Site Loader

Содержание

Питание светодиодов

Интенсивное развитие светодиодных технологий за последние пять лет привело к их внедрению во все сферы деятельности, которые нуждаются в подсветке. Надёжность и экономичность – вот главное преимущество, которое стало неоспоримым фактом. А если к этим показателям добавить длительный срок службы и безопасность эксплуатации, то становится понятным, почему привычные источники искусственного света постепенно сдают позиции. Действительно, люминесцентные лампы наносят непоправимый вред экологии, а лампы накаливания весьма прожорливы и недолговечны.

Светодиоды, в свою очередь, бывают самой разнообразной формы и исполнения, ежегодно увеличивая ассортимент. Постараемся выделить их основные типы:
— слаботочные светодиоды в пластиковом корпусе;
— мощные планарные светодиоды в пластиковом корпусе;
— светодиодные индикаторы;
— светодиодные ленты;
— светодиодные сборки.

Кроме этого все они могут отличаться цветовой гаммой и размерами. Каждая вышеперечисленная особенность подчеркивает не только визуальное отличие друг от друга, но и заставляет задуматься о технических характеристиках. Главной задачей для потребителя до сих пор остаётся правильность включения в электрическую сеть. Только правильная «запитка» того или иного типа излучающего диода позволит получить максимальную световую отдачу и многолетний срок службы.

Существует два основных параметра, которые объединяют все типы диодов. Это ток потребления и падение напряжения. Изменение этих параметров большую сторону позволяет изобретателям постоянно удивлять нас новыми сверхмощными экземплярами. Но начнём по порядку, с самых простых диодов в прозрачном корпусе. Чаще всего они встречаются диаметром от трёх до десяти миллиметров, что сильно не влияет на их вольтамперную характеристику. В данном случае гораздо большее влияние оказывает цветовое различие. То есть длина волны излучения напрямую зависит от полупроводникового материала, который, в свою очередь, задаёт падение напряжения на p-n переходе. Ниже приведена таблица, наглядно демонстрирующая обратную зависимость между длиной волны и напряжением на диоде.

Как правило, на упаковке с излучающими диодами производитель указывает величину номинального напряжения, при котором будет достигаться наибольший эффект. Задача потребителя – правильно подобрать токоограничивающий резистор для достижения номинального значения. При этом следует помнить, что диоды нельзя включать в нагрузку без соответствующего сопротивления. Исключение составляют слаботочные источники питания – батарейки-таблетки, которые часто применяют для тестирования в магазинах.

Как видно из рисунка самое простое включение предусматривает наличие источника постоянного тока напряжением +5В и двух элементов цепи: светодиода и резистора. При помощи закона Ома и элементарных математических вычислений можно без труда рассчитать значение сопротивления. Если IVD=20мА, UVD=3В, то получим
R=(5-3)/0.02=100 Ом.
При последовательно-параллельном включении нескольких светодиодов в каждую ветвь нужно включать элементы с одинаковым рабочим током. В противном случае невозможно правильно рассчитать компенсирующий резистор, что скажется на яркости свечения. Для быстрого и точного расчета более сложных электрических цепей применяют законы Кирхгофа. Сложнее ситуация обстоит с полноцветными диодами. Внутри корпуса размещены кристаллы красного, синего и зелёного цвета, которые соединены с выводами. Кроме этих трёх выводов имеется ещё один – общий (анод или катод). Подключение таких образцов требует точных данных о технических характеристиках, так как каждый цвет имеет разное падение напряжения. К примеру, модель MCDL-5013RGB (I=20мА):
Ured = 2.0В;
Ugreen = 3.5В;
Ublue = 3.5В.

В продаже можно встретить мигающие и RGB-диоды с двумя выводами, в корпусе которых уже вмонтирован управляющий чип. К ним подводят обычное 3-хвольтовое питание, а хорошо зарекомендовали они себя в новогодних гирляндах. Каждый производитель бытовой микропроцессорной техники и не только, старается оснащать новые модели светодиодными или жидкокристаллическими индикаторами. Бесспорно, жидкие кристаллы постепенно вытесняют LED-индикацию, но далеко не во всех областях промышленности.

Если по какой-то причине самостоятельно не хочется конструировать источник питания для светодиодов (заново изобретать велосипед), можно применить унифицированный блок, который свободно продаётся в специализированных магазинах.Простые самоделки в виде декоративных подсветок не требуют прецензионного питания, а значит, можно воспользоваться любым импульсным блоком питания (ИБП) на 5, 9 или 12В постоянного напряжения. Чтобы получить на выходе постоянное напряжение нестандартной величины можно самостоятельно доработать принципиальную схему, применив интегральную микросхему-стабилизатор.

Справа на рисунке представлено типовое включение интегрального стабилизатора LM317. Общий вывод выполняет роль регулировочного входа, задавая, таким образом, стабильно малый ток потребления. Подбирая значения резисторов R1 и R2 можно получить на выходе напряжение в пределах 1.25-25В. Наиболее точно застабилизировать Uвых можно путём замены обычного R2 на два последовательно соединённых резистора. Один из них – имеет фиксированное сопротивление, а второй подстроечный с малым отклонением от номинала. LM317 выпускается в разных корпусах, отличаясь максимальными токами нагрузки. Ниже представленная принципиальная схема представляет собой усиленный вариант предыдущей схемы.

Отличие заключается в установке силового транзистора на входе стабилизатора. Такое включение является классическим вариантом и позволяет нарастить ток в нагрузке до 5А. Однако у стабилизаторов напряжения есть несколько недостатков, ограничивающие их применение в питании излучающих диодов. Например, один из диодов вышел из строя «накоротко». Тогда всё напряжение равномерно распределится на оставшиеся элементы, что станет причиной роста тока нагрузки. Вывод один: диоды гаснут в результате цепной реакции. Поэтому, конструируя дорогостоящие светодиодные самоделки, обратите внимание на стабилизаторы тока. Схемотехнически стабилизатор тока не сильно отличается от стабилизатора напряжения, что заметно на рисунке. Главное отличие кроется в управляющем выводе, который заводят непосредственно к нагрузке. По приведенной формуле не сложно рассчитать выходной ток для конкретного светодиода. Количество светодиодов в нагрузке ограничено лишь напряжением питания микросхемы (37В), а величина тока может достигать 1А. Стабилизаторы тока широко применяются для тюнинга автомобиля, где бортовое напряжение может меняться в диапазоне от 11,5 до 14,2В. Скачки обратного напряжения(к которому очень чувствительны все типы LED диодов) исключаются путём установки в цепь обычного диода. Высоковольтные выбросы положительной полярности можно нейтрализовать добавлением супрессора на 24 вольта. Ниже показано готовое схемотехническое решение самого простого стабилизатора. Остаётся добавить пару советов о его эксплуатации.

Во-первых, на больших токах (от 350мА) необходимо позаботиться об теплоотводе. Во-вторых, Uст должно стремиться к 1.3В, чтобы снизить тепловые потери на LM317. Кстати, источники постоянного тока широко применяются в люстрах со светодиодной подсветкой. Имея в доме такой источник освещения, каждый радиолюбитель может своими глазами убедиться простотой и надёжностью такого схемотехнического решения.

Совершенствование источников питания излучающих диодов дало толчок развитию их нового типа – драйверов (LED drivers). Они очень схожи с токовыми стабилизаторами, но более функциональны и надёжны. В основе устройства заложена микросхема с параметрами, максимально подобранными под определённый тип диода. В качестве примера готового практического решения можно привести прожектора и фонари, в центре которых закреплён однокристальный мощный диод. Но чаще всего их используют в качестве подсветки жидкокристаллических дисплеев. Ключевым показателем работы драйвера является его энергетическая эффективность. Стремление достичь наибольших значений в соотношении Лм/Вт доказывает практическую пользу новых разработок в управлении мощными светодиодными лампами. Уже сегодня передовым производителям удалось найти оптимальное решение без ущерба критически важных параметров. Ещё один щепетильный момент – это надёжность. Изначально драйвер считался наиболее слабым звеном в светодиодной системе. Но интенсивное развитие рынка освещения дало толчок поиску потенциальных возможностей по совершенствованию параметров всей системы в целом. В настоящее время драйверы выпускаются как в пластиковом корпусе, так и в виде печатной платы.

На рисунке наглядно показан вариант драйвера открытого типа. Главное их назначение подразумевает стабилизацию тока нагрузки, что необходимо для поддержания постоянной яркости свечения. Все драйверы – это импульсные преобразователи постоянного сигнала повышающего или понижающего типа с КПД более 90%. На практике прекрасно зарекомендовали себя повышающие преобразователи. Классический вариант такого устройства представлен на рисунке ниже. Главным элементом схемы является микросхема МР3204, к выходу которой рекомендуется подключать 3 светодиода.

Внутри микросхемы последовательно взаимодействуют генератор сигнала, ШИМ, модуль обратной связи, датчик тока и выходной усилитель на полевом транзисторе. Из рисунка следует, что при подаче высокого уровня сигнала на четвёртый вывод происходит накопление энергии в сердечнике дросселя L1. При размыкании полевого транзистора начинает заряжаться конденсатор С2 через диод D1. В следующий такт накопленная энергия поступает в нагрузку. Касательно практического применения рекомендуется использовать керамические конденсаторы и дроссель известных производителей. Значение резистора R1 подбирается под конкретный тип светодиодов и может варьироваться в широком диапазоне. Существуют и другие варианты включения МР3204, расширяющие её возможности.

А что, если в качестве источника питания применить унифицированный компьютерный блок питания? Тем более что для этих целей прекрасно подойдёт устройство с любого ПЭВМ, даже десятилетней давности. Одновременно возникает второй вопрос: «Весь ли ассортимент светодиодной продукции можно включать на выход такого БП?» Теоретически, да. Но, как упоминалось выше, практически эффективнее использовать стабилизаторы тока или специализированные драйверы. БП компьютера стабилизирует напряжение, а значит, радиолюбителю придётся самостоятельно подбирать нужный резистор. Исключение составляют ленты, в которых через равные промежутки уже запаяны резисторы. Таким образом, компьютерный блок питания наилучшим образом подходит для подключения к светодиодным лентам. Самостоятельная переделка БП займёт не более одного часа. Вначале нужно избавиться от жгута с проводами и разъёмами, которые больше нам не пригодятся. Эта операция легко реализуется при помощи мощного паяльника. Оставить нужно лишь два провода (+12В и общий вывод) для непосредственного соединения с нагрузкой. В старых блоках их можно запаять на контакты резервного разъёма 220В, предназначенного для подключения монитора. В остальном – индивидуальная фантазия и удобство. Стоит обратить внимание на тип ленты и её длину (количество диодов). Например, 5 метров ленты с кристаллами типа smd5050 двойной плотности потребляет порядка восьми ампер. Промышленные источники с токами нагрузки около 10А стоят очень дорого. Именно этим фактом обосновано практическое применение бывших в употреблении блоков питания ПЭВМ.

Подытоживая вышесказанное, можно отметить, что вопросу выбора подходящего источника питания следует уделять не меньше внимания, чем качеству светодиодов. От того, насколько правильно будет подобрано питание для инновационного освещения, будет зависеть срок службы всего изделия.

Светодиоды и их применение

Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED — light emitting diode)— полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.

Достоинства:

1. Светодиоды не имеют никаких стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность(ударная и вибрационная устойчивость)
2. Отсутствие разогрева и высоких напряжений гарантирует высокий уровень электро- и пожаробезопасности
3. Безынерционность делает светодиоды незаменимыми, когда требуется высокое быстродействие
4.

Миниатюрность
5. Долгий срок службы (долговечность)
6. Высокий КПД,
7. Относительно низкие напряжения питания и потребляемые токи, низкое энергопотребление
8. Большое количество различных цветов свечения, направленность излучения
9. Регулируемая интенсивность

Недостатки:

1. Относительно высокая стоимость. Отношение деньги/люмен для обычной лампы накаливания по сравнению со светодиодами составляет примерно 100 раз
2. Малый световой поток от одного элемента
3. Деградация параметров светодиодов со временем
4. Повышенные требования к питающему источнику

Внешний вид и основные параметры:

У светодиодов есть несколько основных параметров:

1. Тип корпуса
2. Типовой (рабочий) ток
3. Падение (рабочее) напряжения
4. Цвет свечения (длина волны, нм)
5. Угол рассеивания

В основном, под типом корпуса понимают диаметр и цвет колбы (линзы). Как известно, светодиод — полупроводниковый прибор, который необходимо запитать током. Так ток, которым следует запитать тот или иной светодиод называется типовым. При этом на светодиоде падает определенное напряжение. Цвет излучения определяется как используемыми полупроводниковыми материалами, так и легирующими примесями. Важнейшими элементами, используемыми в светодиодах, являются: Алюминий (Al), Галлий (Ga), Индий (In), Фосфор (P), вызывающие свечение в диапазоне от красного до жёлтого цвета. Индий (In), Галлий (Ga), Азот (N) используют для получения голубого и зелёного свечений. Кроме того, если к кристаллу, вызывающему голубое (синее) свечение, добавить люминофор, то получим белый цвет светодиода. Угол излучения также определяется производственными характеристиками материалов, а также колбой (линзой) светодиода.

В настоящее время светодиоды нашли применение в самых различных областях: светодиодные фонари, автомобильная светотехника, рекламные вывески, светодиодные панели и индикаторы, бегущие строки и светофоры и т.д.

Схема включения и расчет необходимых параметров:

Так как светодиод является полупроводниковым прибором, то при включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод («минус»), а другой — анод («плюс»).

Светодиод будет «гореть» только при прямом включении, как показано на рисунке

При обратном включении светодиод «гореть» не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Нетрудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода.

Диапазон питающих напряжений между Umin и Umax называется «рабочей» зоной, так как именно здесь обеспечивается работа светодиода.

1. Имеется один светодиод, как его подключить правильно в самом простом случае?

Чтобы правильно подключить светодиод в самом простом случае, необходимо подключить его через токоограничивающий резистор.

Пример 1

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Рассчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В

Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм

То есть, надо взять резистор сопротивлением 100 Ом

P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода

2. Как подключить несколько светодиодов?

Несколько светодиодов подключаем последовательно или параллельно, рассчитывая необходимые сопротивления.

Пример 1.

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчет: 3 светодиода на 3 вольта = 9 вольт , то есть 15 вольтового источника достаточно для последовательного включения светодиодов

Расчет аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пример 2.

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов.

Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Пример 3.

Если имеются светодиоды разных марок то комбинируем их таким образом, чтобы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление

Например имеются 5 разных светодиодов:
1-ый красный напряжение 3 вольта 20 мА
2-ой зеленый напряжение 2.5 вольта 20 мА
3-ий синий напряжение 3 вольта 50 мА
4-ый белый напряжение 2.7 вольта 50 мА
5-ый желтый напряжение 3.5 вольта 30 мА

Так как разделяем светодиоды по группам по току
1) 1-ый и 2-ой
2) 3-ий и 4-ый
3) 5-ый

рассчитываем для каждой ветви резисторы:

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2. 5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

ВАЖНОЕ ЗАМЕЧАНИЕ!!!

При подсчете токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.

3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?

Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.

Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

RGB-светодиоды

Полноцветный светодиод или по другому RGB-светодиод — Red, Green, Blue. Смешивая эти три цвета в разной пропорции можно отобразить любой цвет. К примеру, если зажечь все три цвета на полную мощность (Red: 100%, Green: 100%, Blue: 100%), то получится свечение белого цвета. Если зажечь только два (Red: 100%, Green: 100%, Blue: 0%), то будет светиться желтый цвет.

Конструктивно, RGB-светодиод состоит из трех кристаллов под одним корпусом и имеет 4 вывода: один общий и три цветовых вывода.
RGB-светодиоды бывают:
1. С общим анодом (CA)
2. С общим катодом (CC)
3. Без общего анода или катода (6 выводов). Как правило в SMD-исполнении.

Самый длинный вывод RGB-светодиода, обычно является общим (анодом или катодом).

При подключении данных светодиодов, следует учесть, что напряжение, подаваемое для свечения цвета может быть разным для разных цветов.
К примеру, возьмем 5мм светодиод MCDL-5013RGB (I=20мА):
Ured = 2.0 Вольт
Ugreen = 3.5 Вольт
Ublue = 3.5 Вольт

Также следует отметить то, что для некоторых типов RGB-светодиодов необходимо использовать рассеиватель, иначе будут видны составляющие цвета.

ВАЖНОЕ ЗАМЕЧАНИЕ!

Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем, что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит при немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Теги:

  • Светодиод

Понимание светодиодных драйверов от LEDSupply

Драйверы светодиодов могут быть запутанной частью светодиодной технологии. Существует так много разных типов и вариаций, что иногда это может показаться немного ошеломляющим. Вот почему я хотел написать краткий пост с объяснением разновидностей, их различий и вещей, на которые следует обращать внимание при выборе драйвера (драйверов) светодиодов для освещения.

Что такое светодиодный драйвер, спросите вы? Драйвер светодиода — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов. Это важная часть схемы светодиодов, и работа без нее приведет к сбою системы.

Использование одного из них очень важно для предотвращения повреждения ваших светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение — это количество вольт, которое требуется светоизлучающему диоду, чтобы проводить электричество и загораться. По мере повышения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока, пока не сгорит, это также известно как тепловой разгон. Драйвер светодиода представляет собой автономный источник питания с выходами, соответствующими электрическим характеристикам светодиода (светодиодов). Это помогает избежать теплового разгона, поскольку драйвер светодиода постоянного тока компенсирует изменения в прямом напряжении, подавая на светодиод постоянный ток.

На что обратить внимание перед выбором драйвера светодиодов

  • Какие типы светодиодов используются и сколько?
    • Узнайте прямое напряжение, рекомендуемый управляющий ток и т. д.
  • Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
    • Здесь мы сравним постоянный ток и постоянное напряжение.
  • Какой тип питания будет использоваться? (постоянный ток, переменный ток, батареи и т. д.)
    • Работа от сети переменного тока? Посмотрите, какую пользу вам принесет драйвер переменного тока!
  • Каковы ограничения по размеру?
    • Работаете в ограниченном пространстве? Не большое напряжение для работы?
  • Каковы основные цели приложения?
    • Размер, стоимость, эффективность, производительность и т. д.
  • Требуются какие-либо специальные функции?
    • Диммирование, пульсация, микропроцессорное управление и т. д.

Во-первых, вы должны знать…

Существует два основных типа драйверов: те, которые используют входную мощность постоянного тока низкого напряжения (обычно 5–36 В постоянного тока), и те, которые используют входную мощность переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, использующие питание переменного тока высокого напряжения, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиодов с низким напряжением постоянного тока. Даже если ваш вход представляет собой высоковольтный переменный ток, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуется использовать низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше вариантов диммирования и вывода по сравнению с высоковольтными драйверами переменного тока, поэтому у вас больше возможностей для работы в вашем приложении. Однако, если у вас есть большой проект общего освещения для жилых или коммерческих помещений, вы должны увидеть, как драйверы переменного тока могут быть лучше для этого типа работы.

Второе, что вы должны знать

Во-вторых, вам нужно знать управляющий ток, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для работы света. Важно знать характеристики вашего светодиода, чтобы вы знали рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или избыточным теплом. Наконец, полезно знать, что вы ищете в своем приложении для освещения. Например, если вы хотите диммировать, вам нужно выбрать драйвер с возможностью диммирования.

Немного о диммировании

Диммирование светодиодов зависит от того, какую мощность вы используете; поэтому я рассмотрю варианты диммирования постоянного и переменного тока, чтобы мы могли лучше понять, как затемнять все приложения, будь то постоянный или переменный ток.

Диммирование постоянным током

Низковольтные драйверы постоянного тока можно легко диммировать двумя различными способами. Самым простым решением для диммирования для них является использование потенциометра. Это дает полный диапазон затемнения от 0 до 100%.

Потенциометр на 20 кОм

Обычно рекомендуется, когда в вашей цепи есть только один драйвер, но если есть несколько драйверов, регулируемых одним потенциометром, значение потенциометра можно найти из – кОм/Н – где К – значение ваш потенциометр, а N — количество драйверов, которые вы используете. У нас есть проводные BuckPucks, которые поставляются с потенциометром поворотной ручки 5K для затемнения, но у нас также есть этот потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock. Просто подключите заземляющий провод диммирования к центральному контакту, а диммирующий провод — к одной или другой стороне (выбор стороны просто определяет, в какую сторону вы повернете ручку, чтобы сделать ее тусклой).

Второй вариант диммирования — использовать настенный диммер 0–10 В, например, A019 Low Voltage Dimming Control. Это лучший способ диммирования, если у вас несколько устройств, так как диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммирующие провода прямо к входу драйвера, и все готово.

Затемнение по переменному току

Для высоковольтных драйверов с питанием от переменного тока также имеется несколько вариантов затемнения в зависимости от драйвера. Многие драйверы переменного тока работают с диммированием 0-10 В, как мы рассмотрели выше. Мы также предлагаем драйверы светодиодов Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими диммерами с передним и задним фронтом. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами диммирования в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов можно запустить с драйвером?

Максимальное количество светодиодов, которое можно подключить к одному драйверу, определяется путем деления максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. При использовании драйверов LuxDrive максимальное выходное напряжение определяется путем вычитания 2 вольт из входного напряжения. Это необходимо, потому что драйверам требуется 2 вольта для питания внутренней схемы. Например, при использовании драйвера BuckPuck Wired 1000 мА с входным напряжением 24 вольта максимальное выходное напряжение составит 22 вольта.

Что мне нужно для Силы?

Это приводит нас к тому, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно нашему максимальному выходному напряжению для нашего драйвера после того, как мы примем во внимание служебное напряжение схемы драйвера. Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы будем использовать проводной BuckPuck 1000 мА, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.

В или + (В f x LED n ) = В в

Где:

В или = избыточное напряжение для драйверов — 2, если вы используете драйвер DC LuxDrive или 4, если вы используете драйвер AC LuxDrive

V f = прямое напряжение светодиодов, которые вы хотите запитать

LED n = количество светодиодов, которые вы хотите запитать мощность

В в = Входное напряжение драйвера

Спецификации продукта со страницы продукта Cree XPG2

Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока, и вы используете проводной BuckPuck, указанный выше, то V в должен быть основан как минимум на 20 В постоянного тока. по следующему расчету.

2 + (3,0 x 6) = 20

Это определяет минимальное входное напряжение, которое необходимо обеспечить. Нет никакого вреда в использовании более высокого напряжения вплоть до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания 20 В постоянного тока, вы, вероятно, будете использовать блоки питания 24 В постоянного тока для работы этих светодиодов.

Теперь это поможет нам убедиться, что напряжение работает, но чтобы найти правильный источник питания, нам также нужно найти мощность всей светодиодной цепи. Расчет мощности светодиодов:

В f x Ток привода (в амперах)

Используя 6 светодиодов XPG2 сверху, мы можем найти наши ватты.

3,0 В x 1 А = 3 Вт на светодиод

Общая мощность схемы = 6 x 3 = 18 Вт

При расчете подходящей мощности источника питания для вашего проекта важно учитывать 20% «подушку» к вашему расчету мощности. Добавление этой 20-процентной подушки предотвратит перегрузку источника питания. Перегрузка блока питания может привести к мерцанию светодиодов или преждевременному выходу из строя блока питания. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего приведенного выше примера нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт с выходным напряжением 24 В.

Что делать, если у меня недостаточно напряжения?

Использование повышающего драйвера светодиодов (FlexBlock)

Драйверы светодиодов FlexBlock являются повышающими драйверами, что означает, что они могут выдавать более высокое напряжение, чем то, которое на них подается. Это позволяет подключать больше светодиодов с помощью одного драйвера светодиодов. Это чрезвычайно полезно в приложениях, где ваше входное напряжение ограничено, и вам нужно получить больше мощности для светодиодов. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которое вы можете подключить с помощью одного последовательно подключенного драйвера, определяется путем деления максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и различаться по входному напряжению. В режиме Buck-Boost (стандартный) FlexBlock может работать со светодиодными нагрузками, которые выше, ниже или равны напряжению источника питания. Максимальное выходное напряжение драйвера в этом режиме находится по формуле:

48 В постоянного тока – В в

Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы можем работать с 700 мА FlexBlock? Ваше максимальное выходное напряжение составляет 36 В постоянного тока (48-12), а прямое напряжение XPG2, работающего на 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы увидим, что этот драйвер может питать 12 светодиодов. В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока всего от 10 В постоянного тока. Таким образом, если бы вы были в режиме Boost-Only, вы могли бы включить до 16 светодиодов (48/2,9). Здесь мы подробно рассмотрим использование повышающего драйвера FlexBlock для питания ваших светодиодов.

Проверка мощности для драйверов с входом переменного тока высокой мощности

Теперь драйверы с входом переменного тока выделяют определенное количество ватт для работы, поэтому вам нужно найти мощность ваших светодиодов. Вы можете сделать это, используя следующую формулу:

[Vf x ток (в амперах)] x LEDn = мощность

Таким образом, если мы попытаемся запитать те же 6 светодиодов Cree XPG2 на 700 мА, ваша мощность будет…

[2,9 x 0,7] x 6 = 12,18

Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, например, наш светодиодный драйвер Phihong мощностью 15 Вт.

ПРИМЕЧАНИЕ. При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 вольт. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), вам потребуется соединить не менее 6 таких светодиодов последовательно для работы с этим конкретным драйвером.

Инструменты для понимания и поиска правильного светодиодного драйвера

Итак, теперь вы должны иметь довольно хорошее представление о том, что такое светодиодный драйвер и на что вам нужно обратить внимание при выборе драйвера с источником питания, достаточным для вашей приложение. Я знаю, что еще будут вопросы, и для этого вы можете связаться с нами по телефону (802) 728-6031 или по электронной почте [email protected].

У нас также есть этот инструмент выбора драйвера, который помогает рассчитать, какой драйвер будет лучше всего, введя характеристики вашей схемы.

Если для вашего приложения требуется нестандартный размер и мощность, свяжитесь с LEDdynamics. Их подразделение LUXdrive быстро спроектирует и изготовит индивидуальные светодиодные драйверы прямо здесь, в Соединенных Штатах.

Спасибо за внимание, и я надеюсь, что этот пост поможет всем тем, кто интересуется, что такое светодиодные драйверы.

Как рассчитать и подключить светодиоды последовательно и параллельно

В этой статье вы узнаете, как рассчитать светодиоды последовательно и параллельно, используя простую формулу, и настроить свои собственные персонализированные светодиодные дисплеи, теперь вам не нужно просто задаваться вопросом, как подключить светодиодные светильники? но на самом деле может это сделать, подробности здесь.

Эти светильники известны не только своими ослепительными цветовыми эффектами, но и долговечностью и минимальным энергопотреблением.

Кроме того, светодиоды могут быть объединены в группы для формирования больших буквенно-цифровых дисплеев, которые можно использовать в качестве индикаторов или рекламных объявлений.

Молодые любители электроники и энтузиасты часто задаются вопросом, как рассчитать светодиод и его резистор в цепи, так как им трудно оптимизировать напряжение и ток через группу светодиодов, необходимые для поддержания оптимальной яркости.

Почему нам нужно рассчитать светодиоды

Проектирование светодиодных дисплеев может быть забавным, но очень часто мы просто думаем, как подключить светодиодные светильники? Узнайте с помощью формулы, насколько просто создавать собственные светодиодные дисплеи.

Мы уже знаем, что для включения светодиода требуется определенное прямое напряжение (FV). Например, для красного светодиода потребуется FV 1,2 В, для зеленого светодиода потребуется 1,6 В, а для желтого светодиода около 2 В.

Все современные светодиоды рассчитаны на прямое напряжение примерно 3,3 В независимо от их цвета.

Но поскольку заданное напряжение питания светодиода будет в основном выше, чем значение его прямого напряжения, добавление резистора ограничения тока со светодиодом становится обязательным.

Поэтому давайте узнаем, как можно рассчитать резистор ограничения тока для выбранного светодиода или серии светодиодов

Расчет резистора ограничения тока

Значение этого резистора можно рассчитать по приведенной ниже формуле: напряжение VS – прямое напряжение светодиода VF) / ток светодиода I

Здесь R – рассматриваемый резистор в Омах

Vs – входное напряжение питания светодиода

VF – прямое напряжение светодиода, которое на самом деле является минимальным требуемым напряжением питания светодиодом для освещения с оптимальной яркостью.

Если речь идет о последовательном соединении светодиодов, вам просто нужно заменить в формуле «прямое напряжение светодиодов» на «общее прямое напряжение», умножив FV каждого светодиода на общее количество светодиодов в серии. Предположим, что есть 3 светодиода последовательно, тогда это значение становится 3 x 3,3 = 9,9

Ток светодиода или I относится к номинальному току светодиода, он может варьироваться от 20 мА до 350 мА в зависимости от спецификации выбранного светодиода. Это должно быть преобразовано в ампер в формуле, поэтому 20 мА становится 0,02 А, 350 мА становится 0,35 А и так далее.

Как подключить светодиоды?

Чтобы понять это, давайте прочитаем следующее обсуждение:

Предположим, вы хотите разработать светодиодный дисплей, содержащий 90 светодиодов, с питанием 12 В для питания этого 90 светодиодного дисплея.

Для оптимального согласования и настройки светодиода 90 с питанием 12 В вам необходимо правильно соединить светодиоды последовательно и параллельно.

Для этого расчета нам потребуется рассмотреть 3 параметра, а именно:

  1. Общее количество светодиодов, равное 90 в нашем примере
  2. Прямое напряжение светодиодов, здесь мы считаем его равным 3 В для простоты расчета, обычно это будет 3,3 В
  3. Вход питания, который составляет 12 В для данного примера

Прежде всего мы должны рассмотреть параметр последовательного соединения и проверить, сколько светодиодов может быть размещено в пределах заданного напряжения питания

Мы делаем это, разделив напряжение питания на 3 вольта.

Очевидно, что ответ будет = 4. Это дает нам количество светодиодов, которые можно разместить в источнике питания 12 В.

Однако приведенное выше условие может быть нежелательным, поскольку это ограничивало бы оптимальную яркость строгим питанием 12 В, а в случае, если питание было уменьшено до некоторого более низкого значения, это привело бы к снижению свечения светодиода.

Таким образом, чтобы обеспечить более низкий запас по крайней мере 2 В, было бы целесообразно удалить один светодиод из расчетов и сделать его равным 3. питание было снижено до 10 В, но светодиоды все равно могли светиться достаточно ярко.

Теперь мы хотели бы знать, сколько таких цепочек из 3 светодиодов можно составить из имеющихся у нас 90 светодиодов? Следовательно, разделив общее количество светодиодов (90) на 3, мы получим ответ, равный 30.

Это означает, что вам нужно будет припаять 30 рядов светодиодных цепочек или цепочек, в каждой цепочке по 3 светодиода в ряду. Это довольно легко, верно?

После того, как вы закончите сборку упомянутых 30 цепочек светодиодов, вы, естественно, обнаружите, что каждая цепочка имеет свои положительные и отрицательные свободные концы.

Затем подключите рассчитанное значение резисторов, как описано в предыдущем разделе, к любому из свободных концов каждой серии, вы можете подключить резистор к положительному или отрицательному концу цепочки, положение не имеет значения. поскольку резистор просто должен соответствовать серии, вы можете даже включить некоторые из них между сериями светодиодов. Используя более раннее значение, мы находим резистор для каждой цепочки светодиодов: напряжение VF) / ток светодиода

= 12 — (3 x 3) / 0,02 = 150 Ом

Предположим, мы подключаем этот резистор к каждому отрицательному концу светодиодной цепочки.

  • После этого вы можете начать соединять общие положительные концы светодиодов вместе, а отрицательные концы или концы резисторов каждой серии вместе.
  • Наконец, подайте 12 В на эти общие концы, соблюдая правильную полярность. Вы сразу обнаружите, что весь дизайн ярко светится с одинаковой интенсивностью.
  • Вы можете выровнять и организовать эти цепочки светодиодов в соответствии с дизайном дисплея.

Нечетное количество светодиодов

Может возникнуть ситуация, когда светодиодный экран содержит нечетное количество светодиодов.

Например, предположим, что в приведенном выше случае вместо 90, если бы дисплей состоял из 101 светодиода, то, учитывая 12В в качестве питания, становится довольно неудобной задачей разделить 101 на 3.

Итак, мы находим ближайшее значение, которое делится на 3, что равно 99. Разделив 99 на 3, мы получим 33.

Таким образом, расчет для этих 33 цепочек светодиодов будет таким же, как описано выше, но как насчет оставшихся двух светодиодов? Не беспокойтесь, мы все еще можем сделать цепочку из этих двух светодиодов и соединить ее параллельно с оставшимися 33 цепочками.

Однако, чтобы убедиться, что цепочка из 2 светодиодов потребляет равномерный ток, как и остальные 3 цепочки светодиодов, мы соответствующим образом рассчитываем последовательный резистор.

В формуле мы просто меняем общее прямое напряжение, как показано ниже:

R = (напряжение питания VS – прямое напряжение светодиода VF) / ток светодиода

= 12 — (2 x 3) / 0,02 = 300 Ом

Это дает нам значение резистора специально для цепочки из 2 светодиодов.

Таким образом, у нас есть 150 Ом для всех цепочек из 3 светодиодов и 300 Ом для цепочки из 2 светодиодов.

Таким образом, вы можете отрегулировать цепочки светодиодов с несовпадающим количеством светодиодов, включив соответствующий компенсирующий резистор последовательно с соответствующими цепочками светодиодов.

Таким образом, проблема легко решается путем изменения номинала резистора для остальных меньших серий.

На этом мы завершаем наше руководство о том, как соединить светодиоды последовательно и параллельно для любого заданного количества светодиодов, используя указанное напряжение питания. Если у вас есть какие-либо вопросы, пожалуйста, используйте поле для комментариев, чтобы решить их.

Расчет последовательно-параллельных светодиодов на плате дисплея

До сих пор мы узнали, как светодиоды могут быть подключены или рассчитаны последовательно и параллельно.

В следующих параграфах мы рассмотрим, как спроектировать большой цифровой светодиодный дисплей, соединяя светодиоды последовательно и параллельно.

В качестве примера мы создадим цифровой дисплей «8» с помощью светодиодов и посмотрим, как он подключен.

Необходимые детали

Для сборки вам потребуются следующие электронные компоненты:
КРАСНЫЙ СВЕТОДИОД 5 мм. = 56 шт.
РЕЗИСТОР = 180 Ом ¼ Вт CFR,
ПЛАТА ОБЩЕГО НАЗНАЧЕНИЯ = 6 НА 4 ДЮЙМА

Как рассчитать и сконструировать светодиодный дисплей?

Конструкция этой схемы отображения числа очень проста и выполняется следующим образом:

Вставьте все светодиоды в плату общего назначения; следуйте ориентации, как показано на принципиальной схеме.

Сначала припаяйте только один вывод каждого светодиода.

Выполнив это, вы обнаружите, что светодиоды не выровнены прямо и на самом деле закреплены довольно криво.

Прикоснитесь жалом паяльника к месту пайки светодиода и одновременно надавите на этот светодиод, чтобы его основание плотно прижалось к плате. Сделайте это для всех светодиодов, чтобы они выровнялись прямо.

Теперь закончите припаивать остальные непаянные выводы каждого из светодиодов. Аккуратно обрежьте их провода кусачками. По принципиальной схеме объедините плюсы всех серий светодиодов.

Подключите резисторы 180 Ом к отрицательным разомкнутым концам каждой серии. Снова соедините все свободные концы резисторов.

На этом построение светодиодного индикатора №8 заканчивается. Чтобы проверить это, просто подключите 12-вольтовый источник питания к общему плюсу светодиода и общему минусу резистора.

Цифра «8» должна мгновенно загореться в виде большого цифрового дисплея и быть узнаваемой даже с большого расстояния.

Советы по функционированию схемы

Чтобы четко понять, как спроектировать большой цифровой светодиодный дисплей, важно детально знать принцип работы схемы.

Глядя на схему, можно заметить, что весь дисплей разделен на 7 светодиодных серий «полос».

Каждая серия содержит группу из 4 светодиодов. Если мы разделим входные 12 вольт на 4, мы обнаружим, что каждый светодиод получает 3 вольта, которых достаточно, чтобы они ярко светились.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *