном резисторе. Этот резистор включен последовательно со стабилитроном, и сумма падений напряжения на них должна равняться входному напряжению. Выходное напряжение снимается со стабилитрона. Выходное напряжение может быть увеличено или уменьшено путем замены стабилитрона и включенного последовательно с ним резистора.
Описанная цепь выдает постоянное напряжение. При расчете цепи должны учитываться как ток, так и напряжение. Внешняя нагрузка потребляет ток нагрузки (
Рис. 21-4. Регулятор напряжения на основе стабилитрона с нагрузкой.
При увеличении резистивной нагрузки ток нагрузки уменьшается, что должно вызвать увеличение падения напряжения на нагрузке. Но стабилитрон препятствует любому изменению тока. Сумма тока стабилизации и тока нагрузки через последовательно включенный резистор остается постоянной. Это обеспечивает постоянство падения напряжения на последовательно включенном резисторе.
Аналогично, когда ток через нагрузку увеличивается, ток стабилизации уменьшается, обеспечивая постоянство напряжения. Это позволяет цепи оставлять постоянным выходное напряжение при изменениях входного.
21-3. Вопросы
1. В чем практическое назначение стабилитрона?
2. Нарисуйте схему регулирующей цепи со стабилитроном.
3. Как можно изменить выходное напряжение регулирующей цепи со стабилитроном?
4. Что должно учитываться при расчете регулирующей цепи со стабилитроном?
5. Опишите, как регулирующая цепь со стабилитроном поддерживает выходное напряжение постоянным.
21-4. ПРОВЕРКА СТАБИЛИТРОНОВ
Стабилитроны могут быть быстро проверены на разрыв цепи, короткое замыкание или утечку с помощью омметра. Омметр подключается в прямом и обратном направлениях так же, как и при проверке диодов. Однако такая проверка не дает информации о напряжении стабилизации стабилитрона, для его измерения должна быть выполнена регулировочная проверка с помощью блока питания, имеющего приборы для измерения напряжения и тока.
На рис. 21-5 показана установка для регулировочной проверки стабилитрона. Выход источника питания подсоединен через последовательно включенный ограничивающий резистор к проверяемому стабилитрону. К стабилитрону подключен вольтметр для проверки напряжения стабилизации. Выходное напряжение медленно увеличивается до тех пор, пока через стабилитрон не потечет определенный ток. После этого ток изменяется в области изменения тока стабилизации (IZ). Если напряжение остается постоянным, то стабилитрон работает правильно.
Рис. 21-5. Установка для проверки регулирующих свойств стабилитрона.
21-4. Вопросы
1. Опишите процесс проверки стабилитрона с помощью омметра.
2. Какие параметры нельзя проверить, используя омметр для проверки стабилитрона?
3. Нарисуйте схему, показывающую подключение стабилитрона для проверки напряжения стабилизации.
4. Опишите, как с помощью схемы из вопроса 3 определить, правильно ли работает стабилитрон.
5. Как можно определить катод стабилитрона с помощью омметра?
РЕЗЮМЕ
• Стабилитроны рассчитаны для работы при напряжениях больших, чем напряжение пробоя (максимальное обратное напряжение).
• Напряжение пробоя стабилитрона определяется удельным сопротивлением диода.
• Стабилитроны выпускаются с определенным напряжением стабилизации.
• Мощность, рассеиваемая стабилитроном, зависит от температуры и длины выводов.
• Схематическое обозначение стабилитрона следующее:
• Стабилитроны выпускаются в таких же корпусах, что и диоды.
• Стабилитроны с напряжением стабилизации 5 вольт или более имеют положительный температурный коэффициент напряжения стабилизации.
• Стабилитроны, которые имеют напряжение стабилизации менее 4 вольт, имеют отрицательный температурный коэффициент напряжения стабилизации.
• Стабилитроны используются для стабилизации или регулировки напряжения.
• Регуляторы на основе стабилитронов обеспечивают постоянное выходное напряжение, несмотря на изменения входного напряжения или выходного тока.
• Стабилитроны могут быть проверены на разрыв цепи, короткое замыкание или утечку с помощью омметра.
• Для того чтобы определить, работает ли стабилитрон при заданном напряжении стабилизации, может быть выполнена регулировочная проверка.
Глава 21. САМОПРОВЕРКА
1. Объясните, как работает стабилитрон в цепи регулировки напряжения.
2. Опишите процесс проверки напряжения стабилизации стабилитрона.
Как работает стабилитрон. » Хабстаб
Воспользуйтесь строкой поиска,
чтобы найти нужный материал
Стабилитрон, он же диод Зенера, назван в честь первооткрывателя туннельного пробоя Кларенса Зенера и на схемах обозначается следующим образом.
Но в отличие от выпрямительного диода ток через него может течь в обоих направлениях.
Для лучшего понимания его работы, можно представить его как два диода, включённых встречно-параллельно, но с разным падением напряжения.
Для любого стабилитрона, падение напряжение на одном из его диодов равно примерно 0.7 вольт, а падение напряжение на другом зависит от выбранного стабилитрона, так как разные стабилитроны имеют различные напряжения стабилизации (от 3 до 400 вольт). Например, для BZX55C3V3 прямое падение напряжение равно 0.7 вольта, а напряжение пробоя, по нашей аналогии падение напряжения на втором диоде, равно 3.3 вольта.
Описанное выше становится более понятно если посмотреть на вольт — амперную характеристику(ВАХ) стабилитрона.
Правая ветвь ВАХ аналогична ВАХ диода, а левая отвечает за тот самый туннельный пробой. Пока обратное напряжение не достигло напряжения пробоя, ток через стабилитрон практически не течёт, не считая утечки. При дальнейшем увеличении обратного напряжения, в определенный момент начинается пробой, он характеризуется загибом ВАХ. Дальнейшее увеличение обратного напряжения приводит к туннельному пробою, в этом состоянии ток через стабилитрон растёт, а напряжение нет.
Отличительной чертой туннельного пробоя является, его обратимость, то есть после снятия приложенного напряжение стабилитрон вернётся в исходное состояние. Если же максимально допустимый ток будет превышен и произойдёт тепловой пробой, стабилитрон выйдет из строя.
Простейшая схема стабилизатора на стабилитроне выглядит следующим образом.
Давайте соберём её, подключив осциллограф вместо нагрузки и подадим на вход треугольный сигнал амплитудой 10 вольт. Напряжение генератора — первый канал, напряжение на стабилитроне — второй канал.
На осциллограмме видно, что напряжение на стабилитроне изменяется от -0,88 до 3,04 вольта.
Для того чтобы понять почему так происходит, давайте заменим схему выше двумя эквивалентными.
При прямом включения стабилитрона, когда на аноде плюс, на катоде минус.
При обратном включении стабилитрона, когда на аноде минус, на катоде плюс.
До этого мы не учитывали величину сопротивление нагрузки. Прежде чем рассматривать как поведёт себя схема под нагрузкой, необходимо ознакомиться с основными характеристиками стабилитрона.
- Vz — напряжение стабилизации, обычно указывается минимальное и максимальное значение
- Iz и Zz — минимальный ток стабилизации и сопротивление стабилитрона
- Izk и Zzk — ток и сопротивление в точке, где начинается «излом» характеристики
- Ir и Vr — обратный ток и напряжение при заданной температуре
- Tc — температурный коэффициент
- Izrm — максимальный ток стабилизации
Что же произойдёт когда мы подключим нагрузку?
Ток, протекающий через стабилитрон уменьшиться, так как часть его потечёт через нагрузку. Вопрос в том насколько уменьшится, если ток через стабилитрон станет меньше минимального тока стабилизации стабилитрон перестанет стабилизировать напряжение и всё напряжение питания окажется приложенным к нагрузке. Из этого можно сделать вывод, что при отключенной нагрузке ток через стабилитрон должен быть равен сумме 2-х токов, минимального тока стабилизации и тока нагрузки.
Эта сумма токов задается с помощью гасящего резистора, в нашей схеме его номинал 1К.
Формула для его вычисления выглядит следующим образом
- Uin — входное напряжение
- Uz — напряжение стабилизации
- Iz — минимальный ток стабилизации
- I — ток нагрузки
Источник: hubstub.ru
Статья
Транзисторный стабилитрон для стабилизации сильного тока
Представленная здесь схема «стабилитрона» высокой мощности с использованием транзисторного шунтирующего стабилизатора может использоваться для безопасного получения высокоточных, стабилизированных по температуре и напряжению выходных сигналов от источников сильного тока.
Ограничение нормального стабилитрона
Маломощные стабилитроны, которые мы обычно используем в электронных схемах, рассчитаны на работу с низкими токами, поэтому их нельзя использовать для шунтирования или стабилизации сильноточных источников питания.
Хотя доступны стабилитроны с более высокими характеристиками, они могут быть относительно дорогими. Тем не менее, на самом деле можно изготовить стабилитрон высокой мощности с возможностью индивидуальной настройки, используя силовые транзисторы и микросхему шунтирующего регулятора, как показано ниже:
Принципиальная схема
Использование шунтирующего регулятора
Глядя на рисунок, мы видим использование специализированной шунтирующей ИС регулятора в форме LM431 или TL431, которая в основном представляет собой маломощный регулируемый стабилитрон.
Помимо атрибута переменного напряжения, устройство также имеет функцию создания температурно-стабилизированного выхода, что означает, что условия температуры окружающей среды не будут влиять на работу этого устройства, что невозможно с обычными диодами.
Но с точки зрения допустимой мощности устройство TL431 не лучше, чем его аналог с обычным стабилитроном.
Однако в сочетании с силовым транзистором, таким как показанный TIP147, устройство превращается в универсальный мощный стабилитрон, способный шунтировать и стабилизировать сильноточные источники без повреждений.
Пример применения
Классический пример применения этой схемы можно представить в виде схемы параллельного регулятора мотоцикла, конструкция которой используется для шунтирования и защиты генератора мотоцикла от высоких обратных ЭДС.
Эту конструкцию также можно опробовать в сильноточных емкостных источниках питания для получения стабилизированного выхода без перенапряжений от этих довольно небезопасных, но компактных бестрансформаторных источников питания.
Другие подходящие применения этой универсальной схемы могут быть для управления мощностью ветряных электростанций и в качестве электронного контроллера нагрузки для регулирования выходной мощности гидрогенераторов.
Без интеграции TIP147 каскад LM431 выглядит довольно уязвимым, а также регулировка ведется только по аноду/катоду устройства, а не по клеммам основного питания.
High Power Control
С интегрированным силовым транзистором сценарий полностью меняется, и теперь транзистор имитирует результаты работы шунтирующего стабилизатора, шунтируя высокий ток от входа до правильных уровней, как указано в конфигурациях LM431.
Делитель потенциала, выполненный с использованием резисторов 3k3 и 4k7 на опорном входе ИС, в основном определяет порог срабатывания ИС, обычно верхний резистор можно настроить для получения любого желаемого стабилитрона на выходе транзисторной схемы.
Подробные расчеты резисторов можно найти в этом листе технических данных шунтового регулятора TL431.
О компании Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными схемами и учебными пособиями.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете ответить через комментарии, я буду очень рад помочь!
Что такое стабилитрон и как он используется в качестве стабилизатора напряжения
Что такое стабилитрон
Когда напряжение обратного смещения на обычном кристаллическом диоде увеличивается, точка, известная как точка колена, достигается при известном напряжении как напряжение пробоя, когда обратный ток резко возрастает до высокого значения. Это напряжение пробоя также известно как напряжение Зенера, а резкое увеличение тока известно как ток Зенера.
Напряжение пробоя диода зависит от количества легирования. В сильно легированном диоде обедненный слой тонкий, поэтому пробой перехода происходит при более низком напряжении обратного смещения. С другой стороны, слабо легированный диод имеет более высокое напряжение пробоя. Когда обычный кристаллический диод правильно легирован, чтобы иметь резкое напряжение пробоя, он известен как стабилитрон. На рис.1 показан символ стабилитрона.
Стабилитрон всегда используется в состоянии обратного смещения. Он имеет резкое напряжение пробоя, известное как напряжение Зенера, В З . При прямом смещении он ведет себя как обычный кварцевый диод. На рис. 2 показаны характеристики стабилитрона.
Рис. 2
Эквивалентная схема стабилитрона
Случай 1. Состояние включения
резко.
Рис. 3
В этом состоянии напряжение на стабилитроне постоянно и составляет В Z независимо от изменения тока через него.
Следовательно, в области пробоя идеальный стабилитрон действует как батарея с напряжением V Z , и говорят, что стабилитрон находится во включенном состоянии.
Случай 2. Состояние ВЫКЛ.:
Когда обратное напряжение на стабилитроне меньше V Z , но больше 0 В, стабилитрон находится в состоянии «ВЫКЛ». В таком состоянии стабилитрон можно заменить разомкнутой цепью.
Рис. 4
Стабилитрон в качестве стабилизатора напряжения
Стабилитрон можно использовать в качестве стабилизатора напряжения или регулятора напряжения для обеспечения постоянного напряжения от источника, напряжение которого может изменяться в определенном диапазоне.
Рис. 5
Схема подключения показана на рис.(5).
Стабилитрон напряжения В Z включен реверсивно через сопротивление нагрузки R L на котором постоянное выходное напряжение Е О требуется.
Последовательное сопротивление R используется для поглощения колебаний выходного напряжения, чтобы поддерживать постоянное выходное напряжение на R L .
Если схема спроектирована правильно, выходное напряжение E O остается постоянным, даже если входное напряжение E i и сопротивление нагрузки R L могут изменяться в широком диапазоне.
Вариант 1: E
i переменная и R L постояннаяРис.6
Предположим, что входное напряжение E i увеличивается, так как стабилитрон находится в области пробоя, стабилитрон эквивалентен батарее с напряжением V Z и выходное напряжение остается постоянным на уровне V Z (E O = V Z ).
Избыточное напряжение падает на R. Это вызовет увеличение значения полного тока I. Стабилитрон будет проводить увеличение тока I, в то время как ток нагрузки остается постоянным.
Следовательно, выходное напряжение остается постоянным независимо от изменения входного напряжения E i
Резюме (Случай 1)
Предположим, E i увеличивается
Поскольку стабилитрон находится в области пробоя, V Z
3 остается постояннымE O = V Z
Таким образом, E O остается постоянным
Избыточное напряжение падает на R
Таким образом, I увеличивается, так как I L остается постоянным, I
67 увеличивается
Таким образом, избыточный ток проходит через стабилитрон, и E O остается постоянным независимо от изменения E i
Случай 2: E
i Постоянная и R 2 L 1909067 Vaiable Теперь предположим, что входное напряжение E i постоянно, но R L уменьшаетсяПоскольку стабилитрон находится в области пробоя, напряжение на нем останется постоянным и составит V Z .