Site Loader

Содержание

Мигающие светодиоды (Blinking LEDs)

Устройство и параметры мигающих светодиодов

Мигающий светодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 – 3 Гц. Многие, наверное, видели такие светодиоды на прилавках магазинов радиодеталей.

Есть мнение, что с практической точки зрения, мигающие светодиоды бесполезны и могут быть заменены более дешёвой альтернативой – обычными индикаторными светодиодами, которые стоят дешевле.

Возможно, такой взгляд на мигающие светодиоды имеет право на жизнь, но хотелось бы сказать несколько слов в защиту мигающего светодиода.

Мигающий светодиод, по сути, представляет завершенное функциональное устройство, которое выполняет функцию световой сигнализации (привлечения внимания). Отметим то, что мигающий светодиод по размерам не отличается от рядовых индикаторных светодиодов.

Несмотря на компактность в мигающий светодиод входит полупроводниковый чип-генератора и некоторые дополнительные элементы. Если выполнить генератор импульсов на стандартных элементах с использованием обычного индикаторного светодиода, то конструктивно такое устройство имело бы куда большие размеры. Также стоит отметить то, что мигающий светодиод довольно универсален – напряжение питания такого светодиода может лежать в пределах от 3 до 14 вольт – для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Перечислим отличительные качества мигающих светодиодов.

  • Малые размеры.

  • Компактное устройство световой сигнализации

  • Широкий диапазон питающего напряжения (вплоть до 14 вольт)

  • Различный цвет излучения. В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно – 3) разноцветных светодиода с разной периодичностью вспышек.

Применение мигающих светодиодов оправдано в компактных устройствах, где предъявляются высокие требования к габаритам радиоэлементов и электропитанию – мигающие светодиоды очень экономичны, т.к электронная схема

МСД выполнена на МОП структурах.
Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок – пунктирные и символизируют мигающие свойства светодиода.

Условное графическое обозначение МСД

Разберёмся подробнее в конструкции мигающего светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.

Чип генератора размещён на основании анодного вывода.

Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Конструкция мигающего светодиода

Чип генератора состоит из высокочастотного задающего генератора – он работает постоянно — частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,53 Гц.
Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

В микроэлектронике для создания конденсатора ёмкостью несколько микрофарад потребовалось бы использование

большей площади полупроводника для создания обкладок конденсатора, что с экономической стороны нецелесообразно.

Чтобы не расходовать площадь подложки полупроводника на создание конденсатора большой ёмкости инженеры пошли на хитрость. Высокочастотный генератор требует небольшой ёмкости конденсатора во времязадающей цепи, поэтому и площадь обкладок минимальна.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.

Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор

. У низковольтных МСД ограничительный резистор отсутствует. Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

На примере мигающего светодиода L-816BID фирмы Kingbright рассмотрим основные параметры мигающих светодиодов.

Частота вспышек светодиода L-816BID непостоянна и изменяется в зависимости от напряжения питания.

Как видно из графика с увеличением питающего напряжения (forward voltage) частота вспышек светодиода L-816BID уменьшается c

3 Гц (Hz) при напряжении питания 3,5 вольт, до 1,5 Гц при 14.

График зависимости частоты вспышек от напряжения

Зависимость прямого тока (forward current), протекающего через светодиод L-816BID, от приложенного постоянного прямого напряжения (forward voltage) показана на графике. Из графика видно, что максимальный потребляемый ток – 44 mA (0,044 A). Минимальный потребляемый ток составляет 8 mA.

График зависимости тока от напряжения на светодиоде

Безопасно проверить исправность мигающего светодиода, например, при покупке, можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Цоколёвка светодиода

Цоколёвка выводов мигающих светодиодов аналогична цоколёвке обычных светодиодов. Длинный вывод – анод (+), более короткий – катод (-).

Главная &raquo Технологии &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как сделать мигающий светодиод — РАДИОСХЕМЫ

Всем привет, сегодня мы рассмотрим мигалку на одном транзисторе. Можно сказать это первые шаги в радиоэлектронике, ведь первое, что я решил собрать, была мигалка на транзисторе. Схема очень простая и состоит из четырёх деталей: транзистор n-p-n проводимости (не знаете — поищите в гугле, почитайте что за штука) в моем случае им был bc547, конденсатор электролитический на 470 мкФ (микрофарад), резистор 1,8 килоом и светодиод зеленого свечения.

светодиод внутри

Собрать не так просто — нужна знать, где у светодиода и конденсатора плюс и минус. У светодиода проверяется полярность подключивши его к источнику питания 5-10 вольт через резистор на 100 Ом.

полярность конденсатора

У конденсатора проще, так как на корпусе есть линия белая, жёлтая, синяя — с той стороны у него минус, а с обратной плюс.

Распиновку транзистора 547

Распиновку транзистора используемого вами, лучше посмотреть в интернете, в моем случае такая:

Как заставить светодиод мигать - схема

О радиодеталях кое-что узнали, теперь рассмотрим схему. Ничего сложного в ней нет. Начинаем паять. Зачищаем жало паяльника от грязи и окисла.

Зачищаем жало паяльника

Теперь рассмотрим детали, которые я выпаял из плат. Чтоб опознать номинал сопротивления используйте декодер цветовой маркировки резисторов.

детали в мигалку на одном транзисторе

Припаиваем светодиод до транзистора.

Припаиваем светодиод до транзистора

Потом припаиваем конденсатор, внимательно смотрим на распиновку транзистора и полярность светодиода, конденсатора. Резистор не имеет полярности — его можно запаять любой стороной.

Припаиваем светодиод до транзистора и конденсатора

Наше устройство в сборе. Подпаиваем проводки и тестируем, рабочее напряжение 8-18 вольт.

Как заставить светодиод мигать

Мигающий светодиод своими руками: схемы с описанием

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

[contents]

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Проще всего определить катод светодиода, рассматривая прибор на просвет. Катодом является электрод с большей площадью. Минусовой вывод «электролита» обычно помечен белой полосой на корпусе прибора.

В зависимости от задач, которые ставит перед собой радиолюбитель, схему мигалки можно собрать «навесу», соединяя выводы радиодеталей между собой с помощью отрезков тонкого провода. В этом случае может получиться конструкция наподобие той, что показана ниже на фото.

Собираем мигалку «на коленке»

Если нужно собрать мигалку для последующего применения, то монтаж можно выполнить на куске жесткого картона или изготовить печатную плату из текстолита.

Простая мигалка на светодиоде

Существуют более простые схемы мигалок на светодиоде. Одна из таких показана на следующем фото.

Схема самой простой мигалки

Если внимательно присмотреться к этой светодиодной мигалке, то можно увидеть, что транзистор в схеме мигалки включен «неправильно». Во-первых, неправильно подключены эмиттер и коллектор. Во-вторых, база «висит в воздухе». Однако схема светодиодной мигалки вполне рабочая. Дело в том, что в ней КТ315 работает как динистор. При достижении на нем порогового значения обратного напряжения происходит пробой полупроводниковых структур и транзистор открывается. Нарастание напряжения на транзисторе происходит по мере зарядки конденсатора. После открывания транзистора конденсатор разряжается на светодиод. Так как в схеме мигалки на светодиодах используется нестандартное включение транзистора, она может потребовать подбора резистора или конденсатора при наладке.

После того, как сделаете своими руками простую мигалку, можете переходить к более сложным мигающим устройствам, например к созданию цветомузыки на светодиодах.

Мигающий светодиод на одной батарейке

Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.

В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.

Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда. Заставить мигать глазки мягкой игрушки.

 

Мигающий светодиод своими руками 12 вольт. Мигающие светодиоды (Blinking LEDs)

Мигающие светодиоды применяются в различных сигнальных схемах, в рекламных щитах и вывесках, электронных игрушках. Сфера их применения достаточно широка. Простая мигалка на светодиоде может быть также использована для создания автосигнализации. Надо сказать, что моргать этот полупроводниковый прибор заставляет встроенная микросхема (ЧИП). Основные достоинства готовых МСД: компактность и разнообразие расцветок, позволяющее красочно оформлять электронные устройства, например, рекламное табло с целью привлечения внимания покупателей.

Но можно изготовить мигающий светодиод самостоятельно. Используя простые схемы, это сделать несложно. Как сделать мигалку, имея небольшие навыки работы с полупроводниковыми элементами, описано в этой статье.

Мигалки на транзисторах

Самый простой вариант – светодиодная мигалка на одном транзисторе. Из схемы видно, что база транзистора висит в воздухе. Такое нестандартное включение позволяет ему работать как динистор.

При достижении порогового значения возникает пробой структуры, открытие транзистора и разрядка конденсатора на светодиод. Такая простая мигалка на транзисторе может найти применение в быту, например, в небольшой елочной гирлянде. Для ее изготовления понадобятся вполне доступные и недорогие радиоэлементы. Светодиодная мигалка, сделанная своими руками, придаст немного шарма пушистой новогодней красавице.

Можно собрать похожее устройство уже на двух транзисторах, взяв детали из любой радиоаппаратуры, отслужившей свой срок. Схема мигалки приведена на рисунке.

Для сборки понадобятся:

  • резистор R = 6,8–15 кОм – 2 штуки;
  • резистор R = 470–680 Ом – 2 штуки;
  • транзистор n-p-n-типа КТ315 Б – 2 штуки;
  • конденсатор C = 47–100 мкФ – 2 штуки;
  • маломощный светодиод или светодиодная лента.

Диапазон рабочего напряжения 3–12 вольт. Подойдет любой источник питания с такими параметрами. Эффект мигания в данной схеме достигается поочередным зарядом и разрядом конденсаторов, влекущим за собой открытие транзисторов, в результате чего появляется и исчезает ток в цепи светодиода.

Светодиоды с миганием можно получить, подключив выводы к нескольким разноцветным элементам. Встроенный генератор выдает поочередно импульсы на каждый цвет. Частота моргающего импульса зависит от заданной программы. Таким веселым миганием можно порадовать ребенка, если установить устройство в детскую игрушку, например, машинку.

Неплохой вариант получится, если взять трехцветный мигающий светодиод, имеющий четыре вывода (один общий анод или катод и три вывода управления цветом).

Еще один простой вариант, для сборки которого понадобятся батарейки типа CR2032 и резистор сопротивлением от 150 до 240 Ом. Мигающий светодиод получится, если последовательно соединить все элементы в одной схеме, соблюдая полярность.

Если получается собрать веселые огоньки по простейшей схеме, можно перейти к более сложной конструкции.

Данная схема мигалки на светодиодах работает следующим образом: при подаче напряжения на R1 и заряжении конденсатора С1, на нем растет напряжение. После того как оно достигнет

Как сделать мигающий светодиод: принцип действия, тесты, схема

Лишены возможности купить готовый мигающий светодиод, где внутрь колбы встроены необходимые элементы для осуществления нужной функции (осталось подключить батарейку) – попробуйте собрать авторскую схему. Понадобится немногое: рассчитать резистор светодиода, задающий совместно с конденсатором период колебаний в цепи, ограничить ток, выбрать тип ключа. По некоторым причинам экономика страны работает на добывающую отрасль, электроника закопана глубоко в землю. С элементной базой напряг.

Принцип действия светодиода

Работа светодиода

Работа светодиода

Подключая светодиод, узнайте минимум теории – портал ВашТехник готов помочь. Район p-n перехода за счет существования дырочной и электронной проводимости образует зону несвойственных толще основного кристалла энергетических уровней. Рекомбинируя, носители заряда высвобождают энергию, если величина равна кванту света, спай двух материалов начинает лучиться. Оттенок определен некоторыми величинами, соотношение выглядит так:

E = h c / λ; h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, греческой буквой лямбда обозначается длина волны (м).

Из утверждения следует: может быть создан диод, где разница энергетических уровней присутствует. Так изготавливаются светодиоды. В зависимости от разницы уровней, цвет синий, красный, зелёный. Редкие светодиоды обладают одинаковым КПД. Слабыми считают синие, которые исторически появились последними. КПД светодиодов сравнительно мал (для полупроводниковой техники), редко достигает 45%. Удельное превращение электрической энергии в полезную световую просто потрясающее. Каждый Вт энергии дает фотонов в 6-7 раз больше, нежели спираль накала в эквивалентных условиях потребления. Объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Создание мигалки на основе полупроводниковых элементов несравненно проще. Хватит сравнительно малых напряжений, схема начнет работать. Остальное сводится к правильному подбору ключевых и пассивных элементов для создания пилообразного или импульсного напряжения нужной конфигурации:

  1. Амплитуда.
  2. Скважность.
  3. Частота следования.

Очевидно, подключение светодиода к сети 230 вольт выглядит негодной идеей. Присутствуют подобные схемы, но заставить мигать сложно, элементная база отсутствует. Светодиоды работают от гораздо более низких питающих напряжений. Самыми доступными считаются:

Простой светодиод

Простой светодиод

  • Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, iPad и других гаджетов. Правда, выходной ток невелик, и не нужно. Вдобавок, +5 В нетрудно найти на шине блока питания персонального компьютера. С ограничением тока проблемы устраним. Провод красного цвета, землю ищите на черном.
  • Напряжение +7…+9 Встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями. Великое множество фирм, у каждой стандарты. Здесь бессильные дать конкретные рекомендации. Рации чаще выходят из строя в силу особенностей использования, лишние зарядные устройства обычно можно достать сравнительно дешево.
  • Схема подключения светодиода будет лучше работать от +12 вольт. Стандартное напряжение микроэлектроники, встретим во многих местах. Компьютерный блок содержит вольтаж -12 вольт. Изоляция жилы синяя, сам провод оставлен для совместимости со старыми приводами. В нашем случае может понадобиться, не окажись под рукой элементной базы питания +12 вольт. Комплементарные транзисторы найти, включить вместо исходных сложно. Номиналы пассивных элементов остаются. Светодиод включается обратной стороной.
  • Номинал -3,3 вольт на первый взгляд кажется невостребованным. Посчастливится достать на aliexpress RGB светодиоды SMD0603 4 рубля штука. Однако! Падение напряжения в прямом направлении не превышает 3 вольта (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Устройство светодиода понятно, условия горения известны, приступим к реализации задумки. Заставим элемент мигать.

Тестирование мигающих RGB светодиодов

Компьютерный блок питания выступает идеальным вариантом тестирования светодиодов SMD0603. Нужно просто поставить резистивный делитель. Согласно схеме технической документации оценивают сопротивления p-n переходов в прямом направлении, заручившись помощью тестера. Прямое измерение здесь невозможно. Соберем схему, показанную ниже:

Схема оценки сопротивления p-n переходов

Схема оценки сопротивления p-n переходов

  1. Микросхема дана вместе с номерами ножек согласно техническим характеристикам.
  2. Питание подается на катод, полярность напряжения отрицательная. 3,3 вольта хватит открыть p-n переходы.
  3. Переменный резистор нужен небольшого номинала. На рисунке установлен с максимальным пределом 680 Ом. В таком положении должен находиться изначально.
  4. Сопротивление открытого p-n перехода невелико, нужен значительный запас, чтобы диоды не погорели (помним, что максимальное прямое напряжение составляет 3 В). Принимается во внимание факт: при низком вольтаже сопротивление каждого светодиода составит 700 Ом. При параллельном включении суммарное сопротивление вычисляется формулой, показанной на рисунке. Подставляя в качестве трех входных параметров 700, получаем 233 Ом. Сопротивление светодиодов, когда только-только начнут открываться (по крайней мере, так полагаем). Формула расчёта суммарного сопротивления

    Формула расчета суммарного сопротивления

  5. Понадобится контролировать режим тестером (см. рисунок). Постоянно измеряем напряжение на светодиодной микросхеме, одновременно уменьшая значение сопротивления, пока разница потенциалов поднимется до 2,5 В. Дальше повышать вольтаж попросту опасно, быть может, многие остановятся на 2,2 В.
  6. Затем из пропорции найдем искомое сопротивление светодиодной микросхемы: (3,3 – 2,5)/2,5 = R пер / Rобщ, R пер – сопротивление переменного резистора, когда напряжение на дисплее тестера достигает 2,5 В. R общ = 3,125 R пер.

Провод +3,3 В блока питания компьютера оранжевой изоляции, схемную землю берем с черного. Обратите внимание: опасно включать модуль без нагрузки. Идеально подключить DVD-привод или другое устройство. Допускается при наличии умения обращения с приборами под током снять боковую крышку, извлечь оттуда нужные контакты, не снимать блок питания. Подключение светодиодов иллюстрирует схема. Измерили сопротивление на параллельном подключении светодиодов и остановились?

Поясняем: в рабочем состоянии светодиодов понадобится включить несколько, проделаем аналогичную настройку. Напряжение питания на микросхеме составит 2,5 вольта. Обратите внимание, светодиоды мигающие, показания неточные. Максимальное не превыше 2,5 вольта. Индикация успешной работы схемы выражается миганием светодиодов. Чтобы часть мерцала, уберем питание с ненужных. Допускается собрать отладочную схему с тремя переменными резисторами – по одному в ветвь каждого цвета.

Теперь знаем, как сделать мигающую светодиодную подсветку своими руками. Можно ли варьировать время срабатывания. Полагаем, внутри должны использоваться емкости. Возможно, собственные паразитные элементы p-n переходов светодиодов. Подключая переменный конденсатор параллельно схеме на вход, можно попробовать что-либо изменить. Номинал очень мал, измеряется пФ. Маленькая микросхема лишена больших емкостей. Допускаем, резистор, подключенный параллельно микросхеме (см. пунктир на рисунке), усаженный на землю, будет образовывать точный делитель. Стабильность возрастет.

Номиналы нужно брать весомые, не забывать: значительно ограничим ток, идущий через светодиоды. Фактически потребуется продумать вопрос согласно ситуации.

Обычный светодиод мигает

Схема для мигающего светодиода

Схема мигающего светодиода

Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.

Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана – закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:

  1. Транзисторный находится в режиме пробоя.
  2. Светодиод открыт за счет прямого включения.

В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, везение кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Видим, как работает светодиод.

Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными.

Простая мощная мигалка-двухполюсник на 12/24 Вольта.

РадиоКот >Схемы >Светотехника >Мигалки >

Простая мощная мигалка-двухполюсник на 12/24 Вольта.

История вопроса:   Мой шурин работает в автомастерской на фирме, которая занимается перевозкой тяжёлых и негабаритных грузов на близкие и дальние расстояния.  Как-то зашёл у нас разговор по поводу жёлтых мигалок (что-то вроде изображённой на рис.1), которыми оборудованы эти «дальнобои».  Шурин посетовал, дескать моторчики в этих мигалках в рейсах постоянно ломаются, что создаёт массу неудобств.

«Вот тут мы закупили для пробы 10 штук с электронной начинкой,  распотроши одну и посмотри, может спаять таких несколько платочек и вставить в нерабочие мигалки?» — спросил он. Вскрытие показало наличие схемы с заслуженным таймером NE555 с обвязкой,  раскачивающим мощный MOSFET и интегральным стабилизатором на 12 Вольт для запитки этого самого таймера. Воистину лень – двигатель прогресса. Перспектива рисовать – травить – сверлить меня не вдохновила и подумалось: а что, если порыться в тырнете,  может есть что попроще? Неужели в 21 веке…?, когда космические корабли бороздят…? для какой-то мигалки ничего интереснее не найти?!  Увы, не нашлось (а может плохо искал). Взгляд наткнулся на так называемые мигающие светодиоды (Blinked Led). Заинтересовало. Почитал о них подробнее. А вот здесь можно посмотреть: https://video.mail.ru/mail/obrazovanie-new/5107/7064.html   где господа из «Чип и Дип» утверждают, что структурная схема светодиода (далее BL) соответствует приведённой на рис.2

Шурин с оказией был заслан на Митинский радиорынок с одним условием – «Купи парочку на пробу и чтоб моргали пореже, как ваши мигалки». В предвкушении он купил сразу десяток и выдал мне полную ТТХ словами: «Продавец сказал три вольта, двадцать миллиампер, светится – белым». Ну что-ж, ладно, перейдём к фазе экспериментальной теории. Была спаяна схемка (рис.3)

Резистор номиналом 3КОм (на всякий случай, чтоб не насиловать предельными токами). Осциллограф показал следующее: U1- 3.0V, U2- 7,0V практически не изменяются при варьировании Uпит. от 9 до 30 Вольт. Период следования импульсов около секунды. И чем же мы будем управлять этими импульсами? Поиск по даташитам  привел к недорогому и популярному в широких кругах транзистору IRFZ44N. Вот его характеристики (рис.4)

Транзистор закрыт при U затвора до 3.5 Вольт, а уверенно открывается при напряжении 6 Вольт и выше. Причём при напряжении на затворе 7.0 Вольт сопротивление канала  порядка 22 миллиОм, что есть очень даже неплохо.

Предполагаю (чисто теоретически), что резистор R1 на рис.2 нам вреден потому, что

суживает диапазон U2 – U1 (рис.3), а напряжение U1 нам важно с точки зрения полного запирания канала. Ставят же его только в BL с высоким напряжением питания (6V, 9V…). В нашем случае применён 3-х вольтовый BL, где вроде-бы резистор отсутствует. но конкретный BL мне попался случайно и поэтому здесь есть большой простор для экспериментов и в подборе BL, и в подборе MOSFETа.

Теперь переходим к фазе практики. Паяем схему (рис.5)

На всякий случай скажу, что короткий вывод BL подключается обычно к «-», но если перепутаете, не страшно – внутри установлен защитный диод D. Кстати это касается и транзистора. Правда переполюсовкой всей схемы увлекаться не стоит, поскольку диод в транзисторе имеет падение напряжения порядка 1 вольт и будет перегреваться при больших  проходящих токах.  Для начинающих радиолюбителей также замечу, что корпус транзистора нельзя «сажать» на массу. Вот, что у меня получилось: (рис.6)

В качестве нагрузки я использовал галогенку с двумя спиралями на 12 вольт (55 и 60 Ватт соответственно), включёнными последовательно. Источник питания – старенький ЛАТР с выпрямителем на 5 Ампер. IRFZ44N не нагревается совершенно (комнатная температура). Схема уверенно работает от 9 до 30 вольт (выше не пробовал, лампу жалко и ЛАТР тоже). Изоляция – бумажный скотч.

«И где же тут двухполюсник?» — спросите Вы. Когда я объяснял шурину схему подключения сего дивайса, то после очередного вопроса с его стороны понял горькую истину – моя схема колоссально сложная и грамотно подключить её сможет редкий электрик. Архиважно кардинально упростить схему подключения к нагрузке, посижу-ка я, подумаю ещё. И вот что надумал: (рис.7)

По сути это двухполюсник. Мы можем подключать нагрузку в нижнее плечо, в верхнее плечо и даже в оба плеча одновременно. Это может быть полезно, например в автомобиле, где лампы одним электродом жёстко привязаны к массе кузова. Можно управлять включением устройства дистанционно при помощи тумблера, например, включенного в разрыв R1. А вот так я его сваял в «железе» : (рис.8)

По поводу деталей:

Марки BL не знаю, приблизительные данные см. выше. При подборе MOSFETа сверяйтесь с характеристиками его затвора  (GATE) по даташиту (Datasheet), ( GOOGLE – Ваш помощник).

С1- не ниже 10 мФ (лучше с запасом по ёмкости и по напряжению). VD1- любой кремниевый диод на 30V, 250 mA.  А вот фотография лабораторного испытания двухполюсника : (рис.9)

Большущий Адронный Коллаэдр отдыхает.

Помогали мне , как обычно:  Мурик и Тошка. (рис.10)

С уважением и наилучшими пожеланиями всем осилившим этот опус:

Сергей Б, Мурик, Тошка.

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Простейшие бегущие огни всего на одной микросхеме без программирования

Данная статья поможет сделать полезную в быту вещь, порадовать себя и своих близких, разобраться в основах радиотехники. Для изготовления бегущих огней вам понадобится совсем немного времени. Необходимые радиодетали можно купить в специализированных магазинах, и стоят они недорого.
Простейшие бегущие огни всего на одной микросхеме без программирования

Необходимые материалы и приспособления:



Простейшие бегущие огни всего на одной микросхеме без программирования

Схема и принцип действия


Мигающий светодиод выдает один импульс в 0,5 секунды. Этот импульс поступает на вход микросхемы. Микросхема считывает этот импульс и отправляет его поочередно на выходы. Каждый импульс идет на новый выход, последовательно от первого до десятого. После десятого выхода, счетчик сбрасывается, и процесс начинается заново. Таким образом получается эффект бегущих огней.
Простейшие бегущие огни всего на одной микросхеме без программирования

Изготавливаем простые бегущие огни


Простейшие бегущие огни всего на одной микросхеме без программирования
Светодиоды могут быть расположены свободно и держаться за счет проводов. Но для удобства, лучше изготовить корпус для наших огней. Возьмем кусок пластика, просверлим в нем десять отверстий. Отрежем излишки, оставив тонкую полоску.
Простейшие бегущие огни всего на одной микросхеме без программирования
Разгибаем усики светодиодов, и вставляем их в отверстия пластика.
Простейшие бегущие огни всего на одной микросхеме без программирования
Контакты светодиодов находящиеся с одной из сторон припаиваем к перемычке.
Простейшие бегущие огни всего на одной микросхеме без программирования
Простейшие бегущие огни всего на одной микросхеме без программирования
Выступающие за перемычку контакты отрезаем.
Простейшие бегущие огни всего на одной микросхеме без программирования
Простейшие бегущие огни всего на одной микросхеме без программирования
Далее производим сборку схемы по рисунку.
Простейшие бегущие огни всего на одной микросхеме без программирования
Простейшие бегущие огни всего на одной микросхеме без программирования

Простейшие бегущие огни всего на одной микросхеме без программирования
Простейшие бегущие огни всего на одной микросхеме без программирования
Подаем напряжение от 5 до 12 Вольт на выводы схемы. Для этого можно использовать блок питания или обычные батарейки и аккумуляторы. Наслаждаемся результатом.
Простейшие бегущие огни всего на одной микросхеме без программирования

Рекомендации


Если у вас под рукой только обычные пальчиковые батарейки – по 1,5 Вольта, для достижения необходимого напряжения их можно объединить. К плюсу одной батарейки подключаем минус второй, к плюсу второй – минус третьей и так далее. Это называется – последовательное соединение. Для достижения напряжения 6 Вольт, нам необходимо соединить последовательно 4 батарейки по 1,5 Вольта.
При подключении бегущих огней от блока питания, необходимо убедится в полярности и уровне напряжения. Обычно вся информация нанесена на корпус блока. Если таких сведений нет, необходимо воспользоваться вольтметром. В вольтметре контакты подписаны, обычно плюс красного цвета, минус черного. При правильном подключении к блоку питания прибор покажет положительное значение, например 12 Вольт. Если плюс и минус перепутаны, то показания вольтметра будут отрицательными, то есть со знаком минус, – 12 Вольт.
В качестве микросхемы IC 4017, можно использовать отечественный аналог – микросхему К561ИЕ8. Мигающий светодиод лучше использовать красного цвета – у него выше напряжение импульса. Двухцветные мигающие светодиоды использовать нельзя, с ними схема работать не будет.

Смотрите видео



Техника безопасности:


  1. Обязательно соблюдайте полярность подключения устройства.
  2. Если на блоке питания нет маркировки и вам нечем проверить напряжение, которое он выдает, использовать его нельзя.
  3. Перед использованием всю схему бегущих огней необходимо спрятать в какой-либо корпус или заизолировать во избежание коротких замыканий.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *