Site Loader

Светодиоды, как их делают

Светодиод — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Уже в 2007 году, в одном из докладов на пекинской конференции Международной Комиссии по Освещению, была особо отмечена важность экономичности и экологичности как уже используемых, так и еще только разрабатываемых, более совершенных светотехнических изделий.

Первоочередной акцент был сделан докладчиками на более рациональное и эффективное использование света. И это вовсе не было призывом как-то уменьшать освещенность. В качестве одного из важнейших шагов к данной цели выделяется разработка и внедрение энергетически более эффективных и экологически безопасных источников света — светодиодов.

Высокотехнологичная отрасль

Светодиоды — это полупроводниковые электротехнические изделия, предназначенные для получения света благодаря проходящему через p-n-переход электрическому току. Но ведь не каждый p-n-переход излучает свет.

Чтобы получить свет от полупроводника, необходимо соблюсти определенные условия: запрещенная зона перехода на полупроводнике должна иметь такую ширину, чтобы энергия получаемых квантов оказалась близка к энергии квантов света видимого диапазона, при этом вероятность излучения в процессе рекомбинации электронно-дырочных пар должна получиться высокой.

Для соблюдения названных условий, изготавливаемый кристалл должен иметь минимум дефектов, приводящих к рекомбинации электронов с дырками без излучения. Этого достичь не просто, одного p-n-перехода будет недостаточно, приходится создавать многослойные полупроводниковые структуры — гетероструктуры, положившие, кстати, в свое время начало новому этапу на пути развития технологии производства светоизлучающих диодов.

Создание светодиодов сопряжено с определенными препятствиями, ведь эта светотехническая отрасль все время развивается, и определенных устоявшихся регламентов в ней до сих пор не существует.

Процесс производства светодиодов, а также способы их непосредственной эксплуатации, до сих пор не подчиняются каким-то общим документам, поэтому каждый крупный производитель вырабатывает собственные принципы отбора надлежащей продукции.

Международных соглашений нет. И даже несмотря на то, что за последние годы уже достигнуты некоторые очень позитивные результаты, единых требований к led-технике по-прежнему не выработано. И сейчас вы все поймете, поскольку далее мы рассмотрим поэтапно технологию производства светодиодов.

Формирование кристалла

Кристалл светодиода выращивается. Ключевой процесс во всей этой цепочке называется металлоорганической эпитаксией, при которой реализуется ориентированный эпитаксиальный рост кристалла на подложке.

Полупроводник выращивается путем термического пиролиза (разложения) металлорганических соединений, в которых содержатся нужные химические элементы. Тут обязательно присутствие чистых газов, наличие которых обеспечивается современными установками.

Выращиваемый слой должен иметь определенную толщину, которая контролируется в ходе процесса эпитаксии. При этом структура на поверхности подложки должна получиться однородной.

Надежные и качественные установки для осуществления эпитаксиального роста стоят очень дорого, а процесс получения материалов высокого качества для производства качественных светодиодов длится не один год.

Изготовление чипов

Для получения чипа, выращенный на подложке кристалл подвергают травлению, затем создают контакты и нарезают полученный образец на кусочки. Это называется «планарная обработка пленок». Одну целую пленку разрезают на тысячи маленьких чипов.

Сортировка чипов

Сортировка нарезанных чипов называется биннированием. Бины — это группы. Сортировка очень важна, но о ней часто забывают, разбирая процесс создания светодиодов.

Суть в том, что при любом производстве важно произвести отбор качественной продукции, а также отсортировать продукт по параметрам, по определенным критериям, что особенно важно для светодиодов. На стадиях эпитаксии, и после нарезки, невозможно получить тысячи абсолютно идентичных по характеристикам кристаллов (чипов).

Так или иначе их характеристики будут разниться, и окажутся в некотором достаточно широком диапазоне параметров. Именно поэтому чипы необходимо отсортировать по характеристикам в группы (бины), чтобы в каждой группе были чипы с определенным значением какого-то параметра, подходящие под требования диапазона той или иной группы: по длине волны, по напряжению, по световому потоку и т. д.

В результате биннирования светодиоды будут разделены по областям применения и даже по наименованиям. Одни пойдут на одни цели, другие — на другие. Круг потребителей продукта расширится.

Почти готовый светодиод

Непосредственно готовый светодиод получается на заключительном этапе технологической цепочки. Здесь создается корпус будущего источника света, припаиваются выводы, подбирается подходящий люминофор. Выбирается оптическая система, форма и параметры линзы.

Линзы изготавливают из различных материалов (эпоксидная смола, пластик, силикон). В зависимости от требований выбирают материал оптической системы. Требования очень широки, ведь именно оптическая система будет играть решающую роль в том, как будет направлен световой поток, каким будет телесный угол и т. д.

Особенности линз

Линзы должны быть по возможности максимально прозрачными, пропускать свет во всем видимом диапазоне. При этом линза должна хорошо приклеиться к материалу печатной платы, быть термостабильной на протяжении всего срока службы. Это значит, что линза не должна пострадать от излучения кристалла и химического воздействия люминофора, если он применен.

Процесс производства светодиодов на заводе ОПТОГАН:

Светодиоды

Светодиоды не зря считаются лучшими источниками света. Они отличаются малой потребляемой мощностью, отсутствием вредных компонентов, таких как ртуть, безопасным напряжением питания, высокой надежностью, компактностью и другими полезными качествами.

Именно светодиоды позволяют строить системы освещения и осветительные приборы самых разных форм и размеров, при этом высокого качества: прожекторы, светодиодные ленты, светильники, лампы, панели и т. д.

Неоспоримо одно — светодиодное направление в светотехнической отрасли динамично развивается во всем мире. Технология является предметом внимания высококлассных специалистов и ученых из многих стран. В ближайшем будущем однозначно будут достигнуты еще более впечатляющие показатели.

Ранее ЭлектроВести писали, что луганские энергетики объявили амнистию своим сотрудникам, которые воруют электроэнергию.

По материалам: electrik.info.

Светодиоды нового поколения от OSRAM дают возможности для создания новых светодиодных светильников и ламп.

Светодиодное освещение

Исследователи из OSRAM Opto Semiconductors добились значительных успехов в создании новых технологий для светодиодных компонентов. Компания изготовила и протестировала первые светодиодные кристаллы, в которых светоизлучающий слой из нитрида галлия выращен на пластинах из монокристаллического кремния, а также представила линейку светодиодных продуктов с люминофором на керамической подложке.
В компании OSRAM Opto Semiconductors получены опытные образцы светодиодов синего и белого цвета свечения, в которых светоизлучающий слой из нитрида галлия выращен на кремниевых пластинах диаметром 150 мм. Кремний заменил сапфир, который обычно использовался в качестве подложки, без ухудшения характеристик светодиода.

Оптимизация качества слоев из нитрида галлия, выращенных на кремниевых подложках, позволила достичь того уровня, когда эффективность и яркость таких светодиодов может быть конкурентоспособной на рынке. Испытания, проведенные на опытных образцах, продемонстрировали высокое качество и надежность таких светодиодов.
Широкое распространение и доступность пластин кремния большого диаметра, а также его отличные тепловые свойства, делают кремний весьма привлекательным выбором для светодиодных компонентов. Качество и характеристики полученных светодиодных кремниевых кристаллов соответствуют кристаллам на базе сапфира: синие кристаллы, изготовленные по технологии UX:3, в стандартном светодиодном корпусе Golden Dragon Plus достигли максимальной яркости 634 мВт при напряжении 3,15 В, что эквивалентно эффективности в 58%. В сочетании с обычным люминофором в стандартном корпусе эти прототипы обеспечивают световой поток в 140 лм при токе 350 мА с эффективностью 127 лм/Вт при цветовой температуре 4500 K.
Использование кремниевых пластин большого диаметра для производства светодиодов позволит сделать светодиодные продукты значительно дешевле, сохранив, при этом, прежний уровень качества. Дальнейшее увеличение диаметра кремниевых пластин позволит еще больше снизить затраты на производство светодиодов: исследователи уже продемонстрировали первые структуры на 200-мм подложках.
Технология использования люминофоров на керамической подложке уже продемонстрировала свои преимущества при создании светодиодов белого цвета свечения. Однако такая возможность существует также и при создании света разных цветов. В сочетании с новой технологией создания светодиодных кристаллов UX:3 новые керамические люминофоры обеспечивают улучшенную температурную стабильность, более высокий уровень яркости светодиодов и более однородный световой пучок.
На выставке CES компания OSRAM Opto Semiconductors представила компактные светодиоды OSRAM OSTAR для проекционных систем, а также светодиоды OSRAM OSTAR Headlamp Pro и OSLON Black Flat для автомобильных фар головного света, в которых используется технология керамического люминофора.
Компактный однокристальный светодиод OSRAM OSTAR с керамическим люминофором обеспечивает световой выход в 410 лм при длине волны 553 нм. При использовании в проекторе, это позволяет увеличить эффективность и яркость примерно на 30% без каких-либо изменений в системе.
Благодаря керамическому люминофору светодиодные компоненты для фар головного света в автомобилях способны обеспечить высокую светоотдачу, однородное распределение света и чрезвычайно высокий коэффициент контрастности, что положительно влияет на безопасность движения. При номинальной рассеиваемой мощности 2,3 Вт и рабочем токе 700 мА светодиод OSLON Black Flat генерирует световой поток в 190 лм. Он может работать при токах до 1,2 А. Светодиод OSRAM OSTAR Headlamp Pro, который содержит от двух до пяти кристаллов, способен создавать световой поток до 280 лм на кристалл. Оба продукта производятся по технологии UX:3 и доступны в белом цвете свечения.

Появление светодиодов нового типа открывает множество возможностей. Во-первых, удешевление самих источников света. В конечном итоге, это может повлечь за собой снижение стоимости светодиодных светильников и ламп на 20-30%.
Во-вторых, возможность увеличения размеров источника света. Соответственно, могут появится новые типы светодиодных светильников и ламп.
Материал подготовлен на основе данных компании OSRAM.

Ник Холоньяк-младший | Биография, LED и факты

Год рождения:
3 ноября 1928 г. Иллинойс
Умер:
18 сентября 2022 г. (93 года) Урбана Иллинойс
Предметы изучения:
ВЕЛ диод

Просмотреть весь связанный контент →

Ник Холоньяк-младший , (род. 3 ноября 19 г.28, Зейглер, Иллинойс, США — умер 18 сентября 2022, Урбана, Иллинойс), американский инженер, который был известен своей новаторской работой со светоизлучающими диодами (СИД), в частности, созданием первого светодиода видимого диапазона.

Холоньяк был сыном иммигрантов с территории нынешней Украины. Он изучал электротехнику в Иллинойском университете в Урбана-Шампейн, где получил степень бакалавра наук. (1950), М.С. (1951) и доктор философии. (1954) градусов. Он был первым аспирантом двукратного лауреата Нобелевской премии Джона Бардина, соавтора транзистора.

После того, как Холоньяк проработал год (1954–55) в Bell Telephone Laboratories и два года (1955–57) в армии, он присоединился к лаборатории электроники General Electric (GE) в Сиракузах, штат Нью-Йорк. Несколько групп GE работали в области оптоэлектроники, преобразования электрического тока в свет. Коллега из GE Роберт Н. Холл разработал лазер с использованием полупроводникового диода (полупроводникового устройства с положительным и отрицательным электродами, которое может служить выпрямителем, то есть преобразователем переменного тока в постоянный). Лазер Холла излучал только инфракрасное излучение, лежащее за пределами человеческого зрения. Холоньяк решил сделать диодный прибор, излучающий видимый свет.

Используя полупроводниковый материал фосфид арсенида галлия (GaAsP) и метод стимулированного излучения, в 1962 Холоньяку удалось запустить первое практическое светодиодное устройство видимого диапазона. Устройство Холоньяка излучало красный свет. После того, как были разработаны светодиоды, излучающие зеленый и синий свет (в 1970-х и 90-х годах соответственно), стали возможными светодиоды, излучающие белый свет, что произвело революцию в индустрии освещения. Среди других его работ для GE в 1959 году Холоньяк первым изготовил кремниевые туннельные диоды и первым наблюдал туннелирование с помощью фононов.

В 1963 году Холоньяк покинул GE, чтобы стать профессором Иллинойского университета, где в 19В 93 году он был назначен на кафедру электротехники, вычислительной техники и физики Джона Бардина. В Иллинойсе Холоньяк впервые применил ряд сплавов в диодах, а в 1977 году он и его студент изготовили первый лазерный диод с квантовыми ямами. Холоньяк ушел в отставку с должности почетного профессора в 2013 году.

Холоньяк был членом Национальной инженерной академии и Национальной академии наук, членом Американской академии искусств и наук, членом Американского физического общества, иностранным членом Российской академии наук и пожизненным членом Института инженеров по электротехнике и электронике (IEEE). Его многочисленные награды включали медаль Эдисона IEEE (1989), Национальная медаль науки (1990 г.), Премия Японии (1995 г.), Медаль третьего тысячелетия IEEE (2000 г.), Почетная медаль IEEE (2003 г.) и Премия Лемельсона-MIT (2004 г.). В 2015 году Холоньяк был одним из пяти инженеров, удостоенных премии Чарльза Старка Дрейпера, проводимой Национальной инженерной академией; двое других лауреатов, Джордж Крафорд и Рассел Дюпюи, были бывшими аспирантами Холоньяка.

Мартин Л. Уайт

Сюдзи Накамура | Американский материаловед

Накамура, Сюдзи

Смотреть все СМИ

Дата рождения:
22 мая 1954 г. (68 лет) Япония
Награды и награды:
Нобелевская премия (2014)
Предметы изучения:
светодиод

Посмотреть весь связанный контент →

Сюдзи Накамура (родился 22 мая 1954 г., Эхиме, Япония), американский материаловед японского происхождения, лауреат Нобелевской премии по физике 2014 г. за изобретение синих светодиодов (СИД). Он разделил приз с японскими учеными-материаловедами Акасаки Исаму и Амано Хироши.

Накамура получил степень бакалавра (1977 г.) и магистра (1979 г.) в области электронной инженерии в Университете Токусима. В 1979 году он пошел работать в небольшую компанию Nichia Chemical в Токусиме. Первоначально он работал над выращиванием кристаллов фосфида и арсенида галлия для светодиодов. Однако продажи этих продуктов оказались разочаровывающими, поскольку Nichia конкурировала с гораздо более крупными конкурентами. В середине 1980-х Nichia решила производить комплектные светодиоды.

Накамура самостоятельно изучил необходимые методы производства высококачественных красных и инфракрасных светодиодов, но они также не имели коммерческого успеха.

Накамура считал, что Nichia должна разработать продукт, который не будет конкурировать с продуктами других, более крупных компаний. Этим продуктом будет синий светодиод. Ученые создали светодиоды, излучающие красный или зеленый свет, но попытки создать синие светодиоды не увенчались успехом. Если бы синий светодиод был разработан, его можно было бы комбинировать с красным и зеленым светодиодами для получения белого света за небольшую часть стоимости ламп накаливания и люминесцентных ламп. Руководитель Накамуры обескуражил его, отметив, что синий светодиод десятилетиями искали исследователи с гораздо лучшим финансированием. В 1988 Накамура обратился прямо к генеральному директору Nichia Огаве Нобуо, требуя более 3 миллионов долларов (долларов США) в качестве финансирования и год в Университете Флориды в Гейнсвилле, чтобы изучить химическое осаждение металлоорганических паров для производства полупроводников для синего светодиода.

К удивлению Накамуры, Огава принял его требования.

Вернувшись из Флориды в 1989 году, Накамура выбрал нитрид галлия (GaN) в качестве материала для синего светодиода, главным образом потому, что большинство других исследователей использовали селенид цинка, с которым было легче работать. Выращивать высококачественные кристаллы GaN было очень сложно. Кроме того, в светодиоде свет излучается, когда ток течет через

p n , интерфейс между полупроводником p и n , и никто не смог произвести GaN p . Накамура решил первую проблему в 1990 году, вырастив слой кристалла GaN при низких температурах, а затем дополнительные слои GaN поверх слоя при более высоких температурах. В 1992 году он успешно вырастил p типа GaN. (Работая одновременно независимо друг от друга, Акасаки и Амано разработали синие светодиоды, используя разные методы.)

В 1994 году Накамура получил степень доктора технических наук в Университете Токусима.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *