Сухие трансформаторы: технические характеристики
Преобразователи предназначены для изменения электрического тока посредством использования электромагнитной индукции. По типу конструкцию бывают масляные и сухие трансформаторы с литой изоляцией, которые отличаются между собой принципом охлаждения.
Что это такое
Сухие, разделительные или воздушные трансформаторы (ТС, ТСШ, печные ТСП) – это вид преобразователей ГОСТ Р 54827-2011, в которых магнитная система и две или более обмотки не погружаются в масляный раствор, а остужаются за счет движения воздушных потоков. Эти электрические устройства более просты и безопасны в эксплуатации хотя бы потому, что производители устранили проблему регулярной замены масла и контроля утечки охлаждающей жидкости. Также, как и любые другие трансформаторы они могут быть понижающими (для преобразования и понижения напряжения), повышающими (с прямо-пропорциональным принципом действия).
Недостатком работы считается то, что воздух охлаждает обмотки значительно медленнее, нежели масло. Поэтому между изоляциями сухих преобразователей большее расстояние и увеличенная ширина вентиляционных проходов.
Преимущества сухих трансформаторов:
- Безопасность. В масляных устройствах (Zucchini, ТМС) велика вероятность утечки масла или возгорания преобразователя;
- Простота в установке и использовании. В «мокрых» преобразователях нужно регулярно менять масло, иначе оно стареет, теряет свои свойства и засоряет протоки. Воздушные трансформаторы можно устанавливать в любых помещениях, без использования специальных сооружений (защитных кожухов). Для монтажа подходят короткие провода. Они нуждаются в регулярной чистке протоков и периодическом осмотре;
- Перегрузка возможна очень высокого напряжения, но на непродолжительный срок;
- Экологичность. Их можно устанавливать на участках, которые требует повышенной безопасности окружающей среды. Они активно применяются на территориях общего пользования (школы, институты, кинотеатры и т. д.), на различных предприятиях по переработке нефти, газа и химических отходов, также их используют реакторы атомных электростанций и для собственных нужд.
Но при этом, высоковольтные сухие модели имеют увеличенные габариты, в сравнении с моделями, работающими на жидком охлаждении. Иными словами, преобразователи, имеющие одинаковые параметры работы (показатели номинального напряжения, тока и т. д.), но работающие на различных диэлектриках, будут значительно отличаться друг от друга размерами.
Конструктивные особенности
Сухие воздушные трансформаторы с литой изоляцией бывают высоковольтные и низковольтные. Их мощность определяет тип вентиляции. Для низковольтных преобразователей применяется естественная система охлаждения, в которой воздух, попадая в вентиляцию природным путем, охлаждает магнитные обмотки и прочие токоведущие части. Высоковольтные автотрансформаторы и прочие преобразователи с мощностью до 10 кВА (например, ТЛС-10) охлаждаются принудительно дутьем.
Схема включает в себя следующие элементы:
- 1 – высоковольтный подвод;
- 2 – шпильки;
- 3 – зажимные подкладки из фарфора;
- 4 – прижимное кольцо;
- 5 – изоляторы для высокого напряжения;
- 7 – подкладки из фарфора для отводов;
- 8 – зажимная доска;
- 9 – регулировочные ответвления для высоковольтных отводов;
На схеме изображен высоковольтный преобразователь без кожуха, т. к., в большинстве случаев, такие устройства эксплуатируются без использования дополнительной изоляции. При необходимости кожух проектируется строго индивидуально для определенного трансформатора. Его мощность – 320 кВА.
Фото — GDNNОтводы воздушных сухих преобразователей изготавливаются из алюминиевых или медных проводов. Зажимы, которыми регулируется работы преобразователя, выводятся на доску 8. Для отводов высоковольтного напряжения (6) используются опорные изоляторы 5, для низковольтного – фарфоровые подкладки (на рисунке 7). На рисунке видно, что в отличие от масляных, здесь нет расширителя и бака для хранения масла.
Еще одним подвидом сухих трансформаторных подстанций являются измерительные преобразователи. Это очень важное электрооборудование для понижения цепей высокого напряжения с целью обеспечения питания вторичных сетей.
Фото — схема сухого измерительного трансформатораПо конструкции они также бывают однофазные (универсальные), например, ТСШ-4, и трехфазные ТСЗ, ТС (используются только, если напряжение менее 18 кВ). В зависимости от области эксплуатации они могут быть масляные (с жидким диэлектриком), сухие (с принудительным воздушным охлаждением), с литой изоляцией (для установки на пожароопасных участках).
Видео: трансформаторы Legrand серии Zucchini
Параметры
Каждый преобразователь имеет определенные показатели работы. Какие технические характеристики имеет ТСЗГЛ-1000 (трансформатор сухой 1000 кВА):
Номинальная мощность, кВА | 1000 |
Ток, А | 1,5 |
Потери мощности при ХХ и КЗ, Вт | 2,8/1,8 |
Напряжение короткого замыкания, В | 6 |
Эти устройства используются в различных тяговых механизмах, они комплектуются обмотками Siemens, что повышает их качество и стойкость к перепадам напряжения. Температура охлаждения до -60. Преобразователи этого типа изготавливаются с литой изоляцией, как и Триал (Trihal, фирмы Шнайдер Электрик) и SGB-SMIT, что гарантирует их повышенную безопасность от возгорания.
RESIBLOC 315 — 2500 кВА от ABB (АВВ):
Мощность, кВА | До 63 МВА |
Напряжение первичной обмотки, кВ | До 36 |
Вторичной обмотки, кВ | До 24 |
Частота, Гц | 50, 60 и 16 2/3 |
Принцип охлаждения | Принудительное и воздушное/принудительное |
Защита | IP00 — IP54 |
Их импортными аналогами являются итальянские GBE, SEA S.p.A, TESAR и прочие.
ТСЗП-10/0,7-УХЛ4(О4) (ТСП):
Номинальная мощность, кВА | 7,3 |
Номинальные напряжения обмоток (сетевой /вентильной), В | 380; 400; 500; 660/ |
Масса, кг | 205 |
Габариты, ДхШхВ, мм | 625 х 305 х 325 |
Параметры серии ТП:
Характеристики | Значения |
Мощности, кВА | 0.1; 0.16; 0.25; 0.40; 0.63; 1.0; 1.6; 2.5; 4.0; 6.3; 10.0; 16.0; 25.0; 40.0; 63.0;100.0 |
Мощности трехфазных трансформаторов, кВА | 1.0; 1.6; 2.5; 4.0; 6.3; 10.0; 16.0; 25.0; 40.0; 63.0; 100.0; 160.0; 250.0 |
Вид охлаждения | воздушное, естественное |
Изоляция | В |
Степень защиты | IP20 |
Климатическое исполнение | У или УХЛ (для районов с умеренным или умеренно-холодным климатом) |
Однофазные сухие тороидальные трансформаторы серии ОСМ-0,063 (аналог TTR):
Мощность, кВА | 0,063 |
Номинальное напряжение первичной обмотки, В | 110; 220; 380; 660 |
У вторичной обмотки, В | 12; 14; 24; 29; 42; 56; 110; 130; 220; 260 |
Вес, кг | 1,4 |
Сухие трансформаторы Trihal 1600 (есть модификации от 630 ква до 3200):
Мощность, кВА | 1600 кВа |
Напряжение обмоток, первичной и вторичной, кВ | 6/0,4 |
D/Yn | 11 |
IP00 |
Обзор цен
Купить сухой трансформатор можно в любом фирменном магазине или на предприятии-производителе. Завод предлагает стоимость от 500 до 10 000 долларов.
Город | Цена ТСЗГЛФ 630 кВА, у. е. |
Екатеринбург | 8500 |
Запорожье | 8550 |
Москве | 8600 |
Новосибирск | 8500 |
Санкт-Петербург | 8600 |
Сухие трансформаторы: конструкция и технические характеристики
Линии электроснабжения сегодня нуждаются в качественном оборудовании, которое сможет обеспечить подачу тока необходимого значения. В России на пути передачи электричества конечному потребителю применяют сухие трансформаторы. Они повышают, понижают напряжение, меняют частоту, фазность тока. Что такое сухой трансформатор, особенности применения, конструктивные особенности трансформаторной установки будут рассмотрены далее. Как выбрать оптимальное устройство российского и зарубежного производства, помогут советы специалистов.
Область применения
Российские производители изготавливают сухие и масляные трансформаторы. Конструкция отличается способом охлаждения. Сухие силовые трансформаторы избегают теплового разрушения активной части посредством воздуха. В другой разновидности конструкций применяется масло. Выбор типа трансформаторного оборудования зависит от особенностей эксплуатации. Приборы отличаются ценой, функционированием.
Установка масляных и сухих трансформаторных производится на высоковольтных станциях для понижения, повышения напряжения до требуемого значения. Это силовой агрегат, применяемый повсеместно.
Повышение значения токов проводится сухими трансформаторами для передачи электричества на дальние расстояния. Применяя такую установку, удается избежать потерь напряжения.
Технические характеристики сухого трансформатора позволяют понизить напряжение в сети до допустимой нормы. Это позволяет избежать перегрузок в установках, потребляющих электроэнергию. В зависимости от потребностей сети применяются сухие трансформаторы мощностью 100 кВА, 250 кВА, 400 кВА, 630 кВА, 1000 кВА. В российских агрегатах производством может быть заложена и более высокая мощность. Представленное оборудование устанавливается в помещении или на улице. Трансформаторные аппараты применяются в бытовых и промышленных сетях при осуществлении человеком различных видов деятельности.
Конструкция
Масляный и сухой тип охлаждения применяется в конструкции силового оборудования. Представленные разновидности в общем мало чем отличаются. При производстве представленных агрегатов конструкция обеспечивается магнитоприводом и контурами ВН (высокое напряжение) и НН (низкое напряжение). Для изготовления активной части оборудования применяются допустимые материалы. Сердечник изготавливается из электротехнической стали. Контуры бывают медными и алюминиевыми.
Предусматривается наличие кожуха. Воздух в сухом аппарате служит не только температурной защитой, но и изоляцией. Вентиляционные отверстия в представленном оборудовании больше, чем в масляных трансформаторах. Перегрузка из-за перегрева при использовании воздуха в качестве охладителя более вероятна.
Обмотки
Трансформатор сухой 250 кВА, 400 кВА, 1000 кВА и прочие разновидности отличаются категориями обмотки. Различают два типа контуров:
- ТСЗК – включает лаки на кремнийорганической основе.
- ТСЗ – создается из стекла. Отличается хорошими теплоизоляционными характеристиками.
Изоляция пропитывается специальными составами. Это предотвращает скапливание влаги внутри. Допустимая температура обмоток изоляции на основе асбеста и стекловолокна выше. Применение новых материалов позволяет избежать перегрузки системы.
Дополнительные элементы
Конструкция дополняется специальными устройствами. Чтобы регулировать исходящее напряжение сухой трансформатор 250 кВА, 630 кВА и прочие разновидности имеют реле. Например, это может быть устройство РПГ, РПН, ПБВ.
Установка требует контроля уровня нагрева магнитопривода. В противном случае возникнет перегрузка, аварийная ситуация. Автоматически контролирует параметры функционирования щит тепловой защиты (ЩТЗТ). Это надежное оборудование. Производство сухих трансформаторов применяет иногда иную систему. Для щитков ЩТЗТ выполняется установка датчика. Прибор реагирует на повышение температуры.
Щитки ЩТЗТ не допускают нагрев активной части свыше 10%. Характеристики, свойственные установке, разрешают кратковременное повышение температуры. Нагрев должен быстро снижаться. За это отвечает щиток. Превышение допустимых показателей температуры длительное время приводит к нарушениям работы агрегата, возникает перегрузка.
Габариты
Сухие трансформаторы имеют, по сравнению с масляными конструкциями, большие габариты. Перегрузка в этом случае при правильной эксплуатации маловероятна. Вес и размер зависят также от мощности. Установка монтируется в закрытых сухих помещениях.
Благодаря большим габаритам получается создать качественную вентиляцию внутри корпуса конструкции.
Преимущества и недостатки
Сухие трансформаторы характеризуются рядом особенностей. Технические характеристики, устройство аппаратуры говорят о высоком спросе на представленное оборудование. Высокая востребованность объясняется преимуществами, которыми обладает трансформаторное устройство сухого типа. Есть и недостатки. О них необходимо узнать перед приобретением аппаратуры.
Преимущества
Представленная установка для трансформации тока обладает массой достоинств. Преимущества сухих трансформаторов следующие:
- Применение при изготовлении специальной стали привело к снижению потерь в сети.
- Современные комплектующие позволяют снизить габариты и вес агрегатов.
- Преимуществом является экологическая безопасность приборов. В системе отсутствует масляный охладитель, который выделяет вредные для здоровья человека и окружающей среды вещества.
- Оборудование пожаробезопасное. При создании обмоток применяются негорючие материалы.
- Исполнение универсальное. Оборудование применяется в различных условиях.
Стоимость представленных установок приемлемая. На цену влияет мощность и габаритные размеры агрегата.
Недостатки
Сухие трансформаторы имеют и ряд недостатков. Их перегрузочная способность уступает масляным разновидностям оборудования. Стоимость последних будет значительно меньше. И продаются они дороже. Они имеют большие габариты, что значительно влияет на цену изделия.
Обслуживание
Не смотря на недостатки, сухие трансформаторные приборы используются в различных сферах человеческой деятельности часто. Обслуживание агрегата простое. Проверка производится раз в 6 месяцев. При этом проверяется система вентиляции.
Уход за агрегатом предполагает также его периодическую очистку от различных загрязнений. Частота уборки зависит от особенностей окружающей среды. В пыльных помещениях уход за поверхностью прибора необходимо выполнять чаще.
Обслуживание предполагает проведение внешнего осмотра оборудования. На нем не должно быть дефектов, механических повреждений. Крепежные элементы должны быть крепко затянуты. Болты проверяются раз в год. Выполняя простые рекомендации по проведению обслуживания, можно обеспечить длительную, надежную работу агрегата.
Видео: Производство сухих трансформаторов с литой изоляцией серии ТЛС
Рассмотрев особенности сухих трансформаторов, рекомендации по их выбору и эксплуатации, можно приобрести оптимальное оборудование в соответствии с особенностями сети.
Сухие трансформаторы:преимущества и недостатки перед масляными
Сухие трансформаторы – это трансформаторы с воздушным охлаждением. Тепло от нагретых частей таких трансформаторов отводится благодаря естественным воздушным потокам. Для трансформаторов мощностью до 2500 кВт с напряжением обмоток высшего напряжения до 15 кВ такого естественного охлаждения вполне достаточно.
Свое применение такие трансформаторы находят в местах, где имеют место повышенные требования к безопасности людей и оборудования.
Мощные сухие трансформаторы применяются:
- на промышленных металлургических предприятиях,
- на предприятиях нефтяной промышленности,
- на целлюлозно-бумажном производстве,
- в машиностроении,
- а также при электроснабжении общественных зданий, сооружений и на транспорте.
Обмотки низшего напряжения (НН) и обмотки высшего напряжения (ВН) трансформатора заключены в защитный кожух, и атмосферный воздух служит для них основной охлаждающей и изолирующей средой.
Если сравнивать с маслом, то воздух обладает значительно более слабыми изолирующими свойствами, поэтому и требования к изоляции обмоток сухих трансформаторов значительно выше.
Эти трансформаторы устанавливаются лишь в сухих закрытых помещениях (влажность не выше 80%), поскольку их обмотки увлажняются при соприкосновении с воздухом, и для снижения гигроскопичности обмотки дополнительно пропитываются специальными лаками.
Как и любые иные трансформаторы, сухой трансформатор может быть:
Технология изготовление сухих трансформаторов
Можно выделить два основных типа сухих силовых трансформаторов (помимо того, что обмотки изготавливаются либо из меди, либо из алюминия): с литой изоляцией и воздушно-барьерной изоляцией (открытые обмотки).
На современном этапе развития сухих трансформаторов используется заливка изготовленных обмоток эпоксидными компаундами. Подобные трансформаторы на сегодняшний день выпускаются как за рубежом, так и в России и странах СНГ (МЭТЗ им. В.И. Козлова РБ, ЗАО «Трансформер» г. Подольск; ГК «СВЭЛ» г. Екатеринбург и другие). Существует две технологии изготовления сухих силовых трансформаторов с литой изоляцией: 1) вакуумная технология; 2) ровинговая технология.
При производстве сухих трансформаторов по вакуумной технологии готовые обмотки трансформатора заливают в вакууме эпоксидным компаундом с кварцевым наполнителем (т.н. геафоль), процесс подготовки которого также происходит в вакууме. До конца 50-х г г. прошлого века повсеместно применялась технология заливки высоковольтных обмоток сухих трансформаторов эпоксидной смолой в воздухе. В соответствии с этой технологией обмотки высокого напряжения пропитывались изоляционным диэлектриком, а затем осуществлялась их сушка. Высоковольтные обмотки трансформатора, залитые по такой технологии, имели низкое качество, поскольку в составе катушек имелись различные примеси и микропоры, заполненные воздухом, что во многих случаях приводило к повышенным значениям частичных разрядов, быстрому старению изоляции, снижению срока службы трансформатора, а в некоторых случаях могло вызвать даже аварийный пробой изоляции.
Простота технологии изготовления пропитанных в воздухе обмоток приводила также и к другим, крайне нежелательным, последствиям: обмотки подвергались увлажнению и абсорбции влаги, что опять-таки вызывало поверхностные разряды и ускоренное старение изоляции; трансформаторы с такими обмотками не обладали необходимой механической прочностью, стойкостью к токам короткого замыкания и были достаточно громоздкими.
Вакуумная технология заливки обмоток трансформаторов, пришедшая на смену заливке обмоток в воздухе, позволила полностью исключить из состава изоляции различные примеси и газовые микропоры, значительно улучшила диэлектрическую прочность изоляции по отношению к частичным разрядам. Обработанные по этой технологии обмотки получались закрытыми со всех сторон эпоксидной оболочкой толщиной от 5 до 20 мм, что придавало им необходимую жесткость, защищало от влаги и воздействия агрессивной среды.
Конструкция и технология производства сухих трансформаторов на самом высоком техническом уровне были разработаны известной фирмой TRAFO-UNION, которая продала свою лицензию многим фирмам. Таким образом, вакуумная технология заливки обмоток распространилась на многие трансформаторные заводы и к середине 1970-х гг. стала господствующей при производстве эпоксидных трансформаторов.
Трансформаторы, изготовленные по описанной выше вакуумной технологии считались безотказными в любых условиях эксплуатации, даже в самых экстремальных. Но по мере увеличения количества трансформаторов в эксплуатации, стали выявляться следующие недостатки:
- образование трещин в эпоксидном корпусе обмотки при перегрузке порядка 60…80% номинальной мощности трансформатора, первоначально находившегося в холодном состоянии, или при охлаждении обмоток отключенного трансформатора до температуры ниже -15…-20°С;
- образование трещин было вызвано тем, что при резких перепадах температур быстро нагревающийся материал обмотки (медь) разрывал эпоксидно-кварцевый корпус обмотки. недостаточная стойкость к динамическим усилиям короткого замыкания;
- обмотки высокого и низкого напряжения составляют два независимых цилиндра обмоток, механическая прочность крепления которых в некоторых случаях оказывается недостаточным.
В результате исследований фирмой АВВ была разработана новая технология производства трансформаторов с литой изоляцией: путем герметизации слоевых обмоток с использованием чистой смолы и стеклонитей.
Идея блочной обмотки заключается в том, что обмотки низкого и высокого напряжения связаны друг с другом посредством реек из стеклопластика и образуют единый твердый блок.
Используя заполнение стекловолокном приблизительно на 80% и оптимальным образом сочетая поперечные и крестообразные направления стекловолокон в процессе намотки, удается получить чрезвычайно прочный блок обмоток с высокой механической прочностью, что исключает любое перемещение обмоток под действием поперечных или продольных сил. Это приводит к высокой устойчивости при коротких замыканиях и стабильности технических характеристик при воздействиях низких и высоких температур.
Производственные мощности (России и СНГ) действующих заводов, производящих сухие силовые трансформаторы | Шт./год (ориентировочные данные) | Тип производимых сухих трансформаторов |
---|---|---|
ОАО «ХК «Электрозавод», г. Москва | 3000 | Литая изоляция воздушно-барьерная изоляция |
УП «МЭТЗ им. В. И. Козлова», РБ, г. Минск | 4000 | Литая изоляция воздушно-барьерная изоляция |
ООО «Электрофизика», г. С.-Петербург | 1000 | Воздушно-барьерная изоляция |
Группа компаний «СВЭЛ», г. Екатеринбург | 1000 | Литая изоляция |
АО «Кентауский трансформаторный завод», ГК, г. Кентау | 1000 | Литая изоляция воздушно-барьерная изоляция |
ОАО «Укрэлектроаппарат», Украина, г. Хмельницкий | 500 | Литая изоляция воздушно-барьерная изоляция |
ЗАО «Трансформер», г. Подольск | 1000 | Литая изоляция |
ОАО «СЗТТ», г. Екатеринбург | 500 | Литая изоляция |
ВСЕГО: | 12 000 |
Конструктивные особенности сухих трансформаторов
Сухие воздушные трансформаторы с литой изоляцией могут быть высоковольтными и низковольтными. Мощность этих устройств будет зависеть от типа вентиляции.
Сухие трансформаторы с естественным воздушным охлаждением могут иметь:
- открытое (С),
- защищенное (СЗ)
- герметизированное (СГ) исполнение.
Трансформаторы типа СЗ закрывают защитным кожухом с отверстиями, а типа СГ— герметическим кожухом. Для повышения интенсивности охлаждения применяют обдув обмоток и магнитопровода потоком воздуха от вентилятора. Сухие трансформаторы с воздушным дутьем имеют условное обозначение СД.
Трансформаторы малой мощности выполняют, как правило, с охлаждением типа С
В некоторых случаях их помещают в корпус, залитый термореактивными компаундами на основе эпоксидных смол или других подобных материалов. Такие компаунды обладают высокими электроизоляционными и влагозащитными свойствами. После затвердевания они не расплавляются при повышенных температурах и обеспечивают надежную защиту трансформатора от механических и атмосферных воздействий.
Низковольтные преобразователи будут иметь естественную систему охлаждения.
Сухой трансформатор мощностью 320 кВ без кожуха1 — вертикальные стяжные шпильки;
2 — обмотки ВН;
3 — фарфоровые подкладки для прессовки обмоток;
4— стальное прессующее кольцо;
5 — опорные изоляторы отводов ВН;
б — отводы ВН;
7 — фарфоровые подкладки для крепления отводов НН;
8 — доска зажимов ВН
Высоковольтные преобразователи мощность которых достигает 10 КВА имеют принудительное охлаждение.
Как видно на схеме здесь изображен сухой трансформатор без кожуха. В большинстве случаев, чтобы использовать эти устройства, вам не потребуется дополнительная изоляция. При необходимости спроектировать специальный кожух можно самостоятельно. Его мощность составляет 320 кВа. При необходимости вы можете прочесть про трансформатор ТМН.
Отводы воздушных сухих преобразователей обычно изготавливают из алюминиевых или медных проводников. Все зажимы будут выводиться на доску. Для отводов производитель использует опорные изоляторы, а для низковольтных трансформаторов производитель использует фарфоровые подкладки.
Еще к одному подвиду сухих трансформаторов можно отнести измерительные преобразователи. Это важное оборудование, которое используется для понижения цепей высокого напряжения.
По своей конструкции эти устройства также могут быть и однофазными. В зависимости от области эксплуатации их можно разделить на масляные, сухие или устройства, которые будут иметь литую изоляцию.
Сухие трансформаторы с литой изоляцией (VCC)
Благодаря влагозащищенности сухие трансформаторы с литой изоляцией (VCC) могут эксплуатироваться во влажном климате или в сильно загрязненной окружающей среде.
Это идеальный трансформатор для климата с влажностью более 95%.
Их использование допускается при температуре ниже 25°C. Для установки трансформаторов требуется небольшая площадь и минимальные установочные работы, не требуется специальных условий по соблюдению пожаробезопасности.
Сухие трансформаторы с литой изоляцией практически не требуется техническое обслуживание, сниженный нагрев обуславливает долгий срок службы.
Их можно устанавливать вблизи объекта электропотребления, тем самым уменьшив потери при прокладке кабеля. Это экологически чистые и безопасные трансформаторы, отсутствует риск утечки воспламеняющихся или загрязняющих веществ.
Высокая устойчивость к коротким замыканиям и перегрузкам.
Сухие трансформаторы с литой изоляцией могут работать в условиях сильной вибрации.
Видео: Трансформатор сухой принцип работы
Преимущества сухих трансформаторов перед масляными
Преимущества сухих трансформаторов
Пришло время рассмотреть многочисленные преимущества сухих трансформаторов.
- Безопасность. В устройствах с использованием масла, возникает вероятность его утечки или возгорания преобразователя;
- Простота использования и установки. Подобные трансформаторы можно устанавливать в любых помещениях. Для монтажа подходят короткие провода, а уход состоит в чистке протоков и периодическом осмотре. В то время как в «мокрых» преобразователях необходимо регулярно менять масло. Ведь в иных случаях оно меняет, а именно, ухудшает свои свойства и засоряет протоки;
- Экологичность. Эти устройства можно устанавливать на территориях, где необходима безопасность окружающей среды. Это могут быть школы, детские сады, санатории и т.д. А стало это возможно, благодаря отсутствию масла в устройстве, а значит, отсутствует и выделение вредных веществ;
- Простота приобретения. Вы всегда можете купить сухие печные трансформаторы на заказ или в специализированных магазинах. Стоимость приборов является относительно невысокая. Но при этом, необходимо понимать, что цена зависит от типа и мощности трансформатора.
- Современные комплектующие. Благодаря современным комплектующим производителям удалось добиться снижения веса и уменьшения габаритов.
Недостатками сухих трансформаторов являются:
1. Высокая стоимость
Масляные трансформаторы стоят значительно меньше сухих. Это связано с увеличением количества вложений активных материалов вследствие увеличения изоляционных расстояний в воздухе и ухудшением условий охлаждения обмоток.
2. Потери
По отношению к масляным трансформаторам, сухие имеют большие потери холостого хода. Это происходит из-за увеличения размеров магнитной системы вследствие больших изоляционных расстояний.
Основные критерии выбора
Приступая к выбору модели сухого трансформатора, вы должны обратить внимание на следующее:
- Взрывозащищенность;
- Пожаробезопасность.
Помимо этого, необходимо уделить внимание эксплуатационным качествам прибора:
- Шумность;
- Размер;
- Масса;
- Экологичность.
Многие специалисты рекомендуют не экономить, и отдавать предпочтения проверенным фирмам производителям.
Обслуживание сухих трансформаторов
Как уже было сказано выше, сухие трансформаторы являются одними из самых простых в эксплуатации. Они практически не нуждаются в обслуживании.
Согласно всем нормам, уход за подобными приборами заключается в проверке работоспособности системы вентиляции, которую осуществляют один раз в 6 месяцев.
Не стоит забывать и о периодической очистке поверхности трансформатора от различных загрязнений и пыли. Частоту проведения очистки определяют в зависимости от степени загрязнения в помещении. Один раз в год выполняется внешний осмотр устройства, на предмет ослабления крепежа или иных повреждений.
Средний срок службы сухого трансформатора 15-25 лет. Это примерно на 5-10 лет меньше, чем у масляного трансформатора.
Но учтите, что масляный трансформатор прослужит дольше только при регулярной замене масла в баке. А в сухом трансформаторе нет охлаждающей жидкости. Поэтому выбор в пользу сухого трансформатора – это реальная экономия на обслуживании и безопасность для потребителей электроэнергии.
Видео: Сухие трансформаторы СВЭЛ
устройство, принцип работы, виды, ремонт
Сухие трансформаторы, имеющие литую изоляцию – преобразователи энергии из одного класса напряжения в другой, имеющие в своем конструктивном исполнении тип естественного воздушного охлаждения всех рабочих агрегатов. Такое охлаждение электроустановки строится на основе конвекции окружающего воздуха внутри всех систем трансформатора, процессами лучеиспускания выделяемого тепла в момент его нормальной работы.
Данный тип преобразователей напряжения связан с применением трансформирующих энергию устройств в местах, где требуется повышенная безопасность всей установки, ее обслуживающего персонала.
устройство, принцип работы, виды, ремонт
Сухие трансформаторы, имеющие литую изоляцию – преобразователи энергии из одного класса напряжения в другой, имеющие в своем конструктивном исполнении тип естественного воздушного охлаждения всех рабочих агрегатов. Такое охлаждение электроустановки строится на основе конвекции окружающего воздуха внутри всех систем трансформатора, процессами лучеиспускания выделяемого тепла в момент его нормальной работы.
Данный тип преобразователей напряжения связан с применением трансформирующих энергию устройств в местах, где требуется повышенная безопасность всей установки, ее обслуживающего персонала.
Устройство и принцип действия силового трансформатора
Электрическая преобразовательная установка или трансформатор напряжения имеет несколько основных конструктивных элементов:
- Корпус – различного типа в зависимости от деталей монтажа может иметь различный конструктив, но его основная задача – надежно содержать в себе, безопасно изолировать от окружающих процессов всю электрическую часть устройства преобразования энергии.
- Первичная обмотка – вход устройства (ввод) – катушка с медными проводниками, определенного количества витков, сечения, типа, внутренняя часть которой связана с внешними контактными выводами, установленными на изоляционной основе. В зависимости от общего функционала трансформатора (повышающий/понижающий тип) к ее контактной части подключаются токопроводящие элементы для дальнейшего проведения процесса трансформации. Обмотка первичного типа, как и вторичного связана (намотана) на конструктивную деталь магнитопровода – обязательная необходимость для выполнения основного процесса трансформации.
- Вторичная обмотка – выходная контактная часть преобразователя. В зависимости от общего функционала оборудования имеет свои особенности и конструктивное исполнение, сечение проводника в своей катушечной намотке.
- Магнитопровод – конструкция из электротехнической шихтованной, прессованной стали, или феррамагнитных материалов, определенного строения и формы, объединяющая своим «телом» обе обмотки. Благодаря его замкнутому контуру, практически реализуются электромагнитные законы, что позволяет выполнять процесс трансформации энергии по классу напряжения.
- Дополнительная элементная база, если масштабировать устройства трансформатора по назначению и сфере применения. К ней относятся все остальные элементы, входящие в состав преобразователя напряжения.
Наиболее наглядно устройство трансформатора напряжения показано на Рисунке 1.
Рисунок 1. Детальная конструкция и устройство трансформатора напряжения
Радиаторы, изоляторы, расширительный бак и остальные дополнительные части могут меняться в зависимости от типа исполнения конкретного электротехнического оборудования.
Подробно объяснить принцип действия преобразователя напряжения легко на основе схемы оборудования:
Имеется первичная, вводная обмотка из намотанных на магнитопровод, как правило медных проводников, на которую подается определенная величина напряжения и вторичная, (вывод) обмотка, с выводных клемм которой производится снятие напряжение, но уже пониженной до требуемого значения величины напряжения. Обе обмотки намотаны на стороны сердечника и не имеют электрической связи между собой. Сердечник, он же магнитопровод, по закону электромагнитной индукции, реализует весь процесс преобразования напряжения в устройстве.
Рисунок 2. Принцип действия трансформатора
Переменный ток (изменяющийся во времени с рабочей частотой в 50Гц) поступает на ввод первичной обмотки и протекает по всем проводникам этой катушки, наводя тем самым со своей стороны сердечника ЭДС. Согласно закону электромагнитной индукции в магнитопроводе наводится и начинает свою циркуляцию магнитный поток определенной величины. Это магнитное поле в ходе кругового движения по сердечнику проходит сквозь проводники вторичной обмотки устройства, которая намотана с противоположной стороны оборудования и наводит там свою ЭДС меньшей величины (пример рассматривает именно понижающий тип устройства). Величина ЭДС вторичной обмотки своим действием создает номинальный ток и величину напряжения на вторичной обмотке, которые снимаются с ее выводных клемм и являются результатом всей работы электропреобразователя.
Изменяя конструкцию сердечника, сечение, тип проводников их количество витков в каждой из обмоток – возможно варьировать принцип действия оборудования используя его, как понижающий узел передачи электро энергии от источника питания к потребителю, повышающий элемент в составе установки «Генератор-Трансформатор-ЛЭП» или передающий элемент, когда необходимо не изменять величину напряжения, а использовать его в системах релейных защит в качестве безопасного устройства, обеспечивающего гальваническую развязку для автоматики и защиты.
Конструктивные особенности сухих трансформаторов с литой изоляцией
Если рассматривать в деталях устройство сухого трансформатора с литой изоляцией, то обращая внимание на Рис. 3 выделяется одна отличительная особенность агрегата, необходимая ему для реализации процесса естественного воздушного охлаждения всей электросистема – это практически полное отсутствие цельного корпуса оборудования, по сравнению с другими трансформаторами, где используется масляное или смешанное охлаждение.
Рисунок 3. Сухой трансформатор с литой изоляцией
Электрическая, магнитная часть трансформатора сухого типа мало чем отличается от остального типов преобразователей – в своем устройстве имеются обмотки из медных проводников первичного и вторичного типа, одна из которых подключается к источнику энергии (первичная), а вторая соединяется с нагрузкой – потребителем напряжения. Имеется в составе замкнутый магнитопровод, контактные выводы необходимые для нормальных условий образования электромагнитной индукции, трансформации энергии.
Основные отличия сухих трансформаторов начинаются в изоляции обмоток, корпусе изделия.
Исполнение изоляции – это главная отличительная особенность оборудования сухого типа. Для ее производства, создания используют:
- специальные изоляционные профили, обладающие повышенными диэлектрическими характеристиками. Применяются усиленной прочности фарфоровые изоляторы, при формировании вертикальных и горизонтальных каналов воздушного охлаждения устройства;
- материал и производство из него самой изоляции производится по специальной технологии и представляет форму монолита (отсюда и название «литая») путем заливки эпоксидных диэлектриков на медные проводники обмотки.
Второй отличительной чертой преобразователей сухого типа является его внешнее конструктивное исполнение, габариты. Относительно других разновидностей подобных электротехнических устройств, сухие трансформаторы имеют большие размеры габаритов. К тому же, у них нет общего цельного литого корпуса в своем устройстве, лишь отдельные элементы внешней защиты (листы для обмоток), планки для установки контактных частей ввода-вывода, такелажных работ в момент монтажа и нижнего колесного конструктива для возможности перемещения в момент первичного монтажа и последующего обслуживания.
Подобные отличия имеют ряд плюсов, минусов в основной работе агрегата.
Преимущества применения
Устройство трансформаторов сухого типа из-за конструктивных особенностей, применения новейший, усиленных материалов изоляции, сердечника, элементов корпуса содержит в себе набор преимуществ, которые можно разделить на элементы взаимодействия преобразователей с окружающей средой и по их техническим характеристикам и показателям.
Экологичность
При взаимодействии с окружающей средой, в моменты полного цикла эксплуатации таких устройств, после списания в утиль, такое оборудование производит наименьшее загрязнение, как окружающий воздух, так и окружающую среду в целом. Это связано с отсутствием вредной, агрессивной среды охлаждающей жидкости, как у моделей масляного типа, которые в следствии постоянных выхлопных газов в момент эксплуатации, в момент аварий или ремонтов наносят существенный вред экологии остатками трансформаторного масла, распад которого или переработка в экологически чистый продукт происходит или с трудом или с большими дополнительными затратами на такие процедуры.
Изделия, использующие естественную конвекцию воздуха в качестве охлаждения своей нормальной работы, попросту не имеют такого объема вредных веществ, а значит значительно чище по экологическим нормам и правилам.
Пожаробезопасность
Снижение опасности возникновения пожара в аварийном режиме работы, в случае ремонтных или наладочных работ у трансформаторов сухого типа также значительно ниже относительно масляных. Причиной является все тоже отсутствие пожароопасной легковоспламеняющейся жидкости охлаждения на основе масляных продуктов. А конструктив из литой изоляции, которые реализуется на основе современных, высокопрочных, усиленных материалов диэлектриков в изоляции обмоток оборудования лишь увеличивает их надежность и стойкость к возникновению пожаров.
Именно исходя из первых двух пунктов преимуществ устройств сухого типа их использование рекомендуется в зонах, где есть повышенная опасность к возникновению пожара и требуется лучшая безопасность, как остального электротехнического оборудования, рабочего персонала.
Низкое шумовое загрязнение
Шумовой эффект и его воздействие как на окружающую среду, так и на обслуживающий персонал возникает в момент работы устройства под нагрузкой и зависит от множества факторов, основным из которых является строение, форма его магнитной части. Независимо от типа преобразователя, его идеального формата, бесшумного типа в момент эксплуатации не бывает в природе.
Трансформаторы сухого типа имеют более низкое шумовое загрязнение в момент своей работы за счет изготовления шихтованного сердечника и склейки, пропитки его листов многочисленными слоями эпоксидных смол. Образующая таким образом монолитная конструкция магнитопровода производит значительное шумовое гашение при работе трансформатора под нагрузкой в отличии от энерго агрегатов с масляным или другим типом строения.
Высокая устойчивость к токам короткого замыкания
По средствам своего конструктива электрической части, изоляции, внешнего корпуса оборудование сухого типа имеет высокую устойчивость к режиму короткого замыкания и токам, возникающим в следствии образования подобного режима.
Энерго агрегаты номинальной мощностью более 1000 кВа имеют в нормальной эксплуатации напряжение по КЗ равное 6-8%, что повышает предел устойчивости таких изделий от разрушительного воздействия токов короткого замыкания.
Работа в сетях, которые подвержены грозовым и коммутационным перенапряжениям
Возможность нормальной работы обусловлено стойкостью электротехнического оборудования к режимам КЗ, использованием при их проектировании монолитного типа изоляции обмоток, контактных частей, на основе эпоксидных современных усиленных по диэлектрическим свойствам материалам.
Этот приоритет работы расширяет их зону эксплуатации не только по степени опасности использования, но по климатическому исполнению зон с повышенной угрозой частых грозовых фронтов.
Облегченный монтаж
При его монтаже на объекте нет нужды монтировать сложную и чувствительную структуру пожаротушения объекта с оборудованием, производить наладку автоматики, сигнализации. На этом экономится значительное время монтажа. В сухих преобразователях нет маслоприемников, расширительных баков остальных комплектующих необходимых при вводе в эксплуатацию масляных устройств преобразования энергии.
В комплексе отсутствие всех перечисленных элементов позволяет обеспечить облегченный монтаж оборудования на объекте, производить менее длительную диагностику их в процессе эксплуатации.
Экономичность
Что касается сухого типа преобразователей в оценке их экономичности – то это их весомое преимущество. В связи с отсутствием систем пожаротушения, бюджет при проектировании электроустановок, в составе которых закладывают сухие силовые модули преобразования энергии значительно выигрывает в объеме.
Возможность значительного близкого расположения электрооборудования к потребителям позволяет экономить на меньшем расходе материалов для строительства передающих линий – их длина за счет этого значительно минимизируется, а также уменьшаются потери мощности в момент передачи энергии конечным потребителям.
Автоматический контроль охлаждения
Проектирование систем автоматизации контроля охлаждения в сухих блоках в большинстве случаев не требуется за счет основного принципа реализации охлаждения, построенного на естественной конвекции воздуха из окружающей среды в работающий, передающий трансформатор и обратно. Сама работа установки сухого типа, ее исполнение корпуса со специальными воздушными каналами позволяет полуавтоматически вести контроль за нагревом всей его электрической частью.
Исключения могут составлять отдельные изделия большой мощности в сухом исполнении, в которых реализуются проекты установки принудительного охлаждения путем дополнительной установки вентиляторов в отдельные части трансформирующих отсеков.
Особенности различных серий
Исходя из Рис. 4 наглядно видно, что вторая буква в аббревиатуре любой марки трансформатора, определяет его тип охлаждения. Для сухого вида соответственно будет применяться буква «С». Следующим за ним идет исполнение корпуса.
Рисунок 4. Расшифровка марки силовых трансформаторов
Даже внутри систем сухого охлаждения существует несколько разновидностей преобразователей энергии, обладающих своими особенностями при выпуске их серий. Стоит рассмотреть основные из них, кратко описав отличия.
ТСГЛ, ТСДГЛ
Согласно установленной расшифровки аббревиатуры марки изделия получаем:
- «Т» – устройство –силовой преобразователь.
- «С» – тип охлаждения – сухой тип.
- «Д» – буквенное обозначение во второй марки главы – обозначение, входящего в комплект датчика температуры окружающей среды на кабельной системе в длину не менее 10м, позволяющем контролировать режимы нагревы помещения в различных точках. Его мобильность обеспечивает свободное перемещение тепловых защит и автоматики управления вентиляторами в случае их использования.
- «Г» – тип материала изоляции – применение в устройстве энерго агрегата специального типа сверхстойкой изоляции, имеющей научное название – геофоливая. Она обладает повышенной стойкостью и увеличенными диэлектрическими свойствами.
- «Л» – метод исполнения изоляции обмоток – литая изоляция говорит о производстве монолитного эпоксидного компаунда в виде изоляции обмоток, который и позволяет иметь сверх свойства диэлектрика и прочности.
Серии устройств типа ТСГЛ и ТСДГЛ выполняются как правило на первичной напряжение обмотки в диапазоне 6-10 кВ, вторичная обмотка этих устройств понижает величину напряжения до 0,4 кВ. Схемы и группы соединения обмоток трансформаторов преимущественно:
- треугольник – Звезда с заземленными нейтралями;
- звезда – Звезда с нулевым проводником.
Материал обмоток выполняется из алюминиевых проводников в изначальном заводском проекте. Изоляция обмоток дополнительно усилена сеткой из стекловолокна, что увеличивает стойкость изоляции обмоток по всем параметрам и аварийным режимам.
ТСЗГЛ, ТСДЗГЛ
Вторая серия имеет расшифровку своих аббревиатур практически в том исполнении. Исключением является дополнение буквенного символа «З» – охлаждение воздухом в защищенном исполнении. Здесь стоит рассмотреть детали спроектированных моделей в зависимости от ошиновки (шиной или кабельными системами) их первичных, вторичных выводов.
С подводом НН и ВН кабелей
В таком исполнении расположения контактных частей первичной высоковольтной и вторичной низковольтной обмотки надежно защищены поверхностью защитного кожуха. Расположение для подключения первичной (ВН) и вторичной (НН) обмотки кабелей по обеим сторонам устройства находится под ним.
С шинными выводами НН на крыше
В случае если подключение сухого трансформатора напряжения производится путем ошиновки в такой серии и проекте – ВН контакты расположены под защитным кожухом, а НН часть присоединения выведена на крышу кожуха и ошиновка вторичной обмотки производится там.
С выводами НН и ВН на крыше
В таком конструктивном исполнении все контакты ВН и НН части сухого трансформатора выведены на крышу кожуха, имеют возможность подключения в электросистему как шиной, так и кабельными линиями.
ТСЗГЛ11, ТСДЗГЛ11
Основная расшифровка таких серий по буквенным символам не имеет отличий от вышеперечисленного оборудования. Исключение составляет цифровой символ в обоих марках трансформаторах – «11», его наличие говорит о смещении низковольтных выводов на боковую часть защитного кожуха механизма сухого типа. При этом обе марки предназначены для подключения обеих обмоток кабельными линиями.
ТСЗГЛФ11, ТСДЗГЛФ11
Еще один похожий выпуск серий блоков, имеющих отличие в комплектации, маркировки в виде буквенного символа «Ф», который обозначает фланцевое исполнение основных модулей боковой части защитного кожуха.
Отличительный класс по нагрев стойкости F типа. Боковое расположение контактных частей ВН на боковом фланце, а НН стороны, выведенных на крышу защитного кожуха. Возможность включения в систему электроснабжения по средствам шин или кабелей для вторичной обмотки и только шинами для подключения высоковольтных вводов трансформатора.
Электрические и шумовые характеристики в зависимости от мощности
Параметры электрической части преобразователей энергии из одного класса напряжения в другой имеются прямо пропорциональную зависимости от номинальной мощности устройства. Известен факт, чем больше необходимо питать энерго потребителей, приемников электрической энергии, тем больше необходима мощность силового трансформатора, вне зависимости от типа его охлаждения.
А следовательно, даже в сухих агрегатах преобразования при увеличении требуемой мощности необходимо расширять, увеличивать и сечение проводников обмоток обеих сторон устройства, так и увеличивать их размер, что в свою очередь провоцирует дальнейший рост остальных геометрических параметров оборудования.
Идеального устройства громадной мощности, но с минимальными габаритами в настоящее время пока изобретено не было, точно так же, как нормально постоянно работающих материалов сверхпроводимости. Однако в сухих типах в связи с отсутствием систем и комплектующих масляного охлаждения вся электрическая часть располагается наиболее компактном исполнении в зависимости от серии устройств.
Характеристики шумовой мощности сухих трансформаторов напряжения имеют такую же прямую зависимость, пропорциональную мощности энерго агрегата и в базовых номинальных значениях варьируется в значениях и допусках равных 50 -70 дБ, но не более.
Размеры и масса
Наличие дополнительных элементов в сухих преобразователях энергии определяют его конструктивные размеры и массу. Они отличаются и дробятся по сериям выпуска. Именно так их и проще всего осветить здесь
ТСГЛ, ТСДГЛ
Устройства с геофоливой изоляцией, усиленной стекловолокном, но не имеющих защитных кожухов имеют следующие геометрические параметры своего «тела» в диапазоне мощностей 100-2500кВа:
Таблица 1. Габаритные размеры и масса ТСГЛ, ТСДГЛ в основных границах размеров и мощностей
Марка Трансформатора ТСГЛ/ТСДГЛ | Габаритные размеры Длина х Ширина х Высота, мм | Колея колес, размер осей, мм | Вес изделий сухого типа нетто, кг | |
Степень защиты IP00 | Степень защиты IP21 | Степень защиты IP00/IP21 | ||
от 100 до 2500 кВа | 1250х800х1000 до 1720х1430х2100 | 1250х1000х1000 До 1720х1530х2100 | 660 До 1070 | 750 До 4450 |
Более детальная раскадровка габаритных размеров и массы устройств по конкретной мощности возможно получить на сайтах заводов изготовителей, или в справочной технической литературе. В Табл. 1 показаны минимальные и максимальные параметры устройств для общего освещения их минимальных и максимальных размеров и веса.
ТСЗГЛ, ТСДЗГЛ
Тут стоит расписывать параметры исходя вновь из типа расположения вводов на защитном кожухе по каждой стороне обмоток и типу их ошиновки.
С подводом НН и ВН кабелей
Публикация вновь очерчивает их минимальный и максимальный параметр по размерам и тоннажу в зависимости от диапазона мощности
Таблица 2. ТСЗГЛ/ТСДЗГЛ с подводом кабелей на НН и ВН
Марка Трансформатора ТСЗГЛ/ТСДЗГЛ | Габаритные размеры Длина х Ширина х Высота, мм | Колея колес, размер осей, мм | Вес изделий сухого типа нетто, кг | |
Степень защиты IP00 | Степень защиты IP21 | Степень защиты IP00/IP21 | ||
от 100 до 2500 кВа | 1340х810х1540 до 2250х1500х2370 | 1340х1110х1540 До 2250х1520х2370 | 660 До 1070 | 850 До 5380 |
Анализируя вторую параметрическую таблицу и сравнивая ее с первой становится понятно, что дополнительный конструктив в виде защитного кожуха вносит свои коррективы в размеры оборудования преобразования в сторону увеличения, как его рабочей массы, так и габаритных размеров.
С шинными выводами НН на крыше
Еще один вариант стоит рассмотреть по техническим параметрам, когда подключение к контактным частям производится преимущественно шиной и только на НН сторону устройства
Таблица 3. ТСЗГЛ/ТСДЗГЛ с подводом шин НН на крыше
Марка Трансформатора ТСЗГЛ/ТСДЗГЛ | Габаритные размеры Длина х Ширина х Высота, мм | Колея колес, размер осей, мм | Вес изделий сухого типа нетто, кг | |
Степень защиты IP00 | Степень защиты IP21 | Степень защиты IP00/IP21 | ||
от 100 до 2500 кВа | 1650х910х2260 до 2250х1500х2470 | 1650х1110х2260 До 2250х1520х2470 | 660 До 1070 | 1350 До 5380 |
Внутри серий изделий изменение типа ошиновки, расположение вводов достаточно критично влияет на размеры и массу оборудования.
С выводами НН и ВН на крыше
Последняя публикация технических параметров для трансформаторов сухого типа и защитным кожухом, где расположение контактных частей происходит на крыше кожуха обеих обмоток и имеется возможность подключения, как кабеля, так и шины к ним в Табл. 4.
Таблица 4 ТСЗГЛ/ТСДЗГЛ С выводами НН и ВН на крыше
Марка Трансформатора ТСЗГЛ/ТСДЗГЛ | Габаритные размеры Длина х Ширина х Высота, мм | Колея колес, размер осей, мм | Вес изделий сухого типа нетто, кг | |
Степень защиты IP00 | Степень защиты IP21 | Степень защиты IP00/IP21 | ||
от 100 до 2500 кВа | 1470х910х1540 до 2445х1500х2370 | 1470х1110х1540 До 2445х1520х2370 | 660 До 1070 | 850 До 5380 |
Некая схожесть есть с ранее опубликованными типами устройств без защитных кожухов, но в градации мощности по размерам идут сильные разночтения, отсюда размерная и весовая таблица опубликована по ним дополнительно.
ТСЗГЛ11, ТСДЗГЛ11
Устройства с параметром бокового смещения выводов на кожухе обладают отдельными геометрическими критериями и параметрами массы.
Таблица 5. ТСЗГЛ11/ТСДЗГЛ11 Данные по размерам оборудования с боковым смещением вводов
Марка Трансформатора ТСЗГЛ11/ТСДЗГЛ11 | Габаритные размеры Длина х Ширина х Высота, мм | Колея колес, размер осей, мм | Вес изделий сухого типа нетто, кг | |
Степень защиты IP00 | Степень защиты IP21 | Степень защиты IP00/IP21 | ||
от 100 до 2500 кВа | 1470х910х1540 до 2445х1500х2370 | 1470х1110х1540 До 2445х1520х2370 | 660 До 1070 | 850 До 5380 |
Несмотря на боковое расположение контактов их конструктивное исполнение схоже с предыдущей серией трансформаторов.
ТСЗГЛФ11, ТСДЗГЛФ11
Наличие фланца на месте бокового расположения контактов обмоток на защитном кожухе не внесло отличий ни в вес, ни в размеры трансформаторов напряжения. Фланцевые устройства имеют такие же значения, как в Табл. 5. Повторная публикация одинаковой таблицы размеров и веса для них в этой статье будет излишней.
Схемы подключения температурного реле
Система контроля температуры сухих преобразователей напряжения на всех трех фазах и в нескольких точках сердечника реализована автоматическим образом на базе подключения теплового реле типа РТ 100, соединённого посредством температурных датчиков с точками замера температуры действующего оборудования.
Тепловое реле располагается на корпусе энерго установки в удобном для обслуживания и снятия показателей месте корпуса на универсальную DIN-рейку.
Схема подключения к трансформатору контактных частей теплового релейного контроля приводится ниже.
Рисунок 5. Тепловое реле РТ 100
Лимит максимальных и минимальных порогов срабатывания на сигнализацию аварии или режима отключения силового устройства допускается устанавливать силами обслуживающего персонала, но он не должен превышать допустимых значений в 140-150 С для стандартно класса стойкости изоляции и выше для более усиленных. В Табл. 6 эти характеристики расписаны по каждому классу в деталях.
Реле подключается к питанию через модульную дифференциальную защиту, а также связана своими контактами с катушками питания вентиляторов охлаждения определенных участков оборудования сухого типа, при срабатывании РТ 100 которые начинают принудительный обдув этих областей устройства.
Допустимые перегрузки
Сухие трансформаторы силового типа делятся в зависимости от класса нагрева стойкости изоляции согласно созданным стандартам. Исходя из них существует параметрическая таблица допусков по температурным перегрузкам силовых устройств.
Таблица 6. Допустимые перегрузки трансформаторов сухого типа
Тип изоляции устройства по классу нагрева стойкости с диапазоном температур | Срабатывание установленных на трансформатор терм зондов по сигналу «ТРЕВОГА» | Срабатывание установленных на трансформатор терм зондов по сигналу «ОТКЛЮЧЕНИЕ» |
Класс «B» = -5 до 120 C | 120 С | 130 С |
Класс «F» = -5 до 155 C | 140 С | 150 С |
Класс «H» = -5 до 180 C | 160 С | 170 С |
Таким образом, если сухие трансформаторы выбираются в климатической зоне с повышенным температурным балансом на длительную эксплуатацию – стоит обязательная необходимость их выбора с классом нагрева стойкости изоляции не менее «H», исходя из приведенных значений выше.
Как устроить вентиляцию в отсеках
Для оптимального создания и проведения естественного воздушного охлаждения силового трансформирующего агрегата электроэнергии необходимо в отсеках, где планируется его постоянная установка и подключение, создание правильной схемы приточно-вытяжной вентиляции.
Некоторые рекомендации по их создании в короткой схеме и с небольшим описанием приводятся ниже.
Рисунок 6. Создание вентиляции для сухих трансформаторов в зоне их эксплуатации
Расчет выбора отверстий приточного и вытяжного отверстиях, обозначенных на Рис. 6 S1/S2 производится по специальным расчетным формулам и зависят от нескольких параметров силового преобразователя, а так же от размеров самого отсека в котором происходит установка. Данные расчеты лучше доверить или компьютеризированным сервисам просчета технических параметров для оптимальной работы трансформаторов или отнести на счет проектных бюро, которые проектируют будущую электроустановку или ее часть.
Особенности ремонта высоковольтных моделей
Оборудование преобразования энергии сухого типа в высоковольтном исполнении на напряжение от 10 до 35 кВ имеет некоторые особенности планово-предупредительных и капитальных ремонтов своих узлов и агрегатов. Прежде всего, так как такие устройства несут в себе повышенную опасность и отвечают за передачу и распределение больших мощностей энергии, выход из строя узлов которой может повлечь за собой еще более серьезные последствия остановки многочисленных систем распределения и потребления энергии их планово-предупредительные ремонты проводят высококвалифицированный персонал и с определенной частотой исполнения.
При этом обслуживающий персонал не учитывает, что тип таких устройств позволяет длительное время работать оборудованию без проводимой ревизий – обеспечение повышенной надежности в этих узлах в приоритете для бригады диагностов.
Плановые ремонты высоковольтных моделей направлены на контроль, диагностику и поддержания в полном исправном состоянии значений трех основных параметров устройств:
- качество и диэлектрические свойства монолитной изоляции обмоток;
- процесс отдачи тепла, циркуляция воздушных потоков и ее эффективность;
- самонесущие способности устройства.
Важным значением в обмотках высоковольтных моделей, является полная и детальная диагностика их изоляции путем измерений, тестов, предписанных в нормативной документации по диагностике и эксплуатации. Связано такое пристальное внимание к этим элементам электрической части невозможностью перемотки обмоток сухого трансформатора напряжения в силу его конструктивного исполнения и текущих процессов, которые в нем происходят. При обнаружении неисправностей или дефектов в этих узлах производится постановка всего устройства в ремонт и помодульная замена дефективных элементов.
Еще один важный пункт ремонта – это проверка на исправность и эффективность действия всех воздушных каналов блока преобразования сухого типа, от которых зависит весь процесс теплоотдачи в период работы устройства.
Оценка шумовых характеристик преобразователя – третий ключевой параметр в диагностике и ремонте высоковольтных моделей силовых агрегатов.
Сухой трансформатор Россия его виды, конструкция и расчет
Сухой трансформатор производства Россия и производителей других стран отличается повышенной степенью безопасности в сравнении с масляными аналогами ввиду конструктивных особенностей. В частности, речь идет об отсутствии необходимости использования масла в качестве жидкого диэлектрика. Это не только делает подобные аппараты менее взрывоопасными, но еще и относит их к группе экологически безопасного оборудования.
Для чего служит и где может использован
Сухой трансформатор производства Россия обеспечивает понижение или повышение значения напряжения, что определяется нуждами потребителя. Преобразование электрических параметров – важный этап, без которого было бы сложно обеспечивать объекты электроэнергией, так как для этого требуется изменение значения высоковольтного напряжения ЛЭП на более низкое. Ввиду отсутствия масляного диэлектрика такие аппараты называются сухими. Это означает, что конструкцией предусмотрена система воздушного охлаждения.
Сухой повысительный силовой трансформатор предназначен для реализации функции преобразования электроэнергии с дальнейшим ее распределением и передачей. Вырабатываемая генератором электроэнергия происходит при небольших напряжениях (не более 24 В), а чтобы передавать ее по высоковольтным линиям без существенных потерь желательно повысить значение напряжения до большего уровня (от 110 до 750 кВт в зависимости от потребностей). Вместе с тем подобные аппараты выполняют и функцию понижения.
Дополнительно к тому сухой трансформатор мощностью 400 кВА (выше или ниже) может питать электроустановки, оборудование и электрические приборы. Это означает, что такого рода оборудование широко применяется в сетях энергосистем, на производстве, для обеспечения электроэнергией объектов разного целевого назначения.
Особенности конструкции
В качестве основных узлов выступает магнитопровод с определенным количеством обмоток (2 и более), отводы ВН и НН (высшего и низшего напряжений). Для удобства транспортировки предусмотрена опорная рама с роликовым механизмом, также имеется упругая подкладка, позволяющая несколько снизить уровень шума аппарата. Магнитопровод выполняется из специальной стали. В качестве изоляции обмоток может выступать слой эпоксидной смолы и кварцевого наполнителя, что актуально при использовании вакуумного метода производства, или картон особого вида.
Устройство агрегата
Трансформатор сухой мощностью 1000 кВА или с другими электрическими параметрами может быть выполнен в нескольких вариациях:
- При открытом исполнении;
- При защищенном исполнении;
- Герметизированная конструкция;
- Воздушное охлаждение с дополнительным дутьем.
Трансформатор открытый сухой мощностью 1600 кВА может представлять собой незащищенную конструкцию без корпуса. Защищенное исполнение означает наличие перфорированного кожуха для улучшения вентиляции, а герметизированный вариант аппаратов не предусматривает наличие дополнительных отверстий для проникновения воздуха. Такой кожух полностью герметичен. Если рассматривать воздушное охлаждение с дутьем, то в этом случае помимо естественной циркуляции имеется также обдув обмоток с помощью вентилятора.
Виды, особенности каждого из них
Трансформатор этого рода встречается в однофазном и трехфазном исполнении, что в дальнейшем будет определять функциональные возможности оборудования. Так, трехфазный вариант предполагает использование в установках и энергосетях больших мощностей. В этом случае аппарат будет обозначен, как «силовой».
Смотрим видео, классификация трансформаторов:
Различают еще и варианты подобных устройств, отличных по типу изоляции обмоток:
- Классическое исполнение, при котором используется бумага и масло.
- Эпоксидная смола. Такое решение задействуется при использовании вакуумного метода производства оборудования.
- Применение картона особого рода. Данный вариант больше известен под именем nomex. Это название компании – изготовителя картона.
Сухой разнотипный трансформатор мощностью 1250 кВА или с другими параметрами, имеющий литые обмотки, отличается некоторыми недостатками в сравнении с аналогами. В первую очередь – это больший вес и толщина, что замедляет процесс охлаждения активной части.
А дополнительно к тому учитывается еще и образование частичных разрядов ввиду неоднородности используемого материала в случае, когда применяется метод вакуумной пропитки.
Этапы расчета
Сухой разнотипный трансформатор мощностью 2000 кВА, выше или ниже этого значения, предполагает необходимость выполнения следующих вычислений:
- Выбор конструкции магнитопровода и типа главной изоляции;
- Определение основных размеров;
- Расчет обмоток;
- Определение параметров короткого замыкания и холостого хода;
- Оценка теплового режима аппарата;
- Определение массы и ориентировочной стоимости оборудования.
Трансформатор сухой мощностью 2500 кВА или характеризующийся другими параметрами в результате расчетов может отличаться по значениям основных параметров. Допускается погрешность не более 7,5% для характеристик короткого замыкания и не выше 10% для параметров холостого хода.
Основные технические характеристики
Краткие обозначения
В качестве ключевых параметров выступают:
- Номинальная мощность;
- Напряжение ВН и НН;
- Напряжение и потери короткого замыкания;
- Ток и потери холостого хода;
- Способ соединения обмоток;
- Степень защиты и климатическое исполнение оборудования.
Если рассматривается сухой трансформатор 630 кВА, его технические характеристики будут сходны с тем, что и для маломощных аппаратов. Единственное отличие может заключаться в необходимости обозначить мощность для каждой из обмоток.
Номинальное напряжение
Если рассматривать исполнения с высшим напряжением, равным 10 кВ, то значения низшего напряжения могут варьироваться в пределах, достаточных для удовлетворения нужд потребителя. Например, большинство аппаратов производятся с НН 0,4 кВ, что позволяет питать приборы напряжением 380 и 220 В.
Смотрим видео, принцип работы и характеристики изделия:
Есть также варианты с более высоким значением НН: 3,15; 6,3; 10,5 кВ. В этом случае аппарат используется в электросетях разного уровня напряжения. Допускается также питание высоковольтного оборудования, например, электроприводов, рассчитанных на 1000 В.
Номинальная мощность и ток
Трансформатор разнотипный сухой SEA 2500 кВА, равно как и устройства прочих марок, должны соответствовать по значению мощности ГОСТ 9680-77. Чтобы определить величину этого параметра для трехфазного аппарата используется формула:
где U – напряжение между фазами;
I – ток фазы.
Отсюда же можно вычислить значения номинальных токов на каждой из обмоток. Мощность при этом будет указываться в ВА. Во избежание перегрузок необходимо, чтобы величина рабочего тока на каждой из обмоток не превышала номинального значения.
Эксплуатация трансформаторов
По мере функционирования таких аппаратов необходимо контролировать уровень нагрева активной части. В некоторых исполнениях может быть предусмотрен температурный датчик. В автоматическом режиме за этим осуществляет контроль ЩТЗТ – щит тепловой защиты сухого разнотипного трансформатора.
Максимальное превышение напряжения – 10% от номинального значения. Уровень подаваемой нагрузки при этом не должен быть выше номинального. Допускаются кратковременные перегрузки оборудования, что не будет способствовать снижению срока службы таких аппаратов.
По мере функционирования требуется производить внешний осмотр аппарата на предмет повреждения изоляции обмоток или соединительных проводов. Таким образом, сухой трансформатор по некоторым параметрам является более предпочтительным вариантом, чем аналоги масляного типа. Это объясняется в первую очередь более высокой степенью безопасности и экологичностью. Соответственно, такие аппараты можно смело устанавливать в местах большого скопления людей, в частном жилье и прочее.
При выборе следует учитывать основные параметры трансформаторов: номинальные напряжения обмоток, мощность, параметры короткого замыкания и холостого хода. Конечная стоимость исполнений сухого типа будет несколько выше масляных аналогов.
Сухие трансформаторы Tesar — ООО «Терра-Ток»
ГК «Терра-Ток» является эксклюзивным представителем завода Tesar на рынке Российской Федерации и стран СНГ и оказывает весь спектр услуг по подбору оборудования, поставки, вводу в эксплуатации и последующему гарантийному обслуживанию.
Описание
Линейка сухих трансформаторов Tesar с литой изоляцией покрывает диапазон мощностей от 100 кВА до 20 000 кВА при номинальном напряжении до 52 кв. Трансформаторы Ecodesign соответствуют и превосходят Европейский стандарт EU 548/2014, могут использоваться в промышленности для распределения и преобразования электроэнергии, в солнечных или ветряных электростанциях, а также для тяговых подстанций.
Модельный ряд
Трансформаторы с пониженными потерями TRI (линейка Advanced):
Разработаны благодаря 39 летнему опыту Tesar в области производства трансформаторов с литой изоляцией. Возможна установка в любом месте без каких-либо ограничений. Трансформаторы могут быть изготовлены с учетом индивидуальных требований заказчика.
Энергоэффективные трансформаторы TRR (линейка Ecodesign):
Трансформаторы соответствуют требованиям энергоэффективности, установленным директивой Евросоюза и стандартом EN 50588-1. Низкие потери обеспечивают снижение энергопотребления, экономию денежных средств, сокращение выбросов парниковых газов. Ecodesign – это трансформаторы нового поколения.
Преобразовательные трансформаторы TRX:
Tesar производит специальные трансформаторы для питания 6-импульсного, 12-импульсного, 18-импульсного и 24-импульсного выпрямителя, предназначенные для промышленного применения, для тяговых подстанций, и для питания инверторного оборудования используемого в солнечных и ветряных электростанциях.
Нестандартные трансформаторы TRV:
Tesar поставил свои инженерный потенциал и опыт на службе заказчика, стремясь удовлетворить самые специфические требования. Под данный ряд попадают разделительные трансформаторы, трансформаторы по системе Скотта (Scott-T), однофазные трансформаторы, трансформаторы от 4 000 кВА до 20 000 кВА, трансформаторы с медными обмотками и др.
Все трансформаторы из модельного ряда Tesar могут быть оснащены широким ассортиментом аксессуаров и адаптированы к самым суровым условиям окружающей среды. По запросу изготавливается защитные кожуха с различными степенями защиты и конфигурациями.
Основные преимущества
Среди преимуществ трансформаторов Tesar можно выделить:
Низкие эксплуатационные затраты
Низкие потери как в магнитопроводе, так и в обмотках, позволяют сократить расходы на эксплуатацию.Горячекатаная оцинкованная рама
Горячая оцинковка рамы обеспечивает наилучшую устойчивость к воздействию влажных и агрессивных сред (Солевой туман и др.)Высокая надежность
Передовые технологии, применяемые в процессе производства обмоток, обеспечивают трансформатору высокий уровень надежности. За всю историю производства с 1979г. не было не одного случая растрескивания обмотокМаксимальная безопасность
Компаунд и изоляционные материалы, используемые в трансформаторах Tesar, обладают свойствами самозатухания, при горении не выделяют токсичных газов.Необслуживаемые
Сухие трансформаторы Tesar разработаны для возможности работы в самых неблагоприятных климатических и экологических условиях. Обслуживание заключается в простом визуальном осмотре.
Основные узлы трансформатора
1. Клеммная коробка. 2. Датчики Pt100 или РТС. 3. Выводы обмоток высокого напряжения. 4. Регулировочные клеммы ПБВ. 5. Усиленная несущая рама. 6. Выводы обмоток низкого напряжения. 7. Подъемные проушины. 8. Обмотка высокого напряжения. 9. Магнитопровод. 10. Обмотка низкого напряжения. 11. Транспортировочные катки. |
|
Сухие трансформаторы TESAR заменяют ране установленные: ТСГЛ, ТСЗГЛ, ТСЗГЛФ, GDNN, GEAFOL, SGB, RESIBLOC, TRIHAL, SEA, TTA-RES, ТС, ТСЗ, ТСЛ, ТЛС и другие.
Сухие трансформаторы
ООО «КПМ» производит сухие трансформаторы на основе оригинальной технологии длительное время. С 2008 года произведено и поставлено на промышленные и энергетические объекты Российской Федереации и стран ближнего зарубежья значительное количество трансформаторов. Накоплен положительный опыт эксплуатации в различных, в том числе неблагоприятных, условиях.
Трансформаторы производятся для сетей напряжением от 0,4 кВ до 35 кВ, мощностью до 16000 кВА.
Назначение
Силовые трансформаторы являются электрическими машинами, предназначенными для преобразования тока и напряжения из сети одного номинала в другую сеть. Принято подразделять силовые трансформаторы на трансформаторы общего и специального назначения.
Сухие трансформаторы общего назначения, в силу своей мощности и класса напряжения, предназначены для распределительных сетей, сетей промышленных предприятий и тяговых подстанций электрифицированного железнодорожного транспорта. Это, в частности, понижающие трансформаторы, выполняющие преобразование напряжения из большего номинала в меньший и трансформаторы связи, обеспечивающие переток мощности между распределительными сетями разного класса напряжения.
Сухие специальные трансформаторы имеют изменённые характеристики и конструкцию, обеспечивающую их работу в специальных условиях. К таковым относятся сварочные трансформаторы, преобразовательные трансформаторы для выпрямительных и инверторных установок, разделительные трансформаторы и другие трансформаторы специальной конструкции, в том числе специально производимые по требованиям и спецификации Заказчика.
Конструкция
Конструкция трансформаторов ООО «КПМ» — оригинальная. Разработана с учётом опыта производства и эксплуатации сухих реакторов различного класса напряжения. Главной её особенностью является технология изготовления обмоток.
Общая компоновка трансформатора традиционна для трансформаторов мощностью до 12 МВА. Магнитопровод имеет стержневую конструкцию, шихтованный. Опрессовка выполнена бандажами, а в верхней и нижней части выполнена стяжка ярмом со шпильками. Дополнительные вертикальные шпильки увеличивают общую прочность конструкции для обеспечения её стойкости нагрузкам при транспортировке и эксплуатации. Обмотки концентрические — обмотка низшего напряжения расположена ближе к стержню, обмотка высшего напряжения расположена снаружи. Магнитопровод выполнен шихтованным из высококачественной электротехнической стали. Сталь холоднокатанная, высококачественная. Бандажи, которыми производится опрессовка стержней, выполняются стеклолентой. Это упругий, прочный и долговечный материал с высокой стойкостью к внешним воздействиям, неэлектропроводящий и немагнитный. Обмотки трансформатора выполнены цилиндрическими, многослойными, из провода прямоугольного сечения и имеют вертикальные воздушные каналы. Обмотки разделяются на секции горизонтальными промежутками. Между секциями выполняется транспозиция провода для снижения потерь в обмотке и выравнивания потенциалов в паралельных ветвях. Все электрические соединения выполняются аргонно-дуговой сваркой.Воздушные каналы обеспечивают эффективную циркуляцию воздуха внутри обмоток и их хорошее охлаждение. За счёт чего удалось повысить перегрузочную способность трансформатора во всех режимах.
Обмотки являются самонесущими: они не нуждаются в несущих конструктивных элементах для обеспечения их прочности, поскольку каждая обмотка в целом представляет собой монолитную конструкцию. Такая конструкция обмоток получила название воздушно-барьерный монолит.
Монолитность обмоток достигается за счет технологии их изготовления. В целом, технология их изготовления схожа с технологией изготовления обмоток сухих реакторов ООО «КПМ».
Для изготовления обмоток используется специальный, прямоугольный, одножильный провод с комбинированной изоляцией, состоящей из полиимидно-фторопластовой (ПМФ) пленки и двух слоев стеклоткани, пропитанных теплостойким, кремнийорганическим лаком, класса нагревостойкости 200 (200°С) по ГОСТ 8865-93.
Пленка ПМФ является основной изоляцией провода и обеспечивает требуемый уровень электрической изоляции. Стеклоткань, пропитанная лаком, играет роль конструкционного и защитного материала. Она образует защитный кожух вокруг проводника в плёнке ПМФ, а также обеспечивает прочное, монолитное сцепление проводников друг с другом.
Стеклоткань долговечна, не подвержена воздействию коррозии и процессу гниения и сохраняет свои механические свойства на протяжении всего срока службы изделия. Используемый для пропитки лак, обладает отличной клеящей и пропитывающей способностью, цементирующими свойствами. Лак характеризуется высокой теплопроводностью, что обеспечивает хороший отвод тепла от проводников. Он имеет высокую влаго- и водостойкость, гидрофобен, имеет высокую нагревостойкость, трудногорюч.
В целом, изоляция выдерживает повышенную и пониженную температуру на протяжении длительного времени без изменения своих свойств, обладает высокой стабильностью и устойчивостью к воздействию химических веществ и радиации. Изоляция обмоток является трудногорючей в соответствии с ГОСТ 12.1.044-89, выдерживает длительное (до 8 минут) воздействие открытым пламенем без возгорания. Вероятность воспламенения изоляции обмоток трансформатора даже в случае тяжелых и длительных коротких замыканий практически равна нулю.
По сравнению с уже давно известной воздушно-барьерной изоляцией технология ООО «КПМ» имеет ряд преимуществ:
- Обмотка имеет большую механическую прочность, обеспечивается высокая стойкость к мехническим усилиям при транспортировке и монтаже, а также к динамическим усилиям при прохождении токов короткого замыкания.
- Обеспечивается высокая электрическая прочность изоляции.
- Изоляция обмоток устойчива к воздействию влаги, температуры, агрессивных химических веществ.
- Материалы изоляции обмоток долговечны и практически не меняют своих свойств на протяжении всего срока службы.
- Обмотки трансформатора не могут быть источником возгорания и пожара.
По сравнению с литой изоляцией воздушно барьерный монолит обеспечивает более высокие нагрузочные характеристики трансформатора.
Намотка осуществляется на станках с плавной регулировкой скорости вращения и регулировкой момента вращения на валу двигателя, что обеспечивает высокую повторяемость параметров обмоток.
После намотки и сварки выполняется пропитка обмоток. Пропитка осуществляется путем полного погружения в емкость с кремнийорганическим компаундом. Компаунд не выполняет роль межслоевой изоляции, а служит для придания обмоткам монолитности. После пропитки обмотка помещается в термическую печь, где в течении 12 часов происходит ее запечка при температуре 160 — 180 °C. Цикл пропитки-запечки повторяется многократно.
После пропитки и запечки обмотка готова к монтажу на стержень. Для эстетических целей и для защиты от ультрафиолетовых лучей трансформатор красится пожаростойкой эмалью. Для покраски используется кремнийорганическая электроизоляционная эмаль, которая представляет собой суспензию пигментов в лаке. Эмаль обладает высоким уровнем диэлектрической прочности и высокими физико-механическими свойствами.
После сборки трансформатора, завершающим этапом производства является проведение полного цикла приемо-сдаточных испытаний в собственной электролаборатории.
Оригинальная конструкция трансформаторов обуславливает их отличные эксплуатационные характеристики. В частности нагрузочную способность и нагревостойкость. Данные характеристики весьма важны для сухих трансформаторов, поскольку именно по нагрузочной способности сухие трансформаторы традиционно уступают масляным.
Поскольку ГОСТ Р 54827-2011 «Трансформаторы сухие. Общие технические условия» и ГОСТ 11677-85 «Трансформаторы силовые. Общие технические условия» не определяют чётких требований к нагрузочной способности сухих трансформаторов, многие производители сухих трансформаторов имеют свои собственные трактовки.
Перегрузка трансформатора по току может возникать по разным причинам. Во всех случаях возникает избыточный нагрев обмоток трансформатора в результате протекания через них тока, превышающий номинальный. Это происходит в следующих случаях:
- При прохождении токов короткого замыкания (КЗ). В этом случае имеет место протекание очень больших токов, которые могут в десятки раз превышать номинальный в течение очень короткого времени (от десятков миллисекунд до 3-4 секунд). Обмотка в этом случае быстро нагревается и затем имеет возможность остыть после отключения КЗ. В этом случае уместно говорить не о нагрузочной способности трансформатора, а о классе нагревостойки изоляции обмоток.
Изоляция провода, используемого для изготовления обмоток трансформаторов ООО «КПМ», имеет отличный показатель нагревостойкости — класс 200 (200 ºС) по ГОСТ 8865-93.
- При колебаниях нагрузки. Для ряда видов нагрузки характерны временные (от нескольких десятков секунд до нескольких десятков минут) увеличения потребляемой мощности. Например, такими режимами являются пуски и самозапуски двигателей. Для управляемых приводов характерным режимом может быть повторно-кратковременный режим. В таких и других подобных режимах может иметь место увеличение токов, протекающих через обмотки трансформатора от нескольких десятков процентов до нескольких крат.
- При аварийном изменении режима сети. В этом случае, возможно временное (в период от нескольких десятков минут до нескольких часов) увеличение нагрузки на трансформатор до полутора-двух раз.
«Правила технической эксплуатации электроустановок потребителя» пункт 2.1.21 определяет, что допускается кратковременная перегрузка трансформаторов сверх номинального тока при всех системах охлаждения независимо от длительности и значения предшествующей нагрузки и температуры охлаждающей среды. Это означает, что трансформатор должен выдерживать перегрузку (ток выше номинального) даже в том случае, если до неё от работал длительно при полной нагрузке (100% от номинальной) и при максимальной рабочей температуре окружающей среды.
Ниже приведены показатели нагрузочной способности трансформаторов ООО «КПМ» в сравнении с требуемыми Правилами технической эксплуатации электроустановок потребителя (ПТЭ ЭП). Все, указанные величины, приведены для трансформаторов ООО «КПМ» с естественным воздушным охлаждением, длительно работавших при полной нагрузке (100% от номинального тока) до указанной в таблице перегрузки. При нагрузке меньше номинальной и при температуре окружающей среды ниже указанной в таблице, трансформаторы способны выдерживать большие перегрузки.
Трансформатор | Допустимая перегрузка по току сверх номинала, % относительно номинального тока |
||||||||||
Длительность: | 5 мин. | 10 мин. | 18 мин. | 20 мин. | 32 мин. | 45 мин. | 60 мин. | 80 мин. | 2 часа | 3 часа | 24 часа |
Масляный, в соответствии с ПТЭ ЭП пункт 2.1.21 | — | 100% | — | 75% | — | 60% | — | 45% | 30% | — | — |
Сухой, в соответствии с ПТЭ ЭП пункт 2.1.21 | 60% | — | 50% | — | 40% | 30% | 20% | — | — | — | — |
Трансформатор ООО «КПМ» при температуре ОС +20ºС | 100% | 100% | 90% | 70% | 55% | 45% | 40% | 38% | 32% | 25% | 25% |
Трансформатор ООО «КПМ» при температуре ОС +40ºС | 100% | 100% | 60% | 57% | 38% | 30% | 27% | 23% | 20% | 20% | 20% |
Таким образом, сухие трансформаторы ООО «КПМ» существенно превосходят требования, предъявляемые к сухим трансформаторам Правилами технической эксплуатации электроустановок потребителя, и по своей нагрузочной способности сравнимы с масляными трансформаторами.