Site Loader

Сторонние силы и ЭДС

      Для того, чтобы поддерживать ток достаточно длительное время, необходимо от конца проводника с меньшим потенциалом непрерывно отводить, а к другому концу – с большим потенциалом – подводить электрические заряды. Т.е. необходим круговорот зарядов. Поэтому в замкнутой цепи, наряду с нормальным движением зарядов, должны быть участки, на которых движение (положительных) зарядов происходит в направлении возрастания потенциала, т.е. против сил электрического поля (рис. 7.3).

          

Рис. 7.3

      Перемещение заряда на этих участках возможно лишь с помощью сил неэлектрического происхождения (сторонних сил): химические процессы, диффузия носителей заряда, вихревые электрические поля. Аналогия: насос, качающий воду в водонапорную башню, действует за счет негравитационных сил (электромотор).

      Сторонние силы можно характеризовать работой, которую они совершают над перемещающимися по замкнутой цепи или ее участку зарядами.

      Величина, равная работе сторонних сил по перемещению единичного положительного заряда в цепи, называется электродвижущей силой (ЭДС), действующей в цепи:

  . (7.4.1) 

      Как видно из (7.4.1), размерность ЭДС совпадает с размерностью потенциала, т.е. измеряется в вольтах.

      Стороннюю силу, действующую на заряд, можно представить в виде:

  (7.4.2) 

 – напряженность поля сторонних сил.

Работа сторонних сил на участке 1 – 2:

  тогда  (7.4.3) 

Для замкнутой цепи:

  (7.4.4) 

      Циркуляция вектора напряженности сторонних сил равна ЭДС, действующей в замкнутой цепи (алгебраической сумме ЭДС).

      При этом необходимо помнить, что поле сторонних сил не является потенциальным, и к нему нельзя применять термин разность потенциалов или напряжение.


Сторонние силы и ЭДС

Сущность сторонних сил

Для того чтобы в проводнике ток существовал длительное время, необходимо, чтобы движение заряженных частиц, например, электронов, поддерживалось какой-либо внешней силой. Следовательно, нужно, чтобы от конца проводника с меньшим потенциалом (считаем, что носители электрического тока положительные) непрерывно отводились приносимые туда заряды, а к концу с большим потенциалом заряды постоянно подводились. То есть необходим круговорот зарядов по замкнутому пути, именно тогда ток будет течь. Данный факт согласуется с замкнутостью линий тока. То есть ЭДС — это работа, прилагаемая по перемещению положительного заряда в замкнутом контуре.

Замечание 1

Сторонняя электродвижущая сила (далее сторонняя сила) не может быть электростатической, потому что электростатическое поле потенциально.

Работа потенциальной силы, для контура с током, равна нулю. При таком условии ток существовать не может, так как ток должен совершать работу по преодолению сопротивления проводников. Сторонняя сила может быть механической или электрической (не электростатической), иметь химическое происхождение и т.д.. Также для замкнутого контура причиной возникновения ЭДС может стать изменение потока магнитного поля, это связано с явлением электромагнитной индукции.

С учетом сторонних сил закон Ома в локальной форме записывается в виде:

$\overrightarrow{j}=\sigma \left(\overrightarrow{E}+\overrightarrow{E_{stor}}\right)\left(1\right)$, где:

  • $\overrightarrow{j}$ — вектор плотности электрического тока,
  • $\sigma $ — удельная проводимость,
  • $\overrightarrow{E}$ — напряжённость поля кулоновских сил, $\overrightarrow{E_{stor}}$ — напряженность поля сторонних сил.

Пример сторонних сил

Простейшая схема источника сторонней силы (источника тока), которая имеет механическое происхождение, представлена на рис.1.

Рисунок 1. Схема источника сторонней силы. Автор24 — интернет-биржа студенческих работ

Пусть между электродами А и В (рис.1) находится электрически нейтральная среда с равным зарядов противоположного знака. Сторонняя сила неэлектрического происхождения перемещает положительные заряды к электроду В (данный электрод заряжается положительно), а отрицательная к электроду А (отрицательно заряженный электрод). Во внешней цепи течет электрический ток. Ток производит работу. Энергия, которая необходима для производства такой работы, сообщается внешними силами, которые тратят ее на разделение зарядов между электродами. Ток внутри источника сторонней силы замыкает ток внешней цепи. Направление электрического тока во внешней цепи — от положительного электрода к отрицательному, внутри источника тока, наоборот. Практической реализацией такой схемы является электростатическая машина.

Электродвижущая сила

Сторонние силы характеризуются работой, совершающей ими при перемещении заряда по цепи. Так электродвижущей силой (ЭДС) ($\mathcal E$) называют:

$\mathcal E=\frac{A}{q}\left(2\right)$, где:

  • $q$ — заряд,
  • $A$ — работа сторонних сил.

Основная размерность ЭДС в системе СИ: $\left[\mathcal E \right]=В$.

ЭДС, действующую на участке 1-2 можно выразить как:

$\mathcal E_{12}=\int\limits^2_1{\overrightarrow{E_{stor}}d\overrightarrow{s}\left(3\right),}$, где:

  • $\overrightarrow{E_{stor}}$ — напряженность поля сторонних сил,
  • $d\overrightarrow{s}$— вектор перемещения.

Интеграл (3) для замкнутой цепи даст выражение для ЭДС в этой цепи, как циркуляции вектора напряженности сторонних сил:

$\mathcal E=\oint{\overrightarrow{E_{stor}}d\overrightarrow{s}\left(4\right).}$

ЭДС связана с падением напряжения или просто напряжением ($U$) на участке цепи 1-2 соотношением:

$U_{12}={\varphi }_1-{\varphi }_2+\mathcal E_{12}\left(5\right).$

Задание № 1: Опишите механизмы, которые позволяют использовать гальванические элементы в качестве источников постоянного тока.

Решение:

Часто встречаются источники постоянного тока, которые называют гальваническими элементами. При контакте твердого тела и жидкости появляется разность потенциалов. В некоторых случаях при таком контакте проходит химическая реакция. Допустим, если цинковую пластинку опустить в раствор серной кислоты, то цинк растворяется. В раствор перемещаются положительные ионы цинка, то есть раствор имеет положительный заряд, а сама цинковая пластина отрицательный, возникает электрический ток. При некоторой разности потенциалов переход ионов цинка в раствор заканчивается. Эта разность потенциалов называется электрохимическим потенциалом. (Он зависит от свойств металла, жидкости и концентрации ионов металла в растворе). Для растворов в серной кислоте этот потенциал цинка равен – 0,5В, для меди электрохимический потенциал равен +0,6В.

При погружении двух металлов в раствор возникает разность потенциалов между ними, которая равна разности из электрохимических потенциалов. Система из двух электродов из разных металлов, погруженная в раствор называется гальваническим элементом, разность потенциалов между металлами — ЭДС элемента.

Так, например, элемент Вольта состоит из медной и цинковой пластин, которые находятся в растворе серной кислоты. Зная электрохимические потенциалы цинка и меди, получим ЭДС элемента Вольта:

$\mathcal E=\left(0,6-(-0,5)\right)=1,1\left(В\right).$

В гальваническом источнике Вольта имеются 2 сторонние $\mathcal E$, которые сосредоточены в поверхностных слоях, где соприкасаются цинковая и медная пластины с раствором. Толщина этих слоев — молекула. В остальном объеме раствора сторонних $\mathcal E$ нет. Когда пластины соединяют проводником, по нему течет ток от медной (положительной) пластины к цинковой (отрицательной) пластине. В растворе между электродами направление тока — обратное: от цинковой пластины к медной.

Сторонняя ЭДС элемента определена его свойствами, и не зависит от силы тока, который течет по цепи. Изменение напряжения на внешней цепи всегда меньше, чем ЭДС элемента. Чем меньше внутренне сопротивление гальванического элемента, тем выше качество источника тока.

При прохождении тока в цепи элемента Вольта положительные ионы цинка переходят в раствор, там они соединяются с отрицательными ионами, на который, наряду с положительным ионом водорода, диссоциирует серная кислота. То есть в растворе проходит химическая реакция. Продукты реакции частично выпадают в виде осадка. При этом положительные ионы водорода движутся к медной пластине, там они нейтрализуются электронами тока проводимости в пластине. На поверхности медной пластины образуется водородная пленка. Эта пленка увеличивает внутреннее сопротивление элемента и одновременно, образует дополнительный электрохимический потенциал, который направлен против потенциала, который был на пластине до образования пленки. Так, ЭДС элемента уменьшается. Подобные процессы, называют поляризацией элемента.

Для того чтобы уменьшить падение ЭДС гальванического элемента применяют различные методы деполяризации, например, используют сильные окислители, которые связывают водород и кислород с образованием воды.

Задание № 2: Источник ЭДС $\mathcal E=1$ В имеет внутреннее сопротивление $r=1$ Ом включен в цепь, которая содержит сопротивление $R=9$ Ом. Найдите силу тока в цепи ($I$), падение напряжения во внешней цепи ($U$), падение потенциала внутри элемента ($U_r$).

Решение:

Для замкнутой цепи, которая содержит источник ЭДС запишем закон Ома в виде:

$I=\frac{\mathcal E}{R+r}\left(2.1\right)$, где:

  • $\mathcal E$ — ЭДС источника тока,
  • $R$ — внешнее сопротивление цепи,
  • $r$ — сопротивление источника ЭДС.

Закон Ома для однородного участка запишем как:

$I=\frac{U}{R}\to U=IR\left(2.2\right).$

И для источника тока:

$I=\frac{U_r}{r}\to U_r=Ir\left(2.3\right).$

Так как все данные задачи записаны в системе СИ, проведем вычисления:

$I=\frac{\ 1}{9+1}=0,1\ \left(А\right).$

$U=0,1\cdot 9=0,9\ \left(В\right).$

$U_r=0,1\cdot 1=0,1\ \left(В\right).$

Ответ: $I=0,1В; U=0,9В; U_r=0,1В$.

СТОРОННИЕ СИЛЫ — это… Что такое СТОРОННИЕ СИЛЫ?

СТОРО́ННИЕ СИ́ЛЫ в электродинамике, силы неэлектростатического происхождения, действующие на заряды со стороны источников тока и вызывающие перемещение электрических зарядов внутри источника постоянного тока. Сторонние силы совершают работу по разделению зарядов и поддержанию разности потенциалов на концах цепи.
В цепи, в котоpой действуют только электpостатические силы, постоянный ток (см. ПОСТОЯННЫЙ ТОК) возникнуть не может. В этом случае происходит перемещение носителей заряда от точек, имеющих большее значение потенциала к точкам с меньшим потенциалом, в результате которого потенциалы во всех точках цепи выравниваются, и происходит исчезновение электрического поля. Для существования постоянного тока необходимы источники тока — устройства, способные создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения — сторонних сил. Сторонними считаются все силы, отличные от кулоновских сил.
Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток. В источниках тока сторонние силы совершают работу по превращению какой-либо энергии в электрическую, либо энергию сторонних сил в энергию электрического поля.
Энергетической характеристикой источника тока является электродвижущая сила (см. ЭЛЕКТРОДВИЖУЩАЯ СИЛА) ЭДС, равная отношению работы, совершенной сторонними силами при перемещении электрического заряда по замкнутой цепи, к величине этого заряда. Сила тока в цепи пpямо пpопоpциональна ЭДС источников в ней и обpатно пpопоpциональна полному сопpотивлению (см. СОПРОТИВЛЕНИЕ ЭЛЕКТРИЧЕСКОЕ) цепи (см. Ома закон (см. ОМА ЗАКОН)).
Природа сторонних сил может быть различной. Источники постоянного тока могут быть основаны на химическом (гальванические элементы и аккумулятоpы) или тепловом (теpмопаpы) действии. В гальванических элементах сторонние силы возникают за счет энергии химических реакций между электродами и электролитами Гальванические элементы и аккумуляторы преобразуют химическую энергию в электрическую. В генераторе сторонние силы образуются за счет механической энергии вращения ротора генератора и т.д.,термопары преобразуют внутреннюю энергию в электрическую, фотоэлементы — световую в электрическую.

Сторонние электродвижущие силы

Замечание 1

Для того чтобы иметь постоянный электрический ток на заряды в цепи должны оказывать воздействие силы, отличные от сил электростатического поля. Данные силы получили название — сторонние силы. Любое устройство, создающее сторонние силы называют источником тока (источниками ЭДС).

Используем гидростатическую аналогию:

  1. Силы электростатического поля можно уподобить силе тяжести, которая хочет выровнять уровни жидкости в сообщающихся сосудах.
  2. Источник тока при этом выступает в роли насоса, который работает против силы тяжести и восстанавливает разность уровней жидкости в сосудах даже при имеющемся токе жидкости.

Сущность сторонних сил

Сторонняя электродвижущая сила (ЭДС) не может быть силой электростатического происхождения, поскольку электростатическое поле — это потенциальное поле. Это означает, что работа поля по замкнутому контуру с током, равна нулю. При данном условии ток не может существовать, так как он совершает работу по преодолению сопротивления проводников.

Итак, наличие постоянного тока является доказательством того, что ЭДС имеют не электростатическое происхождение.

Сторонняя электродвижущая сила может быть:

  • механической,
  • электрической,
  • химической и другой,

но никак не электростатической.

Механическая сторонняя электродвижущая сила

Рисунок 1. Источник. тока. Автор24 — интернет-биржа студенческих работ

Рассмотрим схему самого простого источника тока, имеющего стороннюю электродвижущую силу механического происхождения (рис.1). Между электродами 1 и 2 находится нейтральное вещество, обладающее равным количеством положительных и отрицательных зарядов. Сторонняя сила неэлектростатической природы передвигает заряды со знаком плюс к электроду 2, а отрицательные частицы к электроду 1. В результате данного процесса электрод 1 несет отрицательный заряд, а электрод 2 имеет заряд больше нуля. Во внешней цепи от 2 к 1 идет электрический ток, который совершает работу. Требуемая для этого энергия передается системе сторонними силами. Эти силы разделяют заряды между нашими электродами и доставляют эти заряды на электроды против сил электрического поля, напряженность которого $\vec E$, которое находится между электродами. Электрический ток, текущий между электродами 1 и 2 внутри источника ЭДС замыкает ток во внешней цепи.

При этом:

  • во внешней цепи ток следует от положительного электрода к заряженному отрицательно;
  • во внутренней цепи (внутри источника) ток следует от электрода со знаком минус к электроду со знаком плюс.

Рисунок 2. Электростатическая машина. Автор24 — интернет-биржа студенческих работ

Практическим примером механической сторонней ЭДС может служить электростатическая машина. Схема такой машины изображена на рис.2. Заряды $Q^+$ и $Q^-$ создают электростатическое поле в пространстве между этими зарядами. Изолированные друг от друга проводящие пластинки перемещаются по окружности вокруг оси $О$ при воздействии сторонних механических сил. В положении 1 (рис.2) пластины соединяются друг с другом и становятся неподвижным проводником. Благодаря электростатической индукции пластины $C$ и $D$ в данном положении заряжаются:

  • $C$ заряжается отрицательно;
  • $D$ заряжается положительно.

При дальнейшем движении их контакт с проводником нарушается и в положении 2 пластины становятся изолированными друг от друга, но имеют заряды разного знака. В положении 3 пластины контактируют с электродами $A$ и $B$. На эти электроды переходит заряд с пластин. Между электродами по цепи $BGA$ идет электрический ток. При наличии только одной пары вращающихся проводников $C; D$, ток по цепи течет импульсами, по два импульса за один оборот.

Если иметь большое количество пар пластин, подобных $C$ и $D$, таких, чтобы они контактировали с нашими электродами последовательно с очень маленькими разрывами, то можно организовать почти постоянный ток во внешней цепи. Данная машина реализует стороннюю ЭДС механического происхождения, которая возникает за счет механических сил, которые обеспечивают перемещение пластин $C$ и $D$ по окружности.

Последовательность превращений энергии при таком действии выглядит так:

  1. Сторонние механические силы, двигая пластины $C$ и $D$, выполняют работу против сил электрического поля, которое имеется между зарядами $Q^+$ и $Q^-$.
  2. Эти силы переносят заряды на пластинах $C$ и $D$ к электродам $A$ и $B$. В результате изменяется энергия электрического поля, так происходит переход энергии из механической формы в энергию электрического поля.
  3. После этого данная энергия при протекании тока по цепи трансформируется в джоулеву теплоту и другие формы энергии, которые обусловлены работой тока в цепи.

Элемент Вольта

Распространенными источниками постоянного тока служат гальванические элементы. Рассмотрим элемент Вольта. Основные его структурные элементы:

  • медная пластина;
  • цинковая пластина;
  • раствор серной кислоты.

Пластины погружены в раствор кислоты. Учитывая электрохимические потенциалы металлов, получим ЭДС элемента Вольта около 1,1 В.

Ошибочно предполагать, что сторонние ЭДС появляются в пространстве между пластинами. В элементе Вольта возникают две сторонние ЭДС, которые локализованы в поверхностных слоях, где соприкасаются пластинки с раствором кислоты. Данные слои имеют толщину размера молекулы. Во всем остальном объеме раствора сторонних ЭДС нет.

Если соединить пластины элемента при помощи проводника, то в нем возникнет электрический ток, направленный от медной пластины (положительного электрода) к пластине из цинка (отрицательному электроду).

В растворе в пространстве между электродами, ток направлен от цинка к меди. Получается, что линии постоянного тока замкнуты.

Сторонняя ЭДС элемента определена свойствами элемента и не зависит от силы протекающего по цепи тока. Падение напряжения на внешней цепи ($U=RI$) не равно ЭДС элемента и всегда меньше ее. Это напряжение между клеммами работающего элемента, если по цепи течет ток. При росте силы тока, напряжение во внешней цепи уменьшается, причем тем больше, чем значительнее внутреннее сопротивление элемента. Используя элемент, надо помнить, нужно, чтобы напряжение во внешней цепи как можно меньше зависело от силы тока, то есть от нагрузки. Следовательно, важной характеристикой элемента служит внутреннее сопротивление. Чем меньше внутреннее сопротивление (при других равных характеристиках), тем выше качество источника сторонних ЭДС.

Сторонние силы, электродвижущая сила и напряжение


⇐ ПредыдущаяСтр 3 из 10Следующая ⇒

Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называютсяисточниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называютсясторонними.

Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.

Сторонние силы совершают работу по перемещению электрических зарядов. Физи­ческая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называетсяэлектродвижущей силой (э.д.с.),действующей в цепи:

(97.1)

Эта работа производятся за счет энергии, затрачиваемой в источнике тока, поэтому величину можно также называть электродвижущей силой источника тока, включен­ного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует э.д.с.», т. е. термин «электродвижущая сила» употребляется как характеристика сторонних сил. Э.д.с., как и потенциал, выражается в вольтах (ср. (84.9) и (97.1)).

Сторонняя сила Fст, действующая на заряд Q0, может быть выражена как

где Е — напряженность поля сторонних сил. Работа же сторонних сил по перемещению заряда Q0 на замкнутом участке цепи равна

(97.2)

Разделив (97.2) на Q0, получим выражение для э. д. с., действующей в цепи:

т. е. э.д.с., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с., действующая на участке 12, равна

(97.3)

На заряд Q0 помимо сторонних сил действуют также силы электростатического поля Fe=Q0E. Таким образом, результирующая сила, действующая в цепи на заряд Q0, равна

Работа, совершаемая результирующей силой над зарядом Q0 на участке 12, равна

Используя выражения (97.3) и (84.8), можем записать

(97.4)

Для замкнутой цепи работа электростатических сил равна нулю, поэтому в данном случае

Напряжением U на участке 12 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (97.4),

Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует Э.д.с., т. е. сторонние силы отсутствуют.

18 Правила Кирхгофа для разветвленных цепей

Первое правило Кирхгофа утверждает, что алгебраическая сумма токов, сходящихся в любом узле цепи равна нулю:

  (7.9.1)  

В случае установившегося постоянного тока в цепи ни в одной точке проводника, ни на одном из его участков не должны накапливаться электрические заряды (узел – любой участок цепи, где сходятся более двух проводников (рис. 7.8)).

Рис. 7.8

Токи, сходящиеся к узлу, считаются положительными:

Второе правило Кирхгофаявляется обобщением закона Ома для разветвленной цепи.Для произвольного замкнутого контура с произвольным числом разветвлений (рис. 7.9) можно записать для каждого элемента контура:

Рис. 7.9

Складывая эти уравнения получим второе правило Кирхгофа:

  (7.9.2)  

В любом замкнутом контуре электрической цепи алгебраическая сумма произведения тока на сопротивление равна алгебраической сумме ЭДС, действующих в этом же контуре.

Обход контуров осуществляется по часовой стрелке, если направление обхода совпадает с направлением тока, то ток берется со знаком «плюс».

 

19. мощность в цепи постоянного тока. Работа выхода — разница между минимальной энергией (обычно измеряемой в электрон-вольтах), которую необходимо сообщить электрону для его «непосредственного» удаления из объёма твёрдого тела, и энергией Ферми. Здесь «непосредственность» означает то, что электрон удаляется из твёрдого тела через данную поверхность и перемещается в точку, которая расположена достаточно далеко от поверхности по атомным масштабам (чтобы электрон прошёл весь двойной слой), но достаточно близко по сравнению с размерами макроскопических граней кристалла. При этом пренебрегают дополнительной работой, которую необходимо затратить на преодоление внешних полей, возникающих из-за перераспределения поверхностных зарядов. Таким образом, работа выхода для одного и того же вещества для различных кристаллографических ориентаций поверхности оказывается различной. При удалении электрона на бесконечность его взаимодействие с зарядами, остающимися внутри твёрдого тела приводит к индуцированию макроскопических поверхностных зарядов (при рассмотрении полубесконечного образца в электростатике это называют «изображением заряда»). При перемещении электрона в поле индуцированного заряда совершается дополнительная работа, которая определяется диэлектрической проницаемостью вещества, геометрией образца и свойствами других поверхностей. За счет этого полная работа по перемещению электрона из любой точки образца в любую другую точку (в том числе и точку бесконечности) не зависит от пути перемещения, то есть от того, через какую поверхность был удален электрон. Поэтому в физике твёрдого тела эта работа не учитывается и не входит в работу выхода.

20.работа выхода электрона. термоэлектронная эмиссияТермоэлектро́нная эми́ссия (эффект Ричардсона, эффект Эдисона) — явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет, и явление термоэлектронной эмиссии становится заметным. Исследование закономерностей термоэлектронной эмиссии можно провести с помощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой откачанный баллон, содержащий два электрода: катод К и анод А. В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы — электроны. Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока от анодного напряжения — вольт-амперную характеристику, то оказывается, что она не является линейной, то есть для вакуумного диода закон Ома не выполняется. Зависимость термоэлектронного тока от анодного напряжения в области малых положительных значений описывается законом трех вторых (установлен русским физиком С. А. Богуславским (1883— 1923) и американским физиком И. Ленгмюром (1881 — 1957)): , где В — коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения. При увеличении анодного напряжения ток возрастает до некоторого максимального значения, называемого током насыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода. Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выведенной теоретически на основе квантовой статистики: , где А — работа выхода электронов из катода, Т — термодинамическая температура, С — постоянная, теоретически одинаковая для всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочноземельного металла), работа выхода которых равна 1 −1,5 эВ.

 


Рекомендуемые страницы:

Что такое сторонние силы? Какова их природа? Дайте определение эдс.

Сторонние силы — силы неэлектростатического происхождения, действующие на заряды со стороны источников тока. Природа сторонних сил может быть различной, например, в гальванических элементах они возникают за счет энергии химических реакций; в генераторе – за счет механической энергии вращения ротора генератора и т.д. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный ток.

ЭДС (электродвижущая сила) – это физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда: ε=A/Q

о. Эта работа производится за счет энергии, затрачиваемой в источнике тока, поэтому величину ε можно также назвать ЭДС источника тока, включенного в цепь. ЭДС выражается в вольтах.

  1. Когда напряжение и разность потенциалов совпадают?

В случае, когда на участке цепи не действуют сторонние силы, работа по перемещению заряда складывается только из работы потенциального электрического поля, которая не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение U между двумя точками совпадает с разностью потенциалов между ними. В общем случае напряжение U между двумя точками отличается от разницы потенциалов в этих точках на работу сторонних сил по перемещению единичного положительного заряда (эту работу называют ЭДС) на данном участке цепи.

  1. Обобщенный закон Ома. Рассмотрите частные случаи.

Произведение силы тока на сопротивление участка цепи равно алгебраической сумме падения потенциала на этом участке и ЭДС всех источников электрической энергии, включенных на данным участке цепи: IR=ϕ1-ϕ2+ε.

Частные случаи:

  1. ϕ1-ϕ2=0, т.е. цепь замкнутая. Тогда: IR=ε

  2. ε=0, т.е. однородный участок цепи. Тогда: IR= ϕ1-ϕ2

  3. ε<0, т.е. неоднородный участок цепи, ток течет против направления ЭДС. Тогда: IR= ϕ1-ϕ2-ε.

  1. Эдс, напряжение, разность потенциалов (физический смысл).

Напряжение равно отношению работы эффективного электрического поля (включающего сторонние поля) по перемещению пробного заряда из точка А в точку В, к величине пробного заряда. Работа равна сумме работ электрического поля и внешних сил (ЭДС).

ЭДС (электродвижущая сила) – это физическая величина, определяемая работой сторонних сил по перемещению положительного заряда в один Кулон, т.е. единичного положительного заряда. Единица измерения Вольт. Именно она указана на всех источниках тока.

Разность потенциалов – это работа электрического поля по перемещению единичного пробного заряда из точки А в точку В. Разность потенциалов между двумя какими-либо точками в электрическом поле имеет физический смысл, так как работа по переносу заряда в поле определена только тогда, когда заданы и начало и конец этого пути переноса. Поэтому, когда мы говорим об электрическом напряжении, то всегда имеем в виду две точки, между которыми существует это напряжение.

Сторонние силы

Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока называются сторонними силами.

Электродвижущая сила

Скалярная физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (ЭДС) , действующей в цепи или на ее участке:.

Напряжение

Напряжениеэто физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи.

Разность потенциалов

Напряжение на неоднородном участке цепи (где есть сторонние силы) равно сумме ЭДС источника и разности потенциалов на этом участке:

Для однородного участка цепи, где сторонние силы не действуют,

, т.е. напряжение совпадает с разностью потенциалов на концах участка цепи.

  1. Закон Ома для однородного участка цепи в интегральной и дифференциальной форме. Сопротивление и его зависимость от температуры. Сверхпроводимость.

Закон Ома для однородного участка цепи в интегральной и дифференциальной форме

Закон Ома для однородного участка цепи: немецкий физик Георг Ом экспериментально установил, что сила тока в цепи прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника:.

Закон Ома в дифференциальной форме (закон Ома для плотности тока). Закон Ома в форме относится ко всему проводнику. Представим закон Ома в дифференциальной (т.е. относящейся к элементу тока длиныdl) форме. Некоторая точка внутри проводника характеризуется вектором плотности тока , напряженностью электрического поляи свойствами материала проводника, т.е. удельным сопротивлением. Выделим мысленно малый объем вблизи рассматриваемой точки и подставимв закон Ома, получим:,здесь — разность потенциалов между сечениямиdS отстоящими на расстоянии dl. Следовательно,.

Учтем, что — напряженность электростатического поля;— плотность электрического поля;— удельная электрическая проводимость.

Тогда из формулы (20) следует закон Ома в дифференциальной форме: .

Сопротивление и его зависимость от температуры

Температурная зависимость сопротивления может быть представлена в виде:,

Сверхпроводимость

Сверхпроводимость – свойство некоторых проводников, заключающееся в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определенной критической температуры Tк, характерной для данного проводника.

16. Работа и мощность тока. Закон Джоуля – Ленца в интегральной и дифференциальной форме

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном учестке совершает работу 

ΔA = (φ1 – φ2) Δq = Δφ12 I Δt = U I Δt,

где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.

Если обе части формулы 

выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение 

R I2 Δt = U I Δt = ΔA.

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.

ΔQ = ΔA = R I2 Δt.

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем иЭ. Ленцем и носит название закона Джоуля–Ленца.

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена: 

Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Закон Джоуля-Ленца в дифференциальной форме — удельная мощность тока равна скалярному произведению векторов плотности тока и  напряженности электрического поля:

 ,

где s — удельная проводимость;

r — удельное сопротивление среды.

 Закон Джоуля-Ленца в дифференциальной форме носит совершенно общий характер, т. е. не зависит от природы сил, возбуждающих электрический ток. Закон Джоуля-Ленца, как показывает опыт, справедлив и для электролитов и для полупроводников.

17. . Обобщенный закон Ома для неоднородного участка цепи в интегральной и дифференциальной форме. Анализ обобщенного закона Ома. Замкнутая электрическая цепь. Соединение сопротивлений: последовательное и параллельное.

Напомним, что неоднородным называется участок цепи, на котором действуют сторонние силы, т.е. имеется источник ЭДС

Обобщенный закон Ома в дифференциальной форме: на неоднородном участке цепи под действием электростатического поля и поля сторонних силст возникает плотность тока:

.

Анализ обобщенного закона Ома:

Источник ЭДС в цепи отсутствует: .

Соединение

Последовательное

Параллельное

Сохраняемая величина

Суммируемая величина

Напряжение

Сила тока

Результирующее сопротивление

Закон Ома для замкнутой цепи:,

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *