Site Loader

Содержание

Как рассчитать мощность стабилизатора напряжения

11.08.2018

Планируя покупку стабилизатора напряжения, современный потребитель, если он, конечно, не профессионал, часто сталкивается с целым рядом затруднений. В основном, все их можно свести к кругу вопросов, связанных с критериями выбора аппарата. В частности, один из важнейших вопросов, волнующих потенциального покупателя: как подобрать стабилизатор по мощности или как рассчитать мощность устройства.

Какие функции выполняют стабилизаторы напряжения?

Само название этого типа оборудования говорит об их предназначении. Их основной задачей является обеспечение стабильного напряжения на выходе и защита бытовых приборов и другого электрооборудования от перепадов напряжения в сети. Поскольку отечественные сети, к несчастью, далеки от стандартов качества электроснабжения, то приобретение стабилизаторов остается наиболее эффективным решением существующих проблем. По-иному решить данную проблему пока не представляется возможным.

Скачки напряжения, вызванные не зависящими от пользователя факторами, крайне опасны, особенно, если перепады слишком велики. Примеры просто разрушительных последствий, особенно для владельцев частных домов, имеются. Но даже небольшие скачки напряжения по меньшей мере неприятны, а в конечном счете, рано или поздно выводят технику из строя, причем раньше, чем это гарантирует производитель. Не случайно, сегодня все больше производителей заявляют об аннулировании своих гарантийных обязательств, если владелец техники эксплуатирует ее без стабилизаторов напряжения в проблемных сетях вроде российских.

Правильно подобранный аппарат поможет нормализовать сетевое напряжение до 220 В при наличии однофазной сети и 380 В при трехфазной сети. Однако возможности стабилизатора не ограничиваются его основной функцией. Вы по достоинству оцените возможности аппарата по защите приборов от короткого замыкания и резких кратковременных скачков напряжения вниз или вверх.

Что такое «cos φ» и «пусковые токи» и почему они нужны при расчете мощности?

Оба параметра, а них мы сейчас вкратце расскажем, имеют самое непосредственное отношение к расчету мощности. Первый — cos φ — обозначает коэффициент мощности и рассчитывается через отношение показателя активной мощности к показателю полной. В электротехнике считается, что идеальным показателем коэффициента мощности является 1, если речь идет об обычных бытовых электроприборах. То есть, чем ближе к единице значение cos φ, тем это лучше для потребителей и поставщиков.

Стабилизатор напряжения Энергия АСН 8000 Если быть более конкретным, то можно разобрать данный вопрос на примере одного из продуктов компании «Энергия» — стабилизаторе АСН 8000. Как известно, цифры в его названии указывают на мощность в Вольт/Амперах (8000 В/А). Так как обычно показатель мощности выражается в Ваттах, то отсюда и возникает необходимость использовать параметры коэффициента cosφ. Соответственно, если речь идет об использовании стабилизатора для нормальной работы различных бытовых электроприборов (электрочайника, нагревательного тэна, электроплиты и т.п.), то значение коэффициента должно быть равно единице.

Чтобы узнать значение в Ваттах, используется простая формула: Ватты = В/А х cosφ (1). Для примера вернемся к упоминавшемуся выше стабилизатору Энергия АСН 8000. Формула будет выглядеть следующим образом:

8000 ВА х 1 =8 кВт.

Если же планируется использование стабилизатора с техникой, оснащенной электродвигателями, насосами и компрессорами (то есть с активно/реактивной нагрузкой), то расчет производится исходя из значения cosφ, равного 0,8 или 0,7, причем лучше использовать последнее значение. Впрочем, здесь многое будет зависеть от конкретной ситуации. Например, Энергия HYBRID СНВТ 5000 обладает полной мощностью в 5000 В/А. Следовательно, опять используем вышеописанную формулу со значением коэффициента в 0,7. И получаем:

5000 (В/А) х 0.7 = 3.5 кВт.

Если же вы планируете одновременное подключение техники как с нагревательными элементами, так и с двигателями, то лучше если cosφ равен 0,8.

Теперь о пусковых токах. При расчете мощности стабилизатора данный показатель является одним из ключевых, так как при запуске двигателя бытовых электроприборов (стиральных машин, сплит-систем, насосов и т.д.) возникает краткосрочная нагрузка, которая превышает номинальную мощность стабилизатора.

Холодильники, стиральные машины, СВЧ-печи, пылесосы и другие подобные электроприборы могут потреблять в три и даже больше раз мощности, чем номинальный показатель, при запуске. Затем, когда прибор начнет работать на рабочих оборотах, показатель потребляемой мощности опять станет равным номиналу. И хотя длительность пусковых токов не превышает нескольких секунд, игнорировать данное обстоятельство не следует, если вы рассчитываете суммарную мощность. Допустим, у вас есть холодильник, номинальная мощность которого составляет 300 Вт. Но при запуске, когда начинает работать компрессор, мощность резко возрастает, достигая показателя в один киловатт. Следовательно, вам придется принимать в расчет не только номинальный показатель мощности холодильника, но и пусковые токи.

Как же правильно рассчитать мощность?

При покупке стабилизатора следует, прежде всего, определиться с тем, в каких условиях будет эксплуатировать прибор: для защиты отдельных устройств или же для всего комплекса электроприборов. Но допустим, что речь идет о покупке такого стабилизатора, который будет защищать всю технику в доме. Как действовать в этом случае?

Для начала необходимо узнать параметры совокупного потребления всеми приборами в доме. Сделать это можно несколькими способами. Первый и самый простой заключается в том, чтобы взять разрешение по электроснабжению, в котором должны содержаться данные о выделенной на участок мощности.

Можно обратиться ко второму способу, когда в качестве указателя мощности используются данные на входных автоматах защиты. На приборах обычно указывается сила тока в амперах, которую можно без труда перевести в ватты (кол-во в амперах умножить на 220 В). Например, если мощность равна 24 А, то путем несложных подсчетов мы получим 5,5 кВт. Это касается как однофазной, так и трехфазной сети. Только в последнем случае нужно умножить силу тока на напряжение и получить результат на каждую фазу. Если в вашем случае подключается 3-фазная нагрузка, то мощность трех фаз нужно суммировать, чтобы получить общую мощность.

Наконец, вы можете воспользоваться третьим способом, который еще проще. Взять информацию по нагрузке от каждого прибора с учетом пускового тока и суммировать данные, а затем умножить на коэффициент 0,7. Почему именно 0,7? Дело в том, что на практике пользователи не включают одновременно все электроприборы, то есть параметр коэффициента указывает на типичное положение, когда работает примерно 70 % домашней аппаратуры. Для защиты отдельных приборов иногда создается выделенная линия от стабилизатора, что часто более эффективно.

Группы стабилизаторов по мощности

Первую группу входят аппараты мощностью до 2 кВт, которые полезны при защиты наиболее распространенных видов электроприборов, включая автоматику котлов отопления, циркуляционные насосы, холодильники, телевизоры, СВЧ-печи. Примером подобного рода стабилизаторов может быть модель Энергия Voltron РСН 2000.

Стабилизатор напряжения Энергия Classic 5000

Во вторую группу включаются стабилизаторы мощностью от трех до пяти кВт, которые могут работать с более мощными образцами техники: глубинными насосами, стиральными машинами, компрессорами септики, мойками высокого давления. В качестве примера можно рассматривать модель Энергия Classic 5000.

Третья группа включает стабилизаторы мощностью от 8 до 20 кВт, которые подойдут для защиты дома, коттеджа или квартиры. Аппарат обычно устанавливают сразу после автоматов защиты по току. С помощью клеммной колодки делает ввод сети и подключение нагрузки. Среди примеров стабилизаторов такого рода можно рассмотреть популярную модель Voltron РСН 10000.

И, наконец, четвертая группа включает стабилизаторы мощностью от 30 кВт трехфазного типа, рассчитанные на профессиональное оборудование или коттеджи с большим энергопотреблением.

Рассказать друзьям:

Как рассчитать мощность стабилизатора

Ох, эти непонятные кВт и кВА…

Многие до сих путаются в мощностях стабилизаторов: киловатты (кВт) и киловольт-амперы (кВА), как они связаны между собой, как понять сколько киловатт (кВт) выдаёт стабилизатор и прочие вопросы. Сейчас постараемся всё подробно объяснить. Но чтобы разобраться, придётся вспомнить некоторые основы электротехники.

Для начала следует разобраться с параметрами электрических цепей. Нас будут интересовать, в первую очередь, напряжение (обозначается U, измеряется в вольтах, В) и сила тока (обозначается I, измеряется в амперах, А). Чтобы наглядно представить себе эти параметры, можно сравнить электричество с водой, а электрическую цепь с трубопроводом. В таком сравнении напряжение будет давлением воды, а сила тока — скорость течения воды по трубам.

Важное замечание, трубопровод может находиться под давлением, но краны перекрыты, и вода по трубам не течёт. Таким образом, переходя к электричеству, есть напряжение, а тока нет — это случай, когда не включен ни один прибор. Как только мы включаем любой прибор (это аналогично открыванию вентилей в водопроводе), по цепи потечёт электрический ток.

Любой электроприбор обладает такой характеристикой, как сопротивление (обозначается R, измеряется в омах, Ом). Сопротивление прибора характеризует величину тока, который появится в сети после включения этого прибора. Если сопротивление прибора маленькое, то потечёт большой ток, если сопротивление большое — ток будет маленьким. В аналогии с водой прибор можно рассматривать как фильтр. Если это фильтр грубой очистки, то он практически не повлияет на скорость течения воды, его сопротивление низкое. А если это фильтр тонкой очистки, то он создаст серьёзное препятствие на пути воды, и скорость потока значительно снизится — его сопротивление большое.

Теперь потихоньку переходим к мощности. Как же всё-таки рассчитать мощность стабилизатора? Из курса физики ещё известно, что электрическая мощность определяется как произведение силы тока на напряжение: P = I×U. Поскольку U всегда должно быть 220 В, то именно ток фактически определяет мощность, а он, в свою очередь, определяется сопротивлением нагрузки.

И когда мы говорим о постоянном напряжении, всё достаточно банально. Например, напряжение в цепи 12 В; подключили какой-то прибор и измерили ситу тока в цепи — получилось 3, А, значит мощность равна 12 вольт×3 ампера = 36 Вт (ватт).

Но напряжение в наших розетках переменное, с частотой 50 Гц (50 раз в секунду) оно по синусоиде меняет свое значение с + на — и наоборот. И мощность, как произведение тока и напряжения, надо рассматривать уже более детально:

Здесь синяя линия — напряжение, ток — красная линия, меняется синхронно с напряжением. Их произведение, мощность, обозначена чёрной линией (как помним, минус на минус даёт плюс, и даже когда напряжение и ток имеют отрицательные значения, мощность остаётся положительной).

Это случай, когда подключена чисто активная нагрузка, которая не создаёт задержки тока, и ток меняется синхронно с изменением напряжения. В этом случае формула P = I × U остаётся верна, и произведение тока на напряжение будет давать ватты (Вт).

Но, как известно, существуют элементы, которые задерживают ток — это, в первую очередь, конденсаторы, катушки индуктивности, дроссели, трансформаторы. Эти элементы есть почти в любом приборе. И вот что происходит, если эти элементы задерживают ток:

Как видим, ток (красная линия) смещён относительно напряжения (синяя линия), и в некоторые моменты мощность (чёрная линия) становится отрицательной.

Физически это означает, что в эти моменты времени мы не потребляем мощность, а наоборот, выбрасываем её назад в электросеть!

Получается, что ток остался таким же, что в предыдущем случае, а потребили мы меньше мощности, часть выбросив назад в электросеть. А коль ток остался таким же, то электросчетчик накрутил нам столько-же, провода так же нагрелись, а мощности потребили меньше.

Вот теперь формула P = I × U перестала нам давать ватты (Вт). Поскольку ватты — это именно та мощность, которую мы потребили, а, коль скоро, часть мощности мы выбросили назад, то потребили мы меньше, чем развили. Другими словами, развиваем мы полную мощность, а используем её не всю.

Выходит, что у любого прибора в цепи переменного напряжения есть не один параметр мощности, а два: полная (развиваемая) мощность, и потребляемая (активная) мощность.

Полная мощность вычисляется по старой формуле P = I × U, но она уже не даёт Ватты, а она даёт Вольт-Амперы (произведение вольт на амперы). А вот чтобы вычислить ватты (мощность со знаком +, потребляемую мощность), нужно вспомнить тригонометрию. Если ток смещён относительно напряжения на угол fi, то мощность со знаком + (активную, потребляемую мощность) можно вычислить по формуле Pа = I × U × Cos(fi) — именно она измеряется в Ваттах (Вт). Выбрасываемая назад мощность вычисляется по формуле Pр = I × U / Cos(fi) — измеряется в ВАРах (вольт-ампер-реактивных) и называется реактивной мощностью.

Параметр Cos(fi) принято называть коэффициентом реактивной мощности или просто коэффициентом мощности.

Вот типичные значения коэффициента мощности разных приборов:
Обогреватели, лампочки накаливания — 1,0;
Телевизор — 0,9…0,95;
Микроволновка — 0,8;
Электродвигатель (насос, циркулярка, компрессор холодильника) — 0,7.

Теперь небольшой пример. Для ограничения мощности подключения используются автоматы защиты, которые отключаются при достижении током порогового значения. Пусть какая-то вымышленная дача подключена автоматом на 40, А:

Сколько обогревателей мощностью 1 кВт можно подключить к этой электросети? А сколько насосов аналогичной мощности?

Считаем. Цепь с напряжением 220 В. Полная мощность, которую можно развить в этой цепи до срабатывания автомата защиты 40×220 = 8800 ВА.

Полная мощность обогревателя P = 1 кВт × Cos(fi), как помним, у обогревателя Cos(fi) = 1, а значит его полная мощность P = 1×1 = 1 кВА = 1000 ВА. И сможем включить мы в сеть таких обогревателей 8800 / 1000 = 8 штук.

А вот коэффициент мощности насоса уже 0,7, а значит его полная мощность P = 1 кВт / 0,7 = 1,428 кВА = 1428 ВА. И включить насосов в эту сеть мы сможем лишь 8800 / 1428 = 6 шт.

Вот такой парадокс получается, что вроде и приборы все на 1 кВт, но одних можно включить в сеть 8 штук, а вторых лишь 6 штук.

Теперь перейдём к стабилизаторам. Их мощность задаётся по величине полной мощности (активная + реактивная, кВА), а значит однозначного ответа на вопрос: «какова мощность этого стабилизатора напряжения в киловаттах (кВт, ну или в ваттах, Вт)?», нет и быть не может!

Как и в предыдущем примере, киловатты стабилизатора определяются исходя из коэффициента мощности подключенной к нему нагрузки. Если подключаем чисто активную нагрузку (Cos(fi) = 1), то его мощность в ВА равна мощности в Вт. А вот если нагрузка имеет коэффициент мощности менее 1 (Cos(fi) < 1), то и мощность стабилизатора в ваттах (Вт) будет меньше.

Но и это ещё не все. Как мы все знаем, в любой системе должен выполняться закон сохранения энергии. Стабилизатор не исключение. Количество энергии на входе стабилизатора должно быть равно количеству энергии на выходе. Количество энергии это мощность (полная) в единицу времени, т. е. I × U. Отсюда можно записать следующее равенство:

Iвх × Uвх = Iвых × Uвых

Теперь представим ситуацию. Человек получил разрешение на подключение своей дачи к электросети с мощностью отбора 9 киловатт (кВт). Электрики должны ограничить потребление. Мощность — величина вычисляемая, но не измеряемая, её ограничить нельзя. А значит будут ограничивать величину измеряемую — амперы! Электрики прикинули, что при Cos(fi) = 1, 9000 Вт — это 9000 ВА. А при напряжении 220 В 9000 ВА — это ток в 9000 / 220 = 40,9, А, и повесили ограничительный автомат в 40 А.

Но человек жалуется, что напряжение у него не 220 В, а лишь 150 В — насосы не тянут, лампы горят в полнакала, обогреватели еле греют. И принимает решение купить стабилизатор напряжения. Поскольку разрешенная мощность у него 9 кВт, то он берёт стабилизатор на 10 кВт (с запасом).

Стабилизатор должен выдать человеку 10 кВА? Почему же у него не работает всего 3 обогревателя по 2 кВт каждый? Ведь он купил стабилизатор на 10 кВт!

А давайте прикинем с точки зрения сохранения энергии. Максимум, на что человек может рассчитывать — это взять из электросети всего 40, А (ограничительный автомат). А напряжение там всего 150 В. А на выходе стабилизатор выдаёт 220 В. Давайте подставим эти данные в закон сохранения энергии:

40 А × 150 В = Iвых × 220 В

Отсюда, Iвых = 40×150 / 220 = 27, А при напряжении на выходе в 220 В. Если теперь посчитать мощность выхода на стабилизаторе, получим 220×27 = 5940 ВА. Грубо говоря, стабилизатор мощностью 10 кВА, выдаст всего 5,9 кВА!!!

А уж если подключать к нему насосы с коэффициентом мощности 0,7, то подключить к нему можно всего 4 насоса по 1 кВт!

Стабилизатор тут, конечно же, ни причём. Вся «соль» в том, что при разрешённой мощности в 9 кВт, реально забрать с линии можно лишь 150 В × 40, А = 6000 ВА (6 кВА). А стабилизатор лишь поднимает напряжение за счёт тока (уменьшая максимальную силу тока выхода).

Теперь вы должны понимать, что выходная мощность стабилизатора напряжения определяется типом нагрузки, подключенной к стабилизатору, входным напряжением и ограничением входного тока (автоматы).

Мощность стабилизатора напряжения Вольт-Ампер или Ватт?

Одним из самых главных критериев для правильного подбора стабилизатора напряжения является его мощность. Ведь если ее недостаточно, то изделие не будет выполнять полностью возложенные на него функции по защите оборудования. Самый частый вопрос, который возникает при расчете этого параметра – как считать в Ваттах или Вольт-Амперах?

В технических характеристиках стабилизаторов мощность указывается обычно полная, а единицы измерения при этом Вольт-Амперы. В то же время мощность нагрузки как правило указывается в Ваттах, т.е активная. Как же правильно выбрать?

Из школьного курса физики вспоминаем, что мощность определяется так Р=U×I, т.е. напряжение умножаем на ток и получаем результат в Ваттах. Когда речь идет о постоянном напряжении, то все предельно просто, т.к. в этом случае нет фазового сдвига между U и I, т.е. присутствует чисто активная составляющая. Например, при U=12В и I=4А мощность будет равна 48Вт.

При переменном напряжении ситуация несколько меняется, т.к. в зависимости от типа нагрузки, которая в своем составе может иметь как индуктивные, так и емкостные элементы, может меняться сдвиг фаз между током и напряжением. Потому формула выше для активной мощности несколько преобразуется Р=U×I×cosφ (Вт), т.е. под cosφ здесь и понимается фазовый сдвиг между U и I. В зависимости от нагрузки cosφ может принимать значение от 1 (лампочки накаливания, электронагреватели, ТЭНы) до 0,5 (насосы, компрессоры, электроинструмент, электродвигатели, сварка).

И получается, что для электродвигателя с cosφ=0.7 при напряжении 220В и токе 10А активная мощность (Р) уже будет равна 1540Вт, а не 2200Вт как при работе обогревателя с cosφ=1.0, например.

Именно поэтому при выборе мощности стабилизатора напряжения следует обращать внимание на т.н. полную мощность (S), которая обычно указывается в характеристиках изделия и измеряется в Вольт-Амперах. Активная и полная мощность связаны соотношением S=P/cosφ.

Таким образом, зная характеристики нагрузки (активную мощность и cosφ) можно точно подобрать стабилизатор по его паспортной полной мощности.

Пример. Имеется 1 обогреватель с cosφ=1 и Р=3.5 кВт, 1 насос с cosφ=0.8 и Р=2.5 кВт и 1 холодильник с cosφ=0,95 и Р=0.5 кВт.

Если просто просуммировать все нагрузки без учета cosφ (как обычно большинство людей и делают), то получится, что нужен стабилизатор не менее 6,5 кВт.

Однако полная мощность всех приборов получится S = 3.5/1+2.5/0.8+0.5/0.95 = 7151 ВА, т.е. необходим стабилизатор не менее 7.5 кВА, а с учетом того, что при понижении напряжения мощность стабилизатора также падает, то необходим стабилизатор с 25-30% запасом на 8.5 — 9 кВА.

Расчет стабилизатора напряжения для смешанной нагрузки (бытовая техника, освещение, инструменты) лучше производить по полной мощности, а не активной, т.к. при простом суммировании всех потребителей будет выбрано изделие, которое просто не справится с поставленной задачей.

Однако если нагрузка чисто активная (лампочки, нагреватели), то достаточно сложить мощность всех устройств, пренебрегая коэффициентом мощности (cosφ).

Выбор стабилизатора напряжения и расчет мощности

Как и любое другое устройство, нормализатор имеет свои критерии подбора и для качественно службы их нужно учитывать при покупке и подборе. Учтите, что от качества достоверности имеющихся у вас данных будет зависеть насколько качественно будет решать поставленные задачи нормализатор.

Данная статья поможет осуществить Вам выбор стабилизатора напряжения, а также произвести расчеты мощности стабилизатора. Это очень важный этап к которому необходимо отнестись со всей ответственностью, во многом именно от этого зависит как стабильно и качественно будет работать электрооборудование по нормализации электроэнергии сети.

Если вы решили приобрести автоматический стабилизатор, то наверняка Вы понимаете для каких целей он Вам необходим и какие устройства будут потреблять электроэнергию. Для правильно подсчета мощности правильно будет вычислить сумму мощности всех электрических приборов, которые могут быть одновременно задействованы. Правильный расчет общей мощности также позволит сэкономить Ваши средства выделенные на покупку, поскольку скорее всего фен для сушки волос, микроволновая печь, утюг, тостер и кухонный комбайн одновременно включатся не будут.

Чтобы не ошибиться при расчете мощности стабилизатора напряжения правильным будет выписать все без исключения потребители и проанализировать какие именно могут работать одновременно.

 

Формула расчета мощности стабилизатора

Правильный расчет мощности достигается при использовании несложной формулы:

Pстаб. = Pпотр. X 220 / Vмин.

Pстаб. — Мощность требуемого стабилизатора;

Pпотр. — максимальная мощность одновременно включенных потребителей;

Vмин. — Минимальное сетевое напряжения.

Для Вашего удобства приведем ориентировочные нагрузки распространенных приборов в списке:

  • Стиральная машина автомат — 2500Вт;

  • Кондиционер — от 1500 до 4000Вт;

  • Бойлер — от 1000 до 1500Вт;

  • Холодильник — 400Вт;

  • Телевизор — 200Вт;

  • Освещение — от 200 до 600Вт;

  • Стационарный Компьютер — 500Вт;

  • Эл. обогреватель — 2000Вт;

  • Эл. плита — от 1000Вт; и более

  • Кофеварка, чайник — 1500Вт;

  • Утюг — 1300Вт;

  • Духовка — 1500Вт;

  • Микроволновая печь — 1500Вт;

  • Проточный водонагреватель — 5000Вт;

  • Пылесос — от 1000Вт;

  • Тостер — 1000Вт;

  • Фен — от 1000Вт.

 

Как вы уже могли заметить, мощность и уровень пониженного напряжения играют ключевую роль в выборе стабилизатора напряжения, именно поэтому нужны достоверные данные. Для того, чтобы Вы окончательно разобрались, как выбирать стабилизатор, мы приведем вам пример. Это довольно простое математическое действие, немного физики из школьного курса, еще не забыли?

 

Пример расчета мощности при выборе стабилизатора

Исходные данные:

  1. Pпотр. — максимальная мощность одновременно включенных потребителей — 4800Вт;

  2. Vмин. — Минимальное сетевое напряжения — 175В.

Применим формулу:

4800 X 220 / 175 ≈ 6035 (Вт)

Исходя из приведенных выше данных можно сделать вывод, что при напряжении 175В и потребляемой мощности 4800Вт необходимо выбрать стабилизатор напряжения мощностью не ниже 6000Вт.

 

Выбор стабилизатора напряжения по точности регулирования

После того, как известна мощность устройства, мощно приступить к выбору конкретной модели. Как известно, стабилизаторы напряжения могут быть разного класса точности. Выпускат устройства с погрешностью 220±10%,  220±8%, 220±6%, 220±5%, 220±3%, 220±1%, 220±0,75%.

Высокая точность сетевого напряжения может быть необходима для медицинского оборудования, музыкального оборудования класса HI-END и другого восприимчивого оборудования, которое чувствительно с минимальным всплескам в электрической сети.

 

Заключение

В заключение данной статьи хотим отметить, что были разобраны все основные моменты, которые так или иначе могут повлиять на выбор стабилизатора напряжения. При этом, если вы испытываете недопонимание в каком-то из моментов, то просто позвоните нашим специалистам, которые окажут вам посильную помощь в выборе устройства со всеми нюансами.

Выбор стабилизатора напряжения | Заметки электрика

Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.

В прошлой статье я рассказывал Вам про необходимость установки стабилизатора напряжения для дома, показатели качества электрической энергии и типы стабилизаторов. Сегодня проведем выбор стабилизатора напряжения по мощности на примере своего дома (дачи) в деревне. В конце статьи я расскажу Вам про виды крепления и установку стабилизаторов напряжения.

Пример выбора стабилизатора напряжения для однофазной сети

Вы решили приобрести стабилизатор напряжения, но не знаете, как его правильно выбрать. Привожу наглядный пример выбора стабилизатора напряжения для своего «домика в деревне».

Пока речь завели про деревянный дом, то рекомендую Вам почитать мои следующие полезные статьи:

1. Однофазная или трехфазная сеть

Для начала необходимо узнать количество фаз питающего напряжения. В моем примере это однофазная сеть, поэтому мне будет достаточно выбрать один однофазный стабилизатор напряжения.

Если у Вас трехфазная сеть, то в таком случае необходимо выбирать трехфазный стабилизатор напряжения, либо три однофазных стабилизатора, соединив их  «звездой».

2. Мощность потребителей

Теперь нам нужно определиться с мощностью потребителей, для которых будем использовать стабилизатор напряжения. Это может быть один или несколько электроприемников. Также стабилизатор напряжения можно установить на вводе для абсолютно всех потребителей. Но об этом чуть позже.

Мощность всех потребителей выписываю в один список с указанием их активной мощности. Активная мощность измеряется в ваттах (Вт). Ее можно найти в руководстве (паспорте) на прибор или на корпусе самого прибора.

Вот мой составленный список:

Подход к расчету мощности для выбора стабилизатора напряжения должен быть рациональным, ведь у Вас не всегда включены в сеть все перечисленные выше потребители. Поэтому здесь нужно точно определиться, что у нас будет включено одновременно.

Если не хотите с этим «заморачиваться», то берите всю мощность.

Например, для себя я определил потребителей, которые могут быть включены одновременно:

Далее из полученного списка необходимо выбрать те приборы, в которых содержатся электродвигатели.

Это нужно нам для того, чтобы учесть их пусковые токи, которые достигают величину в 3-5 раз больше, чем номинальные. Пусковая мощность или пусковой ток этих потребителей можно найти в паспортах. Если паспортов уже давно нет, то можно воспользоваться приблизительным расчетом, умножив их номинальную мощность на 3. Я так и сделал.

Далее рассчитаем общую полную мощность. Полная мощность измеряется в вольт-амперах (ВА) и отличается от активной мощности на коэффициент мощности «косинус фи» (cosφ). Этот коэффициент всегда указан в паспортах на приборы. Опять же, если паспортов у Вас нет, то можно принять приближенный cosφ = 0,75.

Еще хочу заметить, что нагреватель и утюг имеют cosφ = 1, т.к. это чисто активная нагрузка, которая идет только на образование тепла.

Освещение в моем доме выполнено с помощью энергосберегающих ламп, у которых коэффициент мощности равен примерно cosφ = 0,9. Кому интересно, то можете почитать мою статью о том, почему мигают энергосберегающие лампы.

Для остальных потребителей принимаем средний коэффициент мощности, равный cosφ = 0,75.

Чтобы перевести активную мощность в полную мощность необходимо разделить активную мощность на cosφ.

В итоге получаем суммарную полную мощность наших потребителей: 12322,22 + 12600 = 24922,22 (ВА) или 24,9 (кВА).

Можно округлить до 25 (кВА).

3. Фактическое напряжение сети

После расчета потребляемой мощности необходимо измерить фактическое напряжение питающей сети. Сделать это можно самостоятельно, воспользовавшись мультиметром. Более подробно об этом я писал в статье: «Как пользоваться мультиметром при измерении напряжения».

Еще вариант, это пригласить специалистов для проведения энергоаудита, но это обойдется Вам дороже. Они установят приборы на 24 часа для анализа качества электрической энергии и в конце выдадут Вам подробный отчет.

Допустим Вы зафиксировали, что напряжение в сети в вечернее время у Вас составляет 180 (В).

4. Выбор мощности стабилизатора напряжения

Номинальная полная мощность стабилизатора напряжения всегда указывается в вольт-амперах (В) и соответствует питающему напряжению 220 (В).

При снижении питающего напряжения, соответственно, снижается его выходная мощность. Также хочу сказать Вам, что не допускается длительная работа стабилизатора напряжения при пониженном напряжении, т.к. это вызывает перегрузку и может привести к его отключению, что приведет к обесточиванию всех потребителей.

Чтобы избежать таких последствий, необходимо к полученной полной мощности наших потребителей 25 (кВА) добавить коэффициент нижнего предела напряжения стабилизатора, который равен 1,2 при 180 (В), и 1,3 — при напряжении 170 (В). В нашем случае напряжение в вечернее время составляет 180 (В), поэтому применяем коэффициент 1,2.

25 · 1,2 = 30 (кВА)

Чтобы была возможность использовать стабилизатор напряжения длительное время со всей включенной нагрузкой, необходимо к полученной выше мощности добавить коэффициент запаса по мощности, равный 1,25.

30 · 1,25 = 37,5 (кВА)

Остается только выбрать стабилизатор напряжения из предложенных моделей, зная его необходимую мощность. Например, нам подойдет стабилизатор напряжения мощностью 40 (кВА) и больше.

 

Как выбрать стабилизатор напряжения для трехфазной сети

Выбор стабилизатора напряжения для трехфазной сети практически аналогичен. Производим расчет мощности для какой-то одной фазы, желательно наиболее загруженной. По этой фазе замеряем фактическое напряжение в сети в часы пиковых нагрузок. Полную мощность в вольт-амперах, умножаем на 3 (количество фаз).

Запас по мощности делаем порядка 10%.

Полученное значение и есть полная мощность стабилизатора напряжения для трехфазной сети. По этой мощности из всего ассортимента предлагаемой продукции выбираем необходимый стабилизатор напряжения.

А вообще выбор стабилизатора напряжения лучше доверить специалистам. Так будет надежнее.

Иногда меня спрашивают, можно ли вместо трехфазного стабилизатора напряжения приобрести три однофазных? Да конечно можно, так будет даже дешевле и практичнее. Например, при обрыве одной питающей фазы, остальные фазы будут в рабочем состоянии. Но если у Вас в доме имеется хоть какая нибудь трехфазная нагрузка, то в любом случае Вам нужен трехфазный стабилизатор напряжения, потому что он ведет контроль фаз по линейному напряжению сети. И если хоть одна фаза оборвется, то стабилизатор полностью отключается.

Еще два не менее важных совета по выбору стабилизатора напряжения для трехфазной сети:

  • стабилизаторы должны быть установлены в каждой фазе (оставлять без стабилизатора напряжения хоть одну фазу запрещено)
  • нагрузка по каждому стабилизатору напряжения должна быть примерно равная, иначе в нуле пойдет большой ток, который может вывести стабилизатор из строя
  • если разница линейных напряжений сети составляет более 25%, то стабилизаторы напряжений устанавливать запрещено

Функция BYPASS

Для начала давайте определимся что это за функция BYPASS (Байпас) и нужна ли она нам?

Практически во всех стабилизаторах мощностью от 3 (кВА) имеется функция BYPASS (Байпас). Включив автомат с этой надписью, стабилизатор на выходе выдает входное напряжение. Удобна эта функция тогда, когда напряжение в сети понижается не всегда, а например, только по вечерам, как в моем случае.

 

Выбор стабилизатора напряжения. Функция задержки

Еще одна из удобных функций стабилизатора напряжения, на которую стоит обратить внимание при покупке. Это функция задержки включения выходного напряжения, когда питающее напряжение вышло за пределы входного напряжения стабилизатора или совсем пропало. Существует несколько регулировок задержки — у разных производителей по-разному.

Крепление и установка стабилизатора напряжения

Стабилизатор напряжения можно крепить двумя способами:

  • на полу
  • на стене

Установка стабилизатора напряжения на полу или на полке применима к стабилизаторам небольшой мощности. У них малые габариты и вес. Например, мой небольшой и старенький стабилизатор напряжения «Ресанта» мощностью всего 0,5 (кВА) установлен прямо на подоконнике окна.

Более мощные стабилизаторы напряжения целесообразно размещать на стене, поэтому они выпускаются немного плоскими. Хотя по желанию их тоже можно установить на полу.

 

Заключение по выбору стабилизатора напряжения

В конце данной статьи хочу сделать небольшой вывод. Я показал пример расчета и выбора стабилизатора напряжения для однофазной сети. Мы получили, что стабилизатор напряжения для наших потребителей должен быть мощностью не ниже 37,5 (кВА). Можно идти покупать, но я задумался о его стоимости. Ведь стабилизатор напряжения такой мощности стоит совсем не дешево.

Как вариант можно через него не запитывать нагреватель и утюг, ведь при понижении напряжения в сети они будут лишь медленнее нагреваться. Остальным потребителям необходима только  качественная электрическая энергия. Если воспользоваться таким вариантом, то можно немного сэкономить.

P.S. На этом я заканчиваю статью на тему выбора стабилизатора напряжения. Если у Вас есть вопросы, то спрашивайте в комментариях. Можете поделиться данной статьей с друзьями и коллегами, особенно владельцев дач и домов. Спасибо.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Какой мощности нужен стабилизатор напряжения для дома?

Категория: Поддержка по стабилизаторам напряжения
Опубликовано 23.03.2015 06:53
Автор: Abramova Olesya


Стабилизаторы напряжения являются сложными электронными приборами, которые осуществляют корректировку уровня электрической энергии и обеспечивают дополнительную защиту для электрических потребителей. Правильный подход к выбору стабилизатора позволит получить долгие годы надежной работы устройства.

В настоящее время производители выпускают стабилизаторы двух типов:

  • Стабилизаторы с запасом мощности – модели этой категории обладают полной мощностью во всем диапазоне входного напряжения. Чаще всего такие стабилизаторы производят на европейских заводах в Италии (ORTEA), Германии, Турции (NTT Stabilizer) и они не требуют дополнительных расчетов.

  • Стабилизаторы без запаса мощности – модели, входящие в состав этой категории, обладают установленной мощностью, которая справедлива при номинальном входном напряжении 220 Вольт. При падении напряжения ниже 220В происходит пропорциональное снижение мощности стабилизатора, поэтому необходимо учитывать дополнительный коэффициент.

Поскольку подавляющее большинство производимых нормализаторов в Украине относится ко второму типу, рекомендации в этой статье подойдут практически для всех отечественных устройств.

  • Минимальное значение входного напряжения (Vмин.) – для расчета мощности критически важным является наличие минимального уровня напряжения, которое может возникнуть в электрической сети, где будет применяться стабилизатор. Как правило, наибольшие просадки сети происходят в зимний период с 19 до 22 часов вечера.

  • Максимальная потребляемая мощность (Pпотр.) – имеется ввиду мощность всех электрических потребителей, которые могут работать одновременно. Для этого стоит вспомнить, какие электроприборы могут быть включены одновременно и вычислить сумму их номинальной мощности. 

Pстаб. = (220/Vмин.) x Pпотр.

Пример расчета мощности

Мощность которая состоит из: холодильник – 400 Вт, телевизор 200 Вт, компьютер – 400 Вт, освещение – 300 Вт, микроволновая печь – 1500 Вт, стиральная машина авт. – 2000 Вт, обогреватель – 700 Вт. При этом не учитывается: утюг – 1500 Вт, пылесос – 1000 Вт, блендер – 650 Вт, т. к. эти приборы не могут работать одновременно с остальными.

Производим расчет:

220 / 170 x 5500 ≈ 7117,65 Вт​

Итоговое значение составляет 7120 Вт. Мощность стабилизатора должна быть либо равной данному числу, либо превосходить его на 5 – 10%.

Дополнительные рекомендации по расчету мощности

  • Потребители с реактивным типом мощности. Электрическая мощность стабилизаторов напряжения выражается в единицах ВА (Вольт Ампер) – полная мощность. Потребители, которые имеют в своем составе электродвигатели или другие индукционные составляющие (насосы, двигатели, холодильники, кондиционеры и т.д.), имеют реактивную мощность и дополнительный показатель cos φ. Чтобы вычислить полную мощность таких устройств, необходимо активную мощность (Ватт) разделить на значение cos φ, данные показатели обычно указаны на самих электроприборах или в технической документации.

  • Пусковые токи. Двигатели, холодильные установки, а также насосы имеют весьма ощутимые стартовые токи при запуске. Нередко пусковой ток может в 4 – 5 раз превосходить номинальный.

  • Избегайте длительной предельной нагрузки. Если при покупке стабилизатора не будет сделан запас на уровне 10 – 15%, то устройство ежедневно будет работать по нескольку часов на предельной мощности. Безусловно, качественные стабилизаторы способны работать в подобных условиях, однако это скажется на длительности срока эксплуатации не самым лучшим образом.

  • Учитывайте увеличение мощности. Не забывайте о том, что стабилизатор напряжения способен работать на протяжении 10 – 15 лет и отсутствие запаса мощности устройства спровоцирует в регулярные перегрузки при установке новых электрических приборов. 

Инструменты для выбора стабилизатора напряжения

Для удобства комфортного выбора модели с требуемой мощностью советуем воспользоваться инструментом – выбор стабилизатора напряжения. Данное приложение имеет два режима:

  • базовый – позволяет быстро и точно произвести выбор стабилизатора для бытового применения;

  • расширенный – имеет дополнительные опции, которые позволяют рассчитать модель стабилизатора для промышленного применения.

выбор стабилизатора напряжения

Компенсационный стабилизатор напряжения. Расчёт стабилизатора напряжения.

В статье расскажем про компенсационный стабилизатор напряжения, о расчёте стабилизатора напряжения. Предоставим практические советы конструкторам. Нарисуем схему стабилизатора.

При проектировании источников питания электронной аппаратуры предъявляются высокие требования к стабильности питающего напряжения. Как медленные, так и быстрые колебания (нестабильности и пульсации) напряжения питания существенно изменяют режимы и параметры работы радиоэлектронных схем. Причинами нестабильности могут быть колебания напряжения и частоты питающей сети, изменения нагрузки, пульсации выпрямленного напряжения, колебания влажности окружающей среды. Например, для питания измерительных устройств, работающих с точностью 0,1%, требуется стабильность напряжения питания не хуже 0,01%.


 

Компенсационный стабилизатор

Различают компенсационные стабилизаторы напряжения непрерывного и импульсного действия. Стабилизаторы напряжения непрерывного действия представляют собой систему автоматического регулирования, в которой фактическое значение выходного напряжения сравнивается с заданным значением эталонного (опорного) напряжения. Возникающий при этом сигнал рассогласования усиливается и должен воздействовать на регулирующий элемент стабилизатора таким образом, чтобы выходное напряжение стремилось вернуться к заданному уровню. В качестве источника опорного напряжения обычно используют параметрический стабилизатор, работающий с малыми токами нагрузки, представляющий собой цепочку, состоящую из резистора и стабилитрона. Это было рассмотрено в предыдущей статье Стабилизаторы напряжения, их расчёт.

В зависимости от способа включения регулирующего элемента различают компенсационные стабилизаторы последовательного и параллельного типов.

 

Структурная схема компенсационного стабилизатора последовательного типаСтруктурная схема компенсационного стабилизатора последовательного типа представлена на рис. В этой схеме регулирующий элемент РЭ включен последовательно с нагрузкой и играет роль управляемого балластного сопротивления. Схему, состоящую из регулирующего элемента и сопротивления нагрузки можно представить как делитель напряжения, в котором определённая часть входного напряжения «падает» на сопротивлении нагрузки, а всё остальное напряжение – на регулирующем элементе. При этом, и все изменения входного напряжения отражаются не на нагрузке, а на регулирующем элементе.

Опорное стабилизированное напряжение формируется источником опорного напряжения ИОН. Схема сравнения СС сравнивает выходное напряжение с опорным напряжением Uоп. Разностный сигнал рассогласования Uн — Uоп, формируемый схемой сравнения СС, поступает на вход усилителя постоянного тока У, усиливается и воздействует на регулирующий элемент РЭ.

Если в нагрузке оказывается напряжение большее, чем опорное Uоп – имеет место положительный сигнал рассогласования (Uн — Uоп) > 0, тогда внутреннее сопротивление РЭ возрастает и падение напряжения Uрэ на нем увеличивается. Так как регулирующий элемент и нагрузка включены последовательно, то при увеличении Uрэ выходное напряжение уменьшается.

При уменьшении выходного напряжения , отрицательном сигнале рассогласования (Uн — Uоп) < 0, наоборот, внутреннее сопротивление РЭ и падение напряжения на нем уменьшаются, что приводит к возрастанию выходного напряжения .

Принципиальная схема компенсационного стабилизатора напряжения последовательного типа на транзисторахПринципиальная схема компенсационного стабилизатора напряжения последовательного типа на транзисторах приведена на следующем рисунке. Для более простого понимания того, как работает схема, мы рассмотрим её работу поэлементно.

Источник опорного напряжения выполнен на резисторе Rб и стабилитроне VD. Как он работает и как рассчитывать элементы этой цепи, описывалось ранее в статье Стабилизаторы напряжения, их расчёт.

Схема сравнения выполнена по принципу измерительного моста. Это – типовая измерительная схема сравнения, которая довольно часто применяется в различных схемах, поэтому актуальна не только в стабилизаторах напряжения.

Рассмотрим измерительный мост более подробно. Для этого мы изобразим его отдельно от остальных элементов стабилизатора.

картинка-схема измерительного мостаИсточник опорного напряжения Rб-VD и делитель напряжения R1-R2-R3 подключены к выходу стабилизатора параллельно. Переменный резистор R2 для наглядности поделен на схеме на две половины – два постоянных резистора R2/1 и R2/2. Если к средним точкам этих цепочек подключить вольтметр, то он будет реагировать на разность напряжений, между этими точками. А если использовать вольтметр со шкалой, у которой нуль находится посередине, тогда наглядно будет видно в какой средней точке напряжение выше, а в какой ниже. Основное состояние измерительного моста, которое используется в стабилизаторе напряжения, это — явление баланса моста, состояние, при котором значение напряжения в средних точках равно.

Предположим, что сопротивление резисторов R1 и R3 равны, а «ползунок» резистора R2 находится в среднем положении. Тогда сопротивления плеч R1+R2/1 и R2/2+R3 равны. Это означает, что на выводе «ползунка» резистора R2 будет ровно половина находящегося на клеммах напряжения. Предположим, что мы подали на клеммы ровно 9 вольт, тогда в средней точке резисторов будет 4,5 вольта (ровно половина). Источник опорного напряжения мы поставим на напряжение стабилизации 4,5 вольта – равное значению средней точки делителя на резисторах R1, R2, R3. Поэтому, по причине отсутствия разности потенциалов в средних точках стрелка вольтметра будет стоять на нуле.

Если мы увеличим напряжение до 10 вольт, то в средней точке делителя R1+R2/1 и R2/2+R3 напряжение поднимется до 5 вольт, а на источнике опорного напряжения оно так и останется 4,5 вольта (стабилитрон не позволит увеличиться напряжению на своём кристале) и стрелка вольтметра отклонится влево на 0,5 вольта.

Если наоборот, мы уменьшим напряжение до 8 вольт, то в средней точке делителя R1+R2/1 и R2/2+R3 напряжение уменьшится до 4 вольт, а на источнике опорного напряжения оно по-прежнему останется 4,5 вольта и теперь, стрелка вольтметра отклонится вправо на 0,5 вольта.

А теперь вернёмся к схеме стабилизатора напряжения. В ней функцию вольтметра выполняет транзистор VT2, который в процессе работы схемы стабилизации используется в «рабочем» усилительном режиме (полуоткрытом состоянии). Роль регулирующего элемента в этой схеме стабилизатора играет транзистор VT1. Его задача – в случае нарушения баланса измерительного моста, определяемого базо-эмиттерным переходом, восстановить этот баланс путём изменения сопротивления перехода эмиттер-коллектор управляющего элемента, и как следствие — уменьшение, или увеличение выходного напряжения.

картинка-схема стабилизатора напряженияПри увеличении Uвх, выходное напряжение возрастает по абсолютному значению, создавая отрицательный сигнал рассогласования напряжения Uэ62 на входе усилителя постоянного тока, выполненного на транзисторе VT2. Транзистор, подключенный к средним точкам измерительного моста «приоткрывается». Ток коллектора транзистора VT2 возрастает, а потенциал коллектора VT2 становится более положительным относительно потенциала земли. Напряжение эмиттер-база транзистора VT1 уменьшается, что приводит к возрастанию внутреннего сопротивления транзистора VT1 и падению напряжения на нем. Выходное напряжение при этом уменьшается, стремясь к прежнему значению.

При уменьшении входного напряжения Uвх наоборот, транзистор VT2 «призакрывается», что приводит к увеличению напряжения база-эмиттер транзистора VT1, в результате чего сопротивление транзистора уменьшается и выходное напряжение повышается, стремясь к номинальному напряжению стабилизации.

Обратите внимание, что на схемах изображалась «точка» подключения к какому то источнику напряжения Е0. Для повышения коэффициента стабилизации схемы резистор , определяющий базовый ток регулирующего транзистора VT1, подключается к стабильному источнику напряжения – Е0. Если Е0 не стабилен, то его колебания передаются через резистор на базу регулирующего транзистора VT1 и ухудшают коэффициент стабилизации схемы. Довольно часто встречаются радиолюбительские схемы стабилизаторов, в которых резистор подключен напрямую ко входному контакту -Uвх. В результате этого, стабилизатор работает в качестве автоматического регулятора «среднего» выходного напряжения, и абсолютно не подавляет никакие пульсации сетевого напряжения.

картинка-схема использования дополнительного источника стабильного опорного напряженияЛучшим источником стабильного напряжения является гальванический элемент, но его использование в большинстве случаев – не оправдывает себя. В сложных устройствах с несколькими источниками стабилизированного питания часто для целей стабилизированного смещения одного более мощного стабилизатора используют выходное напряжение другого стабилизатора, но с меньшей нагрузкой.

Наиболее простой способ – использовать дополнительный источник стабильного опорного напряжения, как показано на рисунке. Для исключения кратковременных скачков напряжения стабилизации, которые могут быть вызваны бросками входного напряжения, или сопротивления нагрузки, параллельно стабилитрону добавлен конденсатор С. Практически постоянно в радиолюбительской практике упускается важность этого источника опорного напряжения. В простейшем случае, как я писал, резистор подключается напрямую к -Uвх, без всяких стабилитронов. Выбирать Вам – допускать пульсацию, или нет. Я думаю три дополнительных радиоэлемента – резистор, стабилитрон и конденсатор в этой схеме стабилизатора не помешают.


 

 

Расчёт стабилизатора постоянного напряжения компенсационного типа и практические советы конструкторам

 

Как и ранее, я не пишу сложные формулы радиолюбительских расчётов, которые отбивают желание вообще становиться радиолюбителями. Они мной применяются только тогда, когда их использование действительно необходимо. Кроме того, если Вы научитесь понимать их физический смысл, то Вы самостоятельно сможете применять их на практике для расчётов цепей.

Расчёт стабилизированного блока питания мы будем проводить с использованием конкретной схемы, которую мы сначала изобразим, соблюдая правила построения схем, а потом рассчитаем на основе предъявляемых к ней требований.

1. Прежде всего, обратите внимание, на то, что большинство блоков питания имеет минус на массе, поэтому мы так же выполняя условие – «минус на массе» изменим полярности диодов и конденсаторов, а кроме того — тип проводимости транзисторов с p-n-p на n-p-n.

картинка-схема стабилизатора напряжения с добавлением составного транзистора VT32. Для повышения коэффициента стабилизации компенсационного стабилизатора в качестве регулирующего элемента мы будем использовать составной транзистор. Использование составного транзистора увеличивает коэффициент стабилизации на величину коэффициента усиления по току дополнительного транзистора, и на порядок увеличивает нагрузочную способность стабилизатора напряжения. Поэтому (см. схему) к ранее изученному стабилизатору, мы добавим этот транзистор VT3. Считаем, что каждый добавленный таким образом транзистор увеличивает нагрузочную способность в 10…20 раз, но не забываем, что основная часть мощности на него и «приложится». Поэтому чем мощнее транзистор, тем лучше.

3. Ток через делитель Iдел состоящий из R1,R2,R3 выбирают обычно на порядок меньше (в 10 раз), чем ток, протекающий по цепи Rб, VD1. Увеличение или уменьшение тока делителя за счет снижения, или повышения сопротивлений R1,R2,R3 нецелесообразно, так как приводит к существенному уменьшению КПД, или чувствительности схемы к изменению выходного напряжения и его пульсациям.

4. Резистор R2 предназначен для регулировки стабилизированного напряжения в небольших пределах. Пределы регулировок выходного напряжения такого стабилизатора ограничены параметрами стабилитрона – минимальным и максимальным током стабилизации. Как это выглядит практически, я затрону в процессе расчётов.

 

5. Напряжение стабилизации дополнительного источника опорного напряжения, используемого для смещения транзистора регулирующего элемента должно не менее, чем в 1,5 раза превышать значение выходного напряжения стабилизатора. Иначе силовыми транзисторами VT2 и VT3 «нечем будет управлять» — напряжение на эмиттерах будет превышать базовое, и ни о какой стабилизации речи не будет.

6. Предыдущее условие накладывает ограничения на нагрузочные способности стабилизатора потому, что разница входного и выходного напряжения стабилизатора помноженная на выходной ток, будет «падать» в виде рассеиваемой мощности на силовых транзисторах. Поэтому необходимо выбирать транзисторы способные выдерживать такую мощность – повторяется правило — чем мощнее транзистор, тем лучше. Но чем мощнее транзистор, тем меньше у него коэффициент передачи.

 

Расчёт

 

Исходные данные (допустим, к разрабатываемому ИП предъявлены такие требования):

— среднее выходное напряжение стабилизатора – 12 вольт;

— максимальный ток нагрузки стабилизатора – 2 ампера;

— используется трансформатор достаточной мощности, с выходным напряжением 25 вольт.

При расчётах сложных схем, обычно идут «с конца к началу», поэтому, предлагаю начать с расчёта схем опорного напряжения и сравнения.

1. Выберем стабилитрон измерительного моста Стабилитрон VD1 выбирается со значением напряжения стабилизации, равном половине выходного напряжения стабилизатора:

12в / 2 = 6 вольт

.

При этом условии обеспечивается наилучшая стабилизация. Но стабилитрон на такое напряжение в рознице отсутствует, поэтому выбираем стабилитрон, максимально близкий по напряжению стабилизации – КС156А, у которого Uст = 5,6 вольт, Iст = 10 мА.

2. Найдём резистор :

На резисторе падает напряжение:

URб = Uвых – Uст = 12в – 5,6в = 6,4в

Зная падение напряжения и ток стабилизации, по закону Ома определяем сопротивление резистора:

Rб = URб / = 6,4в/0,01А = 640 Ом

Ближайшее значение сопротивления резистора по номинальному ряду — 620 Ом.

Мощность резистора находим из условия РRб = URб * Iст * 2 = 6,4в * 0,01А * 2 = 0,128 Вт

Если кто не знает, что в формуле обозначает цифра 2, поясню, это коэффициент запаса по мощности (чтобы резистор не грелся). Более подробно написано в статье Резистор . Ближайшее наибольшее значение мощности резистора по номинальному ряду – 0,125 Вт.

Таким образом, параметры Rб – 620 Ом на 0,125 Вт.

3. Определим возможные значения выходного напряжения стабилизатора, при которых стабилизация происходит.

Они ограничены предельными токами стабилитрона, стоящего в мостовой измерительной цепи.

а) Определим минимальное (регулируемое) напряжение стабилизации: По справочнику минимальный ток стабилизации КС156А = 3 мА, при этом токе значение выходного напряжения стабилизатора составит:

Uвых.min = Uст + (Iст.min * Rб) = 5,6 в + (0,003 * 620) = 7,46 вольт

б) Определим максимальное (регулируемое) напряжение стабилизации:

По справочнику максимальный предельный ток стабилизации КС156А = 55 мА. Это большой ток, при котором стабилитрон будет греться и нужны дополнительные меры защиты, поэтому ограничимся значением, в 2 раза превышающем номинальное — 20 мА. При этом токе значение выходного напряжения стабилизатора составит:

Uвых.max = Uст + (Iст.max * Rб) = 5,6 в + (0,02 * 620) = 18 вольт

Поскольку мощность прикладываемая к резистору возросла, для того, чтобы резистор не сгорел от большой прикладываемой мощности, его мощность следует увеличить до значения:

РRб = URб * Iст * 2 = 12,4 в * 0,02 А * 2 = 0,5 Вт

Если Вы хотите, чтобы Ваш стабилизатор выдавал 18 вольт, то мощность резистора необходимо увеличить, но если Вы делаете стабилизатор на фиксированное напряжение (в данном случае 12 вольт), то этого можно не делать, удовлетворившись расчётом, приведённым в пункте 2.

4. Рассчитаем делитель R1,R2,R3:

Нам известно, что на стабилитроне КС156А падает – 5,6 вольта. А ещё мы знаем (см. статью Биполярный транзистор), что в режиме стабилизации, транзистор VT1 находится в «рабочей точке», это означает, что на его переходе база-эмиттер «падает» напряжение 0,65 вольта. А это в свою очередь означает, что на базе должно быть всегда 5,6 + 0,65 = 6,25 вольта относительно корпуса стабилизатора. База соединена с «ползунком» среднего регулировочного резистора, значит, это напряжение 6,25 вольта всегда присутствует на его «ползунке».

Исходя из этого, можно составить, систему уравнений с тремя неизвестными, но это Вас только запутает, поэтому мы пойдем по более простому, но практичному пути.

При максимальном напряжении стабилизации Uвых.max = 18 вольт, ползунок находится в нижнем по схеме положении, ток стабилизации Iст.max = 0,02 A, а ток делителя R1,R2,R3 в 10 раз меньше: Iцепи = 0,002 А , следовательно:

R3 = 6,25 / Iцепи = 6,25 / 0,002 = 3,125 кОм;
R1 + R2 = (Uвых.max — UR3) / Iцепи = 11,75 / 0,002 = 5,875 кОм.

Суммарное сопротивление R1 + R2 + R3 = 5 875 + 3 125 = 9 кОм

При минимальном напряжении стабилизации Uвых.min = 7,46 вольта, ток делителя будет:

Iцепи = Uвых.min / (R1 + R2 + R3) = 7,46 / 9000 = 0,00083 А

найдем значение R1 = (Uвых.min – 6,25) / Iцепи = (7,46 – 6,25) / 0,00083 = 1,46 кОм,

отсюда значение R2 = 5,88 – 1,46 = 4,42 Ом,

округлим значения резисторов до значений номинального ряда: R1 = 1,5 кОм, R2 = 4,3 кОм (переменный), R3 = 3 кОм

5. Рассчитаем второй источник опорного напряжения и смещения VT2.

В качестве стабилитрона выбираем Д816А, у которого Uст = 22 вольта, Iст = 10 мА.

Найдём Rсм.

Выходное напряжение трансформатора после выпрямления и сглаживания фильтром = 25 вольт, тогда Rсм = (Uтр. — Uст) / Iст = 25 – 22 / 0,01А = 300 Ом.

Мощность резистора РRсм = URсм / Iст = 3 *0,01 = 0,03 Вт, ближайшая из номинального ряда — 0,125 Вт

Для стабильной работы цепи опорного напряжения Rсм VD2, необходимо, чтобы не оказывал на эту цепь шунтирующего действия. Поэтому ток должен быть не менее, чем в 2 раза меньше тока стабилитрона. Кроме того, на нём падает разность между входным и выходным напряжением: URк = Uтр. — Uвых. = 25 – 12 = 13 вольт,

отсюда: Rк = URк / (Iст/2) = 13 / 0,005 = 2,7 кОм.

Мощность РRк = URк * Iст / 2 = 13 *0,005 = 0,0325 Вт, ближайший 0,125 Вт.

6. Наконец дело дошло до транзисторов.

В качестве VT1 подойдёт транзистор КТ315Г. Он удовлетворяет требованиям:

— достаточно высокий коэффициент усиления (передачи) h31Э = 50…350;

— допустимое напряжение коллектор-эмиттер – 35 вольт.

В качестве VT2 подойдёт транзистор КТ815 с любым буквенным индексом. Коэффициент передачи h31Э = 40 – 70 , обеспечивает усиление тока резистора с 5 мА до 250 мА;

В качестве VT3 попробуем взять не то, что надо искать, а то, что есть — например КТ809А. Коэффициент передачи h31Э = 15…100 , что обеспечивает усиление тока с 250 мА до 3,7 А, но максимальный ток коллектора – 3 А это по справочнику – предел, нет «запаса прочности», поэтому ставим два транзистора в параллель. При выходном напряжении = 12 вольт и токе 2 ампера, на них должно падать 13 вольт, таким образом, общая мощность рассеивания транзисторов: РVT3 = UVT3 * I VT3 = 2 * 13 = 26 Вт.

Это вполне приемлемое значение. Для выравнивания мощностей на транзисторах придётся использовать два резистора в эмитерных цепях выходных транзисторов. 0,05…1 Ом с мощностью по 2 Вт.

7. Остался один резистор . Его расчет приведён в предыдущей статье Простейшие стабилизаторы напряжения. Rэ = 0,65 / 2 * 50 = 16 Ом,

где 0,65 – падение на переходе база-эмиттер, 2 – номинальный ток нагрузки = 2 ампер), 50 — усреднённое значение коэффициента передачи транзистора.

 

Рисуем схему нашего стабилизатора

 

картинка-схема стабилизатора напряжения (полная)
 

 

Дополнения к статье

 

1. При выборе стабилитронов возможно последовательное их соединение, например два КС156А (по 5,6 вольта) можно соединить последовательно для получения стабилитрона на напряжение стабилизации 11,2 вольта;

2. Для возможности регулировки выходного напряжения в более широких пределах цепочку источника опорного напряжения R3, VD6 (см. схему) подключают не к выходу, а на вход стабилизатора с применением цепей сглаживания (по аналогии с R1, VD5 и С2). Естественно, необходимо пересчитать резистор R3. Как это делается описано в этой статье и предыдущей статье Простейшие стабилизаторы напряжения. В результате этого, входное напряжение ИОН не зависит от выходного напряжения, поэтому ток стабилизации номинальный и постоянен. Другой вариант расширения диапазона стабилизируемых напряжений — использование в качестве одного резистора Rб – галентного переключателя с несколькими резисторами;

3. Для повышения нагрузочных свойств стабилизатора, и как следствие повышения надёжности рекомендую вместо двух КТ809А поставить один составной КТ827А без резисторов R4 – R6.

4. Никогда не брезгуйте рассчитать мощность резисторов, иначе это может Вам выйти кучей сгоревших дорогих элементов;

5. В приведённой схеме стабилизатора имеется защита по первичной обмотке трансформатора, а во вторичных цепях защита отсутствует. В простейшем случае поставьте на выходе стабилизатора двух-трехватный предохранитель, но лучше сделать более интеллектуальную схему защиты;

6. В этой статье указаны простейшие правила и условия, соблюдение которых позволит проектировать и собирать действующие стабилизаторы. И тогда у Вас не будет возникать вопросов типа тех, на которых и существует половина интернет-Форумов: Я вместо конденсатора поставил резистор, а он как конденсатор работать не хочет!? Или: Почему резистор, предназначенный в схеме для выполнения одной функции, не выполняет другую функцию?


Расчёт с первого взгляда выглядит нудноватым, но это самый простейший расчёт. Поняв принципы работы и расчёта транзисторных каскадов, Вы сможете конструировать и рассчитывать более сложные схемы.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *