Site Loader

Содержание

Радиодеталь: NTC термистор

 NTC — термистор, который применяют для защиты от пусковых токов (двигатели, трансформаторы, БП, зарядные и т.п.) Штука очень полезная и простая, казалось бы, но как-то не встретил доходчивой информации…
В общей теории всё понятно: холодный термистор имеет относительно большое сопротивление (например, 33 Ом), когда через термистор начинает проходить ток, термистор нагревается и его сопротивление сильно уменьшается, доходя в рабочем режиме до десятых и даже сотых долей Ома.

Этим и обеспечивается плавный запуск устройства, которое питается через такой термистор и его последующая нормальная работа после запуска (термистор становится «прозрачным»).

А на практике дополнительно возможны следующие вопросы, на которые хотелось бы дать хотя бы краткие пояснения:

1) Как выбирать термисторы? В рабочем состоянии термистор ВСЕГДА должен быть ГОРЯЧИМ? Ведь иначе у термистора сохранится начальное большое сопротивление — он будет работать в схеме как простой резистор. Насколько горячим должен быть термистор, какая температура у него в установившемся режиме?

Ответ: Термистор выбирают под номинальный рабочий ток, тогда он и будет греться до нужной температуры. Максимальный установившийся ток термистора должен быть немногим больше, чем максимальный средний ток для устройства, тогда термистор в установившемся режиме будет работать близко к максимальной температуре и при минимальном сопротивлении.

Минимально допустимое сопротивление термистора при 25˚С определяется исходя из допустимого пикового тока для потребителя и напряжения в розетке по формуле с первой страницы аппликухи

(√2*VE*1.1)/(Rc+R25)≤Imax

где,

VE — напряжение в розетке

Rc — собственное сопротивление входа без термистора 

Из подходящих по этим параметрам термисторов выбираем тот, у которого постоянная времени меньше.

 

2)  Есть ли в связи с этим какие-то особенности его монтажа, разводки на ПП, чтобы ничего вокруг не поплавилось и не погорело?

Ответ: При монтаже вокруг термистора должно быть пространство для охлаждения, нельзя монтировать впритык к другим деталям. Рабочая температура должна быть около 65 град. Во многих распаянных платах мониторов ЛТ терморезисторы были установлены через втулки-стойки, которые были расклёпаны и пропаяны со стороны дорожек. И теплоотвод, и надёжный контакт.

 

3) Как проверить приборно, что термистор отрабатывает или не отрабатывает на пуске?

Ответ: Это не требуется, если выбрано правильно стартовое сопротивление. Оно само по себе является гарантом того, что термистор выполнит свою функцию. Стартовое сопротивление термистора подбирается под конкретные ёмкости, номинал которых добросовестный производитель указывает в даташитах.

NTC термисторы Epcos | «ЛЭПКОС», ИЦ «Северо-Западная Лаборатория»

Возможность определять и контролировать изменение температуры с заданной точностью является одной из важных и актуальных задач, стоящих перед разработчиками как простых бытовых приборов, так и сложного промышленного оборудования. На современном рынке электронных компонентов компания Epcos занимает одну из ведущих позиций по разработке и выпуску сенсорных систем контроля различных технологических параметров.  Принцип действия таких компонентов, изготавливаемых на основе оксидов цинка, марганца, никеля, железа, основан на уменьшении электрического сопротивления при увеличении температуры.  В частности, при выборе средств измерения и компенсации температуры особый интерес представляют NTC термисторы Epcos с отрицательным коэффициентом сопротивления (Negative Temperature Coefficient). Для линеаризации температурной характеристики и проведения расчетов NTC термисторы могут быть использованы совместно с микроконтроллерами.

Благодаря высокой чувствительности, механической прочности корпуса и надежности NTC термисторы широко применяются для:

  • Электронной компенсации в цепях
  • Ограничения пускового тока (моторы, трансформаторы, флюоресцентные лампы)
  • Обеспечения плавного запуска электродвигателей, работающих при постоянных токах до 20А
  • Измерения температуры (бытовая, автомобильная, промышленная электроника).
  • Измерения и компенсации температуры в мобильных телефонах, HDD, LCD диспелях и других устройствах

 Преимущества NTC термисторов Epcos:

  • Широкий диапазон рабочих температур
  • Точность. Термисторы Epcos могут быть использованы для фиксирования показаний температуры с погрешностью измерений ±1°С
  • Возможность удаленного мониторинга
  • Высокая чувствительность

Основными параметрами, которые необходимо учитывать при выборе NTC термисторов, являются:

RT — NTC сопротивление при заданной температуре, Ом;

RR — NTC сопротивление при номинальной температуре Т, Ом;

ΔRТ/RR  — допуск по сопротивлению

B — постоянный коэффициент, зависящий от материала  термистора. Рассчитывается на основе значений сопротивления  при заданных значениях температуры 

T — температура, К

TR — номинальная температура, К

α — температурный коэффициент сопротивления, %

I — максимально допустимый ток, А

W — максимально допустимая мощность, Вт

δth — коэффициент рассеяния, мВт/К;

Сth — теплоемкость термистора, мДж/К;

τc — постоянная тепловая времени охлаждения, с

Компанией Epcos представлен широкий ассортимент NTC-термисторов с различными геометрическими параметрами, исполнением выводов и значением сопротивления (от 1 до 80 Ом), что позволяет осуществлять выбор сенсора для различных применений.

Термисторы в герметичном стеклянном корпусе

Термисторы Epcos в герметичном стеклянном корпусе характеризуются компактными размерами, высокой надежностью, широким диапазоном значений сопротивления от 2 кОм до 1,4 МОм и в основном применяются в приборах бытового и промышленного назначения, а также в автомобильной электронике. В частности, благодаря минимальному времени срабатывания и широкому интервалу рабочих температур  (-50 до +150°С) такие компоненты могут быть использованы для мониторинга и измерения температуры масла, охлаждающей жидкости и выхлопных газов.

Высокая точность и малое время отклика термисторов в стеклянном корпусе позволяют широко использовать их также и в медицине. Компания Epcos разработала специальную серию сенсоров NTC ( B57542,  B57552,  B57562), используемых в медицинских термометрах, предназначенных  для работы в интервале температур от +25 до +45°С.

Подробнее

Тип         R25, кОм Tсреды, °С  Изображение  Pmax, мВт τc, с Подробнее
Серии G 540 — 560, G1540-1560 без изоляции

B57540

(G540; G1540) 

5-100  -55/250    18 

B57550

(G550; G1550) 

 

2-100  -55/300    32  7

B57560

(G560; G1560)

2-100  -55/300    50
15
Серии G 541 — 561, G1541-1561 c изоляцией

B57541

(G541; G1541) 

 

5-100  -55/250    18

B57551

(G551; G1551) 

 

2-100  -55/260   32  9

B57561

(G561; G1561) 

 

2-100  -55/260   50 18

Выводные NTC Термисторы 

Выводные термисторы Epcos представляют собой широкую линейку NTC сенсоров с разными техническими характеристиками и межвыводным расстоянием, что позволяет использовать их для измерения и контроля температуры в бытовых приборах, системах нагрева и кондиционирования, датчиках, установленных в помещениях, промышленной электронике и др.


Подробнее

Тип         R25, кОм Tсреды, °С  Изображение  Pmax, мВт τc, с Подробнее
Термисторы с межвыводным расстоянием 2,5 мм

B57891M

(M891)  

1-470  -40/125    200 12 

B57871S

(S871) 

2.1-30  -55/155    60 7.5 

B57881S

(S881)

2.1-30  -55/155   100 10

B57891S

(S891)

2.2-100  —55/155   200 15

B57964S

(S964)

2-5 —55/155   60 16

B57971S

(S971) 

2-30 -55/155    60 8.8 

B57981S

(S981) 

2.1-30 -55/155    100 11.5 
Термисторы с межвыводным расстоянием 5 мм

B57164K

(K164)  

0.015-470 -55/125    450 20

B57875S

(S875)  

2.1-30 -55/155    60 7.5

B57885S

(S885)  

2.1-30 -55/155    100 10
Миниатюрные термисторы со сгибающимися контактами

B57861S

(S861)  

2-50 -55/155    60 15/12

B57863S

(S863)  

3-30 -55/155    60 15

B57864S

(S864)  

2-5 -55/155    60 21

B57867S

(S867)  

2-50 -55/155    60 12

B57869S

(S869)  

3-30 -55/155    60 12

Безвыводные NTC Термисторы 

Серия безвыводных термисторов представляет собой сенсоры с фронтальной контактной покрытой серебром поверхностью. Такие компоненты были разработаны компанией Epcos для измерения и регулирования температуры в системах водяного и масляного охлаждения, используемых в автомобилях.


Подробнее

Тип         R25, кОм Tсреды, °С  Изображение  Pmax, мВт τc, с Подробнее

B57220K

(K220)  

2056.9  -55/250    180  12

B57350K

(K350)  

990.2  -55/250    180  18

B57150K1

(K1150)  

2394  -55/150    180  30

B57820M

(M820)  

560.2-1014 -55/150    180  30

Токоограничивающие NTC Термисторы 

Термисторы с отрицательным коэффициентом сопротивления характеризуются высокой надежностью, поэтому могут быть использованы не только для компенсации и измерения температуры, но и для ограничения пускового тока. Применение NTC компонентов в приборах промышленного назначения позволяет предотвратить обрыв предохранителей и расплавление других элементов, обеспечивая защиту нагрузки и снижая вероятность выхода оборудования из строя.

Подробнее

Тип         R25, Ом Tсреды, °С  Изображение  Pmax, Вт τc, с Подробнее

B57153S

(S153)  

4.7-33 -55/170    1.4  30

B57235S

(S235)  

4.7-10 -55/170    1.8  60

B57236S

(S236)  

2.2-120 -55/170    2.1  70

B57237S

(S237)  

1.0-60 -55/170    3.1  90

B57238S

(S238)  

2.5-16 -55/170    3.9  80

B57364S

(S364)  

1.0-10 -55/170    5.1  100

B57464S

(S464)  

1.0-10 -55/170    6.7  130

SMD NTC Термисторы 

В настоящее время одной из главных задач, стоящих перед разработчиками светодиодов и систем на их основе, является увеличение срока службы при малой себестоимости и высокой эффективности. При повышенных температурах возможны снижение надежности, деформация корпуса светодиода (LED) и выход его из строя. Для достижения требуемых рабочих характеристик LED систем необходимо осуществлять контроль температуры перехода, избегая превышения верхней границы рабочего диапазона. Разработанная компанией Epcos была разработана серия SMD термисторов, которые при включении в схему с LED в случае отклонения температуры от оптимального значения позволяют за счет снижения своего сопротивления менять величину тока и сбрасывать напряжение. Такие термисторы прежде всего характеризуются малыми размерами, высокими чувствительностью и производительностью при температурах до 150 °С и рабочим диапазоном сопротивления 10-470 кОм.

Подробнее

Тип         R25, кОм Tсреды, °С  Изображение  Pmax, мВт τc, с Подробнее

B57232V5, B57251V5

SMD 0402 (1005)  

4.7; 10 -40/150    150  3

B57221V2, B57230V2, B57261V25

SMD 0402 (1005)-стандарт  

3.3-47 -50/125    150  3

B57332V5, B57342V5, B57351V5, B57352V5

SMD 0603 (1608) 

10-100 -40/150    180  4

B57301V2, B57321V2, B57330V2, B57371V2, B57374V2

SMD 0603 (1608)-стандарт 

1-470 -50/125    180  4

B57442V5, B57451V5, B57452V5

SMD 0805 (2012) 

4,7-100 -40/150    210  10

B57442V5, B57451V5, B57452V5

SMD 0805 (2012)-стандарт 

1-680 -50/125    300  10

NTC Термисторы в зондовом исполнении 

Сенсоры Epcos в зондовом исполнении представляют собой термисторы, герметизированные в металлический или пластиковый корпус, с изолированными выводами. Данные компоненты характеризуются простотой монтажа и являются универсальным средством измерения температуры в системах воздушного кондиционирования, морозильных камерах, рефрижераторах, трубопроводах, посудомоечных машинах, сушильных аппаратах, паровых котлах, а также в электрических моторах и трансформаторах.

Подробнее

Тип         R25, кОм Tсреды, °С  Изображение  Pmax, мВт τc, с Подробнее

B57500M

(M500) 

10 -30/100    60  20

B57227K

(K227) 

32.762 -55/155    200  30

B57504K

(K504) 

10 -20/125     —

B57514K

(K514) 

48.538 -20/200     —

B57560K

(K560) 

49.12 -10/125    — 

B57703M

(M703) 

5-30 -55/125    150  50

B57703M1

(M1703) 

100 +10/200    50  20

B57045K

(K45) 

1-150 -55/125    450  75

B57276K

(K276) 

4.829; 11.981 10/100    500 

B57301K

(K301) 

9.959 30/110    375 

B57020M2

(M2020) 

5 40/80    350 

B58100

(T120) 

10.11; 10.151 5/100    18 

B58100

(F120) 

10.151 5/100    18 

B58100

(Z81) 

11.991 5/100    60 

Наличие компонента на складе

Узнать наличие и цену интересующего Вас электронного компонента и оформить заказ, Вы можете на нашем онлайн-складе.

 

 

Термистор NTC 47D-15 для уменьшения пусковых токов в группах ламп накаливания. Расчеты и просчеты.

Обзор для тех, кому, как мне, приходится использовать лампы накаливания (ЛН)

ЛН нравятся мне ценой, простототой конструкции, температурной устойчивостью и высоким качеством света. Не нравятся только тарифы на электроэнергию. Теперь не все могут себе позволить в качестве основного источника света люстру с многими лампами накаливания. Это уже становится роскошью. Поэтому диодные лампы я тоже применяю. Но здесь есть свои нюансы.
Я прикинул, что в связи с последним подорожанием электроэнергии окупаемость диодных ламп наступает уже после 1500 часов их использования (мой расчет для киевских цен). Это в теории. Но вот на практике у меня как-то не получалось выжать хотя бы эту цифру и вопрос окупаемости остается вопросом. Поэтому, да и по тому, что диодную лампу еще не везде можно использовать, я продолжаю держать 2 люстры на ЛН. Кроме того, иногда приятно себя побаловать качественным праздничным освещением, устроить маленькое лето зимой.
Я подготовил свой обзор для тех, кто использует ЛН дома, или в картинной галерее или в фотостудии по 2-3 в группе и хочет продлить срок их службы.

Срок жизни ЛН в значительной степени определяется ударными перегрузками по току в момент их включения, когда сопротивление холодной спирали лампы значительно меньше сопротивления нагретой лампы.

Вот данные о сопротивлениях и токах бытовых ЛН в холодном и горячем состоянии при обычном включении:

40 Вт:
75-1200 Ом, пусковой ток 3 А, рабочий ток 0.19 А, перегрузка в 15.7 раз
60 Вт:
60-806 Ом, пусковой ток 3.8 А, рабочий ток 0.28 А, перегрузка в 13.6 раз
75 Вт:
51-750 Ом, пусковой ток 4.5 А, рабочий ток 0.3 А, перегрузка в 15 раз
100 Вт:
37-530 Ом, пусковой ток 6.2 А, рабочий ток 0.43 А, перегрузка в 14.4 раз
15-кратное превышение! Трудно найти в технике аналогичный пример издевательства над устройствами.

Обычно пусковые токи уменьшают приемами поэтапного подключения, либо специальными активно-пассивными схемами плавного включения. Наиболее простым и доступным методом подавления пусковых токов является использование NTC термисторов — электрических сопротивлений с отрицательной температурной зависимостью. NTC термисторы в холодном состоянии имеют высокое сопротивление, которое уменьшается в 20-60 раз по мере его прогрева за счет проходящего тока через него и нагрузку (в нашем случае — ЛН).
В своем предыдущем обзоре я снимал температурные характеристики и делал подбор термисторов для одиночных ЛН. Оттуда я вынес свое собственное правило подбора — хочешь уменьшить пусковой ток в 3 раза, выбирай термистор мощностью до 1 Вт с сопротивлением в 2 раза большим сопротивления холодной ЛН. Казалось бы, почему тогда не выбрать сопротивление, большее в 5-10 раз и получить почти рабочий ток на пуске? Да просто потому, что при установившемся токе лампы на сопротивлении высокоомного термистора будет рассеиваться энергия, уже превышающая допустимую Wмах. 2 * Rмах.

Для люстр и других многоламповых светильников нецелесообразно ставить термистор на каждую лампу. Термистор подбираем один для группы ламп (см. схему электрическую люстры).

Как уже говорилось, для эффективного подавления пускового тока сопротивление термистора в схеме должно быть в 2 или больше раз сопротивления группы холодных параллельно соединенных ЛН. Сопротивление группы из n параллельно соединенных одинаковых ламп в n раз меньше сопротивления одной лампы. В рабочем режиме сопротивление термистора значительно меньше сопротивления горячей лампы. Поэтому ток через термистор приблизительно равен сумме рабочих токов используемых ламп. Этот ток определяет нагрев термистора и, в конечном счете, его применимость.

Формулы расчета пусковых и рабочих токов
защитных термисторов и ламп накаливания

Ток через термистор: Iтерм = 230 / (Rтерм+Rлампы / n).
Ток через лампу: Iлампы = Iтерм / n,
где n — количество параллельно соединенных ламп.

Еще до покупки термистора я провел эти расчеты для групп из 2-3х ламп мощностью 40-100 Вт и пришел к выводу, что термистор номиналом 47 Ом может покрыть мои запросы на 2-4-кратное подавление пусковых токов. Ближайшие номиналы из интернета — 30 и 80 Ом уже находились на грани желаемого как по мощности, так и по сопротивлению.

Данные расчетов для термистора 47 Ом приведены в первых 4 колонках таблицы. Расчетный эффект снижения пусковых токов в 2-5 раз меня устраивал. Оставалось столкнуть теорию с жизнью — затовариться термистором NTC 47D-15, провести тестирование и заполнить 5-ю колонку таблицы.

Расчеты сделаны, далее идет рассказ о просчетах. В интернете был сделан заказ на 10 штук NTC 47D-15. Через месяц я получил пакетик с термисторами.

Входной контроль сопротивлений термисторов меня озадачил. Из 10-ти термисторов только 1 имел сопротивление 47 Ом. Остальные находились в диапазоне 37-76 Ом. Но потом я даже порадовался, что заимел такой набор номиналов для экспериментов и подгонки под разные нагрузки.

Термистор на 47 Ом я тестировал токами от 0 до 2.8 А. Измерял ток, напряжение на термисторе и температуру. По этим данным построил графики изменения сопротивления и температуры а также заполнил 5-ю колонку таблицы. Графики имеют типичную для термисторов форму, но есть особенность, которая немного огорчает. Термистор оказался «дубовым», т.е. с малым термическим коэффициентом изменения сопротивления.

Из графиков и последней строки в таблице видно, что купленный мною NoName термистор при токе 1.3 А нагревается до 125 градусов, поскольку для данной температуры он имеет достаточно высокое сопротивление (3 Ом). Минимальное сопротивление этого термистора 2 Ом достигается на предельно допустимой температуре эксплуатации 170 градусов. Даже в этом предельном случае соотношение сопротивлений холодного и горячего термистора составляет всего 24 (47 / 2). Это мало по сравнению с справочными данными для фирменного NTC MF72-47D15, у которого это соотношение 47 / 0.68 = 69. Этот термистор только при токе 3 А рассеивает мощность 3 ^ 2 * 0.68 = 6.1 Вт. Тогда как купленный мною NoName делает это уже на токе 1.4 А.

Если говорить о возможности использования фирменного термистора, то он бы обеспечил всю таблицу даже с запасом как по току, так и по температурному режиму. Купленный мною термистор при подключении на группу из 3-х ламп по 100 Вт работает с перегрузкой и при высокой температуре (см. последнюю строку таблицы). Его можно использовать, но с оглядкой на перегрев соседних с термистором элементов.

У себя в 2-х люстрах, состоящих из ламп 3*60 + 2*40 и 3*60 Вт я поставил эти термисторы в чашках люстр. Тем самым подавил пусковые токи в 3 раза. Все работает штатно, замечаний нет.

Выводы, которые я делаю под конец:

— термистор NoName NTC 47D15 можно использовать для 3-4-кратного ограничения пускового тока групп ЛН мощностью 40-100 Вт в люстрах.
— покупая NoName термистор, следует проверять номиналы. Разброс номиналов, указанный в справочнике может превышаться в 5 раз. Иногда большие разбросы бывают кстати, поскольку продавец, продавая некондицию, может прислать и более подходящий номинал.
— термисторы неизвестного производителя нужно тестировать на температурную чувствительность и нагрев в пределах рабочих токов.
Благодарю за внимание, надеюсь, что кто-то воспользуется моим опытом.

Принципы построения систем температурного контроля на NTC-термисторах компании Epcos — Компоненты и технологии

Статья посвящена исследованию работы терморезисторов с отрицательным температурным коэффициентом сопротивления, рассмотрению преимуществ и недостатков применения термисторов, принципам построения систем измерения и контроля температуры, а также факторам, влияющим на работу термисторов в качестве датчиков температуры, и снижению погрешности измерительной системы.

Потребность измерения температуры и управления ей возникает во многих сферах деятельности человека. А основными требованиями к результатам измерения и управления, как всегда, оказываются скорость и точность, независимо от того, где используется прибор — в быту или в промышленности. В основе любого измерения, в том числе и температуры, положен датчик, и как первостепенный элемент он определяет технико-экономические показатели системы контроля в целом. Применение того или иного вида термочувствительного элемента опять же зависит от требований, предъявляемых к системе в целом, и не говорит о полном преимуществе одного датчика над другими. Для промышленного применения, как правило, используются термопары или резистивные термопреобразователи, выполненные в виде законченных устройств. Непригодность этих термочувствитеьных элементов для повсеместного использования объясняется высокой ценой применяемых материалов и невозможностью удаленного контроля из-за сравнительно маленьких величин выходных параметров, которые сильно подвержены влиянию внешних факторов. Все большее применение находят датчики интегрального исполнения, имеющие низкую нелинейность выходной характеристики от температуры и достаточно малую стоимость, но именно интегральное исполнение является «ахиллесовой пятой» этих элементов ввиду ограниченности рабочего температурного диапазона. Другое дело — терморезисторы с отрицательным ТКС (отрицательный температурный коэффициент сопротивления, или NTC — Negative Temperature Coefficient) — они имеют достаточно большой диапазон рабочих температур, возможность удаленного мониторинга, действуют в сильных магнитных полях. Но есть недостатки, такие как сложная повторяемость экземпляров и сильная нелинейность температурной характеристики, что в свою очередь усложняет и повышает стоимость всего изделия. Так было до прихода микроконтроллеров, на «плечи» которых и будет возложена конечная задача по линеаризации и математической обработке температурной характеристики.

Основные параметры и характеристика NTC-термисторов

В рабочем диапазоне температур зависимость сопротивления терморезистора от температуры достаточно точно описывается выражением [1]:

где R — сопротивление рабочего тела терморезистора при данной температуре Т, Ом; RN — номинальное сопротивление терморезистора при температуре ТN, Ом; Т, ТN — температура, К; В — коэффициент, постоянный для данного экземпляра терморезистора (паспортные данные).

Любой NTC-терморезистор кроме температурной характеристики описывается рядом параметров, без которых невозможно полное представление о работе данного типа термодатчиков. Далее приводятся определения основных параметров.

Материал, из которого изготовлен термистор, сохраняет свои свойства при температурах, не выходящих за рамки определенного диапазона, который называют допустимой температурой. При температурах, выходящих за эти пределы, в сенсоре могут произойти необратимые изменения, и он выйдет из строя.

Значение коэффициента В определяется материалом датчика и представляет собой наклон характеристики R/T. В уравнении (1) значение коэффициента В определено двумя точками характеристики R/T (RT, T) и (RN, TN), исходя из этого:

Терморезистор, имея номинальное значение сопротивления при определенной температуре, как и любой резистор, может иметь отклонение ΔR/RN (допуск), обусловленное технологией изготовления. Этот параметр дается производителем на одну точку (обычно 25 °С). Однако когда требуется высокая точность измерений в широком диапазоне температур, допуск может быть указан производителем не на сопротивление, а на температуру в гарантированном диапазоне ΔT. Соответственно, такой термистор будет измерять другие значения температур с тем же самым отклонением (точностью).

Температурный коэффициент α выражает в процентах изменение абсолютной величины сопротивления при изменении температуры на 1°. Вследствие нелинейности температурной характеристики значение температурного коэффициента зависит от величины температуры, поэтому его записывают обычно с индексом, указывающим температуру, при которой имеет место данное значение. Например, α293 — температурный коэффициент термистора при температуре 293. Вычисляют температурный коэффициент по формуле, вытекающей из его определения и выражения температурной характеристики:

Сопротивление при нулевой мощности измерения — это значение сопротивления термистора, измеренное при определенной температуре под электрической нагрузкой, настолько маленькой, что она практически не оказывает влияния на результат измерения. Если же измерительный ток будет высоким или же сопротивление термистора будет иметь низкое значение, результат измерений будет искажен из явления саморазогрева, что должно быть принято во внимание. Явление саморазогрева зависит не только от электрической нагрузки, но и от теплового коэффициента рассеяния δth и геометрических размеров датчика. Оно описывается следующим выражением:

где P — приложенная электрическая мощность, мВт; U — мгновенное значение напряжения на терморезисторе, В; I — мгновенное значение тока, протекающего через терморезистор, мА; Т — мгновенная температура терморезистора, К; ТА — температура окружающей среды, К; Сth — теплоемкость терморезистора, мДж/К; dT/dt — изменение температуры во времени, К/с.

Если постоянная электрическая мощность будет приложена к терморезистору, то его температура сначала незначительно увеличится, но это изменение со временем будет снижаться. А после некоторого временного промежутка будет достигнуто устойчивое состояние, при котором приложенная мощность рассеется за счет эффекта теплопроводности или конвекции. Если принять dT/dt равным нулю, а U = R×I, где R — сопротивление терморезистора, соответствующее его температуре, то получим:

Полученные формулы являются параметрическим представлением вольт-амперной характеристики с зависимостью сопротивления терморезистора от температуры R(T). Очевидным является и то, что вольт-амперная характеристика зависит от коэффициента рассеяния, который, в свою очередь, зависит от геометрических размеров датчика и среды, в которую он помещен.

Максимально допустимый ток — ток, при протекании которого через терморезистор температура последнего равна максимально допустимой. Величина допустимого тока зависит от температуры среды и ее характера. При одинаковой температуре двух сред допустимый ток будет больше в той среде, которая обладает большей теплопроводностью. Соответственно, коэффициент рассеяния, зависящий от параметров среды, определяет максимально допустимую мощность, рассеиваемую датчиком, помещенным в такую среду:

Коэффициент рассеяния определяется как отношение изменения в рассеиваемой энергии к изменению температуры терморезистора. В численном виде выражается в мВт/К и служит мерой нагрузки, которая вызывает изменение температуры терморезистора на 1 К в установившемся состоянии окружающей среды:

Для определения коэффициента рассеяния к терморезистору прикладывают нагрузку, при которой соотношение U/I соответствует значению сопротивления, измеренному при температуре Т = 85 °С:

где Т — температура тела терморезистора, °С; ТА — температура окружающей среды, °С.

Теплоемкость Сth — количество тепла, которое надо сообщить терморезистору, чтобы повысить температуру рабочего тела на один градус. Величина теплоемкости является функцией температуры, однако при температурах, не превышающих допустимой, можно принять ее постоянной и вычислять по формуле:

где τС — тепловая постоянная времени охлаждения, с.

Постоянная времени τС — время, в течение которого температура рабочего тела при его свободном охлаждении понижается на 63,2% от первоначальной разности температур рабочего тела и окружающей среды. Как правило, температура, до которой нагревают терморезистор, равна 85 °С, а температура среды, в которую помещают терморезистор для охлаждения, берется равной 25 °С. Соответственно, охлаждение рабочего тела терморезистора происходит тем быстрее, чем меньше его геометрические размеры.

Как и у любого радиоэлемента, материал, из которого изготовлен терморезистор, подвержен необратимому изменению характеристик (у терморезисторов это увеличение сопротивления и изменение коэффициента В). Это происходит из-за теплового перенапряжения, приводящего к дефектам кристаллической решетки, окисления незащищенных частей терморезистора, связанного с повреждением корпуса датчика, или из-за диффузии в контактных поверхностях металлизированного покрытия электродов. При низких температурах эти процессы происходят медленно, но на высоких температурах ускоряются, а со временем снижаются. Поэтому для увеличения временной стабильности параметров и уменьшения влияния изменения характеристик многие производители умышленно подвергают терморезисторы процессу старения непосредственно после изготовления.

Обзор NTC-термисторов компании Epcos

Термисторы компании Epcos изготавливаются из тщательного отобранного и протестированного сырья. Основой для изготовления служат оксиды металлов, таких как марганец, железо, кобальт, никель, медь, цинк. Оксиды первоначально измельчаются до порошкообразной массы, смешиваются с пластиковыми связующими элементами и сжимаются до нужной формы. Затем их плавят для получения поликристаллического корпуса термистора. После определенного этапа тестирования термисторы подвергаются старению для получения необходимой стабильности параметров.

Компания Epcos выпускает достаточно большой ряд терморезисторов, с которым можно ознакомиться в специальном документе по выбору Selector Guide [2]. В рамках же данной статьи мы рассмотрим лишь прецизионные малогабаритные датчики (табл. 1).

Таблица 1. Основные характеристики NTC-термисторов Epcos

Как говорилось ранее, выбор того или иного термопреобразователя чаще всего обусловлен требованиями к разрабатываемой системе контроля, поэтому основными параметрами, на которые опирается разработчик, оказываются рабочий температурный диапазон, массо-габаритные показатели, допуск на номинальное сопротивление, постоянная времени и стоимость элемента.

Нестандартный подход к стандартной характеристике NTC-термисторов

В начале статьи говорилось, что температурная зависимость сопротивления термистора точно описывается выражением (1), однако опытным путем было установлено, что эта же характеристика может быть не менее точно воспроизведена следующим полиномом:

где r(T) — сопротивление терморезистора при температуре Т; А0, А1, А2Аn — некие коэффициенты, зависящие лишь от свойств материалов, которые используются при в изготовлении термистора.

Казалось бы, это нисколько не упрощает представление о поведении температурной характеристики термистора, а наоборот — ведет к усложнению из-за переноса температуры в знаменатель и бесконечного числа возможных коэффициентов. Но как показала обработка этой математической модели на «живых» образцах, практически любой термистор можно описать с помощью семи первых членов полинома, так как вклад последующих составляющих в конечное значение сопротивления незначителен:

Тогда, переходя к термопроводимости, мы получим:

где r(T) — сопротивление, кОм; g(T) — проводимость, мСм.

Такая зависимость имеет ряд преимуществ перед экспоненциальной при ее использовании в целях линеаризации характеристики с помощью математического моделирования. Для наглядного представления рассмотрим применение этой зависимости на стандартной R(T) характеристике терморезистора В57861 (S861) с номинальным сопротивлением 10 кОм.

Из представленных данных (табл. 2, рис. 1) видно, что разница между значениями сопротивлений, которые предоставляет производителем в виде табличной характеристики № 8016 [3], и значениями термосопротивлений, полученными с помощью математической модели, не значительна и не превышает 0,1%, что позволяет в дальнейших математических расчетах пренебречь этими отклонениями. Коэффициенты математической модели, с помощью которых получены расчетные данные, равны:

Рис. 1. Температурная зависимость терморезистора B57861 (S861)

Таблица 2. Характеристика терморезистора В57861 (S861)

Сразу же оговоримся, что представленные коэффициенты подходят только для указанного температурного диапазона и табличной характеристики 8016 NTC-термисторов компании Epcos. Номинальное сопротивление терморезистора в этом случае не имеет значения. Кроме того, ограниченность температурного диапазона не обусловлена невозможностью описания с помощью математической модели, а связана с конкретным применением, для которого проводились эти расчеты.

Последующим этапом реализации практического применения полиноминального представления характеристики термосопротивления является воспроизведение зависимости (12), для чего оказалось достаточным и удобным использование операционного усилителя (ОУ) в неинвертирующей схеме включения (рис. 2).

Рис. 2. Преобразователь R(T) U(T)

Указанная схема будет иметь следующую выходную характеристику:

графическое построение которой представлено на рис. 3.

Рис. 3. Графическое представление линеаризации температурной характеристики

Масштаб координатной сетки температурной зависимости U(T) можно легко менять с помощью резистора обратной связи ROC и резистивного делителя опорного напряжения UREF, состоящего из резисторов R1 и R2. Соответственно, преобразователь R(Т)

U(T) с поставленной задачей справляется.

Линеаризация температурной характеристики NTC-термисторов

Вопрос линеаризации выходной характеристики термопреобразователя остается до сих пор открытым. Существуют методы частичной или же мнимой линеаризации, которые предлагают даже сами производители нелинейных элементов, но они не дают полного решения этой задачи.

Предлагаемый в рамках данной статьи метод, основанный на математическом моделировании, заключается в построении искусственной линейной температурной зависимости (a×T+b) и последующем построении дополнительной характеристики Y(Т), позволяющих с помощью простых вычислений определять температуру с высокой точностью. Но из этих математических построений вытекает ряд условий, которые необходимо соблюсти для получения данных высокой точности:

  1. Температурный диапазон, в котором предполагается использование датчика, должен быть четко определен.
  2. Использование микроконтроллера, так как воспроизведение искусственно созданных зависимостей с помощью аналоговой электроники не возможно.
  3. Использование прецизионных радиоэлементов для точного представления поведения датчика в рассматриваемом применении.

Процесс построения искусственной линейной зависимости в известном температурном диапазоне при наличии математической модели поведения терморезистора не составляет большого труда. Для этого достаточно взять две крайние точки характеристики U(T) (рис. 3) и провести между ними линейный отрезок (a×T+b). Получить значение коэффициентов a и b в системе уравнений:

где Т0 и ТN — соответственно начальная и конечная температуры контролируемого диапазона, также не вызовет затруднений. Вспомогательную характеристику Y(T) (рис. 3) получаем по следующей формуле:

Зависимость Y(T) имеет вид отрицательной параболы, исходя из этого, зависимость Y(T) можно представить следующим образом:

где PT, QT и RT — постоянные коэффициенты, которые не зависят от температуры, а определяются свойствами термистора.

Приравнивая выражения 15 и 16, получаем квадратное уравнение, где неизвестной величиной является температура:

Корни этого квадратного уравнения находятся известным путем:

Для нашего применения подходит только один из них, поэтому вычисление конечного значения температуры можно осуществлять по формуле:

Если температурный диапазон большой, а контроль температуры необходимо осуществлять с высокой точностью, то можно пойти по пути кусочной аппроксимации, и тогда коэффициенты PT , QT и RT для каждого температурного поддиапазона будут свои.

Практическое применение

Для рассмотрения представленного метода линеаризации на практике вернемся к уже известному терморезистору В57861 (S861) с номинальным сопротивлением 10 кОм ±1%. Использование термистора предполагается в температурном диапазоне от 0 до 155 °С. Исходя из этого, номиналы резисторов для преобразователя R(Т)

U(T) были взяты следующие: ROC = 1,62 кОм ±0,1%, R1 = 10 кОм ±0,1%, R2 = 1 кОм ±0,1%, а опорное напряжение UREF = (2,5 ±0,002) В.

Представленные данные (табл. 3) получены путем разбиения всего температурного диапазона на 8 поддиапазонов, для которых были вычислены соответствующие коэффициенты PT, QT и RT (табл. 4).

Таблица 3. Пример использования метода линеаризации

Таблица 4. Расчетные значения коэффициентов PT, QT и RT

Но даже применяя микроконтроллер, неудобно и программно неоправдано держать такое большое количество нецелочисленных коэффициентов. А переходя к аналого-цифровому преобразованию, для исключения дополнительной погрешности будет правильным в любую формулу подставлять дискреты, полученные от АЦП, а не пересчитанное значение напряжения. Поэтому конечная формула вычисления температуры для 12-битного АЦП будет выглядеть следующим образом:

где TU — вычисляемое значение температуры, iƒ (на английском «если») — условие использования одной из формул, ΔU — полученные дискреты от АЦП.

Соответственно, если ΔU < 391, то значение температуры ниже 0 °С, а если ΔU > 4022, то значение температуры выше 155 °С. Ну и, рассматривая каждый поддиапазон температур в отдельности, можно получить для него следующие точностные характеристики (табл. 5).

Таблица 5. Точностные характеристики поддиапазонов

Такая низкая разрешающая способность, а также ее неравномерность в интервале температур от 0 до 60 °С связана с нелинейностью выходной характеристики преобразователя R(Т)

U(T).

Указанная в таблице 5 погрешность не является полной, так как она не учитывает отклонение сопротивления резисторов и опорного напряжения от номинальных значений. В таблице 6 представлены возможное отклонение истинной вычисленной температуры от истинного значения и погрешность системы без учета допустимого отклонения термосопротивлений от величин, предоставленных производителем в качестве стандартной температурной характеристики № 8016.

Таблица 6. Погрешность системы для каждой контрольной точки

В начале статьи говорилось, что терморезистор, как и любой резистор, имеет отклонение ΔR/RN от номинального значения сопротивления, обусловленное технологией изготовления, и что этот параметр дается производителем на точку 25 °С. Однако, в отличие от простых резисторов, эта величина у терморезистора во всем температурном диапазоне не одинакова, и что еще важней — она увеличивается. Компания Epcos для упрощения вычислений и исключения необходимости самостоятельного определения отклонений в нужном температурном диапазоне предоставляет программу “NTC R/T Calculation” [4], которая позволяет в автоматическом режиме проводить все необходимые расчеты по определению отклонений сопротивления и температуры.

Исходя из данных таблицы 7, можно посчитать тотальную погрешность рассмотренной измерительной системы с учетом всех отклонений и допусков от соответствующих номинальных значений, ошибки АЦП и расчетов математической модели (табл. 8).

Таблица 7. Отклонения для терморезистора В57861S0103F040

Таблица 8. Абсолютная погрешность измерительной системы для каждой контрольной точки

Поправка на саморазогрев термистора

При работе в любой электрической схеме через терморезистор протекает измерительный ток, если его величина будет более 100 мкА или же сопротивление термистора будет иметь небольшую величину, то результат измерений искажается. Это явление называется саморазогревом и, как было сказано ранее, зависит не только от нагрузки, но и от применяемых материалов и конструкции датчика. Говоря другими словами, на полученный результат измерений необходимо делать поправку, вычисление которой можно проводить по следующей формуле:

где TA — действительно значение контролируемой температуры; Т — измеренное значение температуры; U — мгновенное значение напряжения на терморезисторе, I — мгновенное значение тока, протекающего через терморезистор; R(T) — значение сопротивления терморезистора, соответствующее температуре Т; δth — коэффициент теплового рассеяния.

Применительно к используемой схеме и при условии использования микроконтроллера с 12-битным АЦП выражение (20) будет выглядеть следующим образом:

В примененной схеме включения (рис. 2) величина поправки будет тем меньше, чем больше значение резистора в обратной связи операционного усилителя RОС. Следует отметить, что полученные значения поправки для температуры (табл. 9) справедливы только для указанных термисторов, преобразователя R(Т)

U(T), а также для значения коэффициента рассеяния в воздухе, равного 1,5 мВт/К. При применении термистора в любой другой среде необходимо определять значение этого коэффициента опытным путем.

Таблица 9. Поправка на саморазогрев для терморезистора В57861S0103F040

Заключение

Применение термисторов с отрицательным ТКС в качестве датчиков температуры имеет определенные ограничения, связанные с точностью и погрешностью измерений, но при использовании предложенного в рамках данной статьи метода такое применение возможно. Полученные на конкретном примере значения не являются обобщающими для всех терморезисторов, а введение небольших доработок в преобразователь позволяет увеличить точностные показатели измерительной системы в целом в 2–3 раза.

Литература

  1. http://www.epcos.com/web/generator/Web/Sections/ProductCatalog/NonlinearResistors/NTCThermistors/PDF/PDF__General__technical__information,property=Data__en.pdf;/PDF_General_technical_information.pdf
  2. http://www.epcos.com/web/generator/Web/Sections/ProductCatalog/NonlinearResistors/NTCThermistors/ PDF/PDF__SelectorGuide,property=Data__en.pdf;/PDF_SelectorGuide.pdf
  3. http://www.epcos.com/web/generator/Web/Sections/ProductCatalog/NonlinearResistors/NTCThermistors/PDF/PDF__Standardized,property=Data__en.pdf;/PDF_Standardized.pdf
  4. http://www.epcos.com/web/generator/Web/Sections/DesignTools/NTCThermistors/Page__License2,locale=en.html

Термистор Ntc котлов Nectra, Анна, Maya, Elexia, Calydra, Centora Green арт. 61000733

Ntc термистор погружной котлов Chaffoteaux.

Elexia

Nectra

Анна

Maya

Calydra

Centora Green

Elexia Comfort

Датчики NTC — температурные датчики, которые предназначены для измерения температуры теплоносителя в контурах котла.

Характеристики термисторов

Принцип работы этих датчиков следующий: при изменении температуры теплоносителя меняется температура датчика, при этом его электрическое сопротивление обратно пропорционально. При повышении температуры снижается сопротивление, и наоборот, при снижении температуры сопротивление увеличивается. По величине сопротивления микропроцессор определяет температуру в котлах. При температуре 25 °С, сопротивление датчика составляет порядка 5 кОм., при температуре 70 °С, сопротивление датчика составляет порядка 1 кОм. Зависимость сопротивления от температуры нелинейная.

В перечисленных котлах используются два одинаковых датчика температуры.

В котлах Елексия один на выходе вторичного теплообменника, второй на подаче отопления и вмонтированы в левый гидравлический узел 61301956. Датчики заменяют один другого по техническим характеристикам.
Котлы Nectra, Анна аналогично снабжены двумя терморезисторами. Один из них расположен на трехходовом клапане для контроля температуры воды на подаче отопления, второй на выходе горячей воды.
В зависимости от температуры теплоносителя меняется сопротивление термистора. Изменение сопротивления контролирует плата управления, которая и дает команду на работу котла.

  Замена датчиков ntc:

1.      демонтаж датчиков температуры не составляет усилий — необходимо снять зажим и отвинтить гайки;

2.      перед снятием в обязательном порядке слить воду с котла;

3.   монтаж новых датчиков осуществляется в обратном порядке.


Автор статьи: Кравец Анна

термистор ntc — характеристики (ВАХ), подключение, проверка на работоспособность

Термисторы NTC- это особый тип резистора, который имеет отрицательный температурный коэффициент. Это его основная особенность, которая понятна из самого слова «термо». Его внутреннее сопротивление сокращается по мере роста температуры. Обычно, эти радиодетали используются в температурных датчиках из-за своих токоограничивающих свойств.

Величина этого коэффициента у термистора выше в несколько раз, чем у силисторов – температурных датчиков, изготовленных на кремниевой основе и более чем на порядок выше( то есть в 10 раз), чем у датчиков RTD. Рабочий диапазон термистора лежит в диапазоне от -50 до +200 градусов. В данной статье описаны все особенности и отличия, устройство и схема подключения этой радиодетали, а также как и где их можно применять. Статья также содержит видеоролик и одну научную статью, посвященную рассматриваемому вопросу.

Различные термисторы

Характеристики термисторов NTC

В отличие от RTD (температурные детекторы сопротивления), изготовленные из металлов, термисторы NTC обычно изготавливаются из керамики или полимеров. Различные используемые материалы приводят к различным температурным откликам, а также к другим характеристикам. Хотя большинство термисторов NTC обычно подходят для использования в температурном диапазоне от -55 ° C до 200 ° C, где они дают наиболее точные показания, существуют специальные семейства термисторов NTC, которые могут использоваться при температурах, приближающихся к абсолютному нулю (-273,15 ° C), а также те, которые специально предназначены для использования выше 150 ° C. Температурная чувствительность датчика NTC выражается как «процентное изменение на градус C». В зависимости от используемых материалов и особенностей производственного процесса типичные значения чувствительности к температуре колеблются от -3% до -6% на ° С.

Термистор NTC – термочувствительный резистор, сопротивление которого демонстрирует большое, точное и прогнозируемое снижение по мере того, как температура ядра резистора увеличивается в диапазоне рабочих температур.

Три различных термистора NTC

Характеристическая кривая NTC

Как видно из рисунка, термисторы NTC имеют гораздо более крутой наклон сопротивления-температуры по сравнению с RTD платинового сплава, что приводит к лучшей температурной чувствительности. Тем не менее, RTD остаются наиболее точными датчиками, точность которых составляет ± 0,5% от измеренной температуры, и они полезны в температурном диапазоне от -200 ° C до 800 ° C, что намного шире, чем у датчиков температуры NTC.

Таблица основных характеристик NTC термисторов.

Сравнение с другими датчиками температуры

По сравнению с RTD, NTC имеют меньший размер, более быстрый отклик, большую устойчивость к ударам и вибрации и имеют более низкую себестоимость. Они немного менее точны, чем RTD. По сравнению с термопарами точность, полученная от обоих, аналогична; однако термопары выдерживают очень высокие температуры (порядка 600 ° C) и используются вместо термисторов NTC, где их иногда называют пирометрами. Тем не менее, термисторы NTC обеспечивают большую чувствительность, стабильность и точность, чем термопары при более низких температурах, и используются с меньшими затратами электроэнергии и, следовательно, имеют более низкие общие затраты.

Стоимость дополнительно снижается из-за отсутствия необходимости в схемах формирования сигнала (усилители, переводчики уровня и т. д.), Которые часто необходимы при работе с RTD и всегда необходимы для термопар.

  • Температурный диапазон:приблизительный общий диапазон температур, в которых может использоваться тип датчика. В пределах заданного температурного диапазона некоторые датчики работают лучше, чем другие.
  • Относительная стоимость:относительная стоимость, поскольку эти датчики сравниваются друг с другом. Например, термисторы недороги по отношению к термометрам сопротивления, отчасти потому, что предпочтительным материалом для термопреобразователей сопротивления является платина.
  • Постоянная времени:приблизительное время, необходимое для перехода от одного значения температуры к другому. Это время в секундах, которое термистору требуется для достижения 63,2% разницы температур от начального показания до окончательного.
  • Стабильность:способность контроллера поддерживать постоянную температуру на основе обратной связи датчика температуры.
  • Чувствительность:степень реакции на изменение температуры.

Интересно почитать: фотореле в уличном освещении.

Эффект самонагрева

Эффект самонагрева — это явление, которое происходит, когда ток протекает через термистор NTC. Поскольку термистор в основном является резистором, он рассеивает энергию в виде тепла, когда через него протекает ток. Это тепло генерируется в сердечнике термистора и влияет на точность измерений. Степень, в которой это происходит, зависит от количества протекающего тока, окружающей среды (будь то жидкость или газ, есть ли какой-либо поток над датчиком NTC и т. д.), Температурный коэффициент термистора, общее количество термистора области и т. д. Тот факт, что сопротивление датчика NTC и, следовательно, ток протекания через него, зависит от окружающей среды и часто используется в резервуарах для хранения жидкости.

Теплоемкость

Теплоемкость представляет собой количество тепла, необходимое для повышения температуры термистора на 1 ° C и обычно выражается в мДж / ° C. Знание точной теплоемкости имеет большое значение при использовании датчика термистора NTC в качестве ограничителя пускового тока, поскольку он определяет скорость отклика датчика температуры NTC.

Выбор и расчет кривой

Тщательный процесс отбора должен учитывать константу рассеяния термистора, постоянную времени термической обработки, значение сопротивления, кривую сопротивления-сопротивления и допуски, чтобы учесть в наиболее важных факторах.

Поскольку зависимость между сопротивлением и температурой (кривая R-T) сильно нелинейна, в практических схемах системы должны использоваться определенные приближения.

Приближение первого порядка

Одним приближением и простейшим в использовании является приближение первого порядка, в котором говорится, что:

формула приближения первого порядка: dR = k * dT

Где k — отрицательный температурный коэффициент, ΔT — разность температур, ΔR — изменение сопротивления, возникающее в результате изменения температуры. Это приближение первого порядка справедливо только для очень узкого температурного диапазона и может быть использовано только для таких температур, где k почти постоянна во всем диапазоне температур.

Бета-формула

Другое уравнение дает удовлетворительные результаты с точностью ± 1 ° C в диапазоне от 0 ° C до + 100 ° C. Он зависит от единственной константы материала β, которая может быть получена путем измерений. Уравнение можно записать в виде:

Бета-уравнение: R (T) = R (T0) * exp (бета * (1 / T-1 / T0))

Где R (T) — сопротивление при температуре T в Кельвине, R (T0) является точкой отсчета при температуре T0. Бета-формула требует двухточечной калибровки и обычно не более чем ± 5 ° C по всему полезному диапазону термистора NTC.

Уравнение Штейнхарта-Харта

Наилучшим приближением, известным на сегодняшний день, является формула Штейнхарта-Харта, опубликованная в 1968 году:

Уравнение Штейнхарта для точного приближения: 1 / T = A + B * (ln (R)) + C * (ln (R)) ^ 3.

Где ln R — естественный логарифм сопротивления при температуре T в Кельвине, а A, B и C — коэффициенты, полученные из экспериментальных измерений. Эти коэффициенты обычно публикуются поставщиками термисторов в составе таблицы данных. Формула Штейнхарта-Харта, как правило, составляет около ± 0,15 ° С в диапазоне от -50 ° С до + 150 ° С, что является большим для большинства применений. Если требуется высокая точность, диапазон температур должен быть уменьшен, а точность лучше, чем ± 0,01 ° C в диапазоне от 0 ° C до + 100 ° C.

Термисторы

Выбор правильного приближения

Выбор формулы, используемой для получения температуры из измерения сопротивления, должен основываться на доступной вычислительной мощности, а также на фактических требованиях допуска. В некоторых приложениях приближение первого порядка более чем достаточно, в то время как в других случаях даже уравнение Штейнхарта-Харта удовлетворяет требованиям, а термистор должен быть откалиброван по пунктам, делая большое количество измерений и создавая таблицу поиска.

Конструкция и свойства термисторов NTC

Материалами, обычно используемыми при изготовлении NTC-резисторов, являются платина, никель, кобальт, железо и оксиды кремния, используемые в виде чистых элементов или керамики и полимеров. Термисторы NTC можно разделить на три группы, в зависимости от используемого производственного процесса.

Терморезисторы

Форма бисера или шарика. Эти термисторы NTC изготовлены из свинцовых проводов из платинового сплава, непосредственно спеченных в керамический корпус. Они обычно обеспечивают быстрое время отклика, лучшую стабильность и позволяют работать при более высоких температурах, чем дисковые и чип-датчики NTC, однако они более хрупкие. Обычно они запечатывают их в стекле, чтобы защитить их от механических повреждений во время сборки и улучшить их стабильность измерений. Типичные размеры колеблются от 0,075 до 5 мм в диаметре.

Термисторы с различными техническими характеристиками

Преимущества и недостатки NTC и PTC

Термисторы NTC прочны, надежны и стабильны, и они оборудованы для работы в экстремальных условиях окружающей среды и помехоустойчивости в большей степени, чем другие типы датчиков температуры.

  • Компактный размер: варианты упаковки позволяют им работать в небольших или ограниченных пространствах; тем самым занимая меньше места на печатных платах.
  • Быстрое время отклика: небольшие размеры позволяют быстро реагировать на изменение температуры, что важно, когда требуется немедленная обратная связь.
  • Экономичность: термисторы не только дешевле, чем другие типы датчиков температуры; Если приобретенный термистор имеет правильную кривую RT, никакая другая калибровка не требуется во время установки или в течение срока ее эксплуатации.
  • Совпадение точек: способность получить определенное сопротивление при определенной температуре.
  • Соответствие кривой: сменные термисторы с точностью от +.

Термистор на схеме

Термисторы просты в использовании, недороги, прочны и предсказуемо реагируют на изменения температуры. Хотя они не очень хорошо работают при чрезмерно высоких или низких температурах, они являются предпочтительным датчиком для применений, которые измеряют температуру в желаемой базовой точке. Они идеальны, когда требуются очень точные температуры. Некоторые из наиболее распространенных применений термисторов используются в цифровых термометрах, в автомобилях для измерения температуры масла и охлаждающей жидкости, а также в бытовых приборах, таких как духовки и холодильники, но они также встречаются практически в любом приложении, где для обеспечения безопасности требуются защитные контуры отопления или охлаждения.

 Для более сложных приложений, таких как детекторы лазерной стабилизации, оптические блоки и устройства с зарядовой связью, встроен термистор. Например, термистор 10 кОм является стандартом, который встроен в лазерные пакеты.

Диск и чип-термисторы

Термистор в виде диска. Терморезисторы NTC имеют металлизированные поверхностные контакты. Они больше и, как результат, имеют более медленное время реакции, чем резисторы NTC типа шариков. Однако из-за их размера они имеют более высокую константу диссипации (мощность, необходимая для повышения их температуры на 1 ° C), и поскольку мощность, рассеиваемая термистором, пропорциональна квадрату тока, они могут обрабатывать более высокие токи намного лучше, чем шариковый тип термисторов. Термисторы с типом диска производятся путем прессования смеси оксидных порошков в круглую матрицу, которые затем спекаются при высоких температурах. Чипы обычно изготавливают методом литья под давлением, где суспензию материала распределяют в виде толстой пленки, сушат и разрезают в форму. Типичные размеры колеблются от 0,25 до 25 мм в диаметре.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Терморезисторы NTC с инкапсулированным покрытием

Это датчики температуры NTC, запечатанные в воздухонепроницаемом стеклянном пузыре. Они предназначены для использования при температурах выше 150 ° C или для монтажа на печатной плате, где требуется прочность. Инкапсуляция термистора в стекле повышает стабильность датчика, а также защиту датчика от окружающей среды. Они изготавливаются герметично уплотняющими резисторами типа NTC в стеклянный контейнер. Типичные размеры колеблются от 0,4 до 10 мм в диаметре.

 

Типичные области применения

Термисторы NTC используются в широком спектре применений. Они используются для измерения температуры, температуры управления и температурной компенсации. Они также могут использоваться для обнаружения отсутствия или наличия жидкости, в качестве устройств ограничения тока в цепях питания, мониторинга температуры в автомобильных агрегатах и многих других. Датчики NTC можно разделить на три группы, в зависимости от электрической характеристики, используемой в агрегатах и устройствах.

Характеристика сопротивления-температуры

Приложения, основанные на характеристике сопротивления-времени, включают измерение температуры, контроль и компенсацию. К ним также относятся ситуации, в которых используется термистор NTC, так что температура датчика температуры NTC связана с некоторыми другими физическими явлениями. Эта группа агрегатов требует, чтобы термистор работал в условиях нулевой мощности, что означает, что ток проходящий через него поддерживается как можно на более низком уровне, чтобы избежать нагрева зонда.

Устройствами, основанными на характеристике текущего времени, являются: временная задержка, ограничение пускового тока, подавление перенапряжений и многое другое. Эти характеристики связаны с теплоемкостью и постоянной диссипации используемого термистора NTC. Схема обычно полагается на термистор NTC, нагреваясь из-за проходящего через него тока. В какой-то момент это вызовет какое-то изменение в схеме, в зависимости от устройства, в котором оно используется.

Характеристика напряжения

Устройства, основанные на характеристике напряжения и тока термистора, обычно включают изменения условий окружающей среды или изменения схемы, которые приводят к изменениям рабочей точки на заданной кривой в цепи. В зависимости от применения это может использоваться для ограничения тока, температурной компенсации или измерения температуры.

Одинаковые термисторы

Какие типы и формы термистора доступны на рынке

Термисторы бывают разных форм — дисковые, микросхемы, шариковые или стержневые и могут монтироваться на поверхности или встраиваться в систему. Они могут быть заключены в эпоксидную смолу, стекло, обожжены в феноле или окрашены. Наилучшая форма часто зависит от того, какой материал контролируется, например, от твердого вещества, жидкости или газа. Например, терморезистор с бусинками идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей.

Выберите форму, которая обеспечивает максимальный контакт поверхности с устройством, температура которого контролируется. Независимо от типа термистора, соединение с контролируемым устройством должно быть выполнено с использованием теплопроводящей пасты или эпоксидного клея. Обычно важно, чтобы эта паста или клей не были электропроводящими.

Заключение

Более подробно о термисторе рассказано в статье 2007_06_32. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.meanders.ru

www.ephy-mess.de

www.voltstab.ru

Предыдущая

ПолупроводникиЧто такое адресная светодиодная лента

Следующая

ПолупроводникиЧто такое полевые транзисторы?

В чем разница между термистором NTC и PTC?

Значения термисторов как с отрицательным температурным коэффициентом (NTC), так и с положительным температурным коэффициентом (PTC) изменяются в результате изменения температуры, но по-разному влияют на их использование.

Для термисторов NTC при повышении температуры сопротивление падает с высокого до низкого и позволяет току проходить. В цепи они могут ограничивать пусковой ток за счет самонагрева при первоначальной подаче тока, а затем допускать нормальный ток, поскольку их сопротивление падает до незначительной величины во время работы в установившемся режиме.Эта возможность делает термисторы NTC наиболее часто используемыми термисторами. Они также являются типом, наиболее часто используемым для датчиков температуры.

Напротив, для термисторов PTC с повышением температуры сопротивление увеличивается от низкого до высокого и блокирует перегрузку по току. В результате термисторы PTC обычно используются в качестве предохранителей.

Как термисторы NTC, так и PTC очень нелинейны, поэтому даже при условии, что они могут измерять достаточно точно и воспроизводимо, для линеаризации выходного сигнала требуется дополнительная схема.Еще одно соображение при проектировании — максимальная температура, которую могут измерять термисторы NTC, составляет менее 130 ° C.

Различная реакция на температуру для термисторов NTC и PTC. Источник: Ametherm.

Для измерения температуры упаковка датчика определяет его более распространенные области применения. Например, благодаря своей высокой стабильности и прочности термисторы стеклянного зонда используются для:

  • Измерение уровня жидкости
  • Измерение расхода жидкости
  • Измерения температуры
  • Температурная компенсация
  • Измерение теплопроводности

Напротив, термисторы со стеклянными шариками с небольшими размерами и быстрым термическим откликом очень чувствительны к изменениям как напряжения, так и тока.С этими характеристиками к типичным приложениям относятся:

  • Катетеры сердца термодилюционные
  • Биомедицинские сборки
  • Расход жидкости
  • Измерение уровня жидкости
  • Анализ газов
  • Малая поверхность для измерения температуры

Термисторы NTC для измерения температуры / компенсации 10 кОм

RL0503-5820-97-MS

96F3308

Термистор, 10 кОм, серия RL0503, сквозное отверстие, с выводами провода

ДОПОЛНИТЕЛЬНЫЕ ДАТЧИКИ АМФЕНОЛА

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм RL0503 серии Сквозное отверстие Проволока с выводами -50 ° С 150 ° С
NTCS0603E3103FMT

75AH8643

ТЕРМИСТОР NTC, AEC-Q200, 10K, 0603

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Серия NTCS SMD 3610 К 0603 [1608 метрическая система] -40 ° С 150 ° С AEC-Q200
NTCLE300E3103SB

89R9516

Термистор, NTC, 10 кОм, Серия NTCLE, 3977 K, сквозное отверстие, с выводами провода

ВИШАЙ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Серия NTCLE 3977 тыс. Проволока с выводами -40 ° С 125 ° С AEC-Q200
B57861S0103F040

46WX1274

ТЕРМИСТОР, 10К, 1%, NTC, RAD

EPCOS

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм B57861S серии Сквозное отверстие 3988K Проволока с выводами -55 ° С 155 ° С AEC-Q200
NTCALUG01A103F

82T4006

Термистор, NTC, 10 кОм, серия NTCALUG01A, 3984 K, сквозное отверстие, с выводами провода

ВИШАЙ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм NTCALUG01A серии 3984K Проволока с выводами -40 ° С 150 ° С AEC-Q200
NTCLE413E2103h500

47X1623

Термистор, NTC, 10 кОм, серия NTCLE413, 3984 K, сквозное отверстие, с выводами провода

ВИШАЙ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм NTCLE413 серии 3984K Проволока с выводами -40 ° С 105 ° С
NTCLE100E3103GB0

88F3849

Термистор, NTC, 10 кОм, серия NTCLE100E3, 3977 K, сквозное отверстие, с радиальными выводами

ВИШАЙ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм NTCLE100E3 серии Сквозное отверстие 3977 тыс. Радиальные выводы -40 ° С 125 ° С
USP10976

43AC9632

Термистор, NTC, зонд, кольцевой наконечник, 10 кОм, 1%, с выводами из проволоки

LITTELFUSE

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Панель 3892K Проволока с выводами -55 ° С 150 ° С
10K3A1B

79K1688

Термистор, NTC, 10 кОм, серия BetaCurve-1, 3892 K, сквозное отверстие, с радиальными выводами

BETATHERM

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Серия BetaCurve-1 Сквозное отверстие 3976 тыс. Проволока с выводами 0 ° C 70 ° С
103JG1F

43AC9739

Термистор, NTC, 1 кОм, 1%, DO-35, залитый стеклом, осевой

LITTELFUSE

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм DO-35 Стандартная серия Сквозное отверстие 3892K DO-35 Осевые выводы -55 ° С 300 ° С
USP10981

43AC9635

Термистор, NTC, зонд, 10 кОм, 1%, нержавеющая сталь, резьба 1/8 «NPT,

LITTELFUSE

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Панель 3892K Проволока с выводами -55 ° С 105 ° С
135-103LAG-J01

96F6233

Термистор, NTC, 10 кОм, серия 135, 3974 K, сквозное отверстие, DO-35, с осевыми выводами

HONEYWELL

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм 135 серии Сквозное отверстие 3974 тыс. DO-35 Осевые выводы -60 ° С 300 ° С
GA10K4D25

03AC1436

Термистор NTC, 10 кОм, сквозное отверстие, с выводами, 3694 K

ДАТЧИКИ ПОДКЛЮЧЕНИЯ TE

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Сквозное отверстие 3694K Проволока с выводами -40 ° С 125 ° С
USP10982

43AC9636

Термистор, NTC, зонд, 10 кОм, 1%, винил, с проволочными выводами

LITTELFUSE

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Панель 3892K Проволока с выводами 80 ° С
103JG1K

43AC9741

Термистор, NTC, 10 кОм, 10%, DO-35, залитый стеклом, осевой

LITTELFUSE

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм DO-35 Стандартная серия Сквозное отверстие 3892K DO-35 Осевые выводы -55 ° С 300 ° С
10K3A542I

23М8117

Термистор, NTC, 10 кОм, серия 10K3A, 3976 K, сквозное отверстие, с выводами провода

BETATHERM

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм 10K3A серии Сквозное отверстие 3976 тыс. Проволока с выводами -40 ° С 125 ° С
ERT-J1VG103FA

55T6142

Термистор, NTC, 10 кОм, Серия ERTJ, 3375 K, SMD, 0603 [1608 Метрическая система]

PANASONIC

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Серия ERTJ SMD 3375 тыс. 0603 [1608 метрическая система] -40 ° С 125 ° С
NHQM103B375T5

45х4029

ТЕРМИСТОР NTC, 10К, 0805

ДОПОЛНИТЕЛЬНЫЕ ДАТЧИКИ АМФЕНОЛА

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Серия NHQM SMD 3750 тыс. 0805 [2012 метрическая система] -40 ° С 125 ° С
215270-3605

37AJ7648

ТЕРМИСТОР, NTC, 3600К, 10 КОМ

MOLEX

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм 215270 серии Сквозное отверстие 3600 К Проволока с выводами -40 ° С 135 ° С
NTCALUG01T103GA

51AH6006

Термистор NTC, AEC-Q200, 10 кОм, свободный ход, с выводами, 3984K

ВИШАЙ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм NTCALUG01T серии Бесплатное подвешивание 3984K Проволока с выводами -40 ° С 150 ° С AEC-Q200
NTCLE305E4103SB.

47Y1218

ТЕРМИСТОР, NTC, 10К

ВИШАЙ

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Серия NTCS 3984K Проволока с выводами -40 ° С 125 ° С AEC-Q200
NTCALUG01A103J

55M7110

Термистор, NTC, 10 кОм, серия NTCALUG01A, 3984 K, сквозное отверстие, с выводами провода

ВИШАЙ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм NTCALUG01A серии 3984K Проволока с выводами -40 ° С 150 ° С AEC-Q200
NTCLE203E3103GB0

68K0425

ТЕРМИСТОР NTC, 10К, С РАДИАЛЬНЫМИ ВЫВОДАМИ

ВИШАЙ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Серия NTCLE Сквозное отверстие 3977 тыс. Радиальные выводы -40 ° С 125 ° С
B57861S0103J040

32AC9534

ТЕРМИСТОР, NTC, 10К, С ПРОВОДОМ

EPCOS

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм B57861S серии Сквозное отверстие 3988K Проволока с выводами -55 ° С 155 ° С AEC-Q200
USP10978

43AC9633

Термистор, NTC, зонд, 10 кОм, 1%, латунь, резьба 1/4 «NPT, проволока с выводами

LITTELFUSE

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

10кОм Панель 3892K Проволока с выводами -55 ° С 105 ° С

Термистор NTC (тип чипа) — Промышленные устройства и решения

Продукты, описанные на этом веб-сайте, были разработаны и изготовлены для стандартных приложений, таких как общие электронные устройства, офисное оборудование, оборудование для передачи данных и связи, измерительные приборы, бытовая техника и аудио- видеооборудование.

Для специальных применений, в которых требуется качество и надежность, или если отказ или неисправность продуктов могут напрямую угрожать жизни или вызвать угрозу травм (например, для самолетов и аэрокосмического оборудования, дорожного и транспортного оборудования, оборудования для сжигания, медицинского оборудования , устройства для предотвращения несчастных случаев и защиты от кражи, а также защитное оборудование), пожалуйста, используйте только после того, как ваша компания проверит пригодность наших продуктов для этого применения.

Независимо от области применения, при использовании наших продуктов в оборудовании, для которого ожидается высокий уровень безопасности и надежности, убедитесь, что схемы защиты, схемы резервирования и другие устройства установлены для обеспечения безопасности оборудования при оценке области применения путем независимой проверки безопасности. тесты.

Обратите внимание, что продукты и технические характеристики, размещенные на этом веб-сайте, могут быть изменены без предварительного уведомления в целях улучшения. Независимо от области применения, пожалуйста, подтвердите последнюю информацию и спецификации до окончательного этапа проектирования, покупки или использования.

Техническая информация на этом веб-сайте содержит примеры типичных операций и схем применения продуктов. Он не предназначен для гарантии ненарушения или предоставления лицензии на права интеллектуальной собственности этой компании или любой третьей стороны.

Если какие-либо продукты, спецификации продуктов и техническая информация на этом веб-сайте подлежат экспорту или предоставлению нерезидентам, необходимо соблюдать законы и правила страны-экспортера, особенно те, которые касаются безопасного экспортного контроля.

Информация, содержащаяся на этом веб-сайте, не может быть перепечатана или воспроизведена полностью или частично без предварительного письменного разрешения Panasonic Corporation.

Инструменты и программы, представленные на этом веб-сайте, должны использоваться по вашему усмотрению.Panasonic не гарантирует каких-либо результатов от использования этих инструментов и программ и не несет ответственности за любые убытки, возникшие в результате использования вами.

<о письме для получения сертификата соответствия директиве ЕС RoHS>
Дата перехода на продукт, соответствующий требованиям RoHS, зависит от номера детали или серии.
При использовании инвентаря, в котором неясно соответствие требованиям RoHS, выберите «Запрос на продажу».
в форме веб-запроса.

Извещение о передаче полупроводникового бизнеса


Полупроводниковый бизнес Panasonic Corporation (далее именуемой «Компания») будет передан 1 сентября 2020 года Nuvoton Technology Corporation (далее именуемой «Nuvoton»). Соответственно, Panasonic Semiconductor Solutions Co., Ltd., которая управляла полупроводниковым бизнесом Panasonic, перейдет под эгидой Nuvoton Group с новым названием Nuvoton Technology Corporation Japan (далее именуемой «NTCJ»).
В соответствии с этой передачей, полупроводниковая продукция, размещенная на этом веб-сайте, после 1 сентября 2020 года будет считаться продукцией производства NTCJ. Однако такая продукция будет постоянно продаваться через Компанию.
Обратите внимание, что при запросе о полупроводниковой продукции, размещенной на этом веб-сайте, клиенты должны перейти на веб-сайт, управляемый NTCJ (далее «веб-сайт NTCJ»), и подтвердить, что NTCJ является компанией, ответственной за управление личной информацией, предоставляемой клиентами на ее веб-сайте.Мы ценим ваше понимание по этому поводу.

моментов, которые следует учитывать при выборе термистора NTC

Термисторы с отрицательным температурным коэффициентом (NTC) служат в качестве высокоточных датчиков температуры для различных автомобильных, промышленных, бытовых приборов и медицинских приложений. Поскольку доступен широкий спектр термисторов NTC, созданных с различными конструкциями и изготовленных из различных материалов, выбор оптимального термистора NTC для конкретных приложений может быть сложной задачей.В этой статье рассматриваются типы термисторов NTC и их критические критерии производительности, а также даются советы по выбору подходящего устройства для конкретного применения.

Почему NTC?

Существует три основных технологии датчиков температуры, каждая из которых имеет свои особенности: датчики резистивного датчика температуры (RTD) и два типа термисторов, термисторы с положительным и отрицательным температурным коэффициентом. Датчики RTD используются в основном для измерения в широком диапазоне температур, и, поскольку в них используются чистые металлы, они, как правило, дороже, чем термисторы.

Следовательно, поскольку термисторы измеряют температуру с такой же или большей точностью, они обычно используются вместо резистивных датчиков температуры. Как следует из названия, сопротивление термисторов с положительным температурным коэффициентом (PTC) увеличивается с повышением температуры. Они обычно используются в качестве датчиков ограничения температуры в цепях отключения или безопасности, поскольку при достижении температуры переключения возникают всплески сопротивления. С другой стороны, сопротивление термисторов с отрицательным температурным коэффициентом (NTC) уменьшается при повышении температуры.Зависимость сопротивления от температуры (R-T) представляет собой плоскую кривую, что обеспечивает высокую точность и стабильность измерения температуры.

Рисунок 1. Характеристики сопротивления термисторов PTC и NTC.

Ключевые критерии выбора

Термисторы

NTC обладают высокой чувствительностью и измеряют температуру с высокой точностью (± 0,1 ° C), что делает их идеальной технологией для измерения температуры в широком диапазоне приложений.Однако выбор того, какой тип указать, зависит от нескольких критериев — диапазона температур, диапазона сопротивления, точности измерения, окружающей среды, времени отклика и требований к размерам.

Типы элементов NTC с эпоксидным покрытием

имеют прочную конструкцию и измеряют температуры, как правило, от -55 ° C до + 155 ° C, тогда как элементы NTC в стеклянной капсуле могут измерять температуру до + 300 ° C. Для приложений, где требуется чрезвычайно быстрое время отклика, более подходящим выбором являются элементы в стеклянной капсуле.Они также более компактны и имеют диаметр до 0,8 мм.

Важно, чтобы температура термистора NTC соответствовала температуре компонента, вызывающего изменение температуры. Поэтому они доступны не только с обычными выводами, но и в корпусах с винтами для крепления к радиаторам для поверхностного монтажа.

Новинкой на рынке являются термисторы NTC, не содержащие свинца (микросхемы и элементы), которые соответствуют более строгим требованиям директивы RoSh3.

Понимание коэффициента рассеяния

Коэффициент рассеяния определяется как отношение изменения рассеиваемой мощности к результирующему изменению температуры корпуса термистора. Он выражается в мВт / К и служит мерой нагрузки, которая заставляет термистор в установившемся режиме повышать температуру своего тела на 1 К. Чем выше коэффициент рассеяния, тем больше тепла термистор рассеивает в окружающую среду.

Поскольку длина и материал вывода, герметизирующий материал, крепление и сборка помогают определить коэффициент рассеяния, рекомендуется испытать прототипы в «реальных» условиях.Эти тесты определяют максимально допустимый входной ток, чтобы гарантировать незначительную ошибку самонагрева внутри термистора при максимальной температуре измерения / регулирования. Однако существует тонкий баланс между подаваемым током и подаваемой мощностью, который должен быть как можно меньше, чтобы максимизировать чувствительность системы.

Обзор примеров применения

Сенсорные элементы и системы

NTC применяются в самых разных областях, особенно в автомобильном секторе.Типичные области применения включают подогрев рулевых колес и сидений, а также сложные системы климат-контроля. Используемые в системах рециркуляции выхлопных газов (EGR), датчиках впускного коллектора (AIM) и датчиках температуры и абсолютного давления в коллекторе (TMAP), термисторы охватывают широкий диапазон рабочих температур с высокой ударопрочностью и вибрационной стойкостью, высокой надежностью и длительным сроком службы. -временная стабильность. В данном случае глобальный стандарт устойчивости к нагрузкам AEC-Q200 является обязательным, если термистор будет использоваться в автомобильных приложениях.

В электрических и гибридных транспортных средствах датчики NTC используются для обеспечения безопасности аккумулятора, контроля обмотки электрического импульса и состояния зарядки. Система охлаждения хладагента, которая охлаждает аккумулятор, связана с системой кондиционирования воздуха.

Измерение и регулирование температуры в бытовых приборах охватывает широкий диапазон температур. Например, в сушилках для одежды датчики температуры определяют температуру горячего воздуха, поступающего в барабан, а также выпускаемого воздуха на выходе из барабана.Для охлаждения и замораживания датчики NTC измеряют температуру охлаждающего отделения, защищают испаритель от обледенения и определяют температуру окружающей среды. В небольших приборах, таких как утюги, кофеварки и чайники, датчики температуры встроены в целях безопасности и повышения энергоэффективности. Приборы для отопления, вентиляции и кондиционирования (HVAC) составляют еще один значительный сегмент рынка.

Растущий медицинский сектор

Сектор медицинской электроники предлагает широкий спектр устройств для стационарного, амбулаторного и даже домашнего ухода, а термисторы NTC используются в качестве компонентов для измерения температуры в медицинских устройствах.

Во время зарядки небольших мобильных медицинских приборов важно постоянно контролировать рабочую температуру аккумуляторных батарей. Это связано с тем, что электрохимические реакции, используемые во время мониторинга, в основном зависят от температуры, и быстрый и точный анализ имеет жизненно важное значение.

Пластыри для непрерывного мониторинга глюкозы (GCM) контролируют уровень сахара в крови у пациентов с диабетом. Здесь датчики NTC используются для измерения температуры, так как это влияет на результаты.

В терапии непрерывного положительного давления в дыхательных путях (CPAP) используется аппарат, чтобы помочь человеку, страдающему апноэ во сне, легче дышать во время сна. Аналогичным образом, при серьезных респираторных заболеваниях, таких как COVID-19, аппараты искусственной вентиляции легких принимают на себя дыхание пациента, мягко нагнетая воздух в его легкие и удаляя углекислый газ. В обоих случаях датчики NTC в стеклянном корпусе интегрированы в увлажнитель, воздуховод и воздухозаборник для измерения температуры воздуха, чтобы пациенту было комфортно.

Недавняя пандемия выдвигает требования к более высокой чувствительности и точности датчиков NTC с долгосрочной стабильностью. Новые тестеры на вирусы предъявляют строгие требования к контролю температуры, чтобы гарантировать последовательную реакцию между образцом и реагентом. В умные часы также интегрированы системы контроля температуры тела, которые предупреждают о возможном заболевании.

Решение головоломки приложения

Уникально, что материалы и технологии, используемые в портфеле NTC TDK, разработаны собственными силами.

Термисторы, изготовленные по индивидуальному заказу, спроектированы и разработаны в соответствии с областью применения; TDK поддерживает всю концепцию от проектирования до серийного производства. Этот непрерывный процесс включает в себя концептуальные обзоры новых проектов, строительных и 3D-чертежей, 3D-моделирование, компьютерное моделирование, инструменты и прототипы, включая 3D-печать, тестирование и проверку в соответствии с индивидуальными спецификациями.

Процесс создания поддерживается различными предприятиями по всему миру.

Отраслевые статьи — это форма контента, позволяющая отраслевым партнерам делиться полезными новостями, сообщениями и технологиями с читателями All About Circuits, что не подходит для редакционного контента. Все отраслевые статьи подчиняются строгим редакционным правилам с целью предложить читателям полезные новости, технические знания или истории. Точки зрения и мнения, выраженные в отраслевых статьях, принадлежат партнеру, а не обязательно All About Circuits или ее авторам.

Термисторы

NTC — радиальные выводы | Термометрия

Описание

Thermometrics предлагает согласованные по точкам термисторы с радиальными выводами и дисками с неизолированными выводами для широкого диапазона систем материалов.

термистора НТК радиальных приводов диска НТК
Термисторы NTC с радиальным выводом Приложения Описание
Термометрия — Тип РЛ10 «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатной плате и зонде» Дисковый термистор с точечным согласованием с неизолированными выводами.
Термометрия — Диск без покрытия с радиальными выводами Термисторы NTC Тип RL14 «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатной плате и зонде» Дисковый термистор с точечным согласованием с неизолированными выводами.
Термометрия — Диск без покрытия с радиальными выводами Термисторы NTC Тип RL20 «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатной плате и зонде» Дисковый термистор с точечным согласованием с неизолированными выводами.
Термометрия — Диск без покрытия с радиальными выводами Термисторы NTC типа RL30 «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатной плате и зонде» Дисковый термистор с точечным согласованием с неизолированными выводами.
Термометрия — Диск без покрытия с радиальными выводами Термисторы NTC Тип RL35 / 40/45 «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатной плате и зонде» Дисковый термистор с точечным согласованием с неизолированными выводами.
Термометрия — Диск без покрытия с радиальными выводами Термисторы NTC типа SA «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатной плате и зонде» Сменный термистор с неизолированными выводами.

От Amphenol Advanced Sensors | Thermometrics, Inc.

Измерение температуры и применение термисторов NTC —

Когда я говорю «датчики температуры», вы, скорее всего, подумаете о термопарах.Но сегодня я хотел бы обсудить термисторы NTC. Медицинским приборам необходимо регулярно измерять температуру. Часто инженеры упускают из виду или недооценивают присущие им проблемы. Независимо от того, разрабатываете ли вы возможности измерения и контроля температуры или просто временно налаживаете испытательный стенд, стоит подумать о том, как будут работать измерения устройства.

Основная идея заключается в том, чтобы прикрепить датчик температуры к месту на устройстве, где тепло будет обмениваться с предметом, температуру которого мы хотим измерить.Проблемы возникают, когда этот путь недостаточно доминирует над паразитными путями к другим источникам тепла. Например, особенно сложно измерить температуру газа; часто провода датчиков переносят больше тепла, чем ожидается при обмене с газом. Кроме того, сочетание этих тепловых сопротивлений с тепловыми массами различных элементов тракта может привести к тому, что система будет слишком медленной для измерения интересных переходных процессов.

Это резисторы, зависящие от температуры, и они бывают двух основных типов: с положительным температурным коэффициентом (PTC) и отрицательным температурным коэффициентом (NTC).Хотя устройства PTC полезны для многих приложений, я собираюсь ограничить этот разговор разнообразием NTC.

Термисторы NTC являются относительно недорогими устройствами и бывают разных форм и размеров, от небольших устройств, установленных на печатных платах (PCB), до герметизированных стеклянных пластин с проводными выводами. В отличие от термопар, им не нужен холодный спай, а их большое изменение сопротивления делает их довольно шумоустойчивыми без необходимости усиления. С другой стороны, их соотношение температуры и сопротивления до досады нелинейно.

Температура и сопротивление

Термисторы NTC точно аппроксимируются уравнением Стейнхарта-Харта (S-H). Поначалу это кажется математически уродливым, но как только вы преодолеете натуральный логарифм и обратную связь с абсолютной температурой, на самом деле это всего лишь полином третьего порядка.

Обратите внимание, что традиционная форма уравнения не включает квадратичный член. Я обнаружил, что добавление одного часто улучшает общую точность.

Чуть более простой вариант — уравнение бета термистора.Это просто частный случай уравнения SH, где квадратичные и кубические члены удалены. Преимущество этого уравнения в том, что вы можете получить разумную точность вычислений всего с двумя параметрами. Их номинальные значения часто указаны в технических паспортах термисторов.

Это снова то же уравнение, но в форме, которая легко сравнивается с S-H.

Типовая схема
Типичная реализация схемы термистора NTC представляет собой просто резисторный делитель, образованный термистором и эталонным резистором.Эталонный резистор обычно выбирается равным сопротивлению термистора в температурной точке в пределах интересующего диапазона. Часто используется температура 25 ° C, поскольку сопротивление при этой температуре обычно является параметром обычных термисторов.

Эта схема не очень линейна, но при тщательном выборе эталонного резистора она может быть достаточно хорошей для многих приложений. Обратите внимание, что эталонный резистор так же важен для стабильности и воспроизводимости схемы, как и термистор.Мы должны следить за начальным допуском резистора, а также его температурным коэффициентом.

Варианты этой схемы включают добавление конденсатора фильтра для снижения высокочастотного шума и замену термистора и резистора местами, тем самым создавая напряжение, которое вместо этого увеличивается с температурой.

Во многих приложениях этот делитель дискретизируется непосредственно аналого-цифровым преобразованием (АЦП) для достижения логометрических измерений для дальнейших вычислений во встроенном программном обеспечении. Выход делителя также может подаваться непосредственно в цепи ниже по потоку для систем управления с обратной связью или блокировок.

Линеаризация

Первоначальной проблемой термисторов NTC является нелинейный отклик. Преобразование выходного напряжения схемы делителя для точного измерения температуры часто воспринимается как непростая задача.

Вот несколько стратегий, которые я успешно использовал в порядке возрастания сложности:

Для многих приложений нас интересует только одна температура. В этих ситуациях можно выбрать эталонный резистор для достижения желаемого порогового напряжения при этой температуре.Во многих случаях это все, что нам нужно. Иногда порог может быть реализован во встроенном ПО либо как жестко запрограммированное значение для достижения номинальной точности, либо как калиброванное значение для наивысшей точности в этой единственной точке.

Если точность не является первоочередной задачей, может быть достаточно линейной аппроксимации выхода делителя. При тщательном выборе эталонного резистора можно определить ограниченный диапазон температур с довольно низкой погрешностью, но погрешность будет постоянно увеличиваться за пределами этого диапазона.Часто это приемлемо: дает хорошую точность вокруг интересующей точки, но все же дает представление о том, насколько далеко от этой точки находится текущее показание.

На следующем графике показан пример ошибки измерения температуры при использовании простой линейной аппроксимации напряжения делителя, оптимизированной для 25 градусов Цельсия. Подгонка действительно довольно хороша между 20 ° C и 30 ° C.

  • Интерполированная справочная таблица

Обычный подход к достижению хорошей точности при линеаризации термисторов NTC заключается в простом программировании в указанной таблице поиска зависимости сопротивления от температуры (LUT). от производителя.Это может использоваться с любым желаемым разрешением, а затем может быть достигнуто дополнительное разрешение с помощью линейной интерполяции между точками. Хорошая стратегия — реализовать LUT как значение АЦП в зависимости от температуры. Это просто с вычислительной точки зрения, но предполагает, что приложение в порядке с естественными вариациями, которые происходят от части к части. Если допуск детали приводит к неприемлемой точности, тогда потребуется индивидуальная калибровка, и LUT больше не будет хорошим выбором.

Следующий уровень точности может быть достигнут путем реализации бета-уравнения термистора.Как правило, это может привести к снижению температуры ниже половины градуса Кельвина в разумном диапазоне температур. Вычислив пользовательское значение бета-версии, вы можете выбрать, где оптимизировать точность. Как правило, это бета-значение будет рассчитываться пользователем на основе реальных данных калибровки, хотя использование значения из таблицы (т.е. номинального) может по-прежнему обеспечивать достаточную точность для многих приложений. Если в вашем микроконтроллере есть математический сопроцессор, он все равно может быть достаточно быстрым для вычислений. Рассмотрим LUT для перехода от чтения АЦП к значению журнала как гибридное решение.

Окончательный скачок в точности — особенно в широком диапазоне температур — может быть достигнут за счет полномасштабной реализации уравнения S-H. Обычно это идет рука об руку с необходимостью выполнения многоточечной калибровки, но я использовал этот подход в прошлом для генерации LUT во время инициализации вместо копирования большой таблицы данных в мой исходный код.

Вариант уравнения S-H, который я предпочитаю, заключается в использовании журнала отношения сопротивления термистора к номинальному значению резистора, а не только журнала сопротивления термистора.Это удобно, потому что я могу легко вычислить это по своему значению АЦП. В этой ситуации лучше всего включить все четыре термина.

Калибровка

Как я уже упоминал, для достижения последнего скачка точности потребуется некоторая калибровка. Используемая стратегия линеаризации определит, сколько точек температуры потребуется.

По сути, калибровка заключается в применении известной температуры и последующей настройке параметров схемы или программного обеспечения на основе измеренного отклика.Применение известной температуры — это двухэтапный процесс. Сначала мы применяем откалиброванный датчик к нашей системе, а затем мы контролируем температуру нашей системы, пока откалиброванный датчик не покажет желаемое значение. После достижения значения мы проверяем состояние датчика, который пытаемся откалибровать. Мы повторяем этот процесс для необходимого количества температурных точек. Калиброванный датчик может представлять собой приспособление, изготовленное с другим термистором, который мы отправили в лабораторию, отслеживаемую Национальным институтом стандартов и технологий (NIST), для измерения в нашем интересующем диапазоне, или термистор PTC типа PT100, который также был откалиброван в NIST. .

Один из примеров настройки калибровки включает временное применение откалиброванного датчика к нашему устройству и изменение его собственной температуры. Другой пример — применить откалиброванный датчик к водяной бане с перемешиванием и вставить часть или все наше устройство в ванну.

Во время калибровки нам также необходимо продумать желаемые и паразитные источники тепла и связанные с ними сопротивления теплового тракта. Каким бы замечательным мы ни считали откалиброванный датчик, он не даст хороших результатов, если мы не сможем обеспечить его надежное равновесие с правой частью нашего устройства.Кроме того, для каждой точки калибровки мы должны дать достаточно времени, чтобы все термоэлементы достигли своей конечной температуры. В зависимости от задействованных тепловых масс это может занять много минут или, возможно, намного больше.

Если точность в одной точке — это все, что требуется — потому что мы просто используем пороговое значение в нашем устройстве — тогда одно калибровочное измерение в этой точке — это все, что требуется.

Если мы используем бета-подход, то требуется минимум два балла.Для вычисления бета хорошим методом является линейная регрессия между обратной температурой и натуральным логарифмом отношения сопротивлений. Это даст коэффициент смещения и линейный коэффициент. Обратная величина линейного коэффициента — это наше новое бета-значение.

Калибровка по полному уравнению S-H не сильно отличается от бета-калибровки, но в пределах интересующего диапазона потребуется больше точек. Выполнение многоточечной калибровки обычно выполняется с помощью автоматизированной испытательной установки.По этой причине мне нравится использовать около десяти точек. Регрессия методом наименьших квадратов с четырьмя параметрами — хороший способ вычислить параметры S-H.

Одна важная вещь, которую следует помнить, если вы рассчитываете параметры калибровки, заключается в том, что вам может потребоваться выполнить окончательную температурную развертку QC, чтобы убедиться, что система после калибровки выполняет измерения с требуемой точностью.

Outro

Я надеюсь, что из этого обсуждения я напомнил вам несколько приемов, связанных с измерением температуры и применением термисторов NTC.Эти устройства недорогие, универсальные и могут использоваться для точных измерений.

Иллюстрации: StarFish Medical

Кеннет МакКаллум, PEng, является главным инженером-физиком в Starfish Medical. Он работает над разработкой медицинских устройств и любит моторы, двигатели и поезда, а также батареи, которые питают их. Его блоги входят в наши ежегодные списки самых читаемых блогов.



Термисторы NTC как датчики температуры | Проекты

Марк Харрис

| & nbsp Создано: 9 сентября 2020 г. & nbsp | & nbsp Обновлено: 11 января 2021 г.

Во введении к этой серии мы начали работу по тестированию всех доступных типов температуры, создав набор шаблонов проектов: один для аналоговых датчиков и один для цифровых датчиков.Вы можете найти эти шаблоны и реализации датчиков для этих термисторов NTC на GitHub. Как всегда, это проекты с открытым исходным кодом, выпущенные под лицензией MIT, что позволяет вам использовать их с минимальными ограничениями.

В этой статье мы начнем с нашего первого типа датчика температуры, термистора с отрицательным температурным коэффициентом (NTC). Термисторы NTC, вероятно, являются наиболее часто используемым классом датчиков, поскольку они дешевы, просты в использовании и, несмотря на невысокую точность, достаточно точны для большинства приложений.

Если вы хотите приобрести термисторы NTC, отправляйтесь в Octopart и узнайте, что есть в наличии у вашего любимого дистрибьютора. Вы также можете найти полный спектр термисторов NTC и многие десятки тысяч других компонентов и датчиков в моей библиотеке Celestial Altium, крупнейшей библиотеке с открытым исходным кодом для Altium Designer®.

В этой серии мы рассмотрим широкий спектр датчиков температуры , , рассказывая об их преимуществах и недостатках, а также об общих реализациях / топологиях их реализации.В серию войдут:

Измерение с помощью термисторов

Несмотря на то, что я только что сказал о неточности термисторов, они широко используются. В большинстве случаев точность измерения температуры не превышает нескольких градусов Цельсия. При встраивании базовой тепловой защиты или тепловой компенсации термисторы PTC или NTC достаточно хороши. Большинство 3D-принтеров используют термисторы для своих подогреваемых кроватей и горячих концов, поэтому вам необходимо откалибровать настройки температуры нити для каждого принтера.Для меня, когда я печатаю один и тот же материал с тремя разными горячими концами, у меня три температуры в диапазоне почти 10 ° C. Датчики очень дешевы в использовании, что прекрасно для недорогих устройств, особенно там, где вы можете либо откалибровать датчик в цепи во время производства, либо пользователь.

Источник: Методы уменьшения погрешности линеаризации термистора, требований к памяти и мощности в широком диапазоне рабочих температур

Стоимость термисторов компенсируется дополнительными инженерными усилиями по получению точного измерения температуры, особенно в широком диапазоне температур.Это делает их очень хорошими для приложений защиты, где приемлемо общее представление о температуре. Большинство литий-ионных аккумуляторных батарей оснащено термистором 10k NTC для отключения зарядки, если элементы становятся слишком горячими, чтобы предотвратить катастрофический сбой.

Термисторы с отрицательным температурным коэффициентом (NTC)

Термистор NTC — это резистор, сопротивление которого падает при повышении температуры. Это позволяет с помощью обычных методов измерения сопротивления в цепи рассчитать температуру резистора.К сожалению, изменение температуры нелинейно, что означает, что вы не можете напрямую измерить изменение температуры по изменению сопротивления. Многие производители предоставят кривую зависимости сопротивления от температуры и, возможно, даже формулу для расчета температуры по сопротивлению, что означает, что микроконтроллер можно использовать для получения достаточно точных измерений. Предположим, производитель не предоставляет эту информацию. В этом случае вы можете использовать точный датчик температуры или климатическую камеру для измерения датчика в определенных заданных точках, чтобы самостоятельно определить формулу.

В этом проекте мы рассмотрим два разных термистора NTC и несколько их реализаций. Это термисторы с жесткими допусками, но они все же не слишком дороги по сравнению с другими термисторами с более низким допуском.

Оба эти компонента предназначены для поверхностного монтажа; однако компоненты со сквозным отверстием легко доступны. Обычно компоненты со сквозным отверстием припаяны к концу пары проводов для дистанционного зондирования. Если вы хотите протестировать термистор на проводе, не тратя много денег, поищите датчики температуры для 3D-принтера, обычно это термистор 10K.Однако в некоторых принтерах вместо этого используются термисторы 100K.

Часть

NCP03WF104F05RL

NCP15Xh203F03RC

Измерение температуры мин.

-40 ° С

-40 ° С

Макс. Температура при измерении

+ 125 ° С

+ 125 ° С

Диапазон срабатывания

Местный

Местный

Сопротивление при 25 ° C

100 кОм

10 кОм

Допуск сопротивления

1%

1%

Допуск значения B

1%

1%

Рабочая температура

от -40 ° C до +125 ° C

от -40 ° C до +125 ° C

B0 / 50

B15 / 75

4250 К

3380 К

B25 / 75

B25 / 85

4311 К

3434 К

B25 / 100

4334 К

3455 К

Максимальная мощность (мВт)

100 мВт

100 мВт

Производитель

Мурата

Мурата

Пакет

0201

0402


Диапазон чувствительности термисторов является преимуществом перед некоторыми датчиками, которые мы рассмотрим позже.Диапазон чувствительности покрывает весь рабочий диапазон датчика, что позволяет использовать его в самых разных приложениях. Поскольку термисторы настолько просты, вы можете использовать их далеко за пределами этих номинальных диапазонов, пока ваш припой не перейдет в расплавленное состояние или тепловое сжатие не повредит устройство.

Основное различие между двумя датчиками, помимо размера корпуса, заключается в сопротивлении при 25 ° C — у нас есть термисторы NTC 100 кОм и 10 кОм, которые являются наиболее часто используемыми значениями.

Таблицы данных для этих двух датчиков выглядят довольно линейно, пока вы не поймете, что ось сопротивления является логарифмической. В линейном масштабе, как на графике ниже, мы видим, что сопротивление далеко не линейное при прямом чтении.

Источник: Термисторы / Измерение температуры с помощью термисторов NTC

Мы можем разместить резистор, который соответствует сопротивлению термистора, в центре интересующего температурного диапазона параллельно термистору, чтобы сделать небольшой участок кривой более линейным.Это может упростить расчет и калибровку в линейном температурном диапазоне. Предположим, у вас есть возможность измерить полный профиль термистора, чтобы вычислить значения для формулы термистора, или производитель любезно предоставил их в таблице данных. В этом случае вы можете сэкономить резистор и по-прежнему получать точные измерения во всем диапазоне.

Источник: термисторы / Измерение температуры с помощью термисторов NTC

Реализация термистора NTC: делитель напряжения

Самый простой способ измерить температуру — использовать делитель напряжения.Вы можете использовать термистор как верхнюю или нижнюю ножку делителя потенциала. Если вы используете термистор в качестве «верхней» ножки делителя потенциала, напряжение будет увеличиваться с увеличением температуры. Если вы используете термистор в качестве нижней ножки делителя напряжения, то напряжение будет уменьшаться с увеличением температуры.

Допустим любой метод. Однако я бы посоветовал попытаться уменьшить ток через делитель, чтобы предотвратить самонагрев термистора.В зависимости от номинала вашего термистора NTC и требований вы можете оптимизировать реализацию, изменив топологию.


В своей реализации я использую простой делитель, который не оптимизирован для какого-либо конкретного диапазона температур за счет использования верхнего делителя, соответствующего сопротивлению термистора при 25 ° C. При 25 ° C следует ожидать половину входного напряжения. Предположим, вы создали таким образом датчик температуры. В этом случае вы должны иметь представление о температурном диапазоне, с которым вы работаете, и оптимизировать сопротивление и топологию, чтобы обеспечить максимально широкий диапазон напряжений для более точного измерения температуры.

Обратите внимание, что при повышении температуры сопротивление термистора NTC будет падать. Это означает, что большая часть мощности будет падать на эталонный резистор, поскольку он имеет большее падение напряжения. Это также помогает предотвратить самонагревание и является хорошей стратегией, если мы хотим измерить температуру выше температуры окружающей среды.

Схема расположения печатной платы

Для создания печатной платы мы собираемся использовать шаблон проекта карты датчика температуры, который мы создали в предыдущей статье этой серии.Шаблон также доступен на GitHub, если вы хотите использовать его для своих датчиков.


Одна вещь, которую вы могли заметить, — это то, что названия плат такие же, как и в шаблоне проекта. Это не упростит управление потенциально десятками этих плат, если все они будут иметь одинаковые имена схем и файлов печатной платы!

Я спросил своего друга Давиде Бортолами, есть ли у него способ переименовать файлы в проекте Altium, поскольку моя практика заключалась в том, чтобы удалить файл из проекта — переименовать его, а затем снова добавить в проект.Мой путь был довольно неуклюжим, поэтому Давид сразу же предложил Storage Manager для переименования файлов. Вы можете найти диспетчер хранилища под кнопкой панели в правом нижнем углу Altium.


Диспетчер хранилища работает нормально, даже если у вас нет текущего проекта в репозитории управления версиями. Все, что нам нужно сделать, это щелкнуть правой кнопкой мыши схему или плату и нажать «Переименовать» (или нажать F2).


Это гораздо более элегантное решение, чем метод, который я обычно использовал.

Затем мы добавляем одну из приведенных выше реализаций на лист схемы. Единственное изменение, которое необходимо изменить в шаблонных частях схемы, — это подключить аналоговый выход датчика к краевому разъему карты.


Поскольку эти схемы являются несимметричными, а не дифференциальными, мы можем подключить отрицательную сторону пары к земле, а положительная сторона будет получать выходной сигнал от подключенного к ней делителя напряжения. Затем все, что нам нужно сделать, это обновить плату, чтобы добавить новые компоненты.

Во время работы с платой я также заполняю таблицу аналоговых каналов, которую мы поместили в шаблон, чтобы определить, какой канал использует конкретная карта датчика. Это должно снизить вероятность добавления двух датчиков, использующих один и тот же канал, в один стек.


Платы для них, конечно, невероятно просты, на каждую добавляется всего два компонента. Я мог бы разместить оба датчика на одной плате, но я хочу, чтобы это было по одному датчику на каждой плате. Благодаря тому, что каждая реализация датчика изолирована от собственной печатной платы, ни один датчик не будет влиять на результаты других датчиков, поскольку они используют одну плату.


Плата термистора 100k NTC по существу идентична остальным компонентам резистора и термистора. Шаблон проекта подготавливает легкую работу по созданию серии очень похожих печатных плат.


Реализация NTC: добавление параллельного резистора

Как упоминалось выше, мы можем добавить резистор параллельно термистору NTC в нашем делителе напряжения. Это поможет линеаризовать часть делителя напряжения. Наличие линейного вывода для интересующего диапазона температур может быть полезно, если вы не можете запустить алгоритм на собранных данных, чтобы преобразовать значение в точную температуру.Это также может быть полезно, если у вас нет средств для точного сбора необходимых данных для определения значений для алгоритма. Для линейного участка диапазона температур потребуется показание напряжения, которое можно интерпретировать напрямую как разность температур.


Для этой реализации я просто добавляю параллельный резистор, который будет линеаризовать термистор при температуре около 25 ° C. Ваша реализация должна соответствовать сопротивлению термистора NTC в центральной точке диапазона температур, который вы пытаетесь измерить.

Я поместил два резистора 10K 0603 вместе для этой реализации, так как не ожидаю какой-либо измеримой разницы в физическом положении параллельного резистора к термистору. Если бы у нас были достаточно точные приборы, мы могли бы почувствовать тепло от параллельного резистора, нагревающего термистор, если бы они были близко друг к другу. Тем не менее, это будет настолько ничтожно мало, что не будет иметь никакого значения для любого реального приложения.


Реализация NTC: добавление повторителя напряжения

Для повышения стабильности схемы мы также можем использовать операционный усилитель в качестве повторителя напряжения.Это также может дать нам дополнительную точность в зависимости от того, как реализован вывод, измеряющий напряжение. Микроконтроллер или выделенный АЦП будет иметь некоторое сопротивление относительно земли, которое обычно очень велико, но он все равно будет действовать как резистор, параллельный нашему делителю напряжения. Используя операционный усилитель с буфером / повторителем напряжения, мы можем изолировать вывод микроконтроллера от делителя напряжения.


Я использую относительно недорогой буферный усилитель для этой схемы. Инструментальный усилитель будет стоить примерно столько же.Стоит отметить, что некоторые аналоговые и цифровые датчики, которые мы рассмотрим позже в этой серии, стоят меньше, чем просто буферный усилитель, и имеют большую точность и линейность, чем термисторы с PTC или NTC. Таким образом, хотя эта схема должна обеспечивать более точное считывание, она, вероятно, не будет иметь большого смысла в реальной реализации устройства, если вы не считываете термистор с внешнего устройства / оборудования, где вы не можете изменить чувствительный элемент.

Вы также можете использовать для этого операционный усилитель общего назначения с меньшими затратами.Буферные усилители имеют коэффициент усиления, равный единице, поэтому подключение обратной связи не требуется — и, что более важно, они имеют исключительно высокое входное и выходное сопротивление. Этот высокий импеданс по сравнению с обычным операционным усилителем обеспечивает большую точность при считывании показаний такого делителя напряжения. При этом такой буферный усилитель является огромным излишеством для термистора NTC, поскольку он более чем способен обрабатывать сигналы ГГц.

Печатная плата для реализации повторителя напряжения следует тому же общему стилю, что и другие, с буферным усилителем и резистором делителя на противоположной стороне теплового разрыва.Опять же, я бы не ожидал, что будет какое-либо измеримое тепло от буферного усилителя, проводимого к термистору, если они будут размещены вместе. Эта конструкция продолжает тему сохранения только чувствительного элемента внутри зоны термического разрыва, чтобы все наши измерения были согласованными и не искажались другими компонентами, находящимися поблизости.


Другие варианты: мост Уитстона

Вы также можете использовать мост Уитстона для еще более точного измерения термистора.Однако я не собираюсь реализовывать это для термистора NTC в этой серии. В статье о температурном датчике сопротивления (RTD) вы узнаете больше о реализации моста Уитстона. Хотя термистор, установленный правильно и используемый с правильной формулой, может быть довольно точным, использование моста Уитстона на относительно неточном датчике не стоит времени и затрат на внедрение. Результаты простых приложений, описанных выше, позволят вам получить максимальную отдачу от термистора NTC.

Проверьте сами платы термисторов NTC

Эти тестовые карты датчиков имеют открытый исходный код, проверьте репозиторий на GitHub, чтобы загрузить дизайны и использовать их самостоятельно.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.