Site Loader

Содержание

Схемы включения светодиодов

Светодиод — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Светодиод является прибором токовым, т.е. ток через него должен быть ограничен с помощью резистора. Как рассчитать этот резистор, было уже рассказано, повторяться здесь не будем, но формулу, на всякий случай, приведем еще раз.

Рисунок 1.

Здесь Uпит. – напряжение питания, Uпад. – падение напряжение на светодиоде, R – сопротивление ограничивающего резистора, I – ток через светодиод.

Однако, несмотря на всю теорию, китайская промышленность выпускает всевозможные сувениры, брелоки, зажигалки, в которых светодиод включен без ограничительного резистора: просто две-три дисковых батарейки и один светодиод. В этом случае ток ограничивается внутренним сопротивлением батареи, мощности которой просто не хватает, чтобы спалить светодиод.

Но тут, кроме перегорания, есть и еще одно неприятное свойство – деградация светодиодов, более всего присущее светодиодам белого и синего цветов: через некоторое время яркость свечения становится совсем незначительной, хотя ток через светодиод протекает вполне достаточный, на уровне номинального.

Нельзя сказать, что не светит вовсе, свечение еле заметно, но это уже не фонарик. Если при номинальном токе деградация происходит не ранее, чем через год непрерывного свечения, то при завышенном токе дождаться этого явления можно через полчаса. Такое включение светодиода следует назвать плохим.

Подобную схему можно объяснить лишь стремлением сэкономить на одном резисторе, припое, и трудозатратах, что при массовых масштабах производства, видимо, оправдано. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка — сувенир просто выкинули.

Рисунок 2. Схема плохая, но применяется достаточно часто.

Очень интересные вещи получаются (конечно, случайно), если по такой схеме подключить светодиод к блоку питания с выходным напряжением 12В и током не менее 3А: происходит ослепительная вспышка, раздается достаточно громкий хлопок, дымок, и остается удушливый запах. Так и вспоминается вот такая притча: «Можно ли посмотреть на Солнце в телескоп? Да, но только два раза. Один раз левым глазом, другой правым». Кстати, подключение светодиода без ограничительного резистора наиболее распространенная ошибка у начинающих, и о ней хотелось бы предупредить.

Чтобы исправить это положение, продлить срок службы светодиода, схему следовало бы чуточку изменить.

Рисунок 3. Хорошая схема, правильная.

Именно такую схему следует считать хорошей или правильной. Чтобы проверить, правильно ли указан номинал резистора R1, можно воспользоваться формулой, показанной на рисунке 1. Будем считать, что падение напряжения на светодиоде 2В, ток 20мА, напряжение питания 3В обусловлено применением двух пальчиковых батареек.

А вообще не надо стремиться ограничить ток на уровне предельно допустимых 20мА, можно запитать светодиод меньшим током, ну, хотя бы, миллиампер 15…18. При этом произойдет совсем незначительное уменьшение яркости, который глаз человека, в силу особенностей устройства, не заметит совсем, а вот срок службы светодиода намного увеличится.

Еще один пример плохого включения светодиодов можно встретить в различных фонариках, уже более мощных, нежели брелоки и зажигалки. В этом случае некоторое количество светодиодов, иногда достаточно большое, просто включено параллельно, и тоже без ограничительного резистора, в роли которого опять же выступает внутреннее сопротивление батареи. Такие фонарики достаточно часто попадают в ремонт именно по причине выгорания светодиодов.

Рисунок 4. Совсем плохая схема включения.

Казалось бы, исправить положение может схема, показанная на рисунке 5. Всего один резистор, и дело, казалось бы, пошло на поправку.

Рисунок 5. Так уже немного лучше.

Но и такое включение поможет мало. Дело в том, что в природе просто не найти двух одинаковых полупроводниковых приборов. Именно поэтому, например, транзисторы одного типа имеют различный коэффициент усиления, даже если они из одной производственной партии. Тиристоры и симисторы тоже бывают разные. Некоторые открываются легко, а другие настолько тяжко, что от их применения приходится отказаться. То же можно сказать и о светодиодах – двух абсолютно одинаковых, тем более трех или целой кучи, найти просто невозможно.

Замечание на тему. В DataSheet на светодиодную сборку SMD-5050 (три независимых светодиода в одном корпусе) включение, показанное на рисунке 5, не рекомендуется. Мол, из-за разброса параметров отдельных светодиодов, может быть заметна разница в их свечении. А казалось бы, в одном корпусе!

Никакого коэффициента усиления у светодиодов, конечно же, нет, зато есть такой важный параметр, как прямое падение напряжения. И если даже светодиоды взяты из одной технологической партии, из одной упаковки, то двух одинаковых в ней просто не будет. Поэтому ток у всех светодиодов будет разный. Тот светодиод, у которого ток будет больше всех, и рано или поздно превысит номинальный, сгорит раньше всех.

В связи с этим прискорбным событием весь возможный ток пойдет через два оставшихся в живых светодиода, естественно, превышая номинальный. Ведь резистор-то рассчитывался «на троих», на три светодиода. Повышенный ток вызовет и повышенный нагрев кристаллов светодиодов, и тот, который окажется «слабее», тоже сгорает. Последнему светодиоду также не остается ничего иного, как последовать примеру своих товарищей. Такая вот цепная реакция получается.

В данном случае под словом «сгорит» подразумевается просто разрыв цепи. Но может произойти, что в одном из светодиодов получится элементарно короткое замыкание, шунтирующее остальные два светодиода. Естественно, что они обязательно погаснут, хотя и останутся в живых. Резистор при такой неисправности будет усиленно греться и в конце концов, может быть, сгорит.

Чтобы такого не произошло, схему надо немного изменить: для каждого светодиода установить свой резистор, что и показано на рисунке 6.

Рисунок 6. А вот так светодиоды прослужат очень долго.

Здесь все, как требуется, все по правилам схемотехники: ток каждого светодиода будет ограничен своим резистором. В такой схеме токи через светодиоды не зависят друг от друга.

Но и это включение не вызывает особого восторга, поскольку количество резисторов равно количеству светодиодов. А хотелось бы, чтобы светодиодов было побольше, а резисторов поменьше. Как же быть?

Выход из этого положения достаточно простой. Каждый светодиод надо заменить цепочкой последовательно включенных светодиодов, как показано на рисунке 7.

Рисунок 7. Параллельное включение гирлянд.

Платой за такое усовершенствование будет увеличение напряжения питания. Если для одного светодиода достаточно всего трех вольт, то даже два светодиода, включенных последовательно, от такого напряжения уже не зажечь. Так какое же напряжение понадобится для включения гирлянды из светодиодов? Или по-другому, сколько светодиодов можно подключить к источнику питания с напряжением, например, 12В?

Замечание. Под названием «гирлянда» здесь и далее следует понимать не только елочное украшение, но также любой осветительный светодиодный прибор, в котором светодиоды соединены последовательно или параллельно. Главное, что светодиод не один. Гирлянда, она и в Африке гирлянда!

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. В большинстве случаев при расчетах это напряжение принимается 2В. Тогда получается 12/2=6. Но не надо забывать, что какая-то часть напряжения должна остаться для гасящего резистора, хотя бы вольта 2.

Получается, что на светодиоды остается только 10В, и количество светодиодов станет 10/2=5. При таком положении дел, чтобы получить ток 20мА, ограничительный резистор должен иметь номинал 2В/20мА=100Ом. Мощность резистора при этом составит P=U*I=2В*20мА=40мВт.

Такой расчет вполне справедлив, если прямое напряжение светодиодов в гирлянде, как было указано, 2В. Именно это значение часто принимается при расчетах, как некоторое среднее. Но на самом деле это напряжение зависит от типа светодиодов, от цвета свечения. Поэтому при расчетах гирлянд следует ориентироваться на тип светодиодов. Падения напряжения для светодиодов разных типов приведены в таблице, показанной на рисунке 8.

Рисунок 8. Падение напряжения на светодиодах разных цветов.

Таким образом, при напряжении источника питания 12В, за вычетом падения напряжения на токоограничивающем резисторе, всего можно подключить 10/3,7=2,7027 белых светодиодов. Но кусочек от светодиода не отрежешь, поэтому подключить возможно только два светодиода. Такой результат получается если из таблицы взять максимальное значение падения напряжения.

Если же в расчет подставить 3В, то совершенно очевидно, что подключить возможно три светодиода. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора. Если реальные светодиоды окажутся с падением напряжения 3,7В, а может выше, три светодиода могут и не зажечься. Так что лучше остановиться на двух.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Главное, чтобы они были рассчитаны на один ток. Нельзя собрать последовательную гирлянду из светодиодов, часть которых с током 20мА, а другая часть из 10-ти миллиамперных.

Понятно, что при токе 20мА светодиоды с номинальным током 10мА попросту сгорят. Если же ограничить ток на уровне 10мА, то 20-ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет.

Чтобы облегчить себе жизнь, радиолюбители разрабатывают различные программы-калькуляторы, облегчающие всевозможные рутинные расчеты. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока. Есть такая программа и для расчета светодиодных гирлянд. Скриншот такой программы приведен на рисунке 9.

Рисунок 9. Скриншот программы «Расчет_сопротивления_резистора__Ledz_».

Программа работает без установки в системе, просто ее надо скачать и пользоваться. Все настолько просто и понятно, что никаких пояснений к скриншоту совсем не требуется. Естественно, что все светодиоды должны быть одного цвета и с одинаковым током.

Ограничительные резисторы это, конечно, хорошо. Но только тогда, когда известно, что вот эта гирлянда будет питаться от стабилизированного источника постоянного напряжения 12В, и ток через светодиоды не превысит расчетного значения. А как быть, если просто нет источника с напряжением 12В?

Такая ситуация может возникнуть, например, в грузовом автомобиле с напряжением бортовой сети 24В. Выйти из такой кризисной ситуации поможет стабилизатор тока, например, «SSC0018 — Регулируемый стабилизатор тока 20..600мА». Его внешний вид показан на рисунке 10.

Рисунок 10. Регулируемый стабилизатор тока SSC0018

Технические характеристики стабилизатора показаны на рисунке 11.

Рисунок 11. Технические характеристики стабилизатора тока SSC0018

Изначально стабилизатор тока SSC0018 был разработан для применения в светодиодных светильниках, но может также применяться для зарядки малогабаритных аккумуляторов. Пользоваться устройством SSC0018 достаточно просто.

Сопротивление нагрузки на выходе стабилизатора тока может быть нулевым, попросту можно замкнуть накоротко выходные клеммы. Ведь стабилизаторы и источники тока не боятся коротких замыканий. При этом ток на выходе будет номинальным. Уж если установили 20мА, то столько и будет.

Из сказанного можно сделать вывод, что к выходу стабилизатора тока можно «напрямую» подключить миллиамперметр постоянного тока. Начинать такое подключение следует с самого большого предела измерений, ведь какой там отрегулирован ток никому не известно. Далее простым вращением подстроечного резистора установить требуемый ток. При этом, конечно, не забыть подключить стабилизатор тока SSC0018 к блоку питания. На рисунке 12 показана схема включения SSC0018 для питания светодиодов, соединенных параллельно.

Рисунок 12. Подключение для питания светодиодов, соединенных параллельно

Здесь все понятно из схемы. Для четырех светодиодов с током потребления 20мА на каждый на выходе стабилизатора надо выставить ток 80мА. При этом на входе стабилизатора SSC0018 потребуется напряжение чуть большее, чем падение напряжения на одном светодиоде, о чем было сказано выше. Конечно, подойдет и большее напряжение, но это приведет только к дополнительному нагреву микросхемы стабилизатора.

Замечание. Если для ограничения тока с помощью резистора напряжение источника питания должно превышать общее напряжение на светодиодах незначительно, всего вольта на два, то для нормальной работы стабилизатора тока SSC0018 это превышение должно быть несколько выше. Никак не меньше, чем 3…4В, иначе попросту не откроется регулирующий элемент стабилизатора.

На рисунке 13 показано подключение стабилизатора SSC0018 при использовании гирлянды из нескольких последовательно соединенных светодиодов.

Рисунок 13. Питание последовательной гирлянды через стабилизатор SSC0018

Рисунок взят из технической документации, поэтому попробуем рассчитать количество светодиодов в гирлянде и постоянное напряжение, потребное от блока питания.

Указанный на схеме ток, 350мА, позволяет сделать вывод, что гирлянда собрана из мощных белых светодиодов, ведь как было сказано чуть выше, основное назначение стабилизатора SSC0018 это источники освещения. Падение напряжения на белом светодиоде находится в пределах 3…3,7В. Для расчета следует взять максимальное значение 3,7В.

Максимальное входное напряжение стабилизатора SSC0018 составляет 50В. Вычитаем из этого значения 5В, необходимых для работы самого стабилизатора, остается 45В. Этим напряжением можно «засветить» 45/3,7=12,1621621… светодиодов. Очевидно, что это надо округлить до 12.

Количество светодиодов может быть и меньше. Тогда входное напряжение придется уменьшить (при этом выходной ток не изменится, так и останется 350мА как был отрегулирован), зачем на 3 светодиода, пусть даже мощных, подавать 50В? Такое издевательство может закончиться плачевно, ведь мощные светодиоды отнюдь недешевы. Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами.

Регулируемый стабилизатор тока SSC0018 устройство достаточно хорошее. Но весь вопрос в том, всегда ли оно нужно? Да и цена девайса несколько смущает. Каков же может быть выход из создавшегося положения? Все очень просто. Прекрасный стабилизатор тока получается из интегральных стабилизаторов напряжения, например, серии 78XX или LM317.

Для создания такого стабилизатора тока на базе стабилизатора напряжения потребуется всего 2 детали. Собственно сам стабилизатор и один единственный резистор, сопротивление и мощность которого поможет рассчитать программа StabDesign, скриншот которой показан на рисунке 14.

Рисунок 14. Расчет стабилизатора тока с помощью программы StabDesign.

Особых пояснений программа не требует. В выпадающем меню Type выбирается тип стабилизатора, в строке Iн задается требуемый ток и нажимается кнопочка Calculate. В результате получается сопротивление резистора R1 и его мощность. На рисунке расчет проведен для тока 20мА. Это для случая, когда светодиоды соединены последовательно. Для параллельного соединения ток подсчитывается так же, как показано на рисунке 12.

Светодиодная гирлянда подключается вместо резистора Rн, символизирующего нагрузку стабилизатора тока. Возможно даже подключение всего одного светодиода. При этом катод подключается к общему проводу, а анод к резистору R1.

Входное напряжение рассмотренного стабилизатора тока находится в пределах 15…39В, поскольку применен стабилизатор 7812 с напряжением стабилизации 12В.

Ранее ЭлектроВести писали, что в городе Эссен (Германия) возле городской филармонии и театра Аалто установили 15 интеллектуальных уличных фонарей, которые позволят подзарядить автомобиль, а также предоставлять данные о качестве окружающего воздуха и доступ в Интернет.

По материалам: electrik.info.

Напряжение светодиодов. Величина тока потребления светодиода

Содержание

  1. Напряжение светодиодов. Величина тока потребления светодиода
  2. Как узнать ток потребления светодиода. Корзина
    • Как определить ток светодиода?
  3. Основные характеристики светодиодов. Характеристики светодиодов
    • Рабочий ток светодиодов
    • Напряжение светодиодов
    • Мощность светодиодов
  4. Номинальный ток светодиода. Определение тока
  5. Подключение светодиода. Подключение, ошибки
  6. Видео как Определить Напряжение Для СветоДиода

Напряжение светодиодов.

Величина тока потребления светодиода

Как правило, для обычных светодиодов предусмотрена сила тока величиной 0,02А. Однако бывают светодиоды, рассчитанные на 0,08А. К таким светодиодам относят более мощные приборы, в устройстве которых задействованы четыре кристалла. Они располагаются в одном корпусе. Так как каждый из кристаллов потребляет по 0,02А, в сумме один прибор будет потреблять 0,08А.

Стабильность работы светодиодных приборов зависит от величины тока. Даже незначительное увеличение силы тока способствует снижению интенсивности излучения (старению) кристалла и увеличению цветовой температуры. Это в конечном результате приводит к тому, что светодиоды начинают отливать синим цветом и преждевременно выходят из строя. А если показатель силы тока увеличивается существенно, светодиод сразу перегорает.

Чтобы ограничить потребляемый ток, в конструкциях LED-ламп и светильников предусмотрены стабилизаторы тока для светодиодов (драйверы). Они преобразуют ток, доводя его до нужной светодиодам величины. В случае, когда требуется подключить отдельный светодиод к сети, нужно использовать токоограничительные резисторы. Расчет сопротивления резистора для светодиода выполняют с учетом его конкретных характеристик.

Полезный совет! Чтобы правильно подобрать резистор, можно воспользоваться калькулятором расчета резистора для светодиода, размещенным в сети интернет.

Как узнать ток потребления светодиода. Корзина

Главная Как определить ток светодиода?

Как определить ток светодиода?

Бывает иногда, что обнаруживаете светодиод , а его параметры вам неизвестны. Как же быть в такой ситуации? Некоторые виды сможете найти у нас на сайте и просмотреть их характеристики найдя свой среди них. Если это удастся, тогда все проблемы решены. Но бывает, что найти свой светодиод не получается. Что делать в этом случае? Здесь придется вычислять параметры опытным путем, изменяя напряжение и измеряя его (хотелось бы сказать, что к лазерным светодиодом данная методика не подойдет). Да это кропотливый труд и здесь, вам потребуются определенные приборы такие как: один, а лучше для удобства два мультиметра (ну или хотя бы один), блок питания с возможностью изменять напряжение, сопротивление (желательно 500 Ом).

Собираем схему.

V1 и V2 – мультиметры, которыми будем измерять изменения тока.

Далее начинаем понемногу увеличивать напряжение на блоки питания и наблюдать изменение в точках V1 и V2. Так же параллельно следим за светодиодом. Свойство его в том, что даже при небольшом напряжении, если он исправен, он должен начать светиться. Если это не происходит, то либо он подключен неправильно, либо не работает. Так же если БП отображает подаваемый ток, то это дает возможность использовать только 1 мультиметр, второй же будет не нужен. При достижении номинального тока светодиода, он должен достаточно ярко светиться и разница в точках V1 и V2 будет заметна. Можно добавить примерно 15-20 % это и будет максимальное напряжение данного светодиода. Если же led не светиться, а ток идет, возможно, это инфракрасный, тогда возьмите камеру и посмотрите через нее.

Основные характеристики светодиодов. Характеристики светодиодов

Основные характеристики светодиодов подразделяются на электрические и световые. С одной стороны, электрические – это рабочий ток, напряжение, мощность. С другой стороны, световые характеристики светодиодов – световой поток, сила света (эффективность). А также цветовая температура, габариты и угол рассеивания.

Рабочий ток светодиодов

Светодиоды работают только от определенной силы тока. Эта характеристика наиболее важна для работоспособности светодиода. Даже небольшое превышение рабочей силы тока приведет к быстрой деградации светодиода. А в результате выходу его из строя. Чуть более высокое превышение силы тока ведет к мгновенному перегоранию светодиода.

Ток светодиодов, несомненно, зависит от их мощности. Более мощные светодиоды работают на более высоком токе. В светодиодных лампах и светильниках устанавливаются драйвера. Они ограничивают ток именно до тех параметров, которые нужны для светодиодов, установленных в этих приборах. Часто требуется подключить светодиод отдельно. В этом случае необходимо знать его характеристики. Для того чтобы ограничить ток соответствующим драйвером, токоограничивающим резистором или конденсатором.

Напряжение светодиодов

Рабочее напряжение светодиодов зависит от полупроводников и других химических элементов, использованных при изготовлении этих светодиодов. Применение разных типов материалов для изготовления существующих видов светодиодов ведет к излучению света различных цветов. То есть рабочее напряжение можно определить по цвету светодиода. Иначе говоря, светодиоды разных цветов имеют разное рабочее напряжение.

Для питания светодиодных лент и светильников обычно используются драйвера или блоки питания. Как правило у них на выходе 12 вольт постоянного тока. К примеру. От такого источника можно запитать цепочку из последовательно соединенных светодиодов с рабочим напряжением 3 вольта. Исключим в этом примере падение напряжения на токоограничивающем резисторе. Безусловно, такая последовательная цепь может состоять только из четырех светодиодов. Пятый светодиод, если включить его в эту цепь, работать не будет. Каждый из светодиодов, грубо говоря, забирает из 12 вольт питания по 3 вольта.

Эту характеристику светодиода называют напряжением падения. В данном случае у каждого из светодиодов напряжение падения составляет 3 вольта. Другими словами. Падение напряжения – это напряжение, возникающее на выводах светодиода при протекании через него прямого рабочего тока. Эту характеристику иногда и называют рабочим напряжением светодиода. Хотя, строго говоря, таких характеристик, как напряжения питания или рабочее напряжение, у светодиода нет. Как впрочем и у любого диода.

Мощность светодиодов

Мощность светодиода зависит от его рабочего тока и падения напряжения на нем. Падение напряжения разных светодиодов колеблется в диапазоне, примерно, 1,5 – 4 вольта. Рабочий ток индикаторных и маломощных светодиодов обычно составляет 15 – 20 мА. Ток мощных осветительных светодиодов может быть 150, 350, 750 мА и доходить до 1А.

Часто для повышения яркости светодиода используют повышение его рабочего тока до очень больших величин. При этом необходимо помнить.  Применение для светодиодов такого большого тока ведет к их чрезмерному нагреву. А также быстрой деградации и выходу из строя. Хотя этого можно избежать. При условии, что питании светодиодов большим током, для повышения их яркости, использоваться система охлаждения. Для этого применяются достаточно массивные радиаторы из алюминия или даже меди. Более того, в некоторых случаях применяется принудительный обдув воздухом с помощью вентилятора-кулера. Хорошее охлаждение светодиодов при их работе на большом токе снижает риск потери их работоспособности. Однако, но не исключает его совсем.

P=U×I

Чтобы определить мощность (P) светодиода необходимо умножить напряжении (U) на силу тока (I). К примеру, мы возмем максимальные для светодиодов 4 вольта и 1 ампер. В результате мы получим самый мощный светодиод мощностью 4 Ватта. Безусловно, это будет осветительный светодиод. Несомненно, работающий от тока с не характерной, искусственно завышенной для светодиодов, силой.

Поэтому нужно понимать. Если разговор идет о 10 ваттном или даже 100 ваттном светодиоде. Несомненно, имеется в виду лампа или светильник. Они состоят из нескольких штук или десятков штук светодиодов. Или же речь идет о светодиодной сборке, например, COB типа. Иными словами, 100 кристаллов-светодиодов, каждый мощностью 1 Ватт, припаиваются на единую плату. И все это заливается слоем люминофора. Так и получается светодиод мощностью 100 Ватт.

Номинальный ток светодиода. Определение тока

Для осуществления этого есть несколько методов. Рассмотрим наиболее простой из них. Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов.

Измерение силы тока светодиода

Тестирование проводится следующим образом:

  • Щупы мультиметра подключаются плюсовым выводом к аноду, а минусовым к катоду.
  • Анодный вывод у светодиода делается длиннее, чем катодный.
  • Прозванивать можно светодиоды, у которых небольшое напряжение питания. Если у них большая мощность, применять такой метод нельзя.

Лучше воспользоваться проверенным способом измерения характеристик устройства. Для этого понадобятся:

  • блок питания, рассчитанный на 12 В;
  • мультиамперметр;
  • постоянные резисторы – 2,2 и 1 кОм, а также 560 Ом;
  • переменный резистор – 470–680 Ом;
  • вольтметр, желательно цифровой;
  • провода для коммутации схемы.

Как и в предыдущем случае, потребуется узнать полярность диода. Если по его выводам непонятно, где «+» и «-», тогда придется к одному из выводов подсоединить резистор 2,2 кОм. После этого нужно подключить светодиод к блоку питания. При его свечении нужно отключить питание и промаркировать нужный выход «+».

Теперь нужно заменить резистор 2,2 кОм на 560 Ом. В эту цепь последовательно подсоединяется переменный резистор, а также миллиамперметр для проведения замера. Вольтметр, у которого разрешение 0,1 В, подключается параллельно светодиоду. После этого необходимо установить максимальное сопротивление у переменного резистора.

Мультиметр для замера силы тока и напряжения светодиода

Можно подсоединить собранную схему к блоку питания, соблюдая полярность. После включения у светодиода будет блеклое свечение. Сопротивление постепенно снижают и следят за вольтметром. Определенное время напряжение будет расти до 0,5 В, расти будет и ток, что влияет на увеличение яркости светодиода. Необходимо фиксировать показания каждые 0,1 В. Оптимальный рабочий ток будет достигнут, когда величина напряжения станет расти медленнее силы тока, а яркость перестанет увеличиваться.

Подключение светодиода. Подключение, ошибки

Светодиод обладает многими преимуществами перед другими источниками излучения. Он экономичный, с большим эксплуатационным сроком, виброустойчивый и к тому же имеющий невеликие габариты. Однако, эти положительные качества не всегда полностью реализуются на практике. И прежде всего, из-за недостаточного понимания работы нелинейного полупроводникового прибора. Чтобы избежать этого и достичь эффективного использования, необходимо придерживаться правил.

Нельзя подсоединять светодиод напрямую к источнику.

Он подключается последовательно через резистор либо через драйвер питания, регулирующий величину тока. Неуправляемая подача быстро выведет его из строя.

Рис. 1

Не рекомендуется параллельное подключение между собой нескольких диодов к одному источнику питания. Рис. 2. Самый безобидный вариант от такого подсоединения проявится в том, что излучение света будет разной яркостью. При повреждении первого диода возрастает ток на второй, резко сокращающий сроки его эксплуатации вплоть до разрушения.
Не допускается последовательное подключение светодиода с разными параметрами тока. При этом слабо излучающий свет быстро выйдет из строя. Рис. 2

Подключение элемента неправильного сопротивления. Рис 3. Протекающий через него ток, может оказаться большим или недостаточным для оптимальной работы диода. Это приведёт к перегреву кристалла и сокращение сроков службы

Применение ограничивающего резистора недостаточной мощности, следствием которой будет его полное разрушение. Рисунок. 3.
При подключении светодиода к сети необходимо ограничить обратное напряжение. Увеличенный ток может, перегреть полупроводниковый переход, вызывающий тепловой пробой и повреждение светодиода.

Соблюдая правильность подсоединения элементов, достигают максимальной эффективности приборов в освещении и конструировании различных устройств.

Видео как Определить Напряжение Для СветоДиода

ОШИБКА — 404 — НЕ НАЙДЕНА

  • Главная
  • ДОБРАТЬСЯ К ЧОППА

Наши серверные гномы не смогли найти страницу, которую вы ищете.

Похоже, вы неправильно набрали URL-адрес в адресной строке или перешли по старой закладке.

Возможно, некоторые из них могут вас заинтересовать?

Модульная пластиковая коробка для хранения — маленькая (10 шт.

в упаковке)

В наличии ТОЛ-11527

Избранное Любимый 26

Список желаний

Коробка деталей SparkFun — LilyPad (магнитная)

В наличии ТОЛ-11640

$3,95 2,25 доллара США

1

Избранное Любимый 6

Список желаний

Прорыв SparkFun VR IMU — BNO080 (Qwiic)

Нет в наличии SEN-14686

5

Избранное Любимый 14

Список желаний

MIKROE Heart Rate 3 Click

Нет в наличии SEN-20315

39,95 $

Избранное Любимый 0

Список желаний

Согласие на шесть градусов

21 мая 2021 г.

У нас есть новый Qwiic 6DoF Breakout, криптографический сопроцессор, модуль разработки OBD-II и многое другое!

Избранное Любимый 1

Конкурс разработчиков Arm DevSummit

17 августа 2021 г.

Пришло время воплотить ваши идеи в области устойчивого развития!

Избранное Любимый 0

Установка загрузчика Arduino

4 декабря 2013 г.

В этом руководстве вы узнаете, что такое загрузчик и зачем его устанавливать или переустанавливать. Мы также рассмотрим процесс записи загрузчика путем прошивки шестнадцатеричного файла в микроконтроллер Arduino.

Избранное Любимый 25

  • Электроника SparkFun®
  • 6333 Dry Creek Parkway, Niwot, Colorado 80503
  • Настольный сайт
  • Ваш счет
  • Авторизоваться
  • регистр

ОШИБКА — 404 — НЕ НАЙДЕНА

  • Главная
  • ФНОРД

Наши серверные гномы не смогли найти страницу, которую вы ищете.

Похоже, вы неправильно набрали URL-адрес в адресной строке или перешли по старой закладке.

Возможно, некоторые из них могут вас заинтересовать?

Комплект защиты драйвера питания SparkFun

22 в наличии DEV-10618

25,50 $

4

Избранное Любимый 15

Список желаний

МИКРОЭ RS485 6 Нажмите

Нет в наличии DEV-19501

15,95 $

Избранное Любимый 0

Список желаний

Датчик отпечатков пальцев с двухцветным светодиодным кольцом

Нет в наличии SEN-19513

44,95 $

Избранное Любимый 0

Список желаний

МИКРОЭ 3D Зал 3 Click

Нет в наличии SEN-19851

14,95 $

Избранное Любимый 0

Список желаний

Температурный монитор Интернета вещей своими руками

17 декабря 2020 г.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *