Термосопротивление, описание, принцип работы, виды
В общепринятом смысле термосопротивление — это физическая величина, способность тела препятствовать распространению теплового движения молекул. Однако чаще всего под этим термином подразумевают специальные приборы, способные этот параметр измерять — термометры сопротивления и терморезисторы.
Принцип работы термосопротивления
При нагреве проводника изменяется его сопротивление, а следовательно, и ток, проходящий через проводник. Интенсивность изменения зависит от нескольких факторов:
- температура и плотность окружающей среды;
- скорость жидкой или газообразной среды;
- размеры и материал самого проводника.
Если измерить зависимость сопротивления провода от этих неэлектрических величин, то на основе этой информации можно получать данные об изменении параметров окружающей среды. Собственно, в этом и заключается принцип, по которому работает термосопротивление.
Виды термосопротивлений
По материалу изготовления все термосопротивления можно разделить на следующие группы:
- Проводниковое термосопротивление. Термопреобразователи сопротивления производятся в точном соответствии с ГОСТ 6651-2009. Как правило, они изготавливаются из чистых металлов: меди, никеля и платины. В основном представляют собой каркасную или безкаркасную катушку, выполненную из однородного проводника с контактными выводами. Характеризуются прямой зависимостью сопротивления от температуры, чем выше температура, тем выше сопротивление. Имеют большой температурный коэффициент измерения, точность, характеристику близкую к линейной.
Медь используется при измерениях от -50 до 150—180 градусов Цельсия в среде, свободной от посторонних примесей. Если температура будет выше, металл окислится, а это снижает точность.
Никель можно применять для измерений до 250—300 градусов Цельсия. Однако стоит учитывать, что при температуре свыше 100 ºС зависимость сопротивления уже не является линейной. Она высчитывается по формулам, зависящим от марки никеля.
Платина — это самый распространенный материал для промышленных приборов. Этот металл может использоваться при температуре до 1000—1200 градусов Цельсия, хотя на практике платиновое термосопротивление применяется до 650 ºС. Дело в том, что при температуре свыше 500 градусов Цельсия удобнее использовать датчики термопары. Кстати, стоит оговориться, что этот металл нельзя применять в восстановительных средах (углерод, пары кремния, калия, натрия и т. п.).
- Полупроводниковое термосопротивление. Терморезистор (термистор), полупроводниковое сопротивление из разнородного сплава, может иметь прямую или обратную характеристику (PTC-термистор или NTС-термистор) зависимости сопротивления от температуры. Изготавливаются методом порошковой металлургии в виде дисков, шайб, бусинок, тонких пластинок. Имеют большой температурный коэффициент сопротивления, нелинейную характеристику, способны работать при значительных механических нагрузках и в сложных условия эксплуатации.
NTC-термисторы типов ММТ-1 и КМТ-1 (рис. 1-а) состоят из полупроводникового эмалированного стержня (1), контактных колпачков (2) и выводов (3).
NTC-термисторы типов ММТ-4 и КМТ-4 (рис. 1-б) выпускаются в герметичном металлическом корпусе (2), за счет чего могут использоваться даже во влажной среде. Герметизация осуществляется при помощи стекла (3) и олова (4), а сам полупроводниковый стержень (1) обернут фольгой (5).
-
рис. 1-а рис. 1-б
Медно-кобальто-марганцевые терморезисторы вроде МКМТ-16 бусинкового типа (NTC-термисторы) (рис. 2) — это мини-измерители в стеклянном корпусе. В нем роль сопротивления играет шарик диаметром около 0,8 мм с платиновыми выводами диаметром 0,05 мм, к концам которых приварены проводники из нихромовой проволоки диаметром 0,1 мм.
Все термопреобразователи сопротивления , предлагаемые нашей компанией, можно посмотреть в каталоге продукции.
-
Теория / ЭФО corporate blog / Habr
Недавно мне повезло побывать на производстве датчиков температуры, а точнее на швейцарском предприятии IST-AG, где делают платиновые и никелевые термосопротивления (RTD).По этому поводу публикую две статьи, в которых читатель найдет довольно подробное описание этого типа датчиков, путеводитель по основным этапам производственного процесса и обзор возможностей, которые появляются при использовании тонкопленочных технологий.
В первой статье разбираемся с теоретической базой. Не слишком увлекательно, но весьма полезно.
(они же — термосопротивления или RTD)
Сначала имеет смысл разобраться с терминологией. Если вы хорошо знакомы с вопросом, то смело переходите ко второй части статьи. А может быть и сразу к третьей.
Итак, под определение «датчик температуры» попадают тысячи самых разных изделий. Под датчиком можно понимать и готовое измерительное устройство, где на дисплее отображается значение температуры в градусах, и интегральную микросхему с цифровым сигналом на выходе, и просто чувствительный элемент, на базе которого строятся все остальные решения. Сегодня мы говорим только о чувствительных элементах, которые, впрочем, тоже будем называть словом «датчик».
Термометры сопротивления, которые также известны как термосопротивления и RTD (Resistance Temperature Detector) — это чувствительные элементы, принцип работы которого хорошо понятен из названия — электрическое сопротивление элемента растет с увеличением температуры окружающей среды и наоборот. Вероятно вы слышали о термосопротивлениях как о платиновых датчиках температуры типа Pt100, Pt500 и Pt1000 или как о датчиках 50М, 50П, 100М или 100П.
Иногда термосопротивления путают с термисторами или термопарами. Все эти датчики используются в похожих задачах, но, даже несмотря на то что термисторы тоже являются преобразователями температура-сопротивление, нельзя путать термосопротивления, термисторы и термопары между собой. О разнице в строении и назначении этих элементов написана уже тысяча статьей, так что я, пожалуй, не буду повторяться.
Отмечу главное: средний термометр сопротивления стоит в разы дороже, чем средний термистор и термопара, но только термосопротивления имеют линейную выходную характеристику. Линейность характеристики, а также гораздо более высокие показатели по точности и повторяемости результатов измерений, делают термосопротивления востребованными несмотря на разницу в цене.
Если коротко, характеристики термосопротивлений можно разбить на три группы:
- Номинальная статическая характеристика (НСХ) и точность
- Диапазон температур, на котором определяется НСХ и обеспечивается заявленная точность
- Корпус датчика, тип и длина выводов
На мой взгляд, пояснений требует только первый пункт.
Номинальная статическая характеристика (НСХ)
НСХ — это функция (на практике чаще таблица значений), которая определяет зависимость сопротивление-температура.
Зависимость R(T), конечно, не является абсолютно линейной — на самом деле выходная характеристика термосопротивления описывается полиномом с известными коэффициентами. В простейшем случае это полином второй степени R(T) = R0 (1 + A x T + B x T2), где R0 — номинальное сопротивление датчика, то есть значение сопротивления при 0°C.
Вид полинома и его коэффициенты описываются в различных национальных и международных стандартах. Действующий российский стандарт — ГОСТ 6651-2009. В Европе чаще используют DIN 60751 (он же IEC-751), однако одновременно с ним действует DIN 43760, в Северной Америке популярен стандарт ASTM E1137 и так далее. Несмотря на то что некоторые стандарты согласованы между собой, в целом картина довольно печальная и единого индустриального стандарта по факту не существует.
Наиболее популярные типы термосопротивлений — это платиновые датчики (Pt 3850, Pt 3750, Pt 3911 и др.), никелевые (Ni 6180, Ni 6720 и др.) и медные термосопротивления, например Cu 4280. Каждому типу датчиков соответствует свой полином R(T).
Приведенные наименования содержат название металла, который используется при изготовлении датчика, и коэффициент, который описывает отношение сопротивления датчика при 0 к сопротивлению при 100°C. Этот коэффициент, вместе со значением R0, определяет наклон функции R(T).
В разношерстных стандартах и, как следствие, в спецификациях на конкретные датчики, этот коэффициент может выражаться по-разному. Например, для платинового датчика может быть указан коэффициент альфа равный 0.00385 °C-1, или температурный коэффициент 0.385%/°C, или TCR = 3850 ppm/K, однако во всех трех случаях подразумевается одна и та же зависимость R(T).
Используемый металл однозначно определяет степень полинома R(T), а коэффициенты полинома определяются температурным коэффициентом металла.
Например, для всех платиновых датчиков функция R(T) имеет следующий вид:
R(T) = R0 (1 + A x T + B x T2) при T > 0
R(T) = R0 (1 + A x T + B x T2 + C x (T-100) x T3) при T < 0
где коэффициенты выбираются в зависимости от типа платины:
- Pt 3850 ppm/K (наиболее распространенная характеристика современных термосопротивлений)
A = 3.9083 x 10-3 °C-1
B = -5.775 x 10-7 °C-2
C = -4.183 x 10-12°C-4 - Pt 3911 ppm/K (характеристика остается востребованной в РФ, т.к. в прошлом только она была внесена в ГОСТ)
B = -5.829 x 10-7 °C-2
C = -4.3303 x 10-12°C-4
Автомобильному стандарту Pt 3770 ppm/K, американскому Pt 3750 ppm/K или японскому Pt 3916 ppm/K будут соответствовать другие наборы коэффициентов.
Та же логика действует для меди и никеля. Например, НСХ всех никелевых датчиков описывается полиномом шестой степени:
R(T) = R0 (1 + A x T + B x T2 + C x T3 + D x T4 + E x T5 + F x T6)
где коэффициенты определяются температурным коэффициентом никеля (Ni 6180 ppm/K, Ni 6720 ppm/K и т.д.).
Осталось сказать о последнем параметре НСХ термометров сопротивления — о номинальном сопротивлении R0. Чаще всего используются датчики со стандартным R0 — 50, 100, 500 или 1000 Ом, однако иногда требуются тремосопротивления с R0 = 2000 и даже 10000 Ом, а также датчики с «не кратным» номинальным сопротивлением.
То есть каждому типу термосопротивления может соответствовать несколько НСХ с разными номинальными сопротивлениями R0. Для наиболее распространенных в РФ характеристик используют стандартные обозначения: Pt100 и Pt1000 соответствуют платине с температурным коэффициентом 3850 ppm/K и R0 = 100 и 1000 Ом соответственно. Унаследованные из советских справочников обозначения 50П и 100П — это датчики из платины с коэффициентом 3911 ppm/K и R0 = 50 и 100 Ом, а датчики известные как 50М и 100М — это медь 4280 ppm/K с номинальным сопротивлением 50 и 100 Ом.
Точность датчика
Точность термосопротивления — это то, насколько зависимость R(T) реального датчика может отклониться от идеальной НСХ. Для обозначения точности термосопротивлений используют понятие класса допуска (от же класс точности).
Класс допуска определяет максимальное допустимое отклонение от номинальной характеристики, причем задается это отклонение как функция температуры — при нуле градусов фиксируется наименьшее допустимое отклонение, а при уменьшении или увеличении температуры диапазон допустимых значений линейно увеличивается.
Когда дело касается классов допуска, бардак в действующих стандартах только усугубляется — даже названия классов в разных источниках могут отличаться.
Другие названия | Допуск, °С |
|
Класс АA |
Class Y 1/3 DIN 1/3 B F 0.1 (если речь о тонкопленочном датчике) W 0.1 (если речь о намоточном датчике) |
±(0.1 + 0.0017 |T|) |
Класс A |
1/2 DIN 1/2 B F 0.15 (если речь о тонкопленочном датчике) W 0.15 (если речь о намоточном датчике) |
±(0.15 + 0.002 |T|) |
Класс B |
DIN F 0.3 (если речь о тонкопленочном датчике) W 0.3 (если речь о намоточном датчике) |
±(0.3 + 0.005 |T|) |
Класс C |
Class 2B Class BB F 0.6 (если речь о тонкопленочном датчике) W 0.6 (если речь о намоточном датчике) |
±(0.6 + 0.01 |T|) |
— | Class K 1/10 DIN |
±(0.03 + 0.0005 |T|) |
— | Class K 1/5 DIN |
±(0.06 + 0.001 |T|) |
Приведенные в таблице допуски соответствуют большинству действующих стандартов для платиновых датчиков 3850 ppm/K, включая ГОСТ и европейский DIN 60751 (IEC-751), который с большой натяжкой можно назвать общепринятым. Однако и здесь есть исключенияНапример, в американском стандарте ASTM E1137 классы допуска платиновых датчиков именуются Grade и определяются иначе:
Grade A | ±(0.25 + 0.0042 |T|) |
Grade B | ±(0.13 + 0.0017 |T|) |
Если же говорить о платине с другими температурными коэффициентами или о никелевых и медных датчиках, то можно обнаружить и другие определения допусков.
Класс допуска описывает не только максимальную величину допуска, но и диапазон температур, на котором этот допуск гарантируется. Вы, наверное, уже догадались, что в разных стандартах эти диапазоны могут существенно отличаться. Это действительно так, причем диапазон температур зависит не только от класса допуска и типа датчика, но и от технологии, по которой выполнен датчик — у намоточных датчиков диапазон всегда шире.
О том, что такое намоточные и тонкопленочные датчики — чуть ниже.
На картинке — кассы допуска для платиновых датчиков с температурным коэффициентом 3850 по стандарту DIN 60751 (IEC-751).Определения классов допуска для тонкопленочных и намоточных платиновых датчиков Pt 3850 ppm/K
Тонкопленочный датчик Pt 3850 ppm/K | Намоточный датчик Pt 3850 ppm/K | ||||
Класс допуска | Диапазон температур | Класс допуска | Диапазон температур | ||
DIN 60751 (IEC-751) / ГОСТ | DIN 60751 (IEC-751) | ГОСТ | |||
Класс АА (F 0.1) |
0… +150°С | Класс АА (W 0.1) |
-100… +350°С | -50… +250°С | |
Класс А (F 0.15) |
-30… +300°С | Класс А (W 0.15) |
-100… +450°С | ||
Класс B (F 0.3) |
-50… +500°С | Класс B (W 0.3) |
-196… +600°С | -196… +660°С | |
Класс С (F 0.6) |
-50… +600°С | Класс С (W 0.6) |
-196… +600°С | -196… +660°С |
К слову, если в документации на термосопротивление указан диапазон измеряемых температур, который шире диапазона, предусмотренного указанным классом допуска, то заявленный класс допуска не будет действовать на всём рабочем диапазоне. Например, если датчик Pt1000 класса A предназначен для измерения температур от -200 до +600°C, то он будет иметь точность ±(0.15+0.002|T|) только при температурах до +300°C, а дальше скорее всего будет обеспечиваться класс В.
Я привожу все эти подробности о терминологии и разночтениях в стандартах чтобы донести одну простую мысль: выбирая термосопротивление легко запутаться и неверно истолковать характеристики элемента. Важно понимать какие именно требования вы предъявляете к элементу (в абсолютных цифрах, а не в классах) и сравнивать их с абсолютными цифрами из документации на конкретный датчик.
Итак, термосопротивления представляют собой резисторы, выполненные из платины или, реже, из никеля или меди. Выше уже упоминались две технологии — намоточная (проволочная) и тонкопленочная.
Намоточные датчики — это термосопротивления, выполненные на основе спиралей из металлической проволоки. Существует два основных способа изготовления намоточных датчиков. В первом случае проволока наматывается на стеклянный или керамический цилиндр, после чего конструкция покрывается изолирующим слоем из стекла. Второй способ — это помещение металлических спиралей в каналы внутри керамического цилиндра.
При изготовлении тонкопленочных датчиков на керамическую подложку напыляется тонкий слой металла, который образует токопроводящую дорожку, так называемый меандр. После этого датчик покрывается изолирующим слоем из стекла.
Большинство современных термосопротивлений выполняется по одной из этих трёх технологий. В источниках встречаются противоречивые мнения о том, какая конструкция более устойчива к вибрациям или перепадам температур. Оценки стоимости датчиков разных конструкций тоже сильно разнятся.
На деле принципиальных отличий между характеристиками датчиков разной конструкции нет, цены на тонкопленочные и намоточные датчики также находятся в одном диапазоне.
В большинстве случаев совершенно не важно как именно устроен датчик — при выборе компонента имеет значение только соотношение цены и характеристик конкретного элемента (нужно только не забывать что классы допуска для тонкопленочных датчиков определены на более узком диапазоне температур). Однако в некоторых задачах тонкопленочные датчики осознанно предпочитают намоточным. На это есть три главных причины:
- Высокие номинальные сопротивления. Тонкопленочная технология позволяет производить датчики с R0=1000 Ом той же ценой, что и датчики с номинальным сопротивлением 50, 100 или 500 Ом. К тому же, изготавливаются датчики и с более высоким номинальным сопротивлением, например 2000 и 10000 Ом.
- Малый размер. Тонкопленочный датчик можно сделать гораздо более миниатюрным по сравнению с намоточным. Стандартный датчик Pt1000, например, может иметь габариты всего 1.6 x 1.2 мм.
- Прямоугольная форма и миниатюрный размер пленочных датчиков позволяют выпускать не только выводные термосопротивления, но и SMD-компоненты стандартных размеров — 1206, 0805 и так далее.
У тонкопленочной технологии есть и другие интересные свойства, позволяющие, например, сократить время отклика датчика температуры или изготовить на базе термосопротивлений датчики скорости потока. Об этом будем говорить в следующей статье, которая полностью посвящена процессу изготовления тонкопленочных датчиков.
В заключении традиционно благодарю читателя за внимание и напоминаю, что вопросы по применению продукции, о которой мы пишем на хабре, можно также задавать на email, указанный в моем профиле.
upd #1: Статья «Термосопротивления: производственный процесс» опубликована.
upd #2: все упомянутые датчики и модули доступны со склада. Больше информации на efo-sensor.ru
Производственный процесс / ЭФО corporate blog / Habr
Среди идеально-зеленых швейцарских лугов, по соседству с коровником, стоит современное минималистичное здание с панорамными окнами. Здесь расположены главный офис и основные производственные мощности швейцарской компании IST-AG.Большую часть продукции, которую выпускает IST-AG, составляют тонкопленочные датчики температуры, они же термосопротивления (RTD). Из статьи «Термосопротивления: теория» можно узнать что это такое и как оно работает.
Сегодня расскажу об основных этапах производственного процесса. Как и на производстве полупроводников, всё начинается с керамической подложки..
Напомню, что тонкопленочный датчик представляет собой резистор, выполненный на базе платины, никеля или меди.
Технология изготовления тонкопленочных датчиков берет начало в полупроводниковой промышленности: на керамическую подложку напыляется тонкий слой металла, из которого формируется токопроводящая дорожка, которую часто называют меандром. Металлический меандр покрывается сверху изолирующим (пассивационным) слоем из стекла, устойчивого к температурному и химическому воздействию. Специально подобранный состав стекла также используется для фиксации выводов.
Таким образом, первый этап производства — это нанесение платины на керамическую подложку.
Здесь и далее я буду говорить о производстве именно платиновых датчиков. Во-первых, подавляющая часть современных термосопротивлений — это платиновые элементы с характеристикой 3850 ppm/K (подробнее этот вопрос освещен в предыдущей статье), а во-вторых, производство никелевых и медных термосопротивлений мало чем отличается.
Для датчиков температуры используют подложку из оксида алюминия (99.6% Al2O3), но при производстве других тонкопленочных датчиков могут использоваться другие материалы — сапфир, цирконий, полиимид, стекло, кремний и т.д.
Стандартная толщина керамической подложки — 0.63 мм, но иногда изготавливаются специальные датчики с подложкой толщиной 0.З8 и даже 0.25 мм. Уменьшение толщины подложки позволяет сократить время отклика датчика, тонкие подложки также используются при изготовлении датчиков с высоким номинальным сопротивлением, например 10кОм.
Керамические пластины подвергаются химической очистке и травлению. Естественно, эти операции выполняются в чистом помещении на современном оборудовании. О чистой комнате в IST нужно сказать две вещи: она сертифицирована по стандарту ISO-5 и оттуда открывается чудный вид на альпийские луга.
На очищенную керамическую пластину напыляется слой металла. Состав металла определяет вид зависимости сопротивления датчика от измеряемой температуры — различным видам платины соответствуют разные коэффициенты A, B и C полинома R(T), об этом предыдущая статья.
Пластина с напыленной платиной
На очищенную керамическую пластину наносится фоторезист — светочувствительный материал, который используется как маска для формирования проводящих структур и при изготовлении полупроводников, и на производстве печатных плат и в других процессах. Фоторезист наносится центрифугированием.
Фоторезист чувствителен к ультрафиолетовому спектру, поэтому этот этап работ проводится при неактиничном (желтом) освещении.
Платина, покрытая фоторезистом
Пластина с фоторезистом совмещается с маской, которая и определяет структуру меандра, а значит и важные параметры будущего датчика — номинальное сопротивление R0 и размер.
Далее проводится экспонирование — пластина с наложенной маской засвечивается, таким образом незакрытые маской участки фоторезиста закрепляются на пластине.
После травления — удаления фоторезиста с незасвеченных участков — на керамической пластине остаются токопроводящие дорожки.
В зависимости от использованной маски на пластине помещается разное количество датчиков, в среднем около 2000 штук. Легко догадаться, что использование «непопулярной» маски, то есть изготовление датчиков с редкими характеристиками, невыгодно для небольших заказов.
На этом же этапе производства на пластину наносятся металлические площадки для крепления выводов, для этого используется трафаретная печать.
Геометрия меандра, нанесенного по одной из стандартных масок, может быть скорректирована с помощью лазерной подгонки. В прошлой статье упоминался тот факт, что помимо стандартных R0 — 50, 100, 500, 1000 Ом, термосопротивление может иметь номинальное сопротивление, сдвинутое относительно стандартного значения. Сдвиг R0 можно сделать как раз за счет лазерной подгонки.
После того как меандр сформирован, пластина покрывается пассивационным слоем из стекла. Далее пластина разрезается, а заготовки датчиков перемещаются из чистой комнаты в обычные помещения.
Здесь можно проследить интересную взаимосвязь между размером датчика и его ценой. Существует около 15 стандартных размеров выводных датчиков: 1.6 × 1.2 мм, 2 × 2 мм, 2.3 × 2 мм, 2.5 × 1.6 мм, 3 × 0.8 мм, 3 × 2.5 мм, 4 × 2 мм, 5 × 5 мм, 5 × 1.6 мм, 5 × 2 мм, 5 × 2.5 мм, 5 × 3.8 мм, 10 × 2 мм и т.д.Логично, что при прочих равных самые большие по площади датчики будут дороже — для их производства требуется больше материалов. Однако есть и другое обстоятельство — датчики размером меньше двух миллиметров тоже стоят дороже, это связано с методом разрезания пластин.
В большинстве случаев для разделения пластин на отдельные датчики используется разламывание, однако для относительно маленьких датчиков этот метод неприменим, поэтому при изготовлении миниатюрных датчиков на пластину алмазным резцом предварительно наносятся риски. Лишняя операция — дополнительная стоимость. Таким образом, оптимальными по цене являются датчики размером 2 x 2, 2.3 × 2 или 5 × 2 мм.
Когда пластины разрезаны, к датчикам добавляют выводы — автоматические машины приваривают выводы на контактные площадки, после чего место крепления покрывается защитным слоем из стекла.
На этом производство датчиков завершается. Далее проводятся процедуры проверки точности каждого элемента и упаковка продукции.
Проверка точности выявляет какому классу допуска (здесь опять ссылаюсь на предыдущую статью) соответствует каждый элемент. По очень примерной оценке с каждой пластины получается около трети датчиков каждого класса (B, A, AA). Отсюда разница в цене — класс B самый дешевый, аналогичный датчик класса A будет стоить процентов на 20 дороже, а датчик класса AA ещё процентов на 20-30 дороже — наиболее точные датчики подвергаются дополнительным контрольным измерениям.
О выводных датчиках
Вернемся к выводам датчиков. Выводы выполняются из различных материалов, могут иметь разную длину и форму (круглые / плоские). Доступны датчики с многожильными выводами, датчики с эмалированными и изолированными выводами. Большинство датчиков имеет два вывода, но есть и элементы для 3- и 4-проводной схемы включения.
Тип выводов зависит в первую очередь от температурного диапазона датчика. Например, эмалированные медные провода терпят только температуры до +150°C, выводы из сплавов серебра и никеля выдерживают более высокие температуры. Для температур до +600°C необходимы провода с платиновым покрытием, а для работы с температурами до +750 или до +850°C нужны уже полностью платиновые выводы.
Кстати о длине выводов. Чаще всего если датчику нужны длинные выводы, то контакты наращиваются до нужной длины — дополнительный провод приваривается или припаивается. Однако есть задачи, в которых требования к надежности столь высоки, что дополнительное соединение недопустимо и выводы нужной длины должны быть установлены изначально. Так при изготовлении датчиков для CERN к контактным площадкам датчика были приварены выводы длиной целых 35 метров.
О SMD датчиках
Большинство термометров сопротивления — это выводные компоненты, однако именно благодаря тонкопленочной технологии появились термомсопротивления для поверхностного монтажа (не устаю ссылаться на предыдущую статью).
Выпускаются как классические SMD-компоненты, так и датчики для монтажа Flip-Chip. Для установки компонентов Flip-Chip требуется более сложное оборудование (точное позиционирование, контроль усилия по оси Z, дополнительная защита от пыли). С другой стороны, датчики Flip-Chip дешевле, они занимают меньше места, и вообще будущее за ними.
Датчики для поверхностного монтажа выпускаются со стандартными размерами — 1206, 0805 и 0603.
Вообще говоря, многообразие корпусов — это одна из главных фишек компании IST. Здесь делают самые разные датчики, причем нестандартные решения доступны не только для крупных клиентов, но и для среднесерийных производств.
Замена намоточных датчиков
Например, для прямой замены намоточных датчиков на тонкопленочные производятся термосопротивления в специальном цилиндрическом корпусе. Миниатюрный прямоугольный датчик помещается внутри керамического корпуса, который повторяет классический форм-фактор намоточных датчиков.
Такой корпус не выполняет никаких защитных функций, его единственный смысл — безболезненный переход c намоточных термосопротивлений на тонкопленочные.
Металлические гильзы
Очень популярны термосопротивления, выполненные в виде зондов — гильз из нержавейки, которые опускаются в жидкую среду. Обычно такие датчики изготавливаются следующим образом: чувствительный элемент — тонкопленочный или намоточный сенсор — помещается в металлический корпус, после чего гильза заполняется чем-нибудь вроде оксида магния (высокая теплопроводность плюс хорошие электроизолирующие свойства).
При использовании тонкопленочных технологий можно усовершенствовать эту конструкцию: поскольку тонкопленочные датчики плоские и имеют относительно небольшой размер, сенсор можно установить прямо на «дно» гильзы.
Таким образом достигается два положительных эффекта. Во-первых, значительно сокращается время отклика (датчик выходит на рабочий режим менее чем за полторы секунды). Во-вторых, гильзу можно опускать в измеряемую среду не полностью, а всего на 10 мм почти без потери точности.
Выполненные таким образом датчики выпускаются под называнием RealProbeTemp [datasheet].
Графики, которые вскружат вам головуПри изготовлении RealProbeTemp используются чувствительные элементы, у которых выводы крепятся не стандартным способом, а перпендикулярно плоскости датчика. Такие элементы доступны и отдельно, их применяют в задачах, когда датчик должен быть установлен в узкое отверстие или в трубку.
Контакт с поверхностью объекта измерений
Тот факт, что тонкопленочные датчики являются плоскими, позволяет выпускать разные специальные решения для наилучшего контакта с поверхностью объекта измерений. Чтобы сократить время отклика и обеспечить максимальную достоверность измерений, у самого сенсора метализируется тыльная сторона. Металлизированные датчики доступны для заказа отдельно, но чаще их изготавливают сразу закрепленными на контактной площадке. Контактные площадки могут иметь различные формы и размеры, в зависимости от задачи.
Например, для лучшего контакта при измерении температуры трубы нужна гибкая площадка, а при измерении температуры небольшой детали проще взять отдельный датчик и крепить его на саму деталь.
Несколько датчиков с контактными площадками также можно рассмотреть на фотографии выше.
Всего за свою историю IST выпустили более 4000 разных моделей датчиков и преимущественно это платиновые датчики температуры. Бóльшая часть производственных мощностей компании расположены в Швейцарии, но некоторые наименее технологичные операции выполняются на фабрике в Чехии. Конечно, такой расклад наталкивает на мысль о дороговизне датчиков IST.
Цены на термосопротивления IST действительно выше чем цены на аналогичные noname-решения из Китая, однако такое сравнение само по себе не корректно. Термосопротивления IST — это определенные гарантии качества и надежности. Существует множество задач, где такие гарантии важнее, чем минимальная цена. Чтобы говорить о качестве и надежности не голословно, замечу что датчик температуры от IST, например, летал на «Розетте» на комету Чурюмова-Герасименко.
При этом цены на швейцарские термосопротивления сложно назвать космическими — Pt100 класса А в SMD-корпусе я отдаю со склада в РФ по 2 евро за штучку, Pt100 класса B в корпуса Flip-Chip — по 0.98 евро, а цены на выводные датчики для температур от -200 до +300°C начинаются с 3.68 евро. Это розница с НДС, если что.
Завершая рассказ о производстве IST-AG, добавляю пруф соседства штаб-квартиры IST с коровником. Спасибо за внимание.
В заключении традиционно благодарю читателя за внимание и напоминаю, что вопросы по применению продукции, о которой мы пишем на хабре, можно также задавать на email, указанный в моем профиле.
upd: все упомянутые датчики и модули доступны со склада. Больше информации на efo-sensor.ru
Особенности термосопротивления Pt100 и принцип работы
Термодатчики являются основными элементами во многих системах управления. Термосопротивление PT100 – это один из видов приборов, которые могут использоваться. Существуют также приборы Pt-500, Pt-100, 10K. Конкретно этот вид изготавливается на основе платины, но можно встретить и медные, и никелевые. В нашей статье мы рассмотрим особенности датчиков измерения температуры.
Основные особенности прибора
Платиновое термосопротивление Pt100 является достаточно распространенным элементом, так как у него очень хорошее соотношение качества и цены. Его можно использовать как отдельный прибор для измерения. Но можно встроить в гильзу иного устройства, чтобы осуществлять учет данных изменения температуры. Главное при этом – правильно учесть диаметр гильзы, чтобы не было большой разницы диаметров. В этом случае удастся обеспечить наилучшее условие для того, чтобы анализировать температуру сред.
Обычно такие датчики применяются для того, чтобы контролировать температуру в системах вентиляции, теплоэнергетических установках, а также иных отраслях.
Принцип функционирования
В основе лежат элементы из платины, у которых сопротивление при 0 градусов равно 100 Ом. Стоит отметить, что у платины имеется положительный коэффициент. А это означает, что сопротивление растет при увеличении температуры. У некоторых приборов в одном корпусе может быть заключено сразу три термоэлемента. Но чаще всего в промышленности используют термосопротивление Pt100 «Овен» с одним элементом. «Овен» — это отечественная компания, которая занимается производством и продажей оборудования для автоматизации и измерения данных.
В зависимости от разновидности измерительной цепи, используется определенный способ подключения – двух-, трех-, четырехпроводной. От того, где и для чего используется устройство, вы можете подобрать наиболее приемлемую характеристику. Термосопротивления Pt-100 можно использовать для измерения температуры газов или жидкостей. Впрочем, его можно применять и для контроля температуры продуктов в пищевой промышленности.
Эти приборы могут быть совместимы с устройствами, у которых аналогичное входное сопротивление. Максимальная температура, которую позволяет измерять датчик – около 350 градусов. Но в пике может выдерживать скачки до 400 градусов. Но это усредненные значения, зависят они от производителя. Для одних датчиков рабочий диапазон -40..+90, для других уже -50..+250. Но есть и модели, которые работают и в диапазоне -100..+600.
Когда нельзя сделать монтаж?
Не допускается монтаж устройств в таких условиях:
- Если слишком высокий уровень вибрации.
- Большая вероятность нанесения повреждения корпуса.
- Агрессивная химическая среда.
- Взрывоопасная среда.
- В непосредственной близости к источникам электрических помех.
Технические характеристики прибора
Технические особенности датчика (в пример взято термореле):
- Корпус изготавливается из нержавеющей стали.
- Масса – 600 гр.
- Размеры 62х66х67 см. Не учитывается размер непосредственно чувствительного элемента датчика.
- Может измерять температуры в диапазоне -50..+100 градусов.
- Максимальное значение погрешности – 2%.
- Максимальная потребляемая мощность – 2 Вт.
- Влажность среды, в которой происходит работа – 80% при температуре 35 градусов.
- Давление – 0,01..1,6 МПа.
При проведении монтажных работ крайне важно соблюдать требования техники безопасности. На предприятиях монтаж этих устройств осуществляется лицами, прошедшими соответствующий инструктаж. Они также должны быть обучены работе с оборудованием. Установка, демонтаж и проведение осмотра возможно только при условии отключения питания от устройства.
Почему ломаются датчики?
Всего можно выделить три причины, по которым происходит выход из строя элемента:
- Нарушены правила эксплуатации.
- Отказ одного или нескольких элементов реле.
- Слабый крепеж датчика.
Чтобы избежать преждевременного выхода из строя, нужно перед установкой и обслуживанием изучить внимательно инструкцию.
Как происходит работа датчика?
Принцип работы не очень сложный. Как мы говорили, в основе находится платиновый элемент, у которого при 0 градусов сопротивление равно 100 Ом. Если речь идет о датчике, например, Pt1000, то у него, соответственно, сопротивление уже будет 1000 Ом (1 кОм). У платиновых приборов коэффициент положительный, поэтому при возрастании температуры увеличивается и сопротивление.
На рисунке вы можете видеть подключение термосопротивления Pt100. Мы упоминали о том, что существует несколько вариантов подключений – с двумя, тремя или четырьмя проводами. Какой выбрать – решать только вам. Но нужно отметить, что наилучшая точность будет у четырехпроводного прибора. Но если вам не нужна высокая точность, то разумнее использовать двухпроводные датчики.
Существует также два класса точности – А и В. Последний разделяется на два подкласса – В1/3DIN и В1/10DIN. Они не могут самостоятельно использоваться на целиковом диапазоне температур.
Подведем итоги
Очень часто датчики Pt-100 используются в теплоэнергетике, чтобы поддерживать заданную температуру в измеряемой среде. Также часто их используют для автоматической системы регулировки обогрева. Это позволяет автоматизировать производство и снизить затраты на управление системами.
Нередко датчики устанавливаются в подводных и подземных трубопроводах. У изделия очень высокое качество, что гарантирует большой срок службы. Если правильно проведен монтаж, конечно. Характеристики термосопротивления Pt100 достаточно хорошие, что позволяет использовать прибор в любых сферах.
Диапазон рабочих температур достаточно большой, что позволяет использовать прибор практически в любой отрасли. Также датчик может контролировать состояние воздушной среды. Поэтому может использоваться в складских и производственных помещениях, у которых имеются определенные требования к среде и климату. Утилизация должна проводиться по правилам, которые относятся к переработке электроотходов.
Термосопротивление Википедия
Условно-графическое обозначение терморезистораТерморези́стор (термистор, термосопротивление) — полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры[1].
Терморезистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году[2].
Терморезисторы изготавливаются из материалов с высоким температурным коэффициентом сопротивления (ТКС), который обычно на порядки выше, чем ТКС металлов и металлических сплавов.
Конструкция и разновидности терморезисторов
Термисторы с аксиальными выводамиРезистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидов некоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.
По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (NTC-термисторы, от слов «Negative Temperature Coefficient») и положительным (PTC-термисторы, от слов «Positive Temperature Coefficient» или позисторы) температурным коэффициентом сопротивления (или ТКС). Для позисторов — с ростом температуры растёт их сопротивление; для NTC-термисторов увеличение температуры приводит к падению их сопротивления.
Терморезисторы с отрицательным ТКС (NTC-термисторы) изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoOx, NiO и CuO), полупроводников типа AIII BV, стеклообразных, легированных полупроводников (Ge и Si), и других материалов. PTC-термисторы изготовляют из твёрдых растворов на основе BaTiO3, что даёт положительный ТКС.
Условно терморезисторы классифицируют как низкотемпературные (предназначенные для работы при температуpax ниже 170 К), среднетемпературные (от 170 до 510 К) и высокотемпературные (выше 570 К). Выпускаются терморезисторы, предназначенные для работы при температурах от 900 до 1300 К.
Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:
- номинального (при 25 °C) электрического сопротивления;
- температурного коэффициента сопротивления.
Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор и гальванически развязанный от него нагревательный элемент, задающий температуру терморезистора, и, соответственно, его электросопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого комбинированного прибора.
Температура рассчитывается по уравнению Стейнхарта — Харта:
1T=A+Bln(R)+C[ln(R)]3{\displaystyle {1 \over T}=A+B\ln(R)+C[\ln(R)]^{3}}
где T — температура, К;
R — сопротивление, Ом;
A,B,C — константы термистора, определённые при градуировке в трёх температурных точках, отстоящих друг от друга не менее, чем на 10 °С.
Одним из существенных недостатков «бусинковых» термисторов, как температурных датчиков, является то, что они не взаимозаменяемы и требуют индивидуальной градуировки[3]. Не существует стандартов, регламентирующих их номинальную характеристику сопротивление — температура. «Дисковые» термисторы могут быть взаимозаменяемыми, однако при этом лучшая допускаемая погрешность не менее 0,05 °С в диапазоне от 0 до 70 °С. Типичный 10-килоомный термистор в диапазоне 0—100 °С имеет коэффициенты, близкие к следующим значениям:
A=1,03∗10−3{\displaystyle A=1,03*10^{-3}}; B=2,93∗10−4{\displaystyle B=2,93*10^{-4}}; C=1,57∗10−7{\displaystyle C=1,57*10^{-7}}.
Режим работы терморезисторов и их применение
Зависимость сопротивления терморезистора от температуры: 1 — ТКС < 0; 2 — ТКС > 0Режим работы терморезисторов зависит от выбранной рабочей точки на вольт-амперной характеристике (или ВАХ) такого прибора. В свою очередь ВАХ зависит от приложенной к прибору температуры и конструктивных особенностей терморезистора.
Терморезисторы с рабочей точкой, выставленной на линейном участке ВАХ, используются для контроля за изменением температуры и компенсации параметров (электрическое напряжение или электрический ток) электрических цепей, возникших вследствие изменения температуры. Терморезисторы с рабочей точкой выставленной на нисходящем участке ВАХ (с «отрицательным сопротивлением») применяются в качестве пусковых реле, реле времени, в системах измерения и контроля мощности электромагнитного излучения на сверхвысоких частотах (или СВЧ), системах теплового контроля и пожарной сигнализации, в установках регулирования расхода жидких и сыпучих сред.
Наиболее широко используются среднетемпературные терморезисторы (с температурным ТКС от −2,4 до −8,4 %/К), работающие в широком диапазоне сопротивлений (от 1 до 106Ом).
Также существуют терморезисторы с небольшим положительным температурным коэффициентом сопротивления (или ТКС) (от 0,5 до 0,7 %/К) выполненные на основе кремния, сопротивление которых изменяется по закону близкому к линейному. Такие терморезисторы находят применение в системах охлаждения и температурной стабилизации режимов работы транзисторов в различных радиоэлектронных системах.
Так же терморезисторы с положительным ТКС применяются в качестве саморегулирующихся нагревательных элементов, сопротивление которых растет по мере роста собственной температуры (PTC нагреватель). Такой нагревательный элемент никогда не перегреется и будет выдавать примерно одинаковую тепловую мощность в широком диапазоне напряжений.
См. также
Примечания
Литература
- Шефтель И. Т. Терморезисторы.
- Мэклин Э. Д. Терморезисторы.
- Шашков А. Г. Терморезисторы и их применение.
- Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учебник для вузов. — 4-е перераб. и доп. изд. — М.: Высшая школа, 1987. — С. 401—407. — 479 с. — 50 000 экз.
что это и где они применяются?
05.10.2018
Термометр сопротивления — это измерительный прибор, который изготавливается из металлической проволоки или пленки, намотанной на жесткий каркас, выполненный из кварца, фарфора или слюды, и заключенной в защитную оболочку (металлическую, кварцевую или стеклянную).Используется такой термометр для измерения температуры в жидких и газообразных средах, в нагревательной технике, климатической и холодильной, а также в машиностроении, печестроении и т.п., поскольку имеет прямую зависимость электрического сопротивления от температуры.
Иными словами такие термометры еще называют терморезисторами, а также термисторами, так как основным чувствительным компонентом такого термометра является именно резистор, который изготовляется из различных материалов, что позволяет определить техпараметры термометра сопротивления, к примеру, область применения прибора или диапазон его рабочих температур.
Принцип действия такого агрегата заключается в изменении электрического сопротивления сплавов, чистых металлов (т.е. без примесей) и полупроводников с температурой.
Самыми распространенными термометрами сопротивления являются те, у которых установлены резисторы из платины. Это объясняется рядом преимуществ, которыми владеет этот материал. Во-первых, плюсом есть высокий температурный коэффициент сопротивления, что значительно облегчает работу с таким термометром. Во-вторых, преимуществом платинового резистора является высокая стойкость платины к окислению, что обеспечивает долгий срок службы прибора.
Платиновые терморезисторы отличаются минимальной погрешностью, именно поэтому такие агрегаты часто используют как инструмент для проверки. Эталонные термометры сопротивления изготавливаются из платины максимальной чистоты с коэффициентом температуры не менее 0,003925. Модельный ряд таких приборов достаточно широкий: существуют как модели различных размеров, так и модификации увеличенных температурных диапазонов. Кроме этого, для использования такого термистора на промышленных объектах, они производятся во взрывозащитном исполнении.
Термометры сопротивления, изготовлены на основе напыленной пленки на подложку отличаются особой повышенной вибропрочностью и меньшим диапазоном рабочих измеряемых температур. Так, максимальный диапазон воспринимаемых температур для пленочных чувствительных элементов платиновых термисторов составляет 600 °C, а проволочных — 660 °C.
Применение термометров сопротивления
Термометры сопротивления используются, как правило, для измерения температуры в среде в диапазоне от -263 °C до +1000 °C. Важно, чтобы конструкция такого термистора была чувствительной и стабильной, чего будет достаточно для проведения замеров необходимой точности в определенном диапазоне температур при определенных условиях использования термометра (к примеру, благоприятные условия или неблагоприятные, такие как вибрации, агрессивные среды и т.п.).
Как правило, терморезисторы работают вместе с логометрами, потенциометрами и измерительными мостами. От точности работы этих вспомогательных приборов зависит точность показаний термометра сопротивления. Существуют также и различные виды таких термометров: поверхностные, ввинчивающиеся, вставные, с присоединительными проводами и байонетными соединениями.
Возникли вопросы?
Заполните форму обратной связи, наши менеджеры свяжутся с вами!
принцип действия, схемы и т.д.
Термометры сопротивления — электрический температурный датчик, использующий изменения сопротивления, которое противодействует протеканию тока, который является основой для измерений температуры. В английском языке термометр сопротивления обозначается тремя буквами RTD.
Стандартный термометр сопротивленияРекомендуем обратить внимание и на другие приборы для измерения температуры.
Основным электрическим компонентом термометра сопротивления является резистор, который часто представляет собой провод, обмотанный вокруг керамического изолятора в виде стержня Резистор и является температурным чувствительным элементом термометра сопротивления. Для защиты чувствительного элемента от физического воздействия и изоляции электрической цепи от технологической жидкости во избежание короткого замыкания резистор обычно заключается в корпус из нержавеющей стали. Два провода подсоединяются к электрической цепи внутри корпуса посредством герметичного уплотнения.
Схема термометра сопротивленияПринцип действия термометра сопротивления
Термометры сопротивления могут использоваться для измерения температуры электрическим путем, так как существует прямо пропорциональная зависимость между изменениями сопротивления и изменением температуры.
Другими словами, при повышении температуры величина сопротивления возрастает прямо пропорционально, а при понижении температуры сопротивление пропорционально уменьшается. Подобный принцип используется в термометрах сопротивления, так как сопротивление термометра уменьшается или увеличивается пропорционально температуре процесса, который он измеряет. Любое изменение сопротивления может быть зарегистрировано и преобразовано в температурные показания с помощью таблицы, или отображено на шкале, которая откалибрована в единицах измерения температуры.
Как и термопара или любой другой температурный датчик термометр сопротивления (RTD) функционален при измерении температуре только, если он подсоединен к электрической цепи. Обычно с термометрами сопротивления применяются мостовые схемы, так как такие схемы позволяют добиться высокой точности. Вместе с мостовой схемой используется батарея, которая служит в качестве источника питания. Цепи термометров сопротивления должны иметь внешний источник питания, так как они не способны генерировать напряжение сами.
Мостовая схема термометра сопротивления с батареейМостовая схема, изображенная на рисунке выше состоит из пяти резисторов: Р1, R2, R3, R4, R5; и точек соединения: А, В, С, D.
В данном случае давайте предположим, что каждый резистор в мостовой схеме обладает одинаковым сопротивлением. Так как ток протекает от минуса к плюсу в данном контуре, то протекание начинается с минусовой клеммы батареи и ток достигает точки А. В точке А ток расщепляется на равные части: одна половина протекает через сопротивление R1 в точку В, а другая половина протекает через R2 к точке С. Так как сопротивление всех резисторов одинаковое, то между точками В и С нет разницы в величине напряжения, поэтому ток через R5 не протекает.
Когда ток через средний резистор не протекает, то мост, как говорится «уравновешен». В данном примере ток протекает от точки В, через R3 в точку D. Ток также протекает от точки С через R4 в точку D. Ток от точки D возвращается на положительную клемму батареи, завершая цепь.
Протекание тока через уравновешенный мостМостовая схема, изображенная на рисунке выше похожа на предыдущую схему за исключением того, что резистор R3 заменен термометром сопротивления. В данной конфигурации ток по-прежнему протекает от минусовой клеммы батареи на точки В и С. Однако, если сопротивление термометра сопротивления (RTD) отличается по величине от сопротивления резистора R4, то между точками В и С появится напряжение. Это означает, что мост неуравновешен и ток будет протекать через резистор R5.
Мостовая схема с термометром сопротивленияТок, протекающий через мост, может быть измерен, если мы заменим R5 измерительным прибором, который и будет определять температуру, измеряя ток. Так схема обеспечивает высокую точность, то она часто используется вместе с термометрами сопротивления для измерения температуры.
Мостовая схема с термометром сопротивления и измерительным приборомКогда для измерения температуры используются термометры сопротивления, то они включаются в схему, подобно той, что показана на рисунке выше. Во многих случаях термометры сопротивления расположены на удалении от остальных элементов цепи, так как они подвержены воздействию температуры технологического процесса. По мере того, как температура вокруг термометра меняется, то пропорционально меняется величина сопротивления термометра. Когда сопротивление термометра меняется, то мост становится неуравновешенным и определенный ток протекает через измерительный прибор. Этот ток пропорционален изменениям температуры. Температура процесса затем может быть определена по показаниям шкалы прибора. В некоторых случаях шкалы откалиброваны на показания величины сопротивления, а не температуры. В таких случаях надо воспользоваться переводной таблицей для перевода ом в градусы.