Site Loader

Содержание

Кто изобрел светодиод и как он работает

Интересные факты о светодиодах



Светодиод изобрел Олег Лосев

Олег Лосев

Содержание

Интересные факты о светодиодах

• Светодиод изобрел Олег Лосев
• Как устроен светодиод
• Срок службы светодиодов
   Средний срок службы
   Почему же у белых светодиодов наименьший срок службы?
• Светодиоды греются
   Как реагирует светодиод на нагрев

Еще в 1907 году было впервые отмечено слабое свечение, испускаемое карбидокремниевыми кристаллами вследствие неизвестных тогда электронных превращений. В 1923 году наш соотечественник, сотрудник Нижегородской радио-лаборатории Олег Лосев отмечал это явление во время проводимых им радиотехнических исследований с полупроводниковыми детекторами, однако интенсивность наблюдаемых излучений была столь незначительной, что Российская научная общественность тогда всерьез не интересовалась этим феноменом.

Через пять лет Лосев специально занялся исследованиями этого эффекта и продолжал их почти до конца жизни (О.В. Лосев скончался в блокадном Ленинграде в январе 1942 года, не дожив до 39 лет). Открытие «Losev Licht», как назвали эффект в Германии, где Лосев публиковался в научных журналах, стало мировой сенсацией. И после изобретения транзистора (в 1948 году) и создания теории p-n-перехода (основы всех полупроводников) стала понятна природа свечения.

В 1962 году американец Ник Холоньяк продемонстрировал работу первого светодиода, а вскоре после этого сообщил о начале полупромышленного выпуска светодиодов.

Светодиод (англ. light emission diode – LED) является полупроводниковым прибором, его активная часть, называемая «кристалл» или «чип», как и у обычных диодов состоит из двух типов полупроводника – с электронной (n-типа) и с дырочной (p-типа) проводимостью. В отличие же от обычного диода в светодиоде на границе полупроводников разного типа существует определенный энергетический барьер, препятствующий рекомбинации электронно-дырочных пар. Электрическое поле, приложенное к кристаллу, позволяет преодолеть этот барьер и происходит рекомбинация (аннигиляция) пары с излучением кванта света. Длина волны излучаемого света определяется величиной энергетического барьера, который, в свою очередь, зависит от материала и структуры полупроводника, а также наличия примесей.

Значит, прежде всего, нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.

Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.

Реально, чтобы соблюсти оба условия, одного p-n-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.


Как устроен светодиод

Основные современные материалы, используемые в кристаллах светодиодов:

  •     InGaN — синие, зеленые и ультрафиолетовые светодиоды высокой яркости;
  •     AlGaInP — желтые, оранжевые и красные светодиоды высокой яркости;
  •     AlGaAs — красные и инфракрасные светодиоды;
  •     GaP — желтые и зеленые светодиоды.


Кроме светодиодов лампового типа (3, 5, 10 мм, их форма действительно напоминает миниатюрную лампочку с двумя выводами), в последнее время все большее распространение получают SMD — светодиоды. Они совершенно иной конструкции, отвечающей требованиям технологии автоматического монтажа на поверхность печатной платы (surface mounted devices – SMD).

А сверхяркие светодиоды такого типа называются эммитеррами (emitter, англ. «излучатель»).

SMD светодиоды имеют более компактные размеры, допускают автоматическую расстановку и пайку на поверхность платы без ручной сборки. Некоторые производители светодиодов выпускают специальные SMD-диоды, содержащие в одном корпусе три кристалла, излучающие свет трех основных цветов – красный, синий и зеленый. Это позволяет получить при смешении их излучения всю цветовую гамму, включая белый цвет, при ультракомпактных размерах.

Яркость светодиода характеризуется световым потоком (Люмены) и осевой силой света (Кандела), а также диаграммой направленности. Существующие светодиоды разных конструкций излучающих в телесном угле от 4 до 140 градусов.

Цвет, как обычно, определяется координатами цветности, цветовой температурой белого света (Кельвин), а также длиной волны излучения (нанометры).

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности (характеристика «Люмен/Ватт»).

Также интересной характеристикой оказывается цена одного люмена ($/Люмен).

Итак, любой светодиод состоит из одного или нескольких кристаллов, размещенных в корпусе с контактными выводами и оптической системы (линзы), формирующей световой поток. Длина волны излучения кристалла (цвет) зависит от материала полупроводника и от легирующих примесей. Биновка (wavelength bin) кристаллов по длине волны излучения происходит при их изготовлении. В партии поставки на современном производстве отбираются близкие по спектру излучения кристаллы.

Широкий диапазон оптических характеристик, миниатюрные размеры и гибкие возможности по дискретному управлению обеспечили применение светодиодов для создания самых различных световых приборов и изделий. Светодиод излучает в узкой части спектра, на определенной длине волны его цвет чист, что особенно ценят дизайнеры.

Срок службы светодиодов

Основная характеристика надежности светодиодов – срок их службы. В процессе эксплуатации возможны две ситуации: световой поток излучателя либо частично уменьшился, либо вовсе прекратился. Срок службы отражает эти факты: различают полезный срок службы (пока световой поток не упадет ниже определенного предела) и полный (пока прибор не выйдет из строя).

Срок службы напрямую зависит от типа светодиода, подаваемого на него тока, охлаждения кристалла (chip) светодиода, состава и качества кристалла, компоновки и сборки в целом.

Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче чем у маломощных сигнальных. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

Очевидно, например, что в светодиодах мощностью от 1 Вт (рабочий ток 0,350 А) и более мощных, тепловыделение гораздо обильнее, чем в светодиодах типа «5 мм», рассчитанных на ток 0,02 А. По светоотдаче 1 светодиод мощностью 1 Вт заменяет около 50 светодиодов типа «5 мм», но и греется сильнее. Поэтому светодиодные сборки с мощными светодиодами требуют пассивного охлаждения (монтаж на MCPCB плату (печатная плата на металлической основе) и радиатор).

Средний срок службы


5 мм -LED и SMD-LED:

• белый до 50000 ч. с падением светового потока до 35% в течении первых 15000 ч.
• синий, зеленый до 70000 ч. с падением светового потока до 15% в течении первых 25000 ч.
• красный, желтый до 90000 ч. с падением светового потока незначительно.

HI-POWER LED от 1 Вт и выше:

• белый до 80000 ч. с падением светового потока до 15% в течении первых 10000 ч.
• синий, зеленый до 80000 ч.
• красный, желтый до 80000 ч.


Почему же у белых светодиодов наименьший срок службы?

К сожалению, структур, излучающих белый свет, никто еще не придумал. Основой диода белого цвета является структура InGaN, излучающая на длине волны 470 нм (синий цвет) и нанесенный сверху на нее люминофор (специальный состав), излучающий в широком диапазоне видимого спектра и имеющий максимум в его желтый части. Человеческий глаз комбинацию такого рода воспринимает как белый цвет. Люминофор ухудшает тепловые характеристики светодиода, поэтому срок службы сокращается. Сейчас мировые производители изобретают новые и новые варианты эффективного нанесения люминофора.


Большинство сверхярких светодиодов служат в районе 50000 — 80000 часов. Много это или мало?

50000 часов — это:

    24 часа в день 5.7 лет
    18 часов в день 7.4 лет
    12 часов в день 11.4 лет
    8 часов в день 17.1 лет


 

Светодиоды греются

Многие считают, что светодиоды практически не греются. Так почему светодиодным приборам нужен теплоотвод и что будет, если теплоотвода нет?

Светодиоды продуцируют тепло в полупроводниковом переходе. И чем мощнее LED, тем больше тепла. Конечно, индикаторные светодиоды, например, датчики автосигнализаций сильно не греются. Но со сверхяркими LED они имеют мало общего. Если мощные светодиоды объединены в некую сборку, да еще и установлены в герметичный корпус, то нагрев становится значительным.

И если не происходит отвод тепла, полупроводниковый переход перегревается, отчего изменяются характеристики кристалла, и через некоторое время светодиод может выйти из строя. Так что очень важно строго контролировать количество тепла и обеспечивать эффективный теплоотвод.


 

Как реагирует светодиод на нагрев

Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у красных и желтых светодиодов, и меньше у зеленых, синих и белых.


Источник: сайт НПО РоСАТ

 

Общая оценка материала: 5

Оценка незарегистрированных пользователей:

[Total: 11 Average: 5]

История создания светодиодной лампы

Имеющая многолетнюю историю лампочка светодиодная является на сегодняшний день самой экономичной и долговечной. Она еще не так доступна для обычного потребителя, как более дешевые источники искусственного света, но впереди ее ждет большое будущее.

Первое сообщение

В начале прошлого века (1907 год) английский изобретатель Генри Раунд впервые обнаружил излучение света от твердотельного диода. Сообщение об этом событии появилось в научных кругах. Раунд исследовал и описал явление электролюминесценции при прохождении тока через полупроводник – соединение карбида кремния и металла. На катоде появлялось свечение трех цветов:

  • оранжевое;
  • желтое;
  • зеленое.

Независимо от Генри Раунда подобные результаты были получены советским ученым.

В лаборатории Лосева

Через 16 лет после первого сообщения Раунда о необычном явлении советский физик Олег Лосев открыл люминесценцию полупроводникового перехода. Во время экспериментов в своей лаборатории в Нижнем Новгороде он заметил свечение в кристаллах из карборунда и стальной проволоки, применявшихся в радиопередатчиках.

О наблюдении ученый сообщил в прессе. К сожалению, это открытие не стало рождением светодиодной лампочки. В то время никто кроме самого изобретателя не понял значение и возможности электролюминесценции.

Хотя теоретически объяснить открытое явление в то время не представлялось возможным, советский ученый в полной мере оценил уникальность открытия, позволявшего создавать безвакуумные, очень экономичные и быстродействующие источники света. Он запатентовал свое изобретение, назвав его «Световым реле».

Без поддержки со стороны государства Лосев не смог организовать полномасштабные исследования своего открытия. Он продолжал самостоятельно изучать полученные результаты исследований. К сожалению, Лосев умер во время войны в блокадном Ленинграде. Если бы не трагические события истории, возможно, именно Советскому Союзу принадлежала честь производства первых светодиодных ламп.

История исследований электролюминесценции в СССР на этом не закончилась. Выдающийся физик из Беларуси Ж. Алферов защитил в 1970 году диссертацию, тема которой заключалась в исследовании в полупроводниках гетеропереходов. Он получил степень доктора наук, а позднее стал профессором и почетным академиком Российской академии.

Через тридцать лет (2000, Швеция) Алферов получил Нобелевскую премию за прорыв в исследовании полупроводниковых гетероструктур. Его изобретение позволило усовершенствовать светодиоды, увеличив внешний световой поток для красной части видимого спектра излучения.

Начало практического использование светодиода

Американцам принадлежит первенство в изобретении светодиода, имевшего практическое применение. В шестидесятых годах двадцатого столетия Ник Холоньяк сделал первый красный светодиод по заказу компании, занимающейся производством электрических приборов. Это произошло в Иллинойском университете.

Немного раньше американские ученые запатентовали первый инфракрасный светодиод, который был слишком сложно устроен и не нашел практического применения. После этого события разработкой светодиодов занялись в широких масштабах, с целью их использования в промышленности. Были получены лампы, светящиеся желто-зеленым светом. В 1968 году фирмой «Монсанто» была выпущена первая серия таких ламп. Другой компанией в целях рекламы был создан слабосветящийся красным светом дисплей, на котором отображалась информация при помощи работы встроенных красных светодиодов.

Учеником Холонька Джорджем Крафордом был изобретен желтый светодиод. Он по яркости в десять раз превосходил первый красный светодиод его учителя.

Работавший в лаборатории компании «АйБиЭм» Дж. Панков изобрел светодиоды фиолетового и голубого излучения. К сожалению, небольшой срок их службы не позволил применять их в промышленных целях.

Фирма Hewlett Packard в 1976 году выпустила серию оранжево-красных и желто-зеленых светодиодов, которые работали на фосфидах.

Открытие в Японии

К началу двадцать первого века были получены все цвета диапазона, не удавалось создать только синий излучатель. Честь его открытия в девяностых годах двадцатого века принадлежит доктору Накамура из Японии. Благодаря его изобретению недорогого синего светодиода появилась возможность выпускать лампы белого света, который получается в результате сочетания синего, красного и зеленого излучения. Эти лампы нашли широкое применение не только в быту, для освещения помещений, но и в других электроприборах. Появились экраны со светодиодной подсветкой. Компания «Ситизен Электроникс» впервые в 2003 году выпустила СИД модуль, запатентовав технологию.

Ученые из Японии вместе с Судзи Накамуро получили Нобелевскую премию за свое изобретение. А прогресс светодиодных устройств пошел с тех пор ускоренными темпами.

Перспективы

Отживает свое привычная лампочка Ильича с вольфрамовой спиралью в вакуумной колбе. Электроэнергия при ее горении расходуется в основном на нагрев спирали. Поэтому КПД невелик и составляет не более 4%. Замена лампочки происходит довольно часто из-за ограниченного срока службы и быстрого перегорания вольфрамовой спирали.

Немного экономичнее галогенновая лампочка – лампа, в которую добавлен газ. Принцип ее работы позволяет продлить срок службы благодаря возвращению вольфрама на тело накала в особой среде, которой наполнена колба. Повышается также температура внутренней спирали, что позволяет увеличить яркий свет лампочки. Максимальный срок службы галогенных ламп не превышает полутора лет.

Необходимы осветительные приборы не только для того, чтобы сделать светлее квартиры и дома. Лампочка ближнего света в автомобиле помогает в ночное время избежать аварий на дороге. Это может быть галогенная лампа или светодиодный прибор.

Преимущество светодиодных лампочек позволило найти им широкое применений во многих отраслях производства. Электроэнергия в них расходуется очень экономно, так как непосредственно преобразовывается в световой поток, миную необходимость нагрева поверхностей для получения светового потока. Срок службы тоже впечатляет. Горит лампочка более двадцати лет.

Купить светодиодные лампы в Тюмени можно у нас в магазине. Товар в наличии.

Светодиодные лампы: история, виды, как выбрать, как рассчитать мощность

Продолжая цикл статей, посвященных энергосбережению, стоит упомянуть и о домашнем освещении. Ведь все предыдущие материалы — были об отоплении и утеплении жилья, а экономии электроэнергии было уделено немного внимания. Между тем, вопрос стоит очень остро, а прогресс в этой сфере движется очень быстро. Многие попросту не успевают следить за развитием новых видов осветительных приборов, продолжая пользоваться «лампочками Ильича», древними, как и сам исторический персонаж, давший им народное название. Пора уступить дорогу новым технологиям, в виде светодиодного освещения, а заодно и развеять мифы о нем.

Что такое светодиодная лампа

Светодиод (англ. LED —  light-emitting diode — «светоизлучающий диод») — полупроводниковый прибор, излучающий видимый свет при пропускании тока, за счет электронно-дырочного перехода при прямом протекании напряжения. Если выражаться менее заумно — это прибор, который светится от того, что пропущенное через его сердцевину напряжение приводит к рождению фотонов (частиц, переносящих свет).

Лампочка накаливания светится от того, что ее спираль раскаляется добела, до сверхвысоких температур (более 3000 градусов). Из-за этого до 97-99 % энергии уходит в тепло, и только 1-3 % — превращается в свет. У диода свечение возникает при протекании тока через полупроводниковый кристалл, который излучает фотоны, и каждый электрон генерирует свой фотон. Поэтому таких колоссальных потерь энергии у LED нет. КПД светодиодов составляет 10-30 % (в 10 раз выше, чем у лампы накаливания), и этот показатель растет из года в год.

Светодиодные лампы по сути и не являются лампами в том понимании, что вкладывают в этот термин физики. Это название досталось им «по наследству» от электровакуумных приборов, излучающих свет. Те, в свою очередь, более 100 лет назад, позаимствовали имя у осветительных приборов, работающих на жидком (керосин, масло) или твердом (карбид) топливе.

Современная светодиодная лампа — это электронный осветительный прибор, состоящий из массива светодиодов и миниатюрного блока управляющей электроники. Светодиоды могут быть точечными и нитевидными (филаментными). Иногда подложка для светодиодов может выполнять и функции материнской платы (с одной стороны — диоды, а с другой — преобразователь и стабилизатор), но такое решение — не самое удачное, из-за паразитного нагрева диодов, сокращающего их срок службы.

Читайте также: Как экономить на отоплении квартиры

Немного истории

В теории светодиоды были изобретены советским инженером Олегом Лосевым в 20-х годах прошлого века (он обнаружил, что карбид кремния светится при пропускании тока). Но до создания первых работоспособных образцов, излучающих видимый свет, оставалось еще 35 лет. Американскому профессору Нилу Холоньяку это удалось только в 1962 году. Первые образцы светодиодов были непригодны для практического использования, так как стоили дорого (200 долларов тех времен, или 1500 современных долларов, с учетом инфляции)  и излучали тусклый красный свет. Лишь 10 лет спустя ученик Холоньяка, Джордж Крафорд, изобрел желтые диоды и повысил в 10 раз яркость их свечения.

Только в начале 90-х японские ученые смогли создать дешевые синие диоды, а также существенно удешевить технологию производства LED. За это коллектив был удостоен Нобелевской премии в 2014 году. Комбинация красного, зеленого и синего излучения дала возможность получить чисто белый свет. И лишь в конце 90-х — начале 2000-х стало возможным массовое производство дешевых белых светодиодов, пригодных на роль осветительного прибора, а не индикатора.

Автор статьи помнит, как на рубеже тысячелетий начали массово появляться в продаже китайские фонарики, использующие диод вместо лампы, а также компактные устройства с LED-подсветкой. К примеру часы Montana, мечта мальчиков в 80-х — 90-х годах, еще не имели качественной подсветки: при нажатии кнопки их дисплей подсвечивался тусклым желтым светом.

Только в середине 2000-х компании стали массово производить дешевые диоды высокой яркости, светящиеся в том диапазоне, что и Солнце. Тем самым они ознаменовали начало эпохи LED-освещения, ударив по древним лампам накаливания и не очень экологичным люминесцентным лампам.

Читайте также: Как сэкономить на отоплении газом

Что такое филаментная лампа

По типу светодиодов лампы можно поделить на классические точечные (с точечными диодами) и новые нитевидные (филаментные). В первых используются специальные пластины подложки, по поверхности которых расположены LED-излучатели. Филаментная лампа — это осветительный прибор, в котором используются нитевидные светодиоды. Если в классических диодах полупроводниковые кристаллы заключены в отдельные корпуса (один диод — один корпус), то в нитевидных — массив кристаллов соединен последовательно и запаян в тонкую трубочку из стекла или прозрачного пластика. За счет этого достигается повышение яркости в разы и увеличение угла излучения.

Филаментные светодиодные лампы — технология пока еще новая, но перспективная. За счет равномерного рассеивания света — достигается более качественный уровень освещения помещения, равномерно подсвечиваются все участки комнаты, затененные зоны устраняются. Поклонникам классики филаментные лампы понравятся тем, что визуально они почти не отличаются от ламп накаливания. Такая их особенность вызвана двумя факторами. Первый — потребность в прозрачном со всех сторон корпусе, для равномерного рассеивания света. Вторая причина — вытеснение старых «лампочек Ильича» новыми технологиями.

Многие производители светодиодных ламп на филаментных диодах ранее занимались изготовлением классических ламп накаливания. На новый тип они переходят потому, что старые технологии уже не в почете. А использование филаментных диодов существенно упрощает переход. Те же машины, на которых ранее производились лампочки накаливания, подвергаются небольшой модификации. Вместо механизма, натягивающего вольфрамовую проволоку на электроды, внедряется узел, который устанавливает туда нитевидные диоды. Вместо смеси инертных газов внутрь колбы, перед запаиванием, закачивается гелий. Последний штрих — цоколь: в него устанавливают небольшую круглую (размером с 50-копеечную монету) плату, на которой размещен блок преобразователя-стабилизатора.

Как правило, диоды и платы производители филаментных ламп заказывают китайцам, но производство ламп может осуществляться в Украине, России, других странах, где есть мощности по выпуску ламп накаливания, теряющие актуальность. Уточнить, имеет ли свои мощности в Украине компания Maxus, не удалось, но точно известно, что российская компания Лисма имеет завод по выпуску филаментных ламп в Саранске. Компании приведены в пример потому, что их лампы — одни из лучших в бюджетной категории.

Читайте также: Какой котел экономичнее: настенный или напольный?

Виды светодиодных ламп

Современные светодиодные лампы принимают всевозможные формы, начиная от одиночных точечных диодов в фонариках — и заканчивая крупными массивами из тысяч диодов, предназначенных для студийного и сценического освещения. В быту наиболее распространены лампы, повторяющие форму классических ламп накаливания, и рассчитанные под те же разъемы (цоколи). Основные формы — «груша», «кукуруза» и «свеча», а типы цоколей — E14 и E27. Отдельно стоит выделить встраиваемые точечные светильники, монтируемые по всей площади подвесного потолка. В них часто используются штырьковые разъемы.

Груша

В форме груши (той самой, которая висит, но скушать ее нельзя) производятся как точечные, так и филаментные светодиодные лампочки. Первые отличаются тем, что имеют угол свечения около 180 градусов, так как диоды размещены только на одной стороне пластины. Они хороши для освещения комнат с помощью люстр, расположенных по центру, в которых патрон «смотрит» вниз. А вот для рожков с ориентацией вверх они не годятся — потолок будет подсвечен, а пол — затенен. Также груши хороши при организации локального освещения, например в настольной лампе или прикроватном светильнике. Но для основного освещения, в целом, это — не самый оптимальный вариант.

Филаментные лампы в форме груши — универсальны. Они рассеивают свет на 360 градусов, как обычная лампочка накаливания. За счет этого помещение равномерно заливается светом, затененные участки сводятся к минимуму. Недостаток таких ламп кроется в их же достоинстве: если нужно осветить только ограниченный участок, без затеняющего плафона сделать это не получится.

Кукуруза

Свое название светодиодные лампы этого типа получили за схожесть с кукурузным початком. Они имеют цилиндрическую форму колбы, по диаметру ненамного шире цоколя. Внутри колбы расположены несколько листов подложки для диодов, сформированных в многогранник. Желтоватые светодиоды, размешенные на подложке, придают лампочке схожесть с кочаном, на котором размещены зернышки. За счет такого расположения диоды светят почти во все стороны, угол рассеивания света может достигать более 300 градусов. Такие дампы хороши для светильников с горизонтальным расположением лампы и подходят как для общего, так и точечного освещения (в затеняющем плафоне).

Филаментные лампы в форме кукурузы — продукт редкий. Использование цилиндрической колбы для размещения нитей не дает особых преимуществ, а уменьшение ее объема приводит к уменьшению объема гелия внутри. За счет этого снижаются охлаждающие свойства лампы, ограничивается ее мощность. Поэтому лампочка-кукуруза на филаментных диодах — оптимальный вариант для умеренного точечного освещения, но не более того. Размер таких ламп позволяет вкручивать их в небольшие светильники, для которых они и предназначены.

Свеча

Светодиодная лампа-свеча имеет предназначение, схожее с филаментной кукурузой. Она обладает ограниченным (как и груша) углом рассеивания, а также небольшой мощностью. Основное освещение с помощью таких ламп можно организовать, если для этого используется люстра на много рожков, а патроны обращены вниз. Верхняя ориентация ламп оставляет тень в центре помещения, под люстрой. А вот для ночника или настольной лампы свечи вполне хороши.

Филаментные лампы-свечи сочетают преимущества груш (универсальность, максимальный угол рассеивания) и кукурузы (компактные размеры), а также обладают эстетичным видом. Такие лампы хороши для подвесных люстр, выполненных в стиле ретро, и обращенных патронами вверх. Существуют как «статичные» лампы-свечи, так и варианты «свеча на ветру», имитирующие движение пламени. Единственный минус свечей — малая мощность и слабый световой поток (обычно в пределах 500-600 лм), поэтому они используются или в многоламповой конфигурации (большие люстры), или в локальных источниках света (бра, торшер, настольная лампа).

Мифы о светодиодных лампах

Как любая новая технология, светодиодные лампы столкнулись с целой кучей мифов, подвергающих сомнению их достоинства. Первопричиной их стала «сырость» ранних экземпляров и имеющие место реальные минусы, которые были подхвачены противниками нового. Производители ламп накаливания тоже заинтересованы в «разоблачении» недостатков LED-освещения, так как желают подольше «оставаться на плаву».

Миф 1: Светодиодные лампы мерцают

Первые экземпляры светодиодных ламп китайского производства действительно были склонны к мерцанию. Они содержали дешевые электролитические конденсаторы в конструкции выпрямителя, и при пересыхании электролита под воздействием температур — появлялись пульсации. В настоящее время (2016 год) к мерцанию склонны только дешевые (до 50 грн) светодиодные лампы неизвестного происхождения. Качественные LED-лампы, в которых используются современные выпрямители и твердотельные конденсаторы, не мерцают даже после нескольких лет эксплуатации. Точный срок назвать сложно (технология довольно новая), но это минимум 1-3 года.

Миф 2: Излучение LED-ламп вредно для глаз

Этот миф зародился из-за того, что первые светодиоды белого свечения имели достаточно неоднородный спектр свечения. Наиболее интенсивным было излучение на границе перехода теплых и холодных тонов (в диапазоне желтого и зеленого, длина волны — 500-600 нм), в то время как в фиолетовом и синем (400-500 нм) наблюдался провал. Из-за того, что человеческий глаз регулирует размер зрачка, «оценивая» количество именно синего цвета (волна 450-500 нм), предполагалось, что длительное воздействие на глаза светодиодной лампы — вредно для зрения.

Однако, современные LED-светильники (особенно те, что имеют нейтральный или холодный белый цвет свечения) достаточно продвинулись в направлении выравнивания спектра. У современных диодных ламп интенсивность синего излучения близка к таковой у ламп накаливания и составляет около 20 % от максимума (самого интенсивного цвета, обычно красного). Таким образом, LED-лампы ничуть не вреднее для глаз, чем лампы накаливания, и, тем более, люминесцентные «экономки». У последних спектр излучения — вообще, выглядит на графике, как гребенка: отдельные тона «задраны» вверх почти на максимум, а между ними — провалы. Синий выражен слабо, зато ультрафиолет (реально небезопасный) — довольно интенсивный (до 15 %). Конечно, у Солнца его интенсивность достигает 40 %, но кто смотрит на солнце невооруженным глазом?

Можно сделать следующий вывод: спектр излучения LED-ламп не полностью совпадает с солнечным, но он не представляет вреда для глаз. По крайней мере, по части спектра современные диодные лампы не хуже люминесцентных, использующихся уже несколько десятилетий.

Миф 3: LED-лампы очень долго окупаются

Скептики часто утверждают, что срок службы диодов никогда не достигает заявленных 10 или 30 тысяч часов, а на окупаемость лампы выходят очень долго. Таким образом, ставится под сомнение сам факт экономии денег на электроэнергии, при использовании LED-освещения. Чтобы развеять миф, достаточно вооружится калькулятором и узнать тариф на электроэнергию. Он на данный момент составляет 1,29 грн/кВтч, для объема от 100 до 600 кВтч в месяц.

«Лампочка Ильича», мощностью 100 Вт, при горении 5 часов в сутки сжигает 500 Вт электроэнергии. 500 (Втч)*365 (дней)=182500 ВТч или 182,5 кВт. 182,5*1,29=235 грн. Именно во столько обходится лампа накаливания. А если учесть, что ее срок службы не превышает 1 года, сюда стоит приплюсовать и 10 грн стоимости самой лампы. Итого — около 250 грн в год стоит освещение одной комнаты лампой накаливания.

Световой поток 100-ваттной лампочки накаливания составляет 1200-1300 лм. Аналогичный световой поток обеспечивает качественная LED-лампа на 12 Вт. 12 (Втч)*5 (часов)*365 (дней)=21900 Втч или 21,9 кВтч, 21,9*1,29=28,25 грн в год. Экономия — почти в 10 раз! Стоимость светодиодной лампы MAXUS модели 1-LED-564, мощностью 12 Вт, в каталоге Price.ua составляет 139 грн. Даже если лампа прослужит 2 года (такую гарантию дают проверенные производители) — 139+28,25*2=195,5 грн, против 2*250=500 грн — с лампой накаливания. То есть, даже если лампочка будет перегорать как раз на следующий день после окончания гарантии — экономия составит более 2,5 раз. LED-лампа полностью окупается уже за первый год использования.

Читайте также: Как экономить на отоплении дома электричеством — маленькие хитрости для большой выгоды

Как выбрать светодиодные лампы

Перед тем, как выбрать светодиодные лампы, нужно определиться с их типом, формой и цветовой температурой. Имеет значение и мощность, но от том, как рассчитать освещение светодиодами, расскажет следующий подраздел.

Тип светодиодной лампы

Какую светодиодную лампу выбрать, с точечными или филаментными диодами, зависит от условий ее использования. Для центрального освещения комнаты с помощью люстры наиболее оптимальной является светодиоднрая лампа с нитевидными источниками света. Она равномерно рассеивает свет, не создает затененных зон и темных пятен посреди помещения.

Лампы на точечных диодах имеют ограниченный угол освещения, поэтому их использование ограничено. Использовать их в основном освещении стоит, если диоды в лампе будут направлены именно в ту часть комнаты, которую нужно подсветить сильнее всего.

Форма LED-лампы

Для основного освещения филаментными лампами подойдет практически любая форма. Стоит лишь помнить, что чем меньше колба — тем меньше внутри охлаждающего газа, а это накладывает ограничения на мощность. Если люстра рассчитана на один патрон — стоит купить филаментную лампу-грушу, альтернативы ей пока нет. Для светильников, рассчитанных на много лампочек, подойдут свечи. Также свеча и кукуруза — оптимальные форматы для локальных источников света (настольных ламп, ночников, бра, торшеров).

В случае с лампами на точечных диодов — ограничения на формат накладывает конструкция светильника. Какой формы выбрать светодиодную лампу — зависит от положения патрона в нем. Важно, чтобы диоды были направлены на участок, который нужно подсветить. Если вкрутить грушу в патрон, направленный вверх — потолок будет залит светом, а пол окажется в тени. При горизонтальном расположении патрона — основной поток света от груши будет падать на стену, а часть помещения сзади цоколя будет плохо освещена. Для горизонтального патрона оптимальна кукуруза. Она же хороша и для торшера.

Цветовая температура

Светодиодные лампы имеют широкий спектр свечения, регулируемый путем изменения свойств люминофора, которым покрывается полупроводниковый кристалл. Современные LED-лампы могут иметь цветовую температуру от 2000 до 7000 К. В диапазоне 2000-3000 К свет получается теплый, с оранжевым оттенком. 3000-4000 К дают теплый желтовато-белый свет, близкий к солнечному освещению вечером. 4000-6000 К — это нейтральные тона, подобные естественном дневному освещению в хорошую погоду. При цветовой температуре 6000-7000 К достигается практически идеальный нейтрально-белый свет, у верхней границы — с легкими голубыми оттенками.

Цветовая температура влияет на субъективное восприятие, подбирать ее следует на свой вкус. Для спальни, гостиной, других жилых помещений вполне подходят теплые тона, подчеркивающие уютную атмосферу. 6000-7000 К подходят для рабочего места, так как именно при естественном дневном освещении человеческий организм демонстрирует наилучшую трудоспособность. Также холодные тона хороши для кухни, ванной, уборной и коридора или прихожей.

Как рассчитать светодиодное освещение

Для правильного подбора мощности LED-ламп нужно провести несложные расчеты. Итоговая величина зависит от площади комнаты и требуемого уровня освещенности. Основной единицей измерения освещенности является люкс (лк) — производная от люмена. Она указывает, сколько люмен света приходится на 1 м2 площади. Если лампа, светимостью 1000 лм, установлена в комнате на 10 м2 — уровень освещения составляет 1000/10=100 лк. Уровень освещения, рекомендуемый специалистами, отличается для разных типов помещений. Нормативные документы, регулирующи нормы освещения — СНиП (действующие еще с советских времен) и ISO 8995 (международный стандарт).

Нормы освещения:

  • Прихожая, коридор — 50-100 лк.
  • Гостиная, столовая — 100-200 лк.
  • Спальня — 100 лк.
  • Ванная, туалет, гардеробная, лестница — 50-200 лк.
  • Рабочий кабинет — 300 лк.
  • Кабинет или зал для четехных работ — 300-500 лк.

Для расчета освещенности нужно сложить суммарную яркость ламп, используемых одновременно, и разделить ее на площадь помещения. Оценить, соответствует ли реальный уровень освещения теоретическому можно без сложных приборов. Достаточно современного смартфона, оборудованного датчиком освещенности. Нужно установить приложение, вроде SensorSense, которое и покажет уровень освещения. Для более точного замера нужно запустить программу в освещенном месте, но не направлять датчик смартфона (расположен над экраном) непосредственно на лампу.

 Пример расчета:

Имеется гостиная, площадью 15 м2, с люстрой на 3 патрона посредине комнаты. При верхней норме освещенности 200 лк необходима суммарная яркость ламп на уровне 15 (м2)*200 (лк)=3000 лм. При использовании трех одинаковых ламп — каждая из них должна выдавать около 1000 лм. Такой световой поток способна генерировать светодиодная лампа, мощностью около 10 Вт. То есть, для освещения комнаты нужно 3 LED-лампы по 10 Вт (вместо 3 лампочек накаливания по 75-100 Вт).

Читайте также

когда и кто изобрел первую лампу в мире

Современный мир невозможно представить без электричества. А ведь сравнительно недавно, каких-то двести лет назад, о нем можно было только мечтать. Освещение домов в темное время суток было доступно лишь состоятельным людям: жизнь простых крестьян и горожан зависела от солнечного света. Изобретение лампочки положило конец этому неравенству. Привычный для нас прибор сконструировали далеко не сразу. Давайте вспомним, какой путь прошли изобретатели, чтобы в домах было всегда светло.

Светильники до появления электрического аналога.

Человек искал пути освещения в ночное время с тех самых пор, как стал “человеком разумным”. Если на экваторе световой день достаточно длинный, то в северных широтах зимой он составляет всего 6-7 часов. Человек – не медведь, он не может спать остальные 16-17 часов. Технология освещения жилищ во всем мире в доэлектрическую эпоху была одна: огонь. Вначале это был просто костер в пещере. Затем, по мере цивилизации и усложнения жизненного уклада, стали появляться прообразы ламп. В огнестойкую емкость заливали подходящий состав и клали фитиль из ткани. В разных странах для этих целей использовали разные жидкости: жиры, растительные и минеральные масла, природный газ. Подобные лампы были пожароопасны и нещадно чадили. Да и свет от них был весьма тусклым.

В Средние века придумали свечи из пчелиного воска. Чадили они меньше. Использование большого количества свечей позволяло хорошо освещать помещения. Но пожароопасность никуда не ушла – необходимо было вовремя их гасить. Естественно, что использование большого количества свечей было доступно только богатым аристократам или мещанам. Простолюдинам по-прежнему оставалось довольствоваться  тусклым светом восковой свечки или керосиновой лампы.

Кто и когда первым в мире изобрел электрическую лампочку.

Все изменилось с изобретением электричества. Постепенно изобретатели нашли способ безопасно, ярко и дешево осветить дома всех людей.

В вопросе первенства изобретения лампочки, как и во многих других, отечественная и мировая точка зрения различаются. В России принято считать первооткрывателями Павла Николаевича Яблочкина и Александра Николаевича Лодыгина. Ученые придумали разные типы осветительных приборов. Яблочкин в 1875-1876 годах первым сконструировал дуговую лампу. Однако в дальнейшем ее признали неэффективной. Лодыгин же двумя годами ранее (1874 год) получил первый патент на лампу накаливания.

В мире же считается, что первая лампочка изобретена Томасом Эдисоном. Свой патент американский ученый получил в 1879 году, на пять лет позже Лодыгина. Эдисон после долгих экспериментов сконструировал прибор, горевший почти 40 часов – максимально возможный срок для того времени. Кроме этого, изобретатель добился удешевления производства, чтобы лампочку мог позволить себе каждый человек.

В вопросе первенства изобретения лампы нет однозначного ответа. Множество ученых в разных странах трудились над ней, но далеко не все патентовали свои открытия. Электрическую лампочку однозначно можно назвать коллективным детищем мирового научного сообщества.

История электрической лампочки: этапы открытия.

Рассмотрим историю создания осветительного прибора подробнее. Привычная лампа – это один из простых электротехнических приборов. Электротехника оформилась в отдельную науку почти сразу после открытия электричества во второй половине XVIII века. Историю лампочки стоит начать с изобретения химического источника тока – первого гальванического элемента. Его сконструировал итальянский ученый Алессандро Вольта в 1800 году. Почти сразу Санкт-Петербургская Академия закупила для опытов целую электрическую батарею, состоявшую из 420 пар гальванических элементов. Профессор Василий Петров несколько лет проводил с ней эксперименты. В результате в 1808 году он открыл электрическую дугу: разряд, возникающий между стержнями-электродами, разведенными на определенное расстояние. Петров предположил, что это свечение можно использовать для освещения. К такому же выводу через два года пришел английский ученый Гэмфри Деви. Электроды использовались, как металлические, так и угольные. Последние светили ярче, но быстро сгорали. Также необходимо было постоянно сдвигать электроды для поддержания необходимого расстояния. Ученым не удалось создать осветительный прибор, но их труды послужили основой для дальнейших исследований.

В 1838 году бельгийскому ученому Жобару удалось создать работающий прототип лампы с угольными электродами. Но они быстро сгорали, так как свечение проходило в воздушной среде.

В  1840 году член Петербургский Академии наук Уоррен Деларю (англичанин по происхождению) сконструировал лампу с платиновой спиралью. Устройство работало довольно продолжительное время и успешно освещало помещение, но из-за дороговизны материалов дальше опытного образца производство не пошло.

В 1841 году ирландский ученый Фредерик де Моллейн получил первый на осветительный прибор. Устройство состояло из платиновой спирали, помещенной в вакуум.

В 1844 году американский патент получает Джон Старр. Его лампа работала на основе углеродной нити. В связи со смертью ученого исследования прекратились.

<>Спустя еще десять лет в 1854 году ученый из Германии Генрих Гебель разработал первый прототип современной лампы: в качестве электродов использовались обугленные палочки бамбука, помещенный в колбу с откачанным воздухом. Ученому удалось создать прибор, которым он освещал собственный магазин. К сожалению, Гебель не смог получить патент на свое устройство. 

В 1860 году физик-англичанин Джозеф Уилсон Суон представил свой вариант осветительного прибора. Его патентованная лампа работала в вакууме с угольным волокном. Из-за сложностей поддержания нужного разрежения технология не получила дальнейшего распространения.

Наконец, в 1874 году российский инженер Александр Лодыгин изобретает и получает патент на нитевую лампу. В качестве элемента накаливания он выбирает угольный стержень. Нить накала помещалась в герметичный стеклянный сосуд с откачанным воздухом. Такое решение сразу повысило срок службы лампы до 30 минут и позволило использовать ее вне лабораторных стен. Через год ученый Василий Федорович Дидрихсон внес важные улучшения в конструкцию Лодыгина: поместил несколько нитей накаливания в одно устройство. При перегорании одного угольного стержня следующий начинал работать автоматически.

Электротехник Павел Яблочков в 1875-1876 годах совершил открытие, которое привело к изобретению дуговых ламп. Ученый изучал свойства каолина (белой глины) и увидел, что при определенных условиях он светится на открытом воздухе. Конструкция «свечи Яблочкова», как их тогда называли, проста. Она состояла из двух параллельных угольных стержней, покрытых каолином. Стержни стояли на подставке типа подсвечника. Электроды связывала тоненькая угольная перемычка. Она сгорала в момент включения лампы, разогревая каолин, который и светился в дальнейшем. Мировая общественность проявила к изобретению Яблочкова огромный интерес. Практически сразу же его лампы стали применять для освещения улиц Парижа, а потом и других столиц. К сожалению, срок службы «свечи Яблочкова» был невелик, и постепенно их заменили лампы накаливания.

Тем временем Джозеф Уилсон Свон продолжал свои труды и в 1878 году запатентовал новую конструкцию лампы с угольным волокном, помещенным в разреженную кислородную атмосферу.

Американский изобретатель Томас Эдисон не остался в стороне от проблемы создания лампы. Путем изучения мирового опыта и собственных многолетних экспериментов в 1879 году ученый патентует свою лампу. Вначале Эдисон использовал платиновую спираль, но затем вернулся к угольному волокну. И в 1880 году он создает лампу со сроком службы целых 40 часов. Устройство работало в герметичном корпусе с откачанным воздухом. Электроды изготавливались по специальной технологии из обугленных бамбуковых волокон. Лампа светила ярко и не мигала. Однако производство было слишком дорогим. Для удешевления Эдисон заменяет бамбук хлопковыми нитями. Попутно ученый изобретает выключатель, цоколь и патрон для лампочек. Винтовая конструкция последних позволяла быстро и безопасно заменить осветительный прибор.

В конце 80-х годов XIX века Лодыгин эмигрировал в США, где продолжил свои научные труды. В 1890-х годах он придумал использовать тугоплавкие металлы в качестве нити накала для лампочек. В результате экспериментов Лодыгин остановился на нитях из вольфрама и молибдена, закрученных в спираль. Также он проводил эксперименты  с газонаполнением ламп. В частности Лодыгиным была изготовлено  устройство с угольной нитью в атмосфере азота. В дальнейшем в 1906 году ученый продает идею использования вольфрамовой нити компании Эдисона. Сам Лодыгин сосредоточился на электрохимическом получении тугоплавких металлов. Данный метод отличался высокой стоимостью. Из-за этого вольфрамовые нити применялись редко, пока в 1910 году Уильям Кулидж не удешевляет их производство. С этого момента вольфрамовые спирали вытесняют все другие варианты нитей накаливания.

Годом ранее решилась проблема быстрого испарения нити в вакууме: в 1909 году американский ученый Ирвинг Ленгмюр начал заполнять колбу лампы накаливания инертными газами. Чаще всего использовался аргон. Все это привело к существенному повышению времени работы лампы накаливания.

За прошедшие сто с лишним лет их конструкция принципиально не изменилась: герметичная стеклянная колба, заполненная аргоном и вольфрамовая спираль. Несмотря на появление новых осветительных приборов (светодиодных, люминесцентных и других), лампа накаливания не сдает своих позиций и широко используется во всем мире. Тем приятнее осознавать, что к изобретению столь популярного осветительного прибора приложили руку (и голову) многие российские ученые.

Кто изобрёл неоновую лампу, принцип работы

Вы знаете, что неоновая лампа изобретена в результате экспериментов,  целью которых была поставка в больницы сжиженного кислорода? Предлагаем вашему вниманию небольшую историю про изобретение неоновой лампы и принцип ее работы.

Жан Клод – изобретатель неоновой лампы

Фактически к изобретению неоновой лампы учёные приближались несколько раз до XX века. Астроном из Франции, Жан Пикар, в 1675 году обнаружил загадочный слабый свет в трубке ртутного барометра, причину которого не смог объяснить. Спустя много лет, в 1855 году, немецким физиком Генрихом Гейслером был изобретен прообраз газоразрядной трубки. Сам неон был открыт в 1898 году – английскими учеными Уильямом Рэмзи и Моррисом Трейвером.

Эти открытия стали словно отдельными деталями, которыми предстояло соединиться в одно изобретение. Изобретателем неоновой лампы стал француз Жан Клод, инженер, обладавший талантом предпринимателя. Он рассчитывал поставлять в больницы сжиженный кислород, и на этом неплохо зарабатывать.

Проблема была только одна – инертные газы мешали получить качественный кислород. Удаляя примеси из кислорода, практичный Клод пытался найти им применение. Однажды он услышал про «светящиеся трубки». Он закачал газы в трубки и пропустил через них электрический заряд. Трубки начали светиться – красным цветом от неона и голубым от аргона. Инженер сразу понял, что это открытие принесет ему коммерческий успех.

В 1910 году Жан Клод представляет свое неоновое освещение на выставке достижений в Париже, и вскоре патентует его. В 1915 году он открывает компанию Claude Neon Lights, и продает лицензию на свою технологию всем, кто желает повесить неоновую вывеску. Это сделало Клода состоятельным очень быстро – уже к концу 20-х годов ежегодный доход его компании достигал почти 10 миллионов долларов.

Характеристика и принцип работы неоновых ламп

Расскажем немого о принципе работы неоновых ламп. Их конструкция состоит из стеклянных трубок (цветных или прозрачных), которые заполняются инертным газом. Чаще всего это неон в чистом виде или в виде смеси с аргоном. Трубка подключается к источнику питания, а когда через нее проходит электрический заряд, газы внутри трубки начинают светиться.

Что касается характеристик неоновых ламп, то здесь можно отметить очень высокую яркость, долговечность и огромный выбор оттенков свечения. Недостатки – неоновые лампы хрупкие, стоят дорого и пожароопасны. Эти минусы и стали причиной того, что, некогда невероятно популярный, неон утратил свои позиции. Всё чаще неоновое освещение на улицах стали заменять светодиодным. LED-подсветка более экономична, потребляет меньше электроэнергии, пожаробезопасна, устойчива к атмосферным и механическим воздействиям.

Некоторые производители решили пойти дальше и воссоздали эффект неонового свечения  в светодиодной подсветке. Так, компания Arlight предложила «гибкий неон», работающий по LED-технологии.

электрическую, лампочку накаливания, в каком году

Попытки побороть темноту, прогнать ее принимались людьми с давних времен. Для этого использовали самые разные источники освещения: налитое в глиняный сосуд масло и горящий фитиль, факелы, лучины, свечи из воска и сала. Но все такие светильники «работали» от источника открытого огня и были пожароопасны. Новой эпохой в истории освещения стало изобретение электричества и первой лампы в конце XIX века.

Изобретатель первой лампочки

Первые попытки создать постоянный источник света, который работал бы от электрической сети. Примечательно, что тех, кто придумал лампу накаливания, оказалось аж трое.

Российский ученый Лодыгин Александр Николаевич — изобретатель, создавший лампу накаливания. В ней применялся прокаливаемый без кислорода угольный стержень, помещенный в герметично запаянный сосуд. Вакуум внутри не позволял нитям накаливания быстро окисляться, что продляло их срок службы. Впоследствии Лодыгин предложил использовать вольфрамовые нити или скрученные в спирали молибденовые.

Лодыгин — первый, кто изобрел лампочку и получил патент

Англичанин Джозеф Уилсон Суон получил патент в 1878 году. Это был усовершенствованный вариант лампы Лодыгина: внутри колбы находилась разреженная кислородная атмосфера, что повышало срок ее службы.

Когда же Томас Эдисон впервые продемонстрировал электрическую лампочку? Его патент датируется 1879 году. Изобретатель предложил использовать платиновую нить, но уже через год он вернулся к угольному волокну. Благодаря упорной работе и тысячам опытов Эдисону удалось получить лампу, которая работала более 1,2 тысяч часов. Также изобретатель активно продвигал свое изобретение, участвовал в создании централизованного электроснабжения и освещения, организовал первую компанию по производству ламп.

Эдисона называют «отцом» электрических ламп

Не стоит считать, что ученые «украли» идею друг у друга. Кто же тогда изобрел первую электрическую лампочку, напоминавшую современную? Схожие опыты проводились в разных странах независимо друг от друга, получить практически одинаковый результат не составило труда.

Ее внешний вид

Самая первая — опытная — электролампочка представляла собой вытянутую трубку, внутри которой размещались платиновые полоски, на которые подавался ток. Конструкция не сильно изменилась впоследствии: нити закрутились в спирали, трубка приобрела форму груши.

Для сравнения: лампа Лодыгина была выполнена в виде тонкой угольной палочки, которую зажали медные стержни. Все это было помещено в круглый шар из стекла.

Лампа Лодыгина была непохожа на современные

Лампа Эдисона же представляла собой колбу, из который был выкачан воздух. Горел тонкий угольный стержень. Однако изобретатель не остановился на одной лампочке: благодаря его улучшениям (изобретению винтового цоколя, патрона, предохранителей, выключателей и т.д.) увеличилось время работы ламп.

Характеристики, достоинства и недостатки

В XXI веке многие постепенно переходят на энергосберегающие и светодиодные лампы, но у ламп накаливания есть и свои преимущества:

  • Мгновенное возгорание и отсутствие перебоев в работе;
  • Они могут работать как от постоянного, так и от переменного тока;
  • Широкий ассортимент: можно выбрать лампочку с подходящей температурой, напряжением, яркостью;
  • Небольшие размеры;
  • Экологичность;
  • Невысокая цена.

Лампы могут выглядеть по-разному

К недостаткам устройств относятся:

  • Невысокий КПД;
  • Хрупкость;
  • Низкий срок службы;
  • Пожароопасность.

Несмотря на недостатки, лампы накаливания были крайне популярны несколько десятков лет и быстро заменили привычные источники освещения.

Этапы развития

Лодыгин, Суон и Эдисон являются создателями современных ламп, но не первой лампочки вообще. Устройство прошло долгий путь «становления»:

В 1840 году английский астроном Де ла Рю во время опыта поместил платиновую проволоку в стеклянную вакуумную трубку и пропустил через нее ток. Это была первая электрическая лампа, принцип работы которой лег в основу дальнейших изобретений.

Первые лампы значительно отличались от современных

Угольные нити появились только в 1844 году. Идея была высказана и опробована американцем Старом, который успел получить патент, но вскоре умер.

Важно! В 1840 году в России Милашенко начинал работу над созданием угольных нитей накаливания, но результата не получил.

В 1854 году часовщик из Германии Гёбель использовал обугленную нить из бамбука вместо угольной. Вакуум в верхней части трубки создавался при помощи ртути. Такая лампа могла работать несколько часов и стала прототипом современной.

В 1860 году Суон также продемонстрировал свою лампу и даже получил патент, но его изобретение горело недолго и было малоэффективно. Впрочем через несколько лет изобретатель станет одним из создателей «настоящей» лампочки.

1874 год — получение Лодыгиным патента.

Первая электрическая лампочка работала примерно так же, как и более «молодые»

В 1875 году устройство Лодыгина было усовершенствовано русским электротехником Дидрихсоном. Последний полностью откачал воздух из колбы и использовал несколько нитей, чтобы при перегорании одной автоматически включалась другая.

В 1875-1876 годах электротехник Яблочков изобрел дуговую лампу. Он использовал каолиновую нить накала, которая могла работать вне вакуума, не перегорала на воздухе, однако его изобретение не снискало славы.

Первые вольфрамовые нити начали использовать в 1905 году (патент австро-венгры Юст и Ханаман получили годом ранее). Вскоре вольфрам вытеснил все прочие материалы.

Проблема с быстрым испарением нитей в вакууме решили в начале ХХ века: американец Ленгмюр начал использовать инертные газы.

Сегодня используют вольфрамовую нить

История современных ламп накаливания тесно связана с электричеством. После его изобретения в разных странах начали проводиться исследования, которые привели к появлению «Электрической свечи». И хотя первым патент получил россиянин Лодыгин, «отцом» лампочки считается Эдисон, который не только улучшил свое изобретение, но и много сделал для его популяризации.

кто придумал и создал первым в мире электрическую лампочку накаливания, история создания Лодыгиным и Эдисоном

Время на чтение: 3 минуты

АА

Споры о том, кто был истинным изобретателем лампы накаливания, ведутся по сей день. В основном, фигурируют два имени – Томас Эдисон и Александр Лодыгин. На самом же деле, великое открытие состоялось благодаря упорной работе многих ученых.

Кто первым в мире и когда придумал и изобрел?

С древних времен люди искали способы освещения в ночное время. Например, в Древнем Египте и Средиземноморье использовались аналоги керосиновой лампы. Для этого в особые глиняные сосуды вставлялся фитиль из хлопчатобумажной ткани и наливалось оливковое масло.

Жители побережья Каспийского моря использовали похожее устройство, только вместо масла в сосуд наливали нефть. В Средние века глиняные светильники сменили свечи из пчелиного воска и сала.

Но во все времена ученые и изобретатели искали возможность создать долговечный и безопасный осветительный прибор.

После того как человечество узнало об электричестве, исследования вышли на качественно новый уровень.

За изобретение первых электрических ламп, подходящих для коммерческого использования, мы должны благодарить трех ученых из разных стран. Независимо друг от друга они проводили свои эксперименты и в итоге добились результата, перевернувшего мир.

ВАЖНО! В 70-е годы XIX века было получено три патента на новейшие устройства – угольные лампы накаливания в вакуумных колбах.

В 1874 г. выдающийся ученый Александр Николаевич Лодыгин запатентовал свою лампу накаливания в России.

фото4

фото4

В 1878 г. Джозеф Уилсон Суон подал заявку на британский патент.

В 1879 г. американский патент получил изобретатель Томас Эдисон.

Именно Эдисон создал первую промышленную компанию по производству ламп накаливания. Большой заслугой стало то, что он сумел добиться длительной продолжительности работы – более 1200 часов – благодаря использованию карбонизированного бамбукового волокна.

В начале 80-х годов XIX века Эдисон и Суон организовали в Британии совместную компанию. Она так и называлась «Эдисон и Суон». В то время она стала самым крупным производителем электрических ламп.

фото5

фото5

В 90-е годы Александр Лодыгин переехал в Америку, где и предложил использовать вольфрамовую или молибденовую спираль. Это был очередной технологический прорыв. Лодыгин продал свой патент компании General Electric, которая начала производить электрические лампы с вольфрамовой нитью.

А уже в 1920 году один из работников компании Уильям Дэвид Кулидж рассказал миру, как можно производить вольфрамовую нить в промышленных масштабах. В том же году другой ученый из General Electric по имени Ирвинг Ленгмюр предложил наполнять колбу лампочки инертным газом.

Именно это значительно повысило период работы лампы накаливания, а также увеличило светоотдачу.

Этими устройствами человечество пользуется по сей день.

История создания электрической лампочки

Конечно, история создания лампы неотделима от развития такой науки, как электротехника. Она берет начало с открытия в XVIII веке электрического тока. Это открытие поспособствовало тому, что выдающиеся ученые со всего мира занялись изучением и развитием электротехники, которая к тому времени выделилась в самостоятельную науку.

  • XIX век стал веком глобальных открытий. В 1800 году был изобретен гальванический элемент – химический источник тока. Его еще называют вольтовым столбом в честь итальянского ученого Алессандро Вольта.
  • В следующем году в Санкт-Петербурге руководство Петербургской медико-химической Академии приобрело электрическую батарею. Это мощное устройство было куплено в кабинет профессора Василия Петрова. Состояла батарея из 420 пар гальванических элементов. Целый год профессор Петров проводил с ней эксперименты, пока в 1908 году не открыл знаменитую электрическую дугу. Она представляет собой разряд, возникающий между угольными стержнями-электродами, разведенными на определенное расстояние. Тогда же и было предложено использовать электрическую дугу как источник света.
  • Первым шагом к созданию современных ламп накаливания стало изобретение в 1809 году первой лампы с платиновой спиралью в основе. Сделал это англичанин Деларю.
  • Через несколько десятилетий, в 1854 году немецкий ученый Генрих Гебель создал похожее устройство. Главным отличием было то, что он использовал обугленную бамбуковую нить, помещенную в вакуумный сосуд. То есть, этот вариант был уже гораздо ближе к известной всем нам электрической лампе. Гебель продолжал совершенствовать свое изобретение еще пять лет, создав устройство, которое называют первой практической лампой. К сожалению, получить патент он не мог, т. к. был эмигрантом без денег и связей. Тем не менее, он использовал свое изобретение для освещения принадлежавшего ему магазина часов.
  • фото67фото67Что касается массового электрического освещения, то здесь несомненный вклад внес наш соотечественник, выдающийся ученый Павел Николаевич Яблочков. Свои эксперименты он начал в России, а затем продолжил в Париже после эмиграции. Именно он создал простую, недорогую и долговечную «электрическую свечу». В 1876 году ученый представил свое изобретение на выставке в Лондоне. В том же году лампы, созданные Яблочковым стали появляться сначала на самых посещаемых улицах Парижа, а затем распространились на весь мир.

НА ЗАМЕТКУ! Отличительной чертой «свечи Яблочкова» было то, что для нее не требовалось вакуума. Нить накала, изготовленная из каолина, не перегорала и не теряла своих свойств на открытом воздухе.

И, конечно, говоря об истории электротехники, нельзя не вспомнить ученых, перевернувших мир – Александре Лодыгине и Томасе Эдисоне. Именно они, проводя эксперименты независимо друг от друга, в 70-е годы XIX века создали электрическую лампу.

Александр Лодыгин – изобретатель из России

фото2

фото2В 1872 году в Санкт-Петербурге Александр Николаевич Лодыгин приступил к опытам по электрическому освещению.

Его первые лампы представляли собой тонкую угольную палочку, зажатую между объемными стрежнями из меди. Все это находилось в закрытом стеклянном шаре.

Это было еще несовершенное устройство, тем не менее, они начали активно использоваться для освещения зданий и улиц Петербурга.

В 1875 году в товариществе с Коном была выпущена усовершенствованная электрическая лампа. В ней угольки заменялись автоматически, кроме того, они располагались в вакууме. Эта разработка принадлежит электротехнику Василию Федоровичу Дитрихсону.

В 1876 году другой исследователь, Булыгин также внес коррективы. В его разработке уголек выдвигался по мере сгорания.

В конце 70-х годов лампа накаливания, созданная Лодыгиным и запатентованная в России, Франции, Великобритании, Австрии и Бельгии, попала, наконец, и в США. Лейтенант Хотинский отправился к побережью Америки, чтобы принять корабли, построенные для Российского флота. Именно Хотинский посетил лабораторию и показал «лампу Лодыгина» и «свечу Яблочкова» американскому исследователю Томасу Эдисону.

Доподлинно неизвестно, как это повлияло на ход мыслей Эдисона, который и сам в то время работал над созданием искусственного освещения. Как бы то ни было, именно Эдисон довел конструкцию лампы накаливания до качественно нового уровня, а также популяризовал ее, организовав массовое производство. Это помогло значительно снизить стоимость, что позволяло покупать лампу даже беднякам.

Александр Лодыгин также не останавливался в своем рвении усовершенствовать лампу накаливания. После переезда в США, в 1890 году, Лодыгин получил еще один патент – на лампу с металлической нитью из тугоплавких металлов — осьмия, иридия, родия, молибдена и вольфрама. Это был настоящий прорыв в области электротехники. Изобретение имело оглушительный успех, и в 1906 году патерн на него был куплен компанией General Electric. К слову, компания эта принадлежала Томасу Эдисону.

Создание лампочки Эдисоном

фото3

фото3Во всем мире принято считать, что электрическую лампочку изобрел ученый Томас Альва Эдисон.

На протяжении многих лет Эдисон ставил эксперименты в области электротехники. В течение почти двух лет он искал идеальный вариант для нити накаливания.

Исследователь провел эксперименты более чем с шестью тысячами углеродсодержащих материалов. Методично перебирая и исследуя разнообразные вещества, Эдисон пришел к выводу, что лучшим вариантом является японский бамбук, из которого создан футляр для веера.

В 1879 году появилась первая заметка в газете, гласящая об изобретении Томасом Эдисоном лампы накаливания с угольным стержнем. Названа она была «Эдисоновский свет». Такая лампа могла непрерывно гореть в течение сорока часов. В том же году Эдисон запатентовал свое изобретение.

Нельзя сказать, что Эдисон внес значительные изменения в лампу накаливания, созданную Лодыгиным.

Как выглядел вариант лампы Эдисона?

Это также была стеклянная колба, из которой был полностью выкачан воздух. Горел в ней так же угольный тонкий стержень. Но именно Эдисон создал условия для максимально комфортной работы ламп накаливания. Он изобрел такие вещи, как винтовой цоколь, патрон, счетчики энергии, а также выключатели и предохранители.

Более того, организовав собственное производство, он поставил на поток изготовление электрических лампочек и механизмов электрический системы. Несмотря на то что лампа накаливания была создана задолго до получения патента американским ученым, именно благодаря Эдисону электрическое освещение получило столь широкое распространение.

Патент Эдисона на лампу накаливания вскоре (еще до окончания срока действия) был призван недействительным.

Говоря о великом изобретении – лампе накаливания – нельзя называть только одно имя. Без сомнения, у нее было несколько выдающихся изобретателей, каждый из которых внес неоценимый вклад в развитие электротехники.

Рейтинг автора

Автор статьи

Доцент кафедры энергетики. Автор статей по осветительным приборам.

Написано статей

Предыдущая

Лампы накаливанияУстройство плавного включения — достоинства и схема работы

Следующая

Лампы накаливанияЯркая, но короткая жизнь ламп накаливания или почему обрывается нить

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *