Site Loader

Структура воды

Вода предпочитает любовь.

C древннейших времен человечество приписывает чудесные свойства воде. Но только в последние годы вода стала подвергаться серьезному научному изучению.

С.В. Зенин защитил диссертацию, посвященную памяти воды. До сих пор считалось, что вода не может образовывать долгоживущих структур. Однако его расчеты показали, что вода представляет собой иерархию правильных объемных структур, в основе которых лежит кристаллоподобный «квант воды», состоящий из 57 ее молекул. Эта структура энергетически выгодна и разрушается с освобождением свободных молекул воды лишь при высоких концентрациях спиртов и подобных им растворителей. «Кванты воды» могут взаимодействовать друг с другом за счет свободных водородных связей, что приводит к появлению структур второго порядка в виде шестигранников. Они состоят из 912 молекул воды, которые практически не способны к взаимодействию за счет образования водородных связей.

Это свойство объясняет чрезвычайно лабильный характер их взаимодействия. Его природа обусловлена дальними кулоновскими силами, определяющими новый вид зарядово-комплементарной связи. Именно за счет этого вида взаимодействий осуществляется построение структурных элементов воды в ячейки (клатраты) размером до 0,5-1 микрон. Их можно непосредственно наблюдать при помощи контрастно-фазового микроскопа.

Структурированное состояние воды оказалось чувствительным датчиком различных полей, особо следует выделить её реагирование на изменение состояния электромагнитного вакуума. Автор считает, что мозг, состоящий на 90% из воды, может изменять структуру вакуума. В лаборатории Зенина наблюдали воздействие людей на свойства воды. Это воздействие бывает настолько мощным, что тестовые микроорганизмы не только прекращают движение, но погибают и даже растворяются в ней.

Японский исследователь Масару Эмото (Masaru Emoto) приводит еще более удивительные доказательства информационных свойств воды. За время работы он сделал более 10000 фотографий, некоторые из них опубликованы в его книгах «The Messages from Water» 1, 2 и «Water knows the answer.»

Доктор Эмото использовал Анализатор Магнитного Резонанса (MRA) для нескольких функций, включая качественный анализ воды. Он заметил, что никакие два образца воды не образуют абсолютно похожых кристаллов, и что форма кристаллов отражает свойства воды. Согласно доктору Эмото, современная медицина сосредотачивает свои наблюдения на молекулярном (химическом) уровне. Однако, чтобы успешно заниматься лечением, нужно обратиться глубже молекулярного уровня – на уровень атомов, и даже микрочастиц.

Согласно доктору Эмото, в основе любой сотворенной вещи лежит источник энергии ХАДО (HADO) — вибрационная частота, волна резонанса. (ХАДО — определенная волна колебаний электронов атомного ядра). Поле магнитного резонанса всегда присутствует везде, где существует ХАДО. Таким образом, ХАДО может интерпретироваться непосредственно как область магнитного резонанса, которая является одним типом электромагнитной волны. MRA измеряет магнитный резонанс ХАДО. После своей работы с MRA доктор Эмото заключил, что, » все вещи лежат в пределах вашего собственного сознания. » Таким образом, он верит, что мы должны стараться поднимать наш уровень ХАДО, например, посылая благословение нашей пище, пить воду, не накапливая отрицательных эмоций.

Для получения фотографий микрокристаллов капельки воды помещают в 100 чашек Петри и резко охлаждают в морозильнике в течение 2 часов. Затем они помещаются в специальный прибор, который состоит из холодильной камеры и микроскопа с подключенным к нему фотоаппаратом. При температуре -5 градусов С в темном поле микроскопа под увеличением 200-500 раз рассматриваются образцы и делаются снимки наиболее характерных кристаллов.

В лаборатории были исследованы образцы воды из различных водных источников всего мира. Вода подвергалась различным видам воздействия такие как музыка, изображения, электромагнитное излучение от телевизора, мысли одного человека и групп людей, молитвы, напечатанные и произнесенные слова.

1. Ключевая вода Saijo, Японии

2. Ключевая вода Sanbuichi Yusui, Японии

3. Антарктический Лед

4. Фонтан в Лувре, Франция

5. Biwako Озеро, самое большое озеро в центре Японии. Водоем Kinki. Загрязнение ухудшается

6. Yodo Река, Япония, льется в залив Осаки. Речные проходы через большинство главных городов в Касаи

7. Вода из Fujiwara Дамба, перед молитвой

8. Fujiwara Дамба, после молитвы

9. Pastorale Бетховена

10. Бах

11. Пение тибетских сутр

12. Kawachi — народный танец

13. Тяжелый рок

14. Необработанная дистиллированная Вода

15. Слово «Любовь» (произнесенные на английском)

16. Слово «Любовь» (произнесенные на японском)

17. Слово «Любовь» (произнесенные на немецком)

18. Слово «Спасибо»

19. Слова «Я Убью Вас»

20. Слово «Адольф Гитлер»

21. Слово «Мать Тереза»

22. В две одинаковых баночки поместили рис. Два ученика начальной школы говорили рису слова каждый день, на протяжении месяца, как только они возвращались домой после школы. В результате, рис, которому дети говорили «спасибо» (слева), хорошо бродил, и имел приятный аромат. Рис, которому дети говорили «ты — дурак» (справа), стал черным и сгнил. Они сказали, что его запах был крайне отвратительным.

В природе существует 10% болезнетворных микроорганизмов и 10% полезных, остальные 80% могут менять свои свойства от полезных до вредных. Доктор Эмото полагает, что примерно такая пропорция существует и в человеческом обществе.

Если один человек, молится с глубоким, ясным и чистым чувством, кристаллическая структура воды будет ясна и чиста. И даже если большая группа людей имеет беспорядочные мысли, кристаллическая структура воды тоже будет неоднородна. Однако, если все объединятся, кристаллы получатся красивыми, как при чистой и сосредоточенной молитве одного человека. Под влиянием мыслей вода изменяется мгновенно.

Кристаллическая структура воды состоит из кластеров (большая группа молекул). Слова, подобные слову «дурак» уничтожают кластеры. Негативные фразы и слова формируют крупные кластеры или вообще их не создают, а положительные, красивые слова и фразы создают мелкие, напряженные кластеры. Более мелкие кластеры дольше хранят память воды. Если есть слишком большие промежутки между кластерами, другая информация может легко проникнуть в эти участки и разрушить их целостность, таким образом стереть информацию. Туда также могут проникнуть микроорганизмы. Напряженная плотная структура кластеров оптимальна для длительного сохранения информации.

В лаборатории доктора Эмото провели много экспериментов с целью найти то слово, которое сильнее всего очищает воду, и в результате обнаружили, что это не одно слово, а сочетание двух слов: «Любовь и Благодарность».Масару Эмото предполагает, что если провести исследования, то можно найти большее число тяжких преступлений в тех областях, где люди чаще в общении используют сквернословие.

Доктор Эмото говорит, что все существующее имеет вибрацию, и написанные слова также имеют вибрацию. Если я рисую круг, создается вибрация круг. Рисунок креста создал бы вибрацию креста. Если я пишу L O V E, то эта надпись создает вибрацию любви. Вода может быть скреплена с этими вибрациями. Красивые слова имеют красивые, ясные вибрации. Напротив, отрицательные слова производят уродливые, несвязные колебания, которые не формируют группы. Язык человеческого общения — не искусственное, а скорее естественное, природное образование.

Это подтверждается и исследованиями волновой генетики. П.П. Гаряев обнаружил, что наследственная информация в ДНК записана по тому же принципу, который лежит в основе всякого языка. Экспериментально доказано, что молекула ДНК обладает памятью, которая может передаваться даже тому месту, где раньше находился образец ДНК.

Доктор Эмото верит, что вода отражает сознание человечества. Получая красивые мысли, чувства, слова, музыку, духи наших предков становятся легче и приобретают возможность сделать переход «домой». Не даром у всех народов существуют традиции почтительного отношения к усопшим предкам.

Доктор Эмото является инициатором проекта «Любовь и Благодарность Воде». 70% земной поверхности, и примерно такая же часть человеческого организма занята водой, поэтому участники проекта предлагают в день 25 июля 2003 года присоединиться к ним всех желающих, чтобы послать пожелания Любви и Благодарности всей воде на земле. В этот момент, по крайней мере, три группы участников проекта будут молиться возле водоемов в разных частях земли: возле озера Kinneret (известного как Галилейское море) в Израиле, озера Starnberger в Германии и озера Biwa в Японии. Подобное, но менее масштабное мероприятие уже проводилось в этот день в прошлом году.

Чтобы самому убедиться в том, что вода воспринимает мысли, не требуется специальной аппаратуры. В любое время каждый может проделать эксперимент с облаком, описанный Масару Эмото. Чтобы стереть небольшое облачко на небе, нужно сделать следующее:

1. Не делайте это с большим напряжением. Если Вы слишком возбуждены, ваша энергия не будет исходить от Вас легко.

2. Визуализируйте, что лазерный луч как энергия входит в намеченное облако прямо из вашего сознания и освещает каждую часть облака.

3. Вы произносите в прошедшем времени: » облако исчезло».

4. Одновременно, Вы проявляете благодарность, говоря: «я благодарен за это», тоже в прошедшем времени.

На основании данных приведенных выше можно сделать некоторые выводы:

1. Добро влияет на структуру воды созидательно, зло разрушает ее.

2. Добро первично, зло вторично. Добро активно, оно работает само, если убрать злую силу. Поэтому молитвенные практики мировых религий включают в себя очищение сознания от суеты, «шума» и эгоизма.

3. Насилие – атрибут зла, это видно из схожести 9 и 11 фотографий.

4. Человеческое сознание гораздо сильнее влияет на бытие, чем даже действия.

5. Слова могут непосредственно влиять на биологические структуры.

6. Процесс совершенствования основан на любви (милосердии и сострадании) и благодарности.

7. Видимо, тяжелая металлическая музыка и негативные слова схожи по действию на живые организмы.

8. Основываясь на том, что из недр Земли выходит идеально структурированная вода (кристалл родниковой воды), и кристаллы древнего антарктического льда также имеют правильную форму, можно канстатировать, что Земля обладает негэнтропией (стремлением к самоупорядочиванию). Этим свойством обладают только живые биологические объекты. Следовательно, можно предположить, что Земля — живой организм.

(Оригинальная версия статьи: «Бизон-Элит» Недвижимость + Строительство http://www.bizon.biz.ua/modules/articles/article.php?id=43)

Химический состав воды💦

   Вода, согласно ее формуле — h3O, должна состоять лишь из смеси двух газов – водорода и кислорода, однако это лишь не более чем лабораторный стандарт. На самом же деле она представляет собой смесь самых различных веществ, находящихся в самых разных физических и химических состояниях. Химический состав природной воды весьма и весьма разнообразен.

Факторы, влияющие на формирование химического состава


   Произведенный в лаборатории химический анализ воды позволяет определить состав всех примесей органического и минерального происхождения, которые находятся в жидкости в форме молекул, ионов, суспензий, коллоидов и эмульсий. На химический состав как поверхностных, так и подземных вод существенно оказывают влияние географическое расположение, геологическое строение и климатические условия местности, в которой они находятся.

   💦Кратко рассмотрим химический состав природной воды, представляющей собой довольно сложную дисперсионную систему, где вода – дисперсная среда, а органические, минеральные вещества, газы и живые микроорганизмы – дисперсная фаза.

   Около 90 — 95 процентов компонентов, содержащихся в растворенном виде в воде, составляют соли, которые существуют там в виде ионов. В природной воде всегда присутствует «набор» из трех анионов и четырех катионов (HCO3-, SO42 -, Cl-, Ca2+, Mg2+, Na+ , K+), которые принято называть главными ионами.

   Одни из них безвкусны, другие же придают жидкости горький и солёный вкус. Поступают они в воду, главным образом, из почвы, горных пород и минералов. Часть из этих ионов имеет происхождение от производственной деятельности человека. Содержатся эти макрокомпоненты в воде в самых различных концентрациях.

молекула воды

   Природная вода, кроме главных ионов, содержит в своем составе еще и различные газы, разумеется, в растворенном виде. Одним из важнейших является кислород, который придает жидкости свежий вкус. Этого газа в воде может содержаться разное количество, все зависит от природных условий. Помимо кислорода, в воде содержатся такие газы, как азот и метан, не имеющие ни вкуса, ни запаха, а так же токсичный сероводород, который придает жидкости крайне неприятный запах. Концентрация этих газов в воде определяется главным образом ее температурой.

   Помимо этого, в воде содержатся биогенные вещества, которые составляют большую часть всех существующих живых организмов. К ним в основном относятся соединения фосфора и азота. Что касается азота, то он в природной воде может содержаться как в органической форме, так и неорганической. Концентрация биогенных веществ в такой жидкости может быть в самых различный пределах – от всего лишь следов до 10-ти миллиграммов на литр. Основные источники этих веществ – атмосферные осадки, поступления с поверхностными стоками, а так же сельскохозяйственными, промышленными и бытовыми сточными водами.

   Неотъемлемыми составляющими воды являются и микроэлементы, которых содержится в жидкости менее одного миллиграмма на литр. К ним относятся, практически, все известные металлы, за исключением железа и главных ионов и некоторые из неметаллов. Очень важными из них являются фтор и йод, обеспечивающие организму человека нормальное функционирование.

   Помимо прочего, в воде присутствуют и растворенные органические вещества. Это, по сути, органические формы упомянутых выше биогенных веществ. К ним относятся: углеводы, органические кислоты, фенолы, альдегиды, спирты, ароматические соединения, эфиры и так далее.

   В химический состав воды, помимо перечисленных, входят еще и токсичные соединения и вещества – нефтепродукты, тяжелые металлы, СПАВ, хлорорганические пестициды, фенолы и так далее.

   Природная вода ввиду присутствия в ней большого числа пузырьков газа и различных взвешенных частиц, считается негомогенной средой.

Структура воды: новые экспериментальные данные

Воде дана таинственная власть
Быть соком жизни на Земле.

Леонардо да Винчи

Рис. 1. Структура воды при температуре 20<sup>о</sup>С, размер по горизонтали — 400 мкм. Белые пятна — это эмулоны.<br><br>

Рис. 2. Структура водных растворов при 20<sup>о</sup>С: А — дистиллированная вода; Б — дегазированная минеральная вода боржоми; В — спиртовая настойка 70%.

Рис. 3. Эмулоны в бидистиллированной воде при температурах 4<sup>о</sup>С (А), 20<sup>о</sup>С (Б), 80<sup>о</sup>С (В). Размеры снимков 1,5 × 1,5 мм.

Рис. 4. Изменение амплитуды сигналов акустической эмиссии и температуры воды в процессе таяния льда.

Рис. 5. Относительное изменение температуры при нагревании воды.

Подробности для любознательных. Схема опыта. За короткое время из стаканчика с положительным электродом (анодом) через «мостик» утекло 0,5 грамма воды.

«Парящий водяной мостик» длиной около 3 сантиметров.

Наэлектризованная стеклянная палочка искажает форму «мостика» и разбивает его на струйки.

Так могут выглядеть эмулоны, образующие нитевидную структуру «мостика».

Воду принято рассматривать и как практически нейтральный растворитель, в котором протекают биохимические реакции, и как субстанцию, разносящую по телу живых организмов различные вещества. Вместе с тем вода — непременный участник всех физико-химических процессов и, в силу своей огромной важности, самое изучаемое вещество. Изучение свойств воды не раз приводило к неожиданным результатам. Казалось бы, какие неожиданности может таить в себе несложная реакция окисления водорода 2H2 + O2 → 2H2O? Но работы академика Н. Н. Семёнова показали, что реакция эта — разветвлённая, цепная. Было это более семидесяти лет назад, и про цепную реакцию деления урана ещё не знали. Вода в стакане, реке или озере не просто огромные количества отдельных молекул, а их объединения, надмолекулярные структуры — кластеры. Для описания структуры воды предложен ряд моделей, которые более или менее правильно объясняют только некоторые её свойства, а в отношении других противоречат эксперименту.

теоретически кластеры рассчитывают обычно только для нескольких сотен молекул или для слоёв вблизи межфазной границы. Однако ряд экспериментальных фактов свидетельствует, что в воде могут существовать гигантские, по молекулярным масштабам, структуры (работы члена-корреспондента РАН Е. Е. Фесенко).

В тщательно очищенной дважды дистиллированной воде и некоторых растворах нам удалось методом акустической эмиссии обнаружить и с помощью лазерной интерферометрии визуализировать структурные образования, состоящие из пяти фракций размерами от 1 до 100 мкм. Эксперименты позволили установить, что каждый раствор имеет свою, присущую только ему структуру (рис. 1, 2).

Надмолекулярные комплексы образованы сотнями тысяч молекул воды, сгруппированных вокруг ионов водорода и гидроксила в виде ионных пар. Для этих надмолекулярных комплексов мы предлагаем название «эмулоны», чтобы подчеркнуть их сходство с частицами, образующими эмульсию. Комплексы состоят из отдельных фракций размерами от 1 до 100 мкм, причём фракций, имеющих размеры 30, 70 и 100 мкм, значительно больше остальных.

Содержание отдельных фракций эмулонов зависит от концентрации ионов водорода, температуры, концентрации раствора и предыстории образца (рис. 3). В бидистиллированной воде при 4оС комплексы плотно упакованы и образуют текстуру, напоминающую паркет. Как известно, вода при этой температуре имеет максимальную плотность. При повышении температуры до 20оС в структуре воды происходят существенные изменения: количество свободных эмулонов становится наибольшим. При дальнейшем нагреве они постепенно разрушаются, число их уменьшается, и этот процесс в основном заканчивается при 75оС, когда скорость звука в воде достигает максимума.

За счёт дальнодействия электростатических сил эмулоны в воде образуют довольно стабильную сверхрешётку, которая, однако, чутко реагирует на электромагнитные, акустические, тепловые и другие внешние воздействия.

Обнаруженные надмолекулярные комплексы непротиворечиво включают в себя все ранее полученные сведения об организации воды в нанообъёмах и позволяют объяснить многие экспериментальные факты, которые не имели стройного, логичного обоснования. К ним относится, например, образование «парящего водяного мостика», описанного в ряде работ.

Суть эксперимента заключается в том, что если поставить рядом два небольших химических стакана с водой, опустить в них платиновые электроды под постоянным напряжением 15—30 кВ, то между сосудами образуется водяная перемычка диаметром 3 мм и длиной до 25 мм. «Мостик» парит длительное время, имеет слоистую структуру, и по нему происходит перенос воды от анода к катоду. Этот феномен и все его свойства — следствие наличия в воде эмулонов, которые, по-видимому, обладают дипольным моментом. Можно предсказать и ещё одно свойство явления: при температуре воды выше 75оС «мостик» не возникнет.

Легко объясняются и аномальные свойства талой воды. Как отмечалось в литературе, многие свойства талой воды — плотность, вязкость, электропроводность, показатель преломления, растворяющая способность и другие — отличаются от равновесных параметров. Сведéние этих эффектов к удалению из воды дейтерия в результате фазового перехода (температура плавления «тяжёлого льда» D2O 3,82оС) несостоятельно, поскольку концентрация дейтерия крайне незначительна — один атом дейтерия на 5—7 тыс. атомов водорода.

Изучение плавления льда методом акустической эмиссии позволило впервые установить, что после полного расплавления льда талая вода, находящаяся в метастабильном состоянии, становится источником акустических импульсов, что служит экспериментальным подтверждением образования в воде надмолекулярных комплексов (рис. 4).

Эксперименты показывают, что талая вода на протяжении почти 17 часов может находиться в активном метастабильном состоянии (после плавления льда его микрокристаллики сохраняются только доли секунды и совсем не определяют свойства талой воды). Это загадочное явление объясняется тем, что при разрушении гексагональной кристаллической решётки льда резко меняется структура вещества. Кристаллы льда разрушаются быстрее, чем перестраивается в устойчивое равновесное состояние образовавшаяся из него вода.

Уникальность фазового перехода лёд↔вода заключается в том, что в талой воде концентрация ионов водорода H+ и гидроксила OH непродолжительное время сохраняется неравновесной, какой она была во льду, то есть в тысячу раз меньшей, чем в обычной воде. Через некоторое время концентрация ионов H+ и OH в воде принимает своё равновесное значение. Поскольку ионы водорода и гидроксила играют решающую роль в формировании надмолекулярных комплексов воды (эмулонов), вода на некоторое время остаётся в метастабильном состоянии. Реакция её диссоциации H2O → H+ + OH требует значительной затраты энергии и протекает очень медленно. Константа скорости этой реакции составляет всего 2,5∙10–5 c–1 при 20оС. Поэтому время возвращения талой воды в равновесное состояние теоретически должно составлять 10—17 часов, что и наблюдается на практике. Исследования динамики изменения концентрации ионов водорода в талой воде во времени подтверждают это. Необычные свойства талой воды служат причиной разговоров о «памяти» воды. Но под «памятью» воды следует понимать зависимость её свойств от предыстории и ничего больше. Можно разными способами — замораживанием, нагреванием, кипячением, обработкой ультразвуком, воздействием различных полей и др. — перевести воду в метастабильное состояние, но оно будет неустойчивым, недолго сохраняющим свои свойства. Оптическим методом мы обнаружили в талой воде присутствие лишь одной фракции надмолекулярных образований с размерами 1—3 мкм. Возможно, что пониженная вязкость и более редкая пространственная сетка из эмулонов в талой воде увеличивают растворяющую способность и скорость диффузии.

Реальность существования эмулонов подтверждает классический метод термического анализа (рис. 5). На графике наблюдаются чётко выраженные пики, свидетельствующие о структурных перестройках в воде. Наиболее значимые соответствуют 36оC — температуре минимальной теплоёмкости, 63оC — температуре минимальной сжимаемости, и особенно характерен пик при 75оC — температуре максимальной скорости звука в воде. Их можно трактовать как своеобразные фазовые переходы, связанные с разрушением эмулонов. Это позволяет сделать вывод: жидкая вода — очень своеобразная дисперсная система, включающая как минимум пять структурных образований с различными свойствами. Каждая структура существует в определённом, характерном для неё температурном интервале. Превышение температуры над пороговым уровнем, критичным для данной структуры, приводит к её распаду.

Литература

Зацепина Г. Л. Физические свойства и структура воды. — М.: Изд-во Московского университета. — 1998. — 185 с.

Кузнецов Д. М., Гапонов В. Л., Смирнов А. Н. О возможности исследования кинетики фазовых переходов в жидкой среде методом акустической эмиссии // Инженерная физика, 2008, № 1, с. 16—20.

Кузнецов Д. М., Смирнов А. Н., Сыроешкин А. В. Акустическая эмиссия при фазовых превращениях в водной среде // Российский химический журнал — М.: Рос. хим. об-во им. Д. И. Менделеева, 2008, т. 52, № 1, с. 114—121.

Смирнов А. Н. Структура воды: новые экспериментальные данные. // Наука и технологии в промышленности, 2010, № 4, с. 41—45.

Смирнов А. Н. Акустическая эмиссия при протекании химической реакции и физико-химических процессов // Российский химический журнал. — М.: Рос. хим. об-во им. Д. И. Менделеева, 2001, т. 45, с. 29—34.

Смирнов А. Н., Сыроешкин А. В. Супранадмолекулярные комплексы воды // Российский химический журнал. — М.: Рос. хим. об-во им. Д. И. Менделеева, 2004, т. 48, № 2, с. 125—135.

***

Подробности для любознательных

Как возникает «мостик»

Образование «водяного мостика» описано в работах нидерландского физика Элмара Фукса с коллегами[1, 2].

В две стоящие рядом небольшие ёмкости с водой погружают платиновые электроды и подают на них постоянное напряжение 15—20 кВ. На фотографиях из [1] отчётливо видно, что вначале в анодном стакане, а затем и в катодном на поверхности воды возникают возвышения, которые сливаются, образуя между ёмкостями водяную перемычку круглого сечения диаметром 2—4 мм. После этого стаканы можно отодвинуть один от другого на 20—25 мм. Перемычка существует довольно долго, образуя «парящий водяной мостик». Вдоль «мостика» перетекает вода. Концы «мостика» разноимённо заряжены, поэтому вода в ёмкостях приобретает различные значения рН: 9 и 4. «Мостик» состоит из тонких струек; при поднесении к нему заряженной стеклянной палочки он расщепляется на несколько рукавов. Высокая техника эксперимента позволила зарегистрировать движение шаровидных образований по поверхности «водяного мостика» [2].

Объяснить этот эффект доктор Э. Фукс не смог, но ряд наблюдавших его исследователей склонны считать эффект следствием возникновения сверхтекучести, изменения соотношений количеств орто- и парамолекул воды (с параллельными и антипараллельными спинами соответственно) или притяжения дипольных молекул воды. Но ни один из этих вариантов объяснений не представляется убедительным. А обнаруженные гигантские надмолекулярные комплексы размерами до 100 мкм — эмулоны — вполне подходят на роль элементов «мостика». Возникновение на нём сферических образований, например, можно объяснить потерей устойчивости нитями из эмулонов и выталкиванием некоторых из них на поверхность «мостика», по которой они станут перемещаться к одному из электродов.

Литература

1. Elmar C. Fuchs et al. The floating water bridge, J. Phys. D: Appl. Phis. 40 (2007) 6112 — 4.

2. Elmar C. Fuchs et al. Dynamic of the floating water bridge, J. Phys. D: Appl. Phis. 41 (2008) 185502 (5pp).

Особенности физических свойств воды — урок. Химия, 8–9 класс.

При обычных условиях вода — прозрачная жидкость без вкуса и запаха. В тонком слое она бесцветна, а при толщине более \(2\) м имеет голубой оттенок.

 

Плотность жидкой воды максимальна при \(4\) °С и равна \(1\) г/см³ (\(1000\) г/дм³). В отличие от других веществ твёрдая вода (лёд) легче жидкой. Плотность льда при \(0\) °С составляет \(0,92\) г/см³. Поэтому айсберги плавают по поверхности океанов, а пресноводные водоёмы зимой не промерзают до дна, и обитающие в них организмы выживают во время сильных морозов.

 

aisbergi-v-more.2560x1600.jpg

 

Температура плавления воды равна \(0\) °С, а температура кипения — \(100\) °С. Это аномально высокие значения для вещества с такой низкой молекулярной массой.

 

Эта и другие особенности свойств воды обусловлены образованием агрегатов из полярных молекул воды за счёт межмолекулярных водородных связей.

Водородная связь — это взаимодействие между положительно заряженными атомами водорода одной молекулы и отрицательно заряженными атомами кислорода, фтора или азота другой молекулы.

Эта связь слабее ковалентной. Но благодаря ей значительно повышаются температуры плавления и кипения веществ.

 

Водородными связями объясняется также способность воды образовывать при замерзании снежинки разной формы.

 

1452124146_151228134527_snowflakes_5_624x351_kenlibbrecht_nocredit.jpg

 

Из всех жидких и твёрдых веществ у воды самая высокая теплоёмкость. Она медленно нагревается и так же медленно остывает. Благодаря такому свойству вода влияет на климат Земли, сглаживая колебания температуры. Моря и океаны накапливают тепло в тёплое время, а в холодное — его освобождают.

 

У воды высокие значения теплоты плавления и теплоты парообразования. Поэтому процессы таяния льда и снега, испарения воды происходят постепенно и приводят к медленной смене сезонов года: зима — весна — лето — осень.

 

Ещё одна особенность воды — высокое поверхностное натяжение. Поверхностное натяжение обуславливает капиллярные явления, собирает воду в капли, создаёт поверхностную плёнку и позволяет некоторым насекомым перемещаться по ней.

 

 

 

Высокая полярность молекул обуславливает способность воды растворять вещества с ионной или ковалентной полярной связью. Такие вещества часто называют гидрофильными. К ним относятся соли, щёлочи, некоторые кислоты и другие. Неполярные вещества в воде не растворяются. Их называют гидрофобными.

Физико-химические свойства и структура воды. — КиберПедия

Основные физико-химические свойства воды влияют на все процессы, в которых вода принимает участие.

1.Поверхностное натяжение — это степень сцепления молекул воды друг с другом. Вода в организме играет роль растворителя, обеспечивает транспортную систему и служит средой обитания наших клеток. Поэтому, чем ниже поверхностное натяжение, соответственно, выше растворяющая способность воды, тем лучше вода выполняет свои основные функции.

2. Кислотно-щелочное равновесие воды. Основные жизненные среды (кровь, лимфа, слюна, межклеточная жидкость, спинномозговая жидкость и др.) имеют слабощелочную реакцию. При сдвигах их в кислую сторону, меняются биохимические процессы, организм закисляется.

3. Окислительно-восстановительный потенциал воды. Это способность воды вступать в биохимические реакции. Она определяется наличием свободных электронов в воде.

4. Жесткость воды — наличие в ней различных солей.

5. Температура воды определяет скорость протекания биохимических реакций.

6. Минерализация воды. Наличие в воде макро- и микроэлементов необходимо для жизнедеятельности организма человека. Жидкости организма представляют собой электролиты, восполняемые минералами, в том числе и за счет воды.

7. Экология воды — химическое загрязнение и биогенное загрязнение. Чистота воды — наличие в ней примесей, бактерий, солей тяжелых металлов, хлора и др.

8. Структура воды. Вода представляет собой жидкий кристалл. Диполи молекулы воды ориентируются в пространстве определенным образом, соединяясь в структурные конгломераты. Это позволяет жидкости составлять единую биоэнергоинформационную среду.
9. Информационная память воды. За счет структуры кристалла происходит запись информации, исходящей от биополя. Это одно из очень важных свойств воды, имеющее большое значение для всего живого.

10. Хадо — волновая энергетика воды.

Водородные связи

представляет собой взаимодействие между двумя электроотрицательными атомами двух одинаковых, или двух разных, молекул, посредством одного атома водорода. Водородная связь возможна за счет электростатического притяжения атома водорода, несущего положительный заряд δ+, к атому электроотрицательного элемента, несущего отрицательный заряд δ−. Чаще всего водородная связь слабее ковалентной, однако, значительно сильнее обычного физического притяжения молекул друг к другу, наблюдаемого в твердых и жидких средах. От межмолекулярных взаимодействий водородную связь отличает наличие свойств, обозначаемых как направленность и насыщаемость. От этого ее часто относят к одной из разновидностей ковалентной химической связи. Водородную связь можно описать, пользуясь методом молекулярных орбиталей, как трехцентровуюдвухэлектронную связь.



Молекула воды имеет следующее строение:

Две поделенные электронные пары участвуют в образовании двух полярных ковалентных связей, а оставшиеся две неподеленные пары электронов тоже играют важную роль в свойствах воды. Все заместители у атома кислорода, включая неподеленные пары, стремятся расположиться как можно дальше друг от друга. Это приводит к тому, что молекула приобретает форму искаженного тетраэдра с атомом кислорода в центре. В четырех вершинах этого «тетраэдра» находятся два атома водорода и две неподеленные пары электронов. Но если смотреть только по центрам атомов, то получается, что молекула воды имеет угловое строение, причем угол Н–О–Н составляет примерно 105 градусов. Для возникновения водородных связей важно, чтобы в молекулах вещества были атомы водорода, связанные с небольшими, но электроотрицательными атомами Рис. 7-1а. Водородные связи между молекулами воды (обозначены пунктиром)

Структура воды и ее свойства

    Соли бериллия и кислородсодержащих кислот выделяются из растворов обычно в виде кристаллогидратов, которые по структуре и свойствам, естественно, существенно отличаются от безводных производных. Большинство солей бериллия растворимо в воде, нерастворимы ВеСО , Ве(Р04)2 и некоторые другие. Для бериллия весьма характерны двойные соли — бериллаты со сложными лигандами, например  [c.475]
    Исследования состояния влаги в пористых телах давно уже привели к выводу об особом характере ее свойств вблизи поверхности частиц и о существовании так называемой связанной воды в дисперсных системах [1]. Отличия связанной воды от свободной объясняются перестройкой сетки межмолекулярных водородных связей в ее структуре под влиянием поля поверхностных сил. Моделирование структуры воды численными методами Монте-Карло и молекулярной динамики позволило получить некоторые количественные характеристики структурных изменений вблизи твердых поверхностей различной природы. При этом межмолекулярная водородная связь описывается различными потенциалами, правильность выбора которых проверяется путем сравнения рассчитанных и экспериментальных физических констант объемной воды. Поскольку численным методам посвящен ряд специальных статей этой монографии, остановимся только на основных результатах, важных для дальнейшего обсуждения. [c.7]

    Закономерности фильтрования с закупориванием пор тесно связаны с особенностями структуры и свойств фильтровальных перегородок. В работе, посвященной этому вопросу [117], методом введения ртути в поры, фильтровальных перегородок исследовалось распределение пор в полотняных, хлопчатобумажных и найлоновых тканях, в фетре, в перегородках из спекшихся и спрессованных металлических порошков. Кроме того, проведены опыты по осветлению малоконцентрированных суспензий карбонила железа, взвешенного в смеси глицерина и воды. Были выведены уравнения фильтрования с постепенным закупориванием пор при постоянной разности давлений и постоянной скорости процесса, в которых учтены факторы, характеризующие структуру фильтровальной перегородки. [c.109]

    Недостатки электростатической теории взаимодействия ион — вода. В значительной части теорий, описывающих влияние ионов на структуру воды, свойства системы в основном объясняют взаимодействием ионов и диполей воды. [c.93]

    В таких растворах влияние ионов с отрицательной гидратацией на структуру воды исчезает. Когда концентрации становятся еще выше, область структурно нормальной воды в растворе перестает существовать. Ее структура по существу напоминает структуру расплавленной соли, искаженной присутствием воды (рис. 1.9,в). Это приводит к изменению многих свойств растворов, например растворяющей способности. Некоторые горные породы и минералы, практически не растворяющиеся в чистой воде, хорошо растворяются в концентрированных водных средах промывочных жидкостей. [c.27]


    Ассоциация молекул и структура жидкостей. Молекулы таких жиД Хостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)2, (НзО) , (СНзОН)2 и т. д. Однако ассоциация на этом не останавливается, образуются тримеры, тетрамеры и т. д., пока тепловое движение не разрушает образовавшеюся кольца и]ш цепочки молекул. Энергия на одну водородную связь в таких цепочках возрастает с числом молекул в димере воды 26,4, в тримере 28,4 кДж/моль, Для фтористого водорода в цепочках (НР)2, (НР)з, (НР)4 и (НР)5 и в кольце (НР)б на одну водородную связь приходится 28,9 32,5, 34,6 36,9 и 39,5 кДж/моль соответственно [к-32]. Когда тепловое движение понижено (в кристалле), через водородные связи создается кристал тическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две донорные Н-связи и через два атома Н — две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (б.иижний порядок). Эта структура воды определяет многие свойства воды и растворов. Структурированы и спирты, но по-иному, так как молекула спирта образует одну донорную и одну акцепторную связь. Эта структура разрушается тепловым движением значительно легче. Возможно структурирование и смещанных растворителей, как водно-спиртовые смеси и др. Оказывая особое влияние на структуру воды, водородные связи налагают отпечаток на всю термодинамику водных растворов, делая воду уникальным по свойствам растворителем. [c.274]

    В этой главе собраны работы, посвященные исследованию физических свойств воды в различных модельных и природных дисперсных системах, а также вблизи активных групп макромолекул и биополимеров. Сопоставление данных, полученных разными методами и для разных объектов, приводит к общему выводу об отличиях свойств воды в граничных слоях от ее свойств в объеме. Характер этих изменений существенным образом зависит от природы воздействующих на воду групп и поверхностей. Наиболее сильное влияние на структуру воды оказывают заряженные центры и полярные группы, способные к образованию водородных связей с молекулами воды. При этом оказываются важными эпитаксиальные эффекты — число и характер расположения активных центров на твердой поверхности. [c.6]

    Другим характерным свойством связанной воды — воды граничных слоев вблизи гидрофильных поверхностей, по современной терминологии, — является ее пониженная, по сравнению с объемной водой, растворяющая способность. Это также является следствием измененной структуры воды. Как известно, под действием внешнего давления и температуры меняется растворяющая способность и объемной воды. Пониженную растворяющую способность

Ответы Mail.ru: Особенности строения молекулы воды

Особенность воды заключается в ее диполярности (диполь), то есть она имеет и «+»и «-«заряды, таким образом та часть молекулы, где находится водород, заряжена положительно, а часть, где находится кислород, — отрицательно. Благодаря полярности молекул воды, электролиты в ней диссоциируют на ионы. Свойства воды: вода прозрачна, не имеет запаха и вкуса, плотность льда меньше плотности жидкой воды, поэтому лед всплывает на поверхность, вода замерзает при 0° С и кипит при 100° С, она плохо проводит теплоту и очень плохо проводит электричество. Вода — хороший растворитель, она поддерживает в живых организмов температуру, давление.

<a rel=»nofollow» href=»http://znanija.com/task/744284″ target=»_blank»>http://znanija.com/task/744284</a>

Вода составляет около 80% массы клетки; в молодых быстрорастущих клетках — до 95 %,в старых -60%. Роль воды в клетке велика. Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объём и упругость клетки. Большинство веществ поступает в организми выводится из него в водном растворе. Биологическая роль воды определяестя специфичностью строениЯ: полярностью её молекул и способностью образовывать водородные связи, за счёт которых возникают комплексы из нескольких молекул воды. если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде. такие вещества называют гидрофильными (от греч. «гидро»-вода, «филее»-люблю). Это многие минеральные сол, белки, углеводы и др. если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «гидро»-вода, «фобос»-страх) -жиры, липиды и др. Минеральные соли в водных растворах клетки диссоциируют на катионы и анионы, обеспечивая устойчивое количество необходимых химических элементов и осмотическое давление. Из катионов наиболее важны K+, Na+, Ca2+, Mg+. Концентрация отдельных катионов в клетке и во внеклеточной среденеодинакова. В живой клетке концентрация К+ высокая, Na+-низккая, в плазме крови, наоборот, высокая концентрация Na+ и низкая К+. Это обусловлено избирательной проницаемостью мембран. Разность в концентрации ионов в клетке и среде обеспечивает поступленеи воды из окружающей среды в клетку всасывание воды корнями растений. Недостаток отдельных элементов -Fe, P, Mg, Co, Zn-блокирует образование нуклеиновых кислот, гемоглобина, белков и других жизненно важных веществ и ведёт к серьёзным заболеваниям. Анионы определяют постоянство рН-клеточной среды (нейтральной и слабощелочной). Из анионов наиболее важны HPO42-, h3PO4-, Cl-, HCO3-.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.