Site Loader

Содержание

Таблица истинности — это… Что такое Таблица истинности?

Таблица истинности — это таблица, описывающая логическую функцию.

Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» ( либо , либо ).

Табличное задание функций встречается не только в логике, но для логических функций таблицы оказались особенно удобными, и с начала XX века за ними закрепилось это специальное название. Особенно часто таблицы истинности применяются в булевой алгебре и в аналогичных системах многозначной логики.

Таблицы истинности для основных двоичных логических функций

Таблицы истинности для некоторых троичных логических функций

x210210210
y222111000
Минимум210110000
x210210210
y222111000
Максимум Минус.222211210
x210210210
y222111000
Webb(x,y)000022021

См. также

Примечания

Литература

  • Яблонский С. В., Гаврилов Г. П., Кудрявцев В. Б. Функции алгебры логики и классы Поста. — М.: Наука, 1966. — (Математическая логика и основания математики).

Ссылки

Таблицы истинности определение таблица истинности – это таблица показывающая истинность сложного высказывания при всех возможных значениях входящих переменных

ТАБЛИЦЫ ИСТИННОСТИ.

Определение. Таблица истинности – это таблица, показывающая истинность сложного высказывания при всех возможных значениях входящих переменных.

Разберем подробнее каждую логическую операцию в соответствии с ее определением:

1. Инверсия (отрицание) – это логическая операция, которая каждому простому высказыванию ставит в соответствие составное высказывание, заключающееся в том, что исходное высказывание отрицается.

Таблица истинности схемы НЕ

x

0

1

1

0

2. Конъюнкция (умножение)– это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.

Таблица истинности схемы И

3. Дизъюнкция (сложение) – это логическая операция, которая каждым двум простым высказываниям ставит в соответствие составное высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны.

Таблица истинности схемы ИЛИ

4. Импликация (следование) – это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся ложным тогда и только тогда, когда условие истинное, а следствие ложно.

5. Эквиваленция (равносильность) – это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания одновременно истинны или ложны.

Разберем алгоритм составления таблицы истинности для сложного высказывания:

  • Определить, сколько переменных входит в формулу.

  • Определить количество комбинаций всевозможных значений переменных по формуле .

  • Определить приоритет действий.

  • Составить таблицу истинности.

Рассмотрим пример составления таблицы истинности для сложного высказывания:

Пример. Построить таблицу истинности для формулы: А V В → ¬А V С.

Решение:

Из примера видно, что таблицей истинности является не все решение, а только последнее действие (столбец, выделенный красным цветом).

Таблица истинности — Википедия

Материал из Википедии — свободной энциклопедии

Таблица истинности — это таблица, описывающая логическую функцию.

Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» (true{\displaystyle true} либо false{\displaystyle false}, 1{\displaystyle 1} либо 0{\displaystyle 0}).

Табличное задание функций встречается не только в логике, но для логических функций таблицы оказались особенно удобными, и с начала XX века за ними закрепилось это специальное название. Особенно часто таблицы истинности применяются в булевой алгебре и в аналогичных системах многозначной логики.

Таблицы истинности для основных двоичных логических функций

В программировании:

  • Конъюнкция = AND = И = ∧{\displaystyle \land } = &
  • Дизъюнкция = OR = ИЛИ = ∨{\displaystyle \lor } = |
  • Сложение по модулю 2 = XOR = ИСКЛЮЧАЮЩЕЕ ИЛИ = ⊕{\displaystyle \oplus } = ~
  • Отрицание = NOT = НЕ = ¬{\displaystyle \neg } = !

Таблицы истинности для некоторых троичных логических функций

x210210210
y222111000
min(x,y)210110000
x210210210
y222111000
max(x,y)222211210
x210210210
y222111000
F2TN22310000022021

См. также

Примечания

Литература

  • Яблонский С. В., Гаврилов Г. П., Кудрявцев В. Б. Функции алгебры логики и классы Поста. — М.: Наука, 1966. — (Математическая логика и основания математики).

Ссылки

Таблица истинности — Википедия. Что такое Таблица истинности

Материал из Википедии — свободной энциклопедии

Таблица истинности — это таблица, описывающая логическую функцию.

Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» (true{\displaystyle true} либо false{\displaystyle false}, 1{\displaystyle 1} либо 0{\displaystyle 0}).

Табличное задание функций встречается не только в логике, но для логических функций таблицы оказались особенно удобными, и с начала XX века за ними закрепилось это специальное название. Особенно часто таблицы истинности применяются в булевой алгебре и в аналогичных системах многозначной логики.

Таблицы истинности для основных двоичных логических функций

В программировании:

  • Конъюнкция = AND = И = ∧{\displaystyle \land } = &
  • Дизъюнкция = OR = ИЛИ = ∨{\displaystyle \lor } = |
  • Сложение по модулю 2 = XOR = ИСКЛЮЧАЮЩЕЕ ИЛИ = ⊕{\displaystyle \oplus } = ~
  • Отрицание = NOT = НЕ = ¬{\displaystyle \neg } = !

Таблицы истинности для некоторых троичных логических функций

x210210210
y222111000
min(x,y)210110000
x210210210
y2221110
0
0
max(x,y)222211210
x210210210
y222111000
F2TN22310000022021

См. также

Примечания

Литература

  • Яблонский С. В., Гаврилов Г. П., Кудрявцев В. Б. Функции алгебры логики и классы Поста. —
    М.
    : Наука, 1966. — (Математическая логика и основания математики).

Ссылки

Таблица истинности — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Таблица истинности — это таблица, описывающая логическую функцию.

Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» (<math>true</math> либо <math>false</math>, <math>1</math> либо <math>0</math>).

Табличное задание функций встречается не только в логике, но для логических функций таблицы оказались особенно удобными, и с начала XX века за ними закрепилось это специальное название. Особенно часто таблицы истинности применяются в булевой алгебре и в аналогичных системах многозначной логики.

Таблицы истинности для основных двоичных логических функций

Конъюнкция
<math>a</math><math>b</math><math>a \land b</math>
<math>0</math><math>0</math><math>0</math>
<math>0</math><math>1</math><math>0</math>
<math>1</math><math>0</math><math>0</math>
<math>1</math><math>1</math><math>1</math>
Дизъюнкция
<math>a</math><math>b</math><math>a \lor b</math>
<math>0</math><math>0</math><math>0</math>
<math>0</math><math>1</math><math>1</math>
<math>1</math><math>0</math><math>1</math>
<math>1</math><math>1</math><math>1</math>
Сложение по модулю 2
<math>a</math><math>b</math><math>a \oplus b</math>
<math>0</math><math>0</math><math>0</math>
<math>0</math><math>1</math><math>1</math>
<math>1</math><math>0</math><math>1</math>
<math>1</math><math>1</math><math>0</math>
Импликация
<math>a</math><math>b</math><math>a \rightarrow b</math>
<math>0</math><math>0</math><math>1</math>
<math>0</math><math>1</math><math>1</math>
<math>1</math><math>0</math><math>0</math>
<math>1</math><math>1</math><math>1</math>
Эквиваленция
<math>a</math><math>b</math><math>a \leftrightarrow b</math>
<math>0</math><math>0</math><math>1</math>
<math>0</math><math>1</math><math>0</math>
<math>1</math><math>0</math><math>0</math>
<math>1</math><math>1</math><math>1</math>
Штрих Шеффера
<math>a</math><math>b</math><math>a \mid b</math>
<math>0</math><math>0</math><math>1</math>
<math>0</math><math>1</math><math>1</math>
<math>1</math><math>0</math><math>1</math>
<math>1</math><math>1</math><math>0</math>
Стрелка Пирса
<math>a</math><math>b</math><math>a \downarrow b</math>
<math>0</math><math>0</math><math>1</math>
<math>0</math><math>1</math><math>0</math>
<math>1</math><math>0</math><math>0</math>
<math>1</math><math>1</math><math>0</math>
Отрицание
<math>a</math><math>\neg a</math>
<math>0</math><math>1</math>
<math>1</math><math>0</math>

Таблицы истинности для некоторых троичных логических функций

x210210210
y 222111000
Минимум210110000
x210210210
y222111000
Максимум Минус.222211210
x210210210
y 222111000
Webb(x,y)000022021

См. также

Напишите отзыв о статье «Таблица истинности»

Примечания

Литература

  • Яблонский С. В., Гаврилов Г. П., Кудрявцев В. Б. Функции алгебры логики и классы Поста. — М.: Наука, 1966. — (Математическая логика и основания математики).

Ссылки

  • [cognix.ru/it/solve/table.php Построение таблиц истинности онлайн]
  • [tablica-istinnosti.ru/newindex.html Онлайн инструменты по математической логике]

Отрывок, характеризующий Таблица истинности

Князь Василий внушительно взглянул на Пьера. – Мне из хороших источников известно, что вдовствующая императрица принимает живой интерес во всем этом деле. Ты знаешь, она очень милостива к Элен.
Несколько раз Пьер собирался говорить, но с одной стороны князь Василий не допускал его до этого, с другой стороны сам Пьер боялся начать говорить в том тоне решительного отказа и несогласия, в котором он твердо решился отвечать своему тестю. Кроме того слова масонского устава: «буди ласков и приветлив» вспоминались ему. Он морщился, краснел, вставал и опускался, работая над собою в самом трудном для него в жизни деле – сказать неприятное в глаза человеку, сказать не то, чего ожидал этот человек, кто бы он ни был. Он так привык повиноваться этому тону небрежной самоуверенности князя Василия, что и теперь он чувствовал, что не в силах будет противостоять ей; но он чувствовал, что от того, что он скажет сейчас, будет зависеть вся дальнейшая судьба его: пойдет ли он по старой, прежней дороге, или по той новой, которая так привлекательно была указана ему масонами, и на которой он твердо верил, что найдет возрождение к новой жизни.
– Ну, мой милый, – шутливо сказал князь Василий, – скажи же мне: «да», и я от себя напишу ей, и мы убьем жирного тельца. – Но князь Василий не успел договорить своей шутки, как Пьер с бешенством в лице, которое напоминало его отца, не глядя в глаза собеседнику, проговорил шопотом:
– Князь, я вас не звал к себе, идите, пожалуйста, идите! – Он вскочил и отворил ему дверь.
– Идите же, – повторил он, сам себе не веря и радуясь выражению смущенности и страха, показавшемуся на лице князя Василия.
– Что с тобой? Ты болен?
– Идите! – еще раз проговорил дрожащий голос. И князь Василий должен был уехать, не получив никакого объяснения.
Через неделю Пьер, простившись с новыми друзьями масонами и оставив им большие суммы на милостыни, уехал в свои именья. Его новые братья дали ему письма в Киев и Одессу, к тамошним масонам, и обещали писать ему и руководить его в его новой деятельности.

Дело Пьера с Долоховым было замято, и, несмотря на тогдашнюю строгость государя в отношении дуэлей, ни оба противника, ни их секунданты не пострадали. Но история дуэли, подтвержденная разрывом Пьера с женой, разгласилась в обществе. Пьер, на которого смотрели снисходительно, покровительственно, когда он был незаконным сыном, которого ласкали и прославляли, когда он был лучшим женихом Российской империи, после своей женитьбы, когда невестам и матерям нечего было ожидать от него, сильно потерял во мнении общества, тем более, что он не умел и не желал заискивать общественного благоволения. Теперь его одного обвиняли в происшедшем, говорили, что он бестолковый ревнивец, подверженный таким же припадкам кровожадного бешенства, как и его отец. И когда, после отъезда Пьера, Элен вернулась в Петербург, она была не только радушно, но с оттенком почтительности, относившейся к ее несчастию, принята всеми своими знакомыми. Когда разговор заходил о ее муже, Элен принимала достойное выражение, которое она – хотя и не понимая его значения – по свойственному ей такту, усвоила себе. Выражение это говорило, что она решилась, не жалуясь, переносить свое несчастие, и что ее муж есть крест, посланный ей от Бога. Князь Василий откровеннее высказывал свое мнение. Он пожимал плечами, когда разговор заходил о Пьере, и, указывая на лоб, говорил:

таблица истинности — это… Что такое таблица истинности?

таблица, с помощью которой устанавливается истинностное значение сложного высказывания при данных значениях входящих в него простых высказываний. В классической математической логике предполагается, что каждое простое (не содержащее логических связок) высказывание является либо истинным, либо ложным, но не тем и другим одновременно. Нам не известно, истинно или ложно данное простое высказывание, чтобы установить это, потребовалось бы обратиться к фактам действительности, но логика этого не делает. Однако мы знаем, что у высказывания имеется лишь две возможности — быть истинным либо быть ложным. Когда с помощью логических связок мы соединяем простые высказывания в сложное, встает вопрос: при каких условиях сложное высказывание считается истинным, а при каких — ложным? Для ответа на этот вопрос и служат Т. и. Каждая логическая связка имеет свою таблицу, которая показывает, при каких наборах значений простых высказываний сложное высказывание с этой связкой будет истинным, а при каких — ложным. Приведем Т. и. для отрицания, конъюнкции, дизъюнкции и импликации («и» означает «истина», «л» — «ложь»):А

таблица истинности А

А

В

А&В

A v B

A-&GT; в

и

л

и

и

и

и

и

л

и

и

л

л

и

л

л

и

л

и

и

л

л

л

л

и

Пользуясь приведенными таблицами, для любого сложного высказывания, содержащего указанные связки, можем построить Т. и..

которая покажет, когда высказывание истинно и когда — ложно. В качестве примера построим Т. и. для такого высказывания: (A vтаблица истинностиB) -&GT; B.

А

B

(Avтаблица истинностиB) -&GT;B

1

и

и

и

и

2

и

л

и

л

3

л

и

л

и

4

л

л

и

л

Сначала, руководствуясь таблицей для отрицания, выписываем значения таблица истинностиВ (в таблице опущены): 1) «л»; 2) «и»; 3) «л»; 4) «и». Затем устанавливаем значения дизъюнктивного высказывания, стоящего в скобках. Для случая (1): A истинно, таблица истинности В — ложно, в таблице для дизъюнкции это соответствует случаю (2), при котором дизъюнкция истинна, поэтому под нашим высказыванием пишем «и», и т. д. И наконец, выписываем значения истинности для импликации, которая в данном случае является главной связкой нашего высказывания. Построенная таблица говорит, что наше сложное высказывание истинно при первом и третьем наборах значений простых высказываний и ложно при втором и четвертом наборах.

Т. и. позволяет выделить из класса формул нашего языка всегда истинные формулы (тавтологии), всегда ложные формулы, установить отношение логического следования между формулами, их эквивалентность и т. д. Наряду с двузначными Т. и. в логике используются таблицы с тремя, четырьмя и т. д. значениями истинности, построением и анализом которых занимается многозначная логика.

Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. А.А.Ивин, А.Л.Никифоров. 1997.

таблица истинности — это… Что такое таблица истинности?


таблица истинности

Тематики

  • электросвязь, основные понятия

Справочник технического переводчика. – Интент. 2009-2013.

  • таблица информации приложений
  • таймер

Смотреть что такое «таблица истинности» в других словарях:

  • таблица истинности — таблица, с помощью которой устанавливается истинностное значение сложного высказывания при данных значениях входящих в него простых высказываний. В классической математической логике предполагается, что каждое простое (не содержащее логических… …   Словарь терминов логики

  • Таблица истинности — Таблица истинности  это таблица, описывающая логическую функцию. Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность.… …   Википедия

  • таблица истинности — teisingumo lentelė statusas T sritis automatika atitikmenys: angl. Boolean operation table; truth diagram; truth table vok. Wahrheitstabelle, f rus. таблица истинности, f pranc. table de vérité, f …   Automatikos terminų žodynas

  • таблица истинности (двоичной функции) — — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=4885] Тематики защита информации EN truth table …   Справочник технического переводчика

  • ИСТИННОСТИ ТАБЛИЦА —     ИСТИННОСТИ ТАБЛИЦА см. Логика высказываний. Новая философская энциклопедия: В 4 тт. М.: Мысль. Под редакцией В. С. Стёпина. 2001 …   Философская энциклопедия

  • диаграмма истинности — таблица истинности — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы таблица истинности EN truth diagram …   Справочник технического переводчика

  • Карта Карно — Рис. 1 Пример Куба Карно Куб Карно графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции попарного… …   Википедия

  • ЭЛЕКТРОННЫЕ СХЕМЫ — графические изображения и элементы многочисленных и разнообразных приборов и устройств электроники, автоматики, радио и вычислительной техники. Проектирование и разработка базовых электронных схем и создаваемых из них более сложных систем как раз …   Энциклопедия Кольера

  • Троичные функции — Троичной функцией в теории функциональных систем и троичной логике называют функцию типа , где   троичное множество, а   неотрицательное целое число, которое называют арностью или местностью функции. Элементы множества  цифровые… …   Википедия

  • Полином Жегалкина — Полином Жегалкина  многочлен над кольцом , то есть полином с коэффициентами вида 0 и 1, где в качестве произведения берётся конъюнкция, а в качестве сложения  исключающее или. Полином был предложен в 1927 году… …   Википедия


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *