Site Loader

Содержание

Автомобильный преобразователь напряжения с 12 вольт на 5 вольт ?

 Всем хорошо известно, что номинальное бортовое напряжение легковых автомобилей составляет 12 вольт.  Может в некоторых случаях оно может быть 24 вольта, поскольку аккумуляторы на такое напряжение тоже встречаются, но мы об этом не знаем:)…
Однако напряжение 12 вольт не всегда является подходящим для многих электронных устройств, где применяется цифровая логика. Исторически сложилось так, что большинство логических микросхем работают с напряжением 5 вольт. Именно это напряжение зачастую и обеспечивается в машине с помощью зарядных устройств, адаптеров, стабилизаторов… Кстати, о таком зарядном устройстве мы уже рассказывали в одной из наших статей «Зарядной устройство на 5 вольт для применения в машине». Если сказать более того, то по сути, эта статья является неким продолжением приведенной нами статьи выше, с одним лишь исключением. Здесь будут собраны все возможные варианты обеспечивающие преобразование 12 вольт в 5 вольт.

То есть мы разберем и относительно бесперспективные варианты на резисторах и транзисторе и поговорим о микросборках и схемах с использованием ШИМ, для реализации преобразователей напряжения в машине с 12 на 5 вольт. Итак, начнем.

Как из 12 вольт сделать 5 вольт с помощью резисторов

Использование резистора для снижения питающего напряжения  нагрузки это один из самых «неблагодарных» способов. Такое заключение можно сделать даже из самого определения  резистора. Резистор — пассивный элемент электрической цепи, обладающий определенным сопротивлением для электрического тока. Здесь ключевым будет слово «пассивный». Действительно, такая  пассивность не позволяет гибко реагировать на изменения напряжения, обеспечивая стабилизацию питания для нагрузки.

 Второй минус резистора это его относительно небольшая мощность.  Применять резистор, более чем на 3-5 Ватт смысла нет. Если необходимо рассеять большую мощность, то резистор будет слишком большим, а ток при рассеиваемой мощности не трудно посчитать. I=P/U=3/12=0,25 А. То есть 250 мА. Этого явно не хватит ни на видеорегистратор, ни навигатору. По крайней мере, с должным запасом.
 Все же ради интереса и ради тех, кому надо небольшой ток и нестабилизированное напряжение мы посчитаем и этот вариант. Так напряжение бортовой сети машины (автомобиля) 14 вольт, а надо 5 вольт. 14-5=9 вольт, которые надо сбросить. Ток скажем ток нагрузки будет те же 0,25 А при 3 Ваттном резисторе. R=9/0.25=36 Ом.  То есть можно взять 36 Омный резистор при токе потребления нагрузки 250 мА и на ней получится питающее напряжение 5 вольт.
 Теперь давайте поговорим о более «цивилизованных» вариантах преобразователя напряжения с 12 на 5 вольт.

Как из 12 вольт сделать 5 вольт с помощью транзистора

 Эта схема на транзисторе не самая простая в производстве, но при этом самая простая в функциональности. Сейчас мы говорим о том, что схема не защищена от короткого замыкания, от перегрева. Отсутствие такой защиты является неким недостатком. Актуальность этой схемы можно отнести к еще тем временам, когда не существовало микросборок (микросхем), преобразователей. Благо сейчас энных уйма и этот вариант, как и предыдущий, можно рассматривать также как один из возможных, но не предпочтительных.  Самым большим плюсом относительно варианта с резисторами будет активное изменение сопротивления, за счет применяемого стабилитрона и транзистора.  Именно эти радиоэлементы способны обеспечит стабилизацию. Теперь обо всем подробнее.

 Первоначально транзистор закрыт и не пропускает напряжение. Но после прохождения напряжения через резистор R1 и стабилитрон VD1 он открывается на уровень соответствующий напряжению стабилитрона. Ведь именно стабилитрон обеспечивает опорное напряжение для базы транзистора. В итоге, транзистор всегда открыт (закрыт) прямо пропорционально входному напряжению. Именно так обеспечивается снижение напряжения, а также его стабилизация. Конденсаторы выполняют функцию неких «электрических буферов», в случае резких скачков и провалов. Это придает схеме больше стабильности.  Итак, схема на транзисторе вполне работоспособна и применима. Ток для питания нагрузки здесь будет уже гораздо больше. Так скажем для транзистора указанного в схеме КТ815, это ток 1,5 А. Этого уже вполне достаточно, чтобы подключить навигатор, планшет или ведеорегистратор, но не все сразу!

Как из 12 вольт сделать 5 вольт с помощью микросхемы

 На смену транзисторным сборкам пришли микросхемы. Их плюсы очевидны. Здесь и электронщиком совсем не надо быть, можно все собрать без представлений, как и что работает. Хотя даже специалист не скажет, что же вшил в корпус производитель той или иной микросхемы, коих развелось на нашем рынке великое множество. Это собственно на руку нам, мы можем выбрать лучшее, за меньшие деньги. Также плюсами микросборок будет использование всевозможных защит, которые были недоступны в предыдущих вариантах. Это защита от КЗ и от перегрева. Как правило, это по умолчанию. Теперь давайте разберем подобные примеры.

Применения таких микросборок оправдано для случая, если вам необходимо питать одно из устройств, так как питающий ток соизмерим с предыдущим вариантом, порядка 1,5 А. Однако ток также будет зависеть и от корпуса сборки. Ниже приведены те же микросхемы, но в других типах корпусов. В этих случаях ток питания будет порядка 100 мА. Это вариант для маломощных потребителей. В любом случае ставим на микросхемы радиаторы.

Итак, в случае подключения нескольких устройств, придется подключать микросборки параллельно, по одной микросхеме на каждое устройство. Согласитесь, сто это не совсем корректный вариант. Здесь лучше идти по пути увеличения выходного тока питания, и повышения КПД. Именно этот вариант нам предлагают микросхемы с ШИМ. О нем далее…

Как из 12 вольт сделать 5 вольт с помощью микросхемы с ШИМ

 Очень кратко и непрофессионально расскажем о широтно-импульсной модуляции. Вся ее суть сводится к тому, что питание осуществляется не постоянным током, а импульсами. Частота импульсов и их диапазон подбирается таким образом, чтобы питающая нагрузка воспринимала питание, словно ток постоянен, то есть не было отклонений в работе, отключений, миганий и т.д. Однако за счет того, что ток импульсный, и за счет того что он прерывистый, все элементы схемы работают уже со своеобразными «перерывам на отдых». Это позволяет сэкономить на потреблении, а также разгрузить рабочие элементы схемы. Именно из-за этого импульсные блоки питания и преобразователи такие маленькие, то такие «удаленькие».  Использование ШИМ позволяет повысить КПД схемы до 95-98 процентов. Поверьте это очень хороший показатель. Итак, приводим схему для преобразователя с 12 на 5 вольт использующего ШИМ.

Вот так она выглядит «вживую».

Более подробно об этом варианте все в той же статье про зарядное устройство на 5 вольт, которое мы упоминали ранее. 

Подводя итог о преобразователе напряжения с 12 на 5 вольт

 Все схемы и варианты преобразователей, про которые мы вам рассказали в этой статье, имеют право на жизнь. Самый простой вариант с резистором будет незаменим для варианта, когда вам необходимо подключить что-то маломощное и не требующее стабилизированного  напряжения.  Скажем пару светодиодов, подключенных последовательно. Кстати, о подключении светодиодов к 12 вольтам, вы можете узнать из статьи «Как подключить светодиод к 12 вольтам».
 Второй вариант будет уместен тогда, когда преобразователь вам нужен уже сейчас, а времени или возможности, сходить в магазин, нет. Найти транзистор и стабилитрон можно практически в любой технике под списание.

 Применение микросхем один из наиболее распространенных вариантов на сегодняшний день. Ну, а микросхемы с ШИМ это то, к чему все и идет. Именно так видятся наиболее перспективные и выгодные варианты преобразователей напряжения с 12 на 5 вольт.
 Последнее по хронологии статьи, но не по информативности нам хотелось напомнить о том, как должно подключаться питание к USB разъемам, будь то mini, micro разъемы.

Теперь вы сможете не только выбрать и собрать нужный вам вариант преобразователя, но и подключить его вашему электронному девайсу через разъем USB, ориентируясь на принятые стандарты питания.

Стабилизатор напряжения | Описание работы, схема подключения.

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы  рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах  ТО-3 (слева)  и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как  по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Характеристики стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное  напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5  и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об  охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа стабилизатора на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме 

Берем нашу Макетную плату  и быстренько собираем выше предложенную схемку подключения. Два желтеньких  – это конденсаторы, хотя их ставить необязательно.

Итак,  провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

[quads id=1]

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и  до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение  от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как сделать блок питания на 5, 9,12  Вольт

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт?  Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для  для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый  стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт,  а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U – напряжение, а  I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Заключение

Все большему числу электронных  устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям.  Используйте же  на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.

Где купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.


А в видео можете посмотреть как сделать самый простой стабилизатор на LM 317:

Как понизить напряжение с 12 на 5 вольт (резистор, микросхема) ?

 В этой статье расскажу о весьма банальных вещах, что не менялись уже не одно десятилетие, да они вообще не менялись. Другое дело, что с тех пор как был изучен принцип снижения напряжения в замкнутой цепи за счет сопротивления, появились и другие принципы питания нагрузки, за счет ШИМ, но тема это отдельная, хотя и заслуживающая внимания. Поэтому продолжу все-таки по порядку логического русла, когда расскажу о законе Ома, потом о его применении для различных радиоэлементов участвующих в понижении напряжения, а после уже можно упомянуть и о ШИМ.

Закон Ома при понижении напряжения

 Собственно был такой дядька Георг Ом, который изучал протекание тока в цепи. Производил измерения, делал определенные выводы и заключения. Итогами его работы стала формула Ома, как говорят закон Ома. Закон описывает зависимость падения напряжения, тока от сопротивления.
Сам закон весьма понятен и схож с представлением таких физических событий как протекание жидкости по трубопроводу. Где жидкость, а вернее ее расход это ток, а ее давление это напряжение. Ну и само собой любые изменения сечения или препятствия в трубе для потока, это будет сопротивлением. Итого получается, что сопротивление «душит» давление, когда из трубы под давлением, могут просто капать капли, и тут же падает и расход. Давление и расход величины весьма зависящие друг от друга, как ток и напряжение. В общем если все записать формулой, то получается так:

R=U/I; То есть давление (U) прямо пропорционально сопротивлению в трубе (R), но если расход (I) будет большой, то значит сопротивления как такового нет… И увеличенный расход должен показывать на пониженное сопротивление.

 Весьма туманно, но объективно! Осталось сказать, что закон то этот впрочем, был получен эмпирическим путем, то есть окончательные факторы его изменения весьма не определены.
Теперь вооружившись теоретическими знаниями, продолжим наш путь в познании того, как же снизить нам напряжение.

Как понизить напряжение с 12 на 5 вольт с помощью резистора

 Самое простое это взять и использовать нестабилизированную схему. То есть когда напряжение просто понизим за счет сопротивления и все. Рассказывать о таком принципе особо нечего, просто считаем по формуле выше и все. Приведу пример. Скажем снижаем с 12 вольт до 5.

R=U/I. С напряжением понятно, однако смотрите, у нас недостаточно данных! Ничего не известно о «расходе», о токе потребления. То есть если вы решите посчитать сопротивление для понижения напряжения, то обязательно надо знать, сколько же «хочет кушать» наша нагрузка.

Эту величину вам необходимо будет посмотреть на приборе, который вы собираетесь питать или в инструкции к нему. Примем условно ток потребления 50 мА=0,05 А. Осталось также еще заметить, что по этой формуле мы подберем сопротивление, которое будет полностью гасить напряжение, а нам надо оставить 5 вольт, то 12-5=7 вольт подставляем в формулу.
R= 7/0,05=140 Ом нужно сопротивление, чтобы после из 12 вольт получить 5, с током на нагрузке в 50 мА.
 Осталось упомянуть о не менее важном! О том, что любое гашение энергии, а в данном случае напряжение, связано с рассеиваемой мощностью, то есть наш резистор должен будет «выдержать» то тепло, которое будет рассеивать. Мощность резистора считается по формуле.
P=U*I. Получаем. P=7*0,05=0,35 Вт должна быть мощность резистора. Не менее. Вот теперь курс расчет для резистора можно считать завершенным.

Как понизить напряжение с 12 на 5 вольт с помощью микросхемы

 Ничего принципиально не меняется и в этом случае. Если сравнивать этот вариант понижения через микросхему, с вариантом использующим резистор. По факту здесь все один в один, разве что добавляются полезные «интеллектуальные» особенности подстройки внутреннего сопротивления микросхемы исходя из тока потребления. То есть, как мы поняли из абзаца выше, в зависимости от тока потребления, расчетное сопротивление должно «плавать». Именно это и происходит в микросхеме, когда сопротивление подстраивается под нагрузку таким образом, что на выходе микросхемы всегда одно и тоже напряжение питания! Ну и плюсом идут такие «полезные плюшки» как защита от перегрева и короткого замыкания. Что касательно микросхем, так называемых стабилизаторов напряжения на 5 вольт, то это могут быть: LM7805, КРЕН142ЕН5А. Подключение тоже весьма простое.

Само собой для эффективной работы микросхемы ставим ее на радиатор. Ток стабилизации ограничен 1,5 -2 А.
Вот такие вот принципы понижения напряжения с 12 на 5 вольт. Теперь один раз их поняв, вы сможете легко рассчитать какое сопротивление надо поставить или как подобрать микросхему, чтобы получить любое другое более низкое напряжение.
Осталось сказать пару слов о ШИМ.

 Широко импульсная модуляция весьма перспективный и самое главное высокоэффективный метод питания нагрузки, но опять же со своими подводными камнями. Вся суть ШИМ сводится к тому, чтобы выдавать импульсами такое напряжение питание, которое суммарно с моментами отсутствия напряжения будет давать мощность и среднее напряжение достаточное для работы нагрузки. И здесь могут быть проблемы, если подключить источник питания от одного устройства к другому. Ну, самые простые проблемы это отсутствие тех характеристик, которые заявлены. Возможны помехи, неустойчивая работа. В худшем случае ШИМ источник питания может и вовсе сжечь прибор, под которые не предназначен изначально!

Преобразователь напряжения 5 Вольт 8 Ампер с четырьмя USB выходами. Технический обзор и тест преобразователя напряжения с USB

Решил заказать на пробу разных недорогих платок преобразователей и сегодня обзор первой из них. Собственно ничего необычного, обычный преобразователь, даже без QC, зато с выходной мощностью до 40 Ватт.

Я уже как-то писал, что заказываю для товарища разные полезные вещи, и выкладывал обзоры этих вещей. Но так как иногда обзоры задерживаются по ряду причин, то чтобы было удобнее, я решил попутно заказывать себе 1-2 штуки этих товаров просто для пробы, если они конечно мне интересны. Так было и в этот раз, заказ изначально был на 10 плат, я же заказал 10+1 для себя.

В описании заявлялось что это преобразователь напряжения, без гальванической развязки, со входным напряжением 8-35 Вольт и выходным 5 Вольт с током до 8 Ампер.
Платка компактная, если не учитывать разъемы, то примерно как спичечный коробок.

На сторону противоположную USB разъемам вынесен входной разъем и клеммник, на который разведены входные клеммы и выходные. Т.е. данный преобразователь можно использовать и без подключения к USB выходам, что иногда может быть полезно.

На второй стороне соответственно 4 USB гнезда, разделенные на две пары. Разъемы поначалу были очень тугими, но после 2- подключений пришли в норму.

Сверху находится пара транзисторов (преобразователь с синхронным выпрямлением) со стертой маркировкой, силовой дроссель, а также четыре конденсатора 220мкФ 35 Вольт.

Так как выходной ток уже довольно приличный, то дроссель намотан не обычным проводом, а медной шиной для повышения КПД и соответственно уменьшения нагрева.

Снизу все остальные компоненты, предохранитель, транзистор защиты от переполюсовки, контроллер, защитные супрессоры.

Схемотехника приятно порадовала, здесь помимо предохранителя есть нормальная защита от переполюсовки питания, реализованная не на диоде, а на полевом транзисторе, я уже как-то рассказывал принцип ее работы.
Также радует наличие керамических конденсаторов по линиям питания и два супрессора установленные параллельно выходу 5 Вольт, предназначенные для защиты нагрузки в случае пробоя силовых транзисторов. Конечно такая защита не дает 100% гарантии, но шанс выживаемости увеличивает.

По выходу стоят контроллеры, которые подбирают напряжение на линиях данных USB чтобы нагрузка могла взять максимальный ток. Это не QC, но тем не менее совместимость с различными потребителями становится выше. Тем более что QC в преобразователе с более чем одним выходом требует наличия соответствующего количества преобразователей.
Отмечу что параллельно силовым контактам USB разъемов также стоят керамические конденсаторы.

Но мало того, производитель для повышения надежности, а точнее — устойчивости к внешним воздействиям, покрыл плату резиноподобным компаундом, что встречается крайне редко.

Подключаем блок питания, при этом о наличии напряжения на выходе сигнализирует небольшой красный SMD светодиод, при необходимости можно заменить его на обычный, рядом есть соответствующие отверстия.

1. Выходное напряжение 5.28 Вольта, что немного превышает допуск по стандарту, составляющий 4.75-5.25 Вольта, но не сильно и думаю что не критично.
2. Поддерживается несколько режимов эмуляции. Но что любопытно, при первых тестах один выход стабильно отображал режим QC 5 Вольт, но когда я начал через время готовить обзор и повторил тесты, то больше такого не встречал…
3. При подключении телефона Самсунг ток заряда составлял 650мА, судя по всему «договориться» они не смогли.
4. Зато при попытке подключить китайский UMIdigi без проблем получил 2-2.18 Ампера, хотя мое привычное зарядное вообще не хочет его нормально заряжать.

Нагрузочный тест показал две вещи:
1. Хорошую стабилизацию напряжения, в диапазоне от нулевого тока до максимальной нагрузки напряжение падает всего на 60-70мВ. Нагрузка и измерение производилось на клеммнике, а не USB разъеме.
2. 8 Ампер это максимальный выходной ток, дальше срабатывает защита, причем иногда защита срабатывала и при меньшем токе, например при тех же 8 Ампер.

Для измерения уровня пульсаций использовался все тот же «стенд», правда в этот раз произошли некоторые изменения. Для уменьшения количества помех от измерительных приборов я питал нагрузку от трансформаторного БП.
Кроме того, так как ко мне едут две новые нагрузки, то в планах потом мою основную доработать, перенеся ее в другой корпус, установив там трансформаторный блок питания, а не импульсный и кроме того добавив гальваническую развязку интерфейса подключения к компьютеру. Данные доработки должны убрать образование возможных земляных петель.

А вот пульсации я бы не назвал маленькими, основные, которые сложнее погасить, составляют 180мВ в любом режиме. На осциллограммах нагрузка 0-33-66-100%
Есть пульсации в виде «иголок», которые легче гасить, но которые зависит от тока нагрузки и которые имеют заметно ольший размах.
Напряжение питания здесь 12 Вольт.

Тот же тест, те же режимы, но входное напряжение 24 Вольта.
Собственно ничего кроме размаха пульсаций «иголок» не изменилось. Я бы в качестве простой доработки рекомендовал увеличить емкость выходных конденсаторов.

Выше на фото видно, что земля щупа осциллографа подключена проводом, а не пружинкой, что дает некоторое искажение результатов теста. Но так как разница в данном случае не очень велика, то я ею пренебрег.
Входное напряжение 24 Вольта, ток нагрузки 8 Ампер, слева с проводом, справа с пружинкой.

Нагрев проверялся в трех режимах, с током нагрузки 2.5, 5.0 и 7.5 Ампера, первый тест был минут 10-15, дальше можно увидеть по таймингу тепловизора.
В общем 7.5 Ампера преобразователь держит уверенно, греется не очень сильно, но в компактную закрытую коробочку я бы не стал его ставить, так как возможен перегрев.

Измерение КПД. Попутно измерил ток потребления без нагрузки, при обоих вариантах входного напряжения он одинаков и составляет 40мА.
При входном напряжении 12 Вольт КПД лучше на малых токах нагрузки, при 24 Вольта на больших, собственно это видно на графике.

В качестве резюме могу сказать, что преобразователь очень понравился, единственное нарекание, которое я меня есть, это к уровню пульсаций, в остальном как по мне, то все отлично, как качество изготовления, так и наличие защит, стабильность выходного напряжения, схемотехника, особенно с учетом цены. На мой взгляд вещь весьма полезная для радиолюбителя.

На этом у меня все, надеюсь что обзор был полезен.

Схема изготовления стабилизатора на 12в своими руками

Стабилизаторы напряжения являются важнейшей частью всех электронных схем, они дают непрерывное, устойчивое питание компонентам системы, обеспечивая стабильность её параметров и защиту при неисправностях в схеме или в первичном источнике напряжения. 12 вольт постоянного напряжения – наиболее востребованное, применяется для питания множества устройств, используемых отдельно или встроенных в различные конструкции.

Стабилизация с помощью стабилитрона

Классический стабилизатор

Большинство систем питания построено по схеме линейного стабилизатора напряжения на 12 вольт, которая может иметь несколько вариантов исполнения:

  • Параллельный – регулировка с помощью включённого параллельно управляющего элемента;
  • Последовательный – включение элемента регулировки последовательно с нагрузкой.

Простейшим стабилизатором напряжения является стабилитрон, также называемый диодом Зенера – это диод, работающий постоянно в режиме пробоя. Напряжение, при котором наступает пробой, – это напряжение стабилизации, основной параметр стабилитрона. При параллельном включении нагрузки получается элементарный стабилизатор напряжения, примерно равного напряжению стабилизации.

Балластное сопротивление R определяет ток стабилитрона, указанный в спецификации. Такое решение отличается низким коэффициентом стабилизации, зависимостью от температуры и применяется при малых токах нагрузки для питания отдельных компонентов основной схемы. Возможно значительно увеличить выходной ток, если последовательно с нагрузкой установить мощный транзистор.

Линейный стабилизатор с транзистором

В этой схеме транзистор подключён последовательно с нагрузкой как эмиттерный повторитель, весь ток течёт через его переход. Уровнем на базе управляет стабилитрон: при возрастании тока на выходе на базу подаётся большее напряжение, проводимость транзистора увеличивается, и выходное напряжение восстанавливается. Мощность такого стабилизатора определяется типом транзистора и может достигать десятков ватт.

Важно отметить! В таком виде стабилизатор не защищён от перегрузки и короткого замыкания, при котором мгновенно выходит из строя. Для практического применения схема значительно усложняется: вводятся элементы ограничения тока и различные защитные функции.

Интегральный стабилизатор

Стабилизатор напряжения 12 вольт легко может быть реализован, если применить специализированный интегральный линейный стабилизатор из серии 78ХХ с фиксированным выходным напряжением. Для выходного напряжения 12 вольт выпускаются микросхемы 7812, у разных производителей они носят наименование LM7812, L7812, K7812 и т.д.

Отечественный аналог – КР142ЕН8Б. Производятся в корпусах TO – 220, TO – 3, D2PAK с тремя выводами. Эти микросхемы можно найти в блоках питания любой аппаратуры, они практически вытеснили стабилизаторы на дискретных элементах.

Основные характеристики стабилизатора в широко распространённом корпусе TO – 220:

  • Выходное стабилизированное напряжение – от 11,5 до 12,5 В;
  • Входное напряжение – до 30 В;
  • Выходной ток – до 1А;
  • Встроенная защита от перегрузки и короткого замыкания.

Входное напряжение должно превышать выходное (12 вольт) минимум на 3 вольта во всём диапазоне выходного тока. На выходной ток до 100 мА выпускается вариант микросхемы –78L12. Типовая схема включения позволяет своими руками собрать надёжный стабилизатор напряжения 12 вольт с характеристиками, подходящими для многих задач.

Включение микросхемы 7812

Конденсатор фильтров рекомендуется устанавливать не далее 30 мм от выводов микросхемы. Если выходного тока 1 ампер недостаточно, можно установить дополнительный транзистор.

Увеличение выходного тока

Схема имеет параметры стабилизации, аналогичные применённой микросхеме.

В некоторых случаях целесообразно использование микросхем серии 1083/84/85. Это интегральные стабилизаторы с выходным током 3, 5, и 7, 5 ампер. Устройства относятся к типу Low Dropout (с низким падением напряжения) – для них разница между входным и выходным напряжением может быть 1 вольт. Схема включения полностью соответствует микросхемам типа 7812.

Видео

Оцените статью:

РадиоДом — Сайт радиолюбителей

Стабилизатор напряжения КР142ЕН12А (LM317T) имеет полную защиту от перегрузок, включающую внутрисхемное ограничение по току, защиту от перегрева и защиту выходного транзистора. Максимальное напряжение на входе не может превышать 40 вольт.

Добавлено: 01.04.2018 | Просмотров: 7952 | Стабилизатор напряжения

Не всегда в распоряжении радиолюбителя оказываются нужные микросхемы, и тогда на помощь приходит схема на отечественном составном транзисторе, проверенная многолетней практикой. Переменное напряжение с вторичной обмотки трансформатора выпрямляется диодным мостом VD1—VD4, фильтруется конденсатором С1 и поступает на компенсационный стабилизатор напряжения Rl, VD5, C1.

Добавлено: 24.03.2018 | Просмотров: 12551 | Стабилизатор напряжения

В статье описывается простая схема стабилизатора напряжения от 0 до 12 вольт и током нагрузки до 1,5 ампера. Прибор пригодится для получения точного стабилизированного напряжения для самых различных опытов, неплохо будет установить цифровым вольтметром и амперметром, которых полно в радиолюбительских магазинах.

Добавлено: 21.02.2018 | Просмотров: 7734 | Стабилизатор напряжения

Стабилизатор обеспечивает на выходе два напряжения: 5 вольт, при токе 0,75 ампер; 12 вольт при токе около 200 мА. Основное напряжение, формируемое импульсным стабилизатором, является напряжение +5 вольт. Второе напряжение получается за счёт автотрансформаторного включения обмотки II трансформатора Т1.

Добавлено: 17.02.2018 | Просмотров: 2625 | Стабилизатор напряжения

Схема мощного стабилизатора, обеспечивающих ток нагрузки до 5 Ампер. Что очень подходит для питания фабричных и самодельных бытовых конструкции. Когда нагрузка на устройстве малая, транзистор VT1 закрыт и работает только микросхема, но как нагрузочный ток будет увеличиваться, то напряжение, выделяемое на R2 и VD5, открывается транзистор VT1, и основная часть тока нагрузки начинает проходить через него. 

Добавлено: 25.12.2016 | Просмотров: 20086 | Стабилизатор напряжения

В некоторых радиолюбительских конструкциях требуются маломощные стабилизаторы, потребляющие в режиме стабилизации микроамперы. Ниже приведена принципиальная схема такого стабилизатора с внутренним током потребления всего 10 мкА и током стабилизации 100 мА.

Добавлено: 24.12.2016 | Просмотров: 4558 | Стабилизатор напряжения

LM1578A, LM2578A, LM3578A — могут работать в качестве импульсного понижающего стабилизатора, импульсного повышающего стабилизатора, инверсного стабилизатора. Ниже представлены несколько наиболее популярных схем включения импульсного стабилизатора.

Добавлено: 22.12.2016 | Просмотров: 3343 | Стабилизатор напряжения

Представлены две принципиальные схемы простых стабилизаторов на 5 вольт. Напряжение переменной сети 220 вольт пониженное трансформатором Т1 до 9…10 вольт через выпрямительный диодный мост подается на стабилизатор напряжения.

Добавлено: 11.12.2016 | Просмотров: 8639 | Стабилизатор напряжения

Регулируемый импульсный стабилизатор напряжения LM2576 имеет довольно широкий диапазон регулируемого выходного напряжения от 1,2 вольт до 50 вольт с нагрузкой на выходе до 3 ампер.

Добавлено: 29.09.2016 | Просмотров: 4800 | Стабилизатор напряжения

Энергия , запасенная в катушке, питает нагрузку. Когда напряжение на С4 падает ниже напряжения стабилизации, открывается DA1 и ключевой транзистор. Каждый цикл повторяется с частотой 20000-30000 герц.

Добавлено: 06.05.2016 | Просмотров: 3744 | Стабилизатор напряжения

Микросхемные стабилизаторы фиксированного напряжения постоянного тока КР142ЕН8А—КР142ЕН8Е, КР142ЕН5А— КР142ЕН5Г были популярны в радиолюбительских и промышленных конструкциях 10—25 лет назад. Сейчас эти стабилизаторы устарели, уступив место экономичным импульсным или линейным с малым собственным падением напряжения.

Добавлено: 23.04.2016 | Просмотров: 5939 | Стабилизатор напряжения

Стабилизатор 7812 — технические параметры

Этот стабилизатор размещен в корпусе  ТО – 220, имеющем три вывода. Он способен стабилизировать напряжение 12 вольт, что дает возможность применять его в разных электронных приборах.

Технические данные:

  • Тип выхода – постоянный.
  • Ток выхода – 1 ампер.
  • Наименьшая температура работы — 0 градусов.
  • Наибольшая рабочая температура — 125 градусов.
  • Число выводов – 3.
  • Номинальное напряжение – 12 вольт.
  • Наименьшее напряжение входа – 14,5 вольт.
  • Наибольшее напряжение входа – 27 вольт.
  • Тип корпуса – ТО – 220 АВ.

Чаще всего такие стабилизаторы используются в какой-то одной части схемы в том случае, когда нет смысла для создания целого блока питания устройств. В стабилизаторе 7812 используется внутренняя токовая защита от перегрева. Это делает блок на его базе очень надежным. При хорошем охлаждении радиатором, устройство стабилизации 7812 способен выдать ток 1 ампер. Наибольшее напряжение входа должно равняться не ниже 14,8 В и не выше 35 В.

Такие стабилизаторы создавались для источников определенного постоянного напряжения 12 В, с использованием дополнительных элементов можно переделать эти устройства в стабилизированные источники тока с возможностью регулировки.

 

Цоколевка стабилизатора.

Схема действия стабилизатора, подходящая для всех микросхем этого типа:

Трехвыводные стабилизаторы

Для многих неответственных использований оптимальным выбором будет обычный 3-выводный стабилизатор. У него имеется всего 3 наружных вывода. Он имеет заводскую настройку на фиксированное напряжение. Серия 7800 – это представители стабилизаторов этого типа. В последних двух цифрах указывается напряжение. Об одном из этой серии, мы уже рассказывали ранее (7805)

На рисунке изображено, как просто выполнить стабилизатор, к примеру, на 5 вольт, применив одну схему. Емкость, подключенная параллельно выходу, оптимизирует процессы перехода и задерживает сопротивление выхода на низком уровне при повышенных частотах. Если прибор находится далеко от фильтра, то нужно использовать вспомогательный конденсатор входа. Серия 7800 производится в металлических и пластиковых корпусах.

lm7812 стабилизатор 12 В

Стабилизатор напряжения 7812 изменяет напряжение величиной до 20 В в 12 В. Этот прибор часто использовался для создания стабильного напряжения работы устройств низкого напряжения: усилителя звука, микроконтроллеров, осветительных ламп.

На входной каскад можно подключить нестабильную величину напряжения, и даже переменное значение. LM 7812 является стабилизатором, входящим в серию микросхем 78хх. Они отличаются лишь напряжением выхода, остальные параметры остаются прежними.

Для лучшего отвода тепла прикрепляют охлаждающий радиатор к корпусу стабилизатора. Его можно снять от старых устройств с платы. Вместо радиатора можно использовать жесть от банок, нарезав ее полосками, и просверлив в них отверстия для крепления на винт.

Преобразователь с 12 В на 5 В — 4 простых схемы для проектов

Прежде чем перейти к схеме преобразователя с 12 В на 5 В с использованием различных методов, позвольте взглянуть на потребность в источнике питания 5 В.

Для работы широкого спектра микросхем и контроллеров автоматизации требуется источник постоянного тока напряжением 5 В, при отсутствии источника питания 5 В нам может потребоваться получить его из существующего источника питания, и тогда вам на помощь приходит этот линейный преобразователь. Вот список всех возможных схем, но их применение отличается от схемы к схеме.Мы уже обсуждали схему преобразователя 9В в 5В ранее.

Эти схемы представляют собой базовые регуляторы напряжения, первая из которых представляет собой простой делитель напряжения на резисторах.
Все схемы имеют разную производительность. Схема делителя напряжения не рекомендуется для использования в сильноточных приложениях, поскольку она имеет низкий выходной ток и меньшую эффективность.

Преобразователь 12В в 5В с использованием делителя напряжения:

Вот схема преобразователя постоянного тока 12В в 5В для слаботочных приложений (<70 мА) , в основном для измерения эталонной ЭДС / напряжения и в цепи отвода небольшого тока, например Светодиодный индикатор.

Вы можете подключить два светодиода последовательно через резистор R2, получая вход от свинцово-кислотной батареи 12 В или адаптера 12 В в качестве входа.

Необходимые компоненты:

Одна батарея 12 В, резистор 1,8 кОм, резистор 1,3 кОм, соединительные провода.

Эта схема представляет собой схему делителя напряжения. Вы можете рассчитать его для требуемого «выходного напряжения» по следующей формуле:

Здесь Vout — это выходное напряжение, снимаемое на резисторе R2.Vin — это входное напряжение, которое необходимо понизить. Выберите стандартное сопротивление резистора (более 1 кОм) для любого сопротивления и решите для другого. Затем выберите стандартное значение, ближайшее к полученному значению резистора.

Проверить лучшие схемы преобразователя 12В в 6В

Преобразователь 12В в 5В с использованием стабилитрона:

Схема, показанная ниже, предназначена для цепей среднего тока, она полезна для (1-70 мА) дренажной цепи среднего тока, например .светоизлучающие диодные индикаторы, схемы драйверов, операции с низковольтными транзисторами и многое другое.

Вы можете использовать эту схему понижающего преобразователя постоянного тока с 12 В на 5 В в сочетании с другой схемой на выходе стабилитрона (с батареей на 12 В в качестве входа). На стабилитроне получается примерно 5 В.

Важно:
Нагрузочный резистор или выходная цепь являются обязательными на выходе при реализации или тестировании в цепи, чтобы предотвратить возгорание стабилитрона.

Необходимые компоненты:
Одна батарея 12 В, резистор 100 Ом (рекомендуется более высокое значение), стабилитрон 5,1 В (более 1 Вт), несколько соединительных проводов и паяльник для неразъемных соединений.

Рабочий:
Это очень распространенная схема стабилитрона в качестве схемы регулятора напряжения. Вы можете регулировать напряжение o / p в соответствии с приложением, меняя диод и резистор (Rs).

Пошаговый метод стабилизации напряжения на стабилитроне:

Разработайте стабилизированный источник питания «Vout» для работы от нерегулируемого источника питания постоянного тока «Vs».Максимальная номинальная мощность стабилитрона P Z указывается в ваттах. Используя стабилитрон и рассчитайте по следующим формулам:

Максимальный ток, протекающий через стабилитрон.
Id = (Вт / напряжение)

Минимальное значение резистора серии R S .
Rs = (Vs — Vz) / Iz

Ток нагрузки I L , если нагрузочный резистор 1 кОм подключен к стабилитрону.
I L = V Z / R L

Ток стабилитрона I Z при полной нагрузке.
Iz = Is — I L

Где,
I L = ток через нагрузку
Is = ток через резистор серии RS
Iz = ток через стабилитрон (проверьте таблицы или предположите 10-20 мА, если не указано)
Vo = V R = Vz = напряжение стабилитрона = выходное напряжение
R L = Нагрузочный резистор

LM7805 Преобразователь 12В в 5В:

Стабилизатор напряжения 12В — 5В постоянного тока также может быть реализован с LM7805 линейный преобразователь напряжения.Он используется от среднего тока (от 10 мА до 1 А) до сильноточных прикладных цепей.
Он поддерживает тот же выходной ток, что и на входе.

Важно:
Входной конденсатор и выходной конденсатор должны быть внешне подключены к IC 7805, эти конденсаторы действуют как понижающие пульсации, если они присутствуют в источнике питания в соответствии с таблицей данных. Радиатор необходим, потому что падение напряжения в 7 вольт преобразуется в тепло через радиатор.

Если не прикрепить радиатор, он может вывести из строя ИС, применяя его в сильноточных цепях, и остаться с поврежденной ИС. Напряжение источника должно быть на> 2,5 В больше требуемого регулируемого выходного постоянного напряжения.

Необходимые компоненты:
Одна батарея 12 В / адаптер питания 12 В, конденсатор 10 мкФ, конденсатор 1 мкФ, микросхема LM7805, радиатор, несколько соединительных проводов и паяльник (для пайки).

Рабочий:

Для получения постоянного и нулевого выходного напряжения пульсаций используются ИС линейных регуляторов напряжения.Это интегральные схемы, предназначенные для линейного преобразования и регулирования напряжения, часто называемые ИС понижающего трансформатора. Давайте обсудим преобразователь постоянного тока 12В в 5В с использованием IC 7805.

Трансформатор IC 7805 является частью серии ИС преобразователей постоянного тока LM78xx. Это ИС линейного понижающего трансформатора. Цифры «xx » представляют значение регулируемого o / p в вольтах. IC7805 выдает 5 В постоянного тока в виде цифры xx , показывающей (05), что составляет 5 вольт.Выходной сигнал будет постоянным на уровне 5 вольт для всех значений на входе от 6,5 до 35 вольт. (см. техническое описание)

Номер контакта 1 — это клемма источника питания . Контакт № 2 — это клемма заземления . Контакт номер 3 — это клемма выходного напряжения .

Посмотрите это видео для справки: (входной конденсатор не используется, но рекомендуется), также номиналы конденсатора могут отличаться в зависимости от наличия и в зависимости от области применения)

LM317 Преобразователь 12 В в 5 В:

Преобразователь постоянного тока 12 В в 5 В также может быть реализован с помощью ИС регулятора напряжения LM317.Это очень полезно в приложениях со средним и высоким током (1 А и более). Он также используется в настольных компьютерах в качестве схем защиты от скачков напряжения.
Эта схема также может выдавать такой же выходной ток, как и от нерегулируемого источника.

Как правило, LM317 представляет собой ИС переменного источника питания, который может обеспечивать переменное, но регулируемое выходное напряжение от 1,25 В до 37 В в зависимости от «Vref» (опорное напряжение), напряжения на контакте № 1 (Adjust), которое является опорным напряжением. снято с потенциометра.Прил. напряжение для регулировки. Ниже представлена ​​схема делителя напряжения с использованием LM317, которая дает фиксированное напряжение 5 В на выводе 2.

Важно:
Для работы рекомендуется подключить входной конденсатор Cin (а ​​также рекомендуется на выходе. ‘). Радиатор, как показано на рисунке ниже, должен быть там для рассеивания тепла (своего рода дополнительный i / p-потенциал).

Правильно подключенный радиатор является обязательным, иначе он может вывести из строя IC317. Входное напряжение должно быть 1.5 В или более, чем требуемое выходное напряжение.

Необходимые компоненты:
Одна батарея 12 В / источник питания 12 В, резистор 1,6 кОм, резистор 4,7 кОм, конденсатор 10 мкФ, конденсатор 1 мкФ, IC LM317, радиатор, некоторые соединительные провода, макетная плата, если выполняется экспериментально, и пайка утюг.

Рабочий:
LM317 — это регулируемый регулятор напряжения IC, способный подавать ток более 1,0 А с широким диапазоном выходного напряжения от 1,25 В до 37 Вольт.Его регулировка немного лучше, чем у других микросхем фиксированного стабилизатора напряжения, таких как LM7805, 7806, 7808, 7810…

Формула для выходного напряжения преобразователя 12 В в 5 В, использующего LM317, написана выше. Это дает приблизительное значение «Vo», когда R2 и R1 выбраны так, чтобы удовлетворять формуле.

Ставьте любой std. значение любого резистора (рекомендуется более высокое значение резистора для уменьшения потерь мощности), затем подставьте значение требуемого выходного напряжения в данную формулу, чтобы найти значение другого резистора.

На изображении ниже показана ИС регулятора напряжения без радиатора и с радиатором. Иногда радиаторы продаются отдельно. Убедитесь, что радиатор правильно подсоединен с помощью токопроводящей пасты, применяемой для сильноточных приложений.

* Перед окончательным применением схемы преобразователя 12В в 5В в ваших проектах убедитесь, что выходное напряжение соответствует тому, для чего вы разработали. Значение тока, указанное в статье, приведено только для справки, поскольку значение тока изменяется в зависимости от импеданса цепи на выходе.

Преобразователь 12 В в 5 В | Понизить регулятор постоянного тока можно разными способами.

Если вы ищете источник питания 5 В постоянного тока для цифровой схемы. Но у вас есть источник 12В, аккумулятор. Я покажу вам понижающий стабилизатор преобразователя с 12 В на 5 В.

Во многом это зависит от имеющихся у вас деталей и другой пригодности.

Как выбрать преобразователь 5В

Мы должны использовать подходящую схему. Как? Экономия самая лучшая. Я использую эти рекомендации.

  • Экономьте деньги — если он есть в моем магазине, это очень хорошо.Кроме того, сэкономьте время на покупке, а не на долгое ожидание.
  • Простота сборки — простые и отработанные схемы всегда хорошо.
  • Маленький размер — у некоторых проектов ограниченное пространство.

Сначала посмотрите на нагрузку!

Предположим, что нагрузка потребляет ток около 30 мА. Вы должны использовать преобразователь 5 В на 60 мА. Для этого случая достаточно. Когда ток небольшой, его легко построить. Кроме того, экономьте энергию.

Не следует использовать большую цепь источника тока 1А. Это похоже на езду на слоне, чтобы поймать кузнечика.Что это расточительно и ненужно.

Например, схемы

  • Токовый выход на 3 А — если у вас есть нагрузка, которая использует ток более 2 А. Например, цифровая камера, GPS, Raspberry Pi, Arduino и другие.
  • Ниже 50 мА — малая схема, например, цифровая CMOS
  • Как преобразовать 12 В постоянного тока в 5 В постоянного тока 1 А
  • Схема преобразователя 12 В в 5 В 2 А

Стабилитрон 5 В — ниже 50 мА

Некоторые схемы потребляют ток от 20 мА до 50 мА (0.05A) только. Можно схему стабилизатора напряжения на стабилитроне.


Стабилитрон поддерживает фиксированное напряжение 5 В. Ему нужен резистор, чтобы ограничить ток и нагрузку.

Как рассчитать прибор

Запитать его от источника 12 В. Вы снова смотрите на схему. Есть три тока.

  • IZ = Максимальный ток стабилитрона
  • IR = Ток через R1
  • IL = Максимальный ток нагрузки

IR всегда постоянен.Даже IL изменится с 0 мА до запланированного максимального значения (50 мА). IZ нужно изменить, чтобы напряжение на выходе оставалось 5В.

Во-первых, используйте стабилитрон 5 В, потому что нам нужно 5 В, VZ. Тогда IR составляет около 50 мА.

R1 = (Vin — VZ) / IR
= (12 В — 5 В) / 50 мА
= 140 Ом
или около 150 Ом .

PR — Мощность R1.
PR = VR x IR
= 7V x 50mA
= 0,35 Вт или 0,5 Вт.

Но мы забываем, мощность стабилитрона, PZ
PZ = VZ x IZ
Примечание: IZ составляет около IR, 50 мА.

PZ = 5 В x 50 мА
PZ = 0,25 Вт
Итак, мы используем стабилитрон 5 В 0,5 Вт .

Кроме того, C1 — это конденсатор фильтра для сглаживания постоянного напряжения.

100mA 5V схема преобразователя

В цифровых схемах, которые имеют много частей. Они могут использовать ток более 100 мА, но ниже 300 мА.

Мы можем использовать много схем. В предыдущей схеме он имеет слабый ток. Если хочешь 100мА. Вам нужно использовать стабилитрон с низким сопротивлением (R1) и большей мощностью.

Это лучшая идея.Если добавить в схему транзистор. Это увеличит более высокий ток больше. Но выходное напряжение составляет всего 4,4 В. Из-за некоторого падения напряжения на BE транзистора Q1 0,6В.

Нужно поменять стабилитрон 5,6В. Если у тебя его нет. Вы можете добавить диод и стабилитрон последовательно. Вы можете получить их как стабилитрон на 5,6 В.

Так как транзистор хорош для увеличения тока. Итак, мы можем изменить R1 на 1 кОм, как показано на схеме ниже. Для уменьшения тока смещения стабилитрон и база Q1.

200 мА, регулятор 5 В

Регулятор напряжения серии транзисторов 5 В

Если вы используете 2N2222 вместо BC548. Он может использовать 200 мА при нагрузке. Потому что 2N2222 имеет токоприемник (Ic) около 0,8А в таблице данных. Но в реальном использовании он может использовать максимум 0,5 А.

500 мА, регулятор 5 В от 12 В

500 мА, транзистор 5 В и стабилизатор напряжения Зенера

Если вам нужно использовать с нагрузкой от 300 мА до 500 мА. Следует сменить транзистор на BD139.

Он имеет Ic около 2 А макс. Но я могу получить только около 0,5А. Пока работает. Может быть тепло. Так часто лучше работать с радиатором.

Конденсаторы C1, C2 используются для уменьшения пульсаций на выходе. А C3 уменьшит скачок напряжения.

Как преобразовать 12 В постоянного тока в 5 В постоянного тока 1A

Многие друзья хотят преобразовать 12 В постоянного тока в 5 В постоянного тока при 1 А. Это популярная ставка в большинстве схем.

У меня есть два варианта на выбор. Это зависит от пригодности ваших деталей и времени.

Первый, 5V 1A транзисторный регулятор . Он аналогичен приведенным выше схемам.

Я использую силовой транзистор TIP41. Потому что он может получить максимум 4А в спецификации. Но при реальном использовании он может дать мне максимум около 2А. Кроме того, его корпус выполнен из TO-220, поэтому его легко использовать с радиаторами любого размера.

Раньше мне нравилась эта схема. Если у меня есть все комплектующие в моем магазине. Я сделаю это первым.

Но в последнее время мне нравится использовать этот компонент, Регулятор 7805.

Second, 7805 Регулятор популярный .

Это так просто, быстрее, чем другие. Потому что его корпус такой же, как у TIP41, без стабилитрона и резистора смещения.

Преобразователь 12 В в 5 В 1A с использованием 7805

Кроме того, он имеет низкий уровень пульсаций на выходе около 10 мВ, с электролитическими конденсаторами (C1, C4) на входе и выходе. И оба фильтрующих конденсатора, C2, C3, для уменьшения всплесков напряжения.

Примечание : 7805 распиновка

Так как это линейный регулятор. Так что пока работает. Напряжение на входе и выходе IC1 составляет около 7 В.

При полной нагрузке ток 1А. Таким образом, выходная мощность составляет около 7 Вт. Жарко. Надо установить его на достаточном количестве радиатора.

Преобразователь 12 В в 5 В, выход 1,5 А

Иногда нам нужен выходной ток около 1,5 А. У нас есть 3 способа сделать это.

  • Подключение 7805 параллельно
  • Аккумулятор 12 В к преобразователю постоянного тока 5 В 1,5 А
  • Транзистор более высокого тока для регулятора 7805
  • Транзистор 2 А Регулятор
Подключение 7805 параллельно

Если мы подключим 7805 параллельно.Это делает более высокий ток больше. Это подходит для тех, кто поддерживает или не имеет силовых транзисторов.

Но долго не годится. Можешь попробовать!
Оба IC-7805 должны быть абсолютно одинаковыми.

Аккумулятор 12 В на преобразователь постоянного тока 5 В 1,5 А

Если нам нужно использовать регулятор напряжения 12 В на 5 В. Это схема регулятора постоянного тока 5 В, 1500 мА.

Это простая схема с использованием IC-7805, фиксированного стабилизатора 5 вольт и силового транзистора TIP41-NPN для увеличения тока до 2А.

Пример эксперимента

Я использую источник питания 7805 с аккумулятором 12 В. Для снижения постоянного напряжения на 5 вольт.

Пробую использовать в нагрузке резисторы 4,7 Ом 5Вт. В качестве принципов он будет использовать ток около 5 В / 4,7 Ом = 1 А.

Я измеряю ток около 0,7 А и падение напряжения 4,9 В, но его можно использовать. Как показано на рисунке 1

Тестирование чистого IC-7805 с током не более 1А.

Требуется транзистор для увеличения выходного тока.

Использую транзистор TIP41. В принципе может подавать ток около 2А. Которого достаточно использовать.

На принципиальной схеме.

Схема простейшего регулятора 5V 1,5A

Затем я тестирую цепь примерно с нагрузкой, резистором 2,4 Ом. Затем измерьте ток примерно 1,3 А, а падение напряжения составит 4,9 В. Его можно использовать как захотим.

Тестирование с сильноточной нагрузкой

Продолжайте читать: Четыре небольших схемы регулятора постоянного тока на 5 В »

Я подавал напряжение на диоде-1N4007, чтобы компенсировать потерю транзистора между контактом BE.

Мы вставляем светодиод 1 для индикации включения питания этой цепи, а последовательный резистор R1 используется для ограничения тока до безопасного значения.

C1, C3 — конденсаторы с фильтром для сглаживания входной и выходной последовательности постоянного тока.
C2, C4 — искровой ток шумового фильтра.

Во время работы Q1 будет очень жарко, поэтому мы должны установить его с большим радиатором.

Примечание: Имеет минусы. Если это короткое замыкание. IC-7805 может быть поврежден.

Транзистор более высокого тока для регулятора 7805

Если вы хотите, чтобы ток был больше 1 А, используйте 7805 в более чем двух схемах, указанных выше.
Требуется помощь от силового транзистора PNP со схемой ниже.

Принципиальная схема преобразователя 12 В в 5 В 2A

Сильный ток будет протекать через силовой транзистор Q1, TIP42. В то время как 7805 получает меньший ток. Потому что R1 снижает этот ток.

Таким образом, 7805 поддерживает фиксированное регулируемое напряжение, только 5 В. Хорошо работает без радиатора.

Пока Q1 работает. Это так жарко. Нам нужно установить его с достаточным количеством радиатора.

Если есть готовые запчасти.Этой схемой можно пользоваться долгое время.

Тогда, если вам нужен ток 3А. Просто используйте MJ2955 вместо TIP42.

Хотя эту схему можно хорошо использовать. Но минусы все же есть.
При коротком замыкании силовой транзистор может быть поврежден.

Посмотрите на ниже.

Преобразователь 12В в 5В 5А

Если вам нужен выход 5В 5А. Вы можете изменить предыдущую схему. Используйте TIP2955 вместо TIP42.

Может пропускать ток до 5А.

Или, если у вас есть другой, TIP42.Можно добавить параллельно. Выходной ток тоже будет до 5А.

Токовый выход 3А, преобразователь 5В

Это преобразователь 12В в 5В понижающий регулятор при нагрузке 3А.

Понижающий преобразователь с 12 В на 5 В Регулятор

Цифровая камера также может снимать фотографии и видео. Но у него есть недостаток — долго не разряжается аккумулятор. При использовании на открытом воздухе. Нам приходилось часто подзаряжать аккумулятор. Это пустая трата времени.

При покупке дополнительных запасных аккумуляторов. Стоит дорого и все равно часто менять как то же самое.

На его боковой стороне находится разъем для подключения адаптера постоянного тока 5В, ток 2А. Если доработать свинцово-кислотный аккумулятор на 12В, чтобы снизить напряжение до 5 вольт. Это хорошая идея.

Потому что этот аккумулятор дешевле и долго используется. Например, аккумулятор 12В на 10Ач можно взять фотоаппарат на 5 часов.

Как это работает


У нас есть много способов сделать это. Но я покажу вам эту схему ниже.Мне нравится линейная схема, чем схема с переключением режимов.

В схеме много компонентов. Как указано выше, эта схема может питать ток до 3 А с увеличивающимся током Q3-MJ2955. Кроме того, в нем много интересных деталей.

При перегрузке или коротком замыкании нагрузки. Тогда напряжение на R2 составляет около 0,6 В. Итак, Q2 получает напряжение смещения, он работает. После этого VBE Q3 становится низким, Q3 работает ниже до остановки.

Пока Q1 работает для подключения тока через LED1. Это указывает на перегрузку.

Список компонентов регулятора напряжения от 12 В до 5 В

IC1: LM7805, регулятор постоянного тока 5 В IC
Q1: BC558, транзистор 40 В на 0,4 А
Q2: BD140, транзистор PNP на 1,5 А, 30 В

57 Q3: MJ29 , 4A, 50 В, силовой транзистор PNP
C1: 4700 мкФ, 25 В, электролитический
LED1: светодиод любого цвета на ваш выбор
Резисторы
R1: 330 Ом 0,25 Вт
R2: 0,22 Ом 5 ​​Вт
R3: 470 Ом 0,5 Вт
R4: 47 Ом 1 Вт
R5: 18 Ом 1 Вт
Радиатор, провода и т. Д.

Приложение


У меня старый GPS, обычно использую его в машине. Нам нужна схема преобразователя постоянного тока в постоянный, которая может снизить напряжение с 12 В до 5 В при токе более 2 А.
Какая из принципиальных схем может это сделать.

Мне нравится, что нужно покупать некоторые детали, так как они есть у меня в магазинах.

Как показано на рисунке 2, я собираю их на универсальной плате

Кроме того, См. Другие в более простой схеме . Регулятор 3A 5V с использованием LM350

Простая защита от перенапряжения 5V

Обычно вы можете использовать вышеуказанную схему.Потому что это просто и недорого.

Вы просто добавляете предохранитель F1 для защиты от перегрузки более 2А. Также, если в цепи запитывается высокое напряжение более 5,1 В. У него слишком много токов через ZD1 и D1 в качестве сверхтока. Так что предохранитель внезапно сгорит.

Преобразователь 12 В в 5 В на 2 А с использованием 7805 и транзистора с защитой от перенапряжения

Источник питания 5 В 2 А с использованием 78S05

Другой способ. Мой друг хочет схему источника питания 5 В 2 А . Чтобы модель была простой, используйте немного оборудования, стройте легко.

Затем я выбрал для него эту схему.

Почему? В нем используется опорное оборудование, положительный стабилизатор напряжения 5В, / 2А в ТО220, 78S05. И мало деталей, видимых в схеме, качественная и малошумная.

Схема будет работать без дополнительных компонентов, но для защиты от обратной полярности , на входе предусмотрен диод 1N5402, дополнительное сглаживание обеспечивается C1-220uF 50V.

Выходной каскад включает C2-47uF 25V для дополнительной фильтрации.

Загрузить этот

Все полноразмерные изображения этого поста находятся в этой электронной книге: Elec Circuit vol. 1 ниже. Пожалуйста, поддержите меня. 🙂

Также адаптер постоянного тока 5 В

  1. Источник питания микропроцессорного регулятора постоянного тока 5 В 3 А от LM323K
  2. Импульсный источник питания 5 В 3 А от LM2576
  3. LM2673 -5 В 3A Регулятор напряжения питания 902 9024 Верхний регулятор напряжения 9024 5V 5A с 7812 и LM723

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Pololu 12V повышающий / понижающий стабилизатор напряжения S18V20F12

Уведомление об ограничении поставок (обновлено 12 июля 2021 г.): Из-за нехватки компонентов во всем мире мы серьезно ограничены в производстве этого изделия.

Обзор

Эти повышающие / понижающие регуляторы принимают входное напряжение от 3 В до 30 В и увеличивают или понижают его по мере необходимости для получения фиксированного выходного напряжения 5 В, 6 В, 9 В, 12 В или 24 В, в зависимости от версия.Они представляют собой импульсные регуляторы (также называемые импульсными источниками питания (SMPS) или преобразователями постоянного тока в постоянный) с топологией несимметричного первичного индуктора (SEPIC) и имеют типичный КПД от 80% до 90%. Доступный выходной ток является функцией входного напряжения, выходного напряжения и КПД (см. Раздел «Типичный КПД и выходной ток » ниже), но он будет около 2 А, когда входное напряжение близко к выходному напряжению.

Семейство регуляторов S18V20x состоит из пяти версий с фиксированным выходом, упомянутых выше, а также двух версий с регулируемым выходом: S18V20ALV предлагает выходной диапазон от 4 до 12 В, а S18V20AHV предлагает выходной диапазон от 9 до 30 В.Все разные версии доски выглядят очень похоже, поэтому нижняя шелкография включает пустое место, где вы можете добавить свои собственные отличительные знаки или метки. Эта страница продукта относится ко всем четырем версиям с фиксированным выходом семейства S18V20x.

Гибкость входного напряжения, предлагаемая этими регуляторами, особенно хорошо подходит для приложений с батарейным питанием, в которых напряжение батареи начинается выше желаемого выходного напряжения и падает ниже целевого значения по мере разряда батареи.Без типичного ограничения на то, чтобы напряжение батареи оставалось выше требуемого в течение всего срока службы, можно рассмотреть новые аккумуляторные блоки и форм-факторы. Например:

  • Держатель 4-элементной батареи, который может иметь выход 6 В для свежих щелочей или выход 4,0 В для частично разряженных никель-металлгидридных элементов, может использоваться с версией этого регулятора на 5 В для питания цепи 5 В.
  • Одноразовая батарея на 9 В, питающая цепь 5 В, может быть разряжена до уровня менее 3 В вместо отключения 6 В, как в обычных линейных или понижающих регуляторах.
  • Версия этого регулятора на 6 В может использоваться для включения широкого диапазона вариантов источника питания для проекта сервопривода хобби.

Ток покоя без нагрузки обычно составляет около 1 мА для большинства комбинаций входного и выходного напряжений, хотя сочетание очень высокого выходного напряжения и очень низкого входного напряжения (например, при повышении с 3 В до 30 В на выходе. ) может привести к токам покоя порядка нескольких десятков миллиампер.

Вывод ENABLE можно использовать для перевода платы в состояние низкого энергопотребления, которое снижает ток покоя до 10-20 мкА на вольт на VIN (например,грамм. приблизительно 30 мкА при 3 В на входе и 500 мкА при 30 В на входе).

Этот регулятор имеет встроенную защиту от обратного напряжения, защиту от перегрузки по току, тепловое отключение (которое обычно активируется при 165 ° C) и блокировку пониженного напряжения, которая вызывает отключение регулятора, когда входное напряжение ниже 2,5 В. (типичный).

В качестве мощных регуляторов только для повышения мощности рассмотрите наше семейство регуляторов U3V70x, которые, как правило, более подходят, если вы знаете, что ваше входное напряжение всегда будет ниже, чем ваше выходное напряжение.

Характеристики

  • Входное напряжение: от 2,9 до 32 В
  • Фиксированный выход 5 В, 6 В, 9 В, 12 В или 24 В с точностью 4%
  • Типичный максимальный выходной ток: 2 А (когда входное напряжение близко к выходному напряжению; в разделе Типичный КПД и выходной ток ниже показано, как достижимый выходной ток зависит от входного и выходного напряжений)
  • Встроенная защита от обратного напряжения (до 30 В), защита от перегрузки по току, отключение при перегреве и блокировка при пониженном напряжении
  • Типичный КПД от 80% до 90%, в зависимости от входного напряжения, выходного напряжения и нагрузки
  • Четыре 0.Монтажные отверстия 086 ″ для винтов № 2 или M2
  • Компактный размер: 1,7 ″ × 0,825 ″ × 0,38 ″ (43 × 21 × 10 мм)
  • Отверстия меньшего размера для штырей разъема 0,1 ″ и отверстия большего размера для клеммных колодок предлагают несколько вариантов подключения к плате

Использование регулятора

Подключения

Этот повышающий / понижающий регулятор имеет четыре соединения: входное напряжение (VIN), заземление (GND) и выходное напряжение (VOUT) и ENABLE.

Входное напряжение VIN должно быть в пределах 2.9 В и 32 В. Более низкие входные напряжения могут вызвать отключение регулятора или его нестабильную работу; более высокое входное напряжение может вывести из строя регулятор, поэтому вы должны убедиться, что шум на входе не является чрезмерным. 32 В следует рассматривать как абсолютное максимальное входное напряжение. Рекомендуемое максимальное рабочее напряжение составляет 30 В, что является пределом защиты от обратного напряжения.

Регулятор включен по умолчанию: подтягивающий резистор 100 кОм на плате подключает контакт ENABLE к VIN с обратной защитой.На вывод ENABLE можно подавать низкий уровень (ниже 0,7 В), чтобы перевести плату в состояние низкого энергопотребления. Потребляемый ток покоя в этом спящем режиме определяется током в подтягивающем резисторе от ENABLE до VIN и схемой защиты от обратного напряжения, которая потребляет от 10 до 20 мкА на вольт на VIN, когда ENABLE удерживается на низком уровне. (например, приблизительно 30 мкА при 3 В на входе и 500 мкА при 30 В на входе). Если вам не нужна эта функция, оставьте контакт ENABLE отключенным. Обратите внимание, что топология SEPIC имеет собственный конденсатор от входа до выхода; следовательно, выход не полностью отключается от входа, даже когда регулятор выключен.

Фиксированный повышающий / понижающий стабилизатор напряжения Pololu S18V20Fx с дополнительными клеммными колодками и штырями в комплекте.

Фиксированный повышающий / понижающий стабилизатор напряжения Pololu S18V20Fx, в сборе с прилагаемыми клеммными колодками.

Соединения обозначены на задней стороне печатной платы, и плата предлагает несколько вариантов выполнения электрических соединений.Вы можете припаять входящие в комплект 2-контактные клеммные колодки с шагом 5 мм к двум парам больших отверстий на концах платы. В качестве альтернативы, если вы хотите использовать этот регулятор с беспаечной макетной платой, разъемами с шагом 0,1 дюйма или другими прототипами, использующими сетку 0,1 дюйма, вы можете припаять части прилагаемой прямой штыревой полоски 9 × 1 к 0,1-дюймовой клеммной колодке. расположенные на расстоянии меньшие отверстия (каждое большое сквозное отверстие имеет соответствующую пару этих меньших отверстий). Для максимально компактной установки можно припаять провода прямо к плате.

На плате есть четыре монтажных отверстия 0,086 ″, предназначенных для винтов №2 или M2. В тех случаях, когда монтажные винты не используются, а провода припаяны непосредственно к плате, изолированную часть проводов можно пропустить через монтажные отверстия для снятия натяжения. На изображении выше показан пример этого с проводом 20 AWG, что близко к пределу, который может пройти через монтажные отверстия.

Типичный КПД и выходной ток

КПД регулятора напряжения, определяемый как (выходная мощность) / (входная мощность), является важным показателем его производительности, особенно когда речь идет о сроке службы батареи или нагреве.Как показано на графиках ниже, эти импульсные стабилизаторы имеют КПД от 80% до 90% для большинства комбинаций входного напряжения, выходного напряжения и нагрузки.

Мы производим эти платы на собственном предприятии в Лас-Вегасе, что дает нам возможность производить партии регуляторов с индивидуальными компонентами, чтобы лучше соответствовать потребностям вашего проекта.Например, если у вас есть приложение, в котором входное напряжение всегда будет ниже 20 В, а эффективность очень важна, мы можем сделать эти регуляторы немного более эффективными при высоких нагрузках, заменив полевой МОП-транзистор 30 В с защитой от обратного напряжения на 20 В. Мы также можем настроить установленное выходное напряжение. Если вы заинтересованы в настройке, пожалуйста, свяжитесь с нами.

Максимально достижимый выходной ток платы зависит от входного напряжения, но также зависит от других факторов, включая температуру окружающей среды, воздушный поток и теплоотвод.На графиках ниже показаны выходные токи, при которых защита от перегрева этого регулятора напряжения обычно срабатывает через несколько секунд. Эти токи представляют собой предел возможностей регулятора и не могут поддерживаться в течение длительного времени, поэтому постоянные токи, которые может обеспечить регулятор, обычно на несколько сотен миллиампер ниже.

При нормальной работе этот продукт может стать достаточно горячим, чтобы вас обжечь. Будьте осторожны при обращении с этим продуктом или другими подключенными к нему компонентами.

Люди часто покупают этот товар вместе с:

Pololu 12V Повышающий стабилизатор напряжения U3V12F12

Обзор

Эти повышающие (повышающие) регуляторы напряжения генерируют более высокое выходное напряжение при входном напряжении до 2,5 В. Они представляют собой импульсные регуляторы (также называемые импульсными источниками питания (SMPS) или преобразователями постоянного тока в постоянный) и имеют типичный КПД от 80% до 90%. Доступный выходной ток является функцией входного напряжения, выходного напряжения и КПД (см. Раздел «Типичный КПД и выходной ток » ниже), но входной ток обычно может достигать 1.4 А. Этот регулятор доступен с фиксированным выходом 5 В, 9 В или 12 В:

Доступны альтернативы с вариациями этих параметров: выходное напряжение Выбрать вариант…

Тепловое отключение регулятора предотвращает повреждение от перегрева, но , а не , не имеет защиты от короткого замыкания или обратного напряжения.

Характеристики

  • входное напряжение: 2,5 В — VOUT
  • фиксированный выход 5 В, 9 В или 12 В с точностью 4%
  • 1.Переключатель 4 А допускает входные токи до 1,4 А
  • Типичный ток покоя без нагрузки 2 мА
  • встроенная защита от перегрева
  • малый размер: 0,515 ″ × 0,32 ″ × 0,1 ″ (13 × 8 × 3 мм)

Использование регулятора

Подключения

Повышающий регулятор имеет три соединения: входное напряжение (VIN), заземление (GND) и выходное напряжение (VOUT).

Входное напряжение VIN должно быть не менее 2,5 В и не должно превышать выходное напряжение VOUT.Будьте осторожны с деструктивными всплесками LC, которые могут привести к превышению входного напряжения VOUT (дополнительную информацию см. Ниже).

Три соединения помечены на задней стороне печатной платы, и они расположены с шагом 0,1 дюйма по краю платы для совместимости с беспаечными макетными платами, разъемами и другими прототипами, использующими сетку 0,1 дюйма. Вы можете припаять провода непосредственно к плате или припаять либо прямую штыревую полоску 3 × 1, либо полоску штыревой под прямым углом 3 × 1, которая входит в комплект.

Типичный КПД и выходной ток

КПД регулятора напряжения, определяемый как (выходная мощность) / (входная мощность), является важным показателем его производительности, особенно когда речь идет о сроке службы батареи или нагреве. Как показано на графиках ниже, этот импульсный стабилизатор обычно имеет КПД от 80 до 90%.

Максимально достижимый выходной ток приблизительно пропорционален отношению входного напряжения к выходному напряжению.Если входной ток превышает предел тока переключателя (обычно где-то между 1,4 и 2 А), выходное напряжение начнет падать. Кроме того, максимальный выходной ток может зависеть от других факторов, включая температуру окружающей среды, воздушный поток и теплоотвод.

Пики напряжения LC

При подключении напряжения к электронным схемам начальный выброс тока может вызвать опасные всплески напряжения, которые намного превышают входное напряжение. В наших тестах с типичными проводами питания (тестовые зажимы ~ 30 дюймов) входное напряжение выше 10 В вызывало скачки напряжения более 20 В.Вы можете подавить такие выбросы, припаяв электролитический конденсатор емкостью 33 мкФ или больше рядом с регулятором между VIN и GND.

Дополнительную информацию о пиках LC можно найти в нашей заметке по применению «Понимание деструктивных пиков напряжения LC».

Люди часто покупают этот товар вместе с:

Эффективное преобразование 12 В постоянного тока в 5 В для маломощной электроники, оценка шести модулей

В настоящее время я работаю над проектом Arduino, устанавливаемым на автомобиле. Устройство рассчитано на постоянное питание, и я решил использовать автомобильный аккумулятор в качестве источника постоянного питания.Я проектирую устройство с низким энергопотреблением, потребляющим 50 мА или меньше, потому что кто хочет застрять с разряженной батареей, верно?

Автомобильный аккумулятор обычно обеспечивает напряжение от 7 до 15 вольт, но в некоторых стандартах упоминается, что возможны скачки напряжения 40 В. Напряжение автомобильного аккумулятора обычно составляет около 12 В, но падает до ~ 7 В, когда вы запускаете двигатель, и до ~ 14 В, когда двигатель работает и аккумулятор заряжается. Поскольку мы не хотим, чтобы наше устройство сбрасывалось во время пусков, мы хотели бы выполнить преобразование входного напряжения от 7 до 20 вольт в фиксированное выходное напряжение 5 вольт, которое ожидает Arduino Uno.

Регуляторы напряжения

На плате Arduino Uno есть стабилизатор напряжения, который мы могли бы использовать. Рекомендуется для напряжений от 7 до 12 вольт. Это означает, что нам нужно сначала снизить высокое напряжение автомобильного аккумулятора с помощью внешнего компонента, прежде чем мы сможем подключить его к плате Arduino Uno. К сожалению, одно это не решило бы наших проблем, поскольку не удовлетворило бы наши требования к эффективности.

Arduino Uno с обведенным регулятором напряжения. [Фото http: // www.electricrcaircraftguy.com]

Проблема с использованием регулятора напряжения заключается в том, что регулятор расточителен. Любое дополнительное напряжение, которое необходимо сбросить, преобразуется в тепло. Формула эффективности: eff (reg) = Vout / Vin. Стабилизатор напряжения также имеет некоторые преимущества, одно из них — стабильность, что означает, что он может поддерживать очень стабильное и точное выходное напряжение. Еще одно преимущество — компактные размеры.

Чтобы выполнить эффективное преобразование, мы должны использовать импульсный источник питания, в частности понижающий преобразователь, который будет понижать для нас напряжение.Понижающий преобразователь будет включать и выключать вход настолько быстро, насколько это необходимо для обеспечения необходимого напряжения и мощности на выходе. В оставшейся части этой статьи будут сравниваться шесть различных понижающих (понижающих) модулей. Если вы не знакомы с принципом работы понижающего преобразователя с переключением режимов, прочтите эту статью, в которой также сравниваются некоторые модули при более высоких нагрузках.

Кандидатские модули

Одна реализация, которую я рассмотрел, — это понизить напряжение батареи примерно до 7 вольт, а затем запитать Arduino через его регулятор напряжения.Преимущество заключается в более стабильном напряжении для Arduino, однако будет потеря энергии 1-eff (reg) = 1-5 / 7 = 28%. Кроме того, каждый процесс преобразования требует некоторого запаса между Vin и Vout, поэтому при наличии двух этапов нам становится трудно поддерживать нижний предел диапазона напряжения автомобильного аккумулятора, что создает потенциальные проблемы со сбросами во время запуска двигателя.

Итак, я закончил поиск модулей, которые могут работать от автомобильного аккумулятора и выдавать 5 вольт. Это может быть регулируемый модуль или фиксированный на 5 вольт.Я бы подключил эти модули к порту USB Arduino (предпочтительнее из-за присутствующей там дополнительной защиты) или напрямую к контакту Arduino 5V. Это означает, что предпочтение отдается модулям со встроенным выходным USB-портом типа «мама», хотя адаптеры или кабели преобразователя могут компенсировать его отсутствие.

Модули

Модули, которые я тестировал, происходят с Дальнего Востока, и большинство из них были куплены на eBay по цене от 1 до 2 долларов США (включая доставку). Это означает, что у большинства из них нет четкого номера модели или названия производителя.Я придумываю короткое название для каждого модуля, чтобы я мог легко их упомянуть. Я признаю, что качество фотографий могло быть лучше. Я старался изо всех сил с имеющимся у меня оборудованием. Также обратите внимание, что каждая фотография имеет собственный масштаб. Вот модули в произвольном порядке.

Сигара

Конвертер «Сигарный»

Этот адаптер имеет штекер прикуривателя на одном конце и предназначен для подключения к гнезду прикуривателя в автомобиле. Выходной разъем — это женский USB-порт.Такие модули продаются конечным пользователям для зарядки USB-устройств в автомобиле. Я понятия не имею, где я это взял, но я нашел его в своей корзине запчастей, разобрал и использовал в этом исследовании.

Поскольку такие преобразователи продаются конечным пользователям, их списки обычно не показывают фотографии печатной платы, так что это рулетка в отношении того, какой чип и эффективность вы получаете.

Регулируемый

«Регулируемый» преобразователь, передний

«Регулируемый» преобразователь, задний

Этот адаптер продавался на eBay как «Регулируемый понижающий модуль питания DC-DC LM2596 4.От 75-24В до 0,93-18В ». На самом деле чипа LM2596 там нет, что не должно быть большим сюрпризом для покупателей eBay. Это регулируемый понижающий модуль, который отлично подходит для создания прототипов. Вы регулируете выходное напряжение с помощью многооборотного потенциометра. Входные и выходные разъемы представляют собой винтовые клеммы, и вы можете видеть, что я подключил их к цилиндрической вилке для удобства использования.

Амперметр

Преобразователь амперметра, передний

Преобразователь «Амперметр», Задний

Этот модуль продавался на eBay как «Понижающий преобразователь постоянного тока 2А постоянного напряжения с вольтметром и амперметром».Он имеет регулируемое напряжение, ток и дисплей, который может отображать входное / выходное напряжение и выходной ток. Очень хорошо для прототипирования. Для некоторых людей это может быть даже альтернативой правильному настольному источнику питания. Этот модуль имеет разъемы, аналогичные модулю «Регулируемый», метод регулировки также аналогичен.

штраф

Преобразователь «Fine», передний

Преобразователь «Fine», задний

Этот модуль от QSKJ был внесен в список «Fine 6-24V 12V / 24V to 5V 3A CAR USB Charger Module DC Buck step down Converter».Это один из самых маленьких модулей в тесте. Он явно предназначен для интеграции в другие проекты, поскольку имеет две контактные площадки для ввода. На выходе получается довольно симпатичный женский USB-порт. В листинге упоминается множество дополнительных функций, таких как новейшая схема идентификации USB, схемы защиты, сверхнизкий статический ток (0,85 мА) и многое другое.

600 мА

Преобразователь «600 мА», передний

Преобразователь «600 мА», задний

Этот модуль с пометкой «DM01» на 100% предназначен для интеграции.Входы и выходы через контактные площадки. Похоже, этот модуль также выпускается в версиях на 3,3, 9 и 12 В. Он был выставлен на продажу как «понижающий понижающий модуль постоянного / постоянного тока 600 мА с фиксированным выходным напряжением 6-55 В на 5 В». Это может быть самый маленький модуль из 6, но отсутствие порта USB делает его нечестным сравнением. Одна особенность, которая отличает этот модуль от других, участвовавших в тесте, заключается в том, что он имеет панель «EN». Вы можете управлять этим разъемом для выключения и запуска модуля при необходимости. Заявленный ток отключения составляет менее 1 мкА.Если вы просто собираетесь подключить эту площадку к «Vin +», не беспокойтесь, «ток холостого хода» этого модуля составляет всего 0,7 мА.

Точный

Преобразователь «Precise», передний

Преобразователь «Прецизионный», задний

Этот модуль имеет те же соединения, что и «Fine», но он немного больше. Он продавался как «3A DC-DC 9V / 12V / 24V to 5V USB Step Down Power Module 2A Precise Vehicle Charger».

Напряжение и ток

Вот некоторые электрические свойства 6 модулей.У меня не было свойств модуля для «Сигары», поэтому диапазоны основаны на спецификациях микросхем и могут быть лучше, чем фактические диапазоны модулей.

Модуль Входное напряжение Выходное напряжение Максимальный выходной ток Пиковый выходной ток
Сигара 3 — 40 В 5,4 — 5,5 В 1,5 A?
Регулируемый 4,75 — 24 В 0,93 — 18 В 2.5A 5A
Амперметр 4,5 — 24 В 0,93 — 20 В 2A?
Тонкий 6 — 24 В 5,1 — 5,2 В 2,1 A 3A
600 мА 6 — 55 В 5 В 0,6 A 1A
Precise 7,5 — 28V 5V 2A 3A

Пиковый ток означает способность обеспечивать высокий ток в течение ограниченного периода времени.Максимальный ток означает максимальный ток, который модуль может обеспечить постоянно. Помните, что в некоторых модулях упоминается, что для работы с максимальным током может потребоваться дополнительный радиатор или охлаждающее решение.

Несколько моментов, о которых стоит упомянуть: во-первых, «Cigar» с фиксированным выходным USB-разъемом выдает слишком высокое напряжение по стандартам USB. Это могло быть из-за старости или просто плохого качества. Разница составляет около 10%, и я считаю ее непригодной для использования. Во-вторых, большинство модулей способны работать с входным напряжением примерно до 25 вольт, но немногие из них могут работать с напряжением 40 вольт и выше.Престижность за это.

Свойства коммутационной цепи

Модуль Микросхема Частота Индуктор Заявленный КПД
Сигара MC34063A
100 кГц 220 мкГн? 83% при 24 В и 500 мА
Регулируемый MP23070N 340 кГц
10 мкГн? до 98%
Амперметр MP23070N 340 кГц
10 мкГн??
Fine MP2315 (знак AGCG)
500 кГц 4.7 мкГн от 12 В до 5 В 1 А может до 94%
600 мА HT7463A (марка 463A)
1250 кГц
22 мкГн до 96%
Точный MP1584EN 500 кГц
15 мкГн? до 96%

Более высокая частота переключения будет означать меньшую пульсацию на выходе (более точное напряжение / ток), но вызывает больше накладных расходов из-за переключения, что немного снижает эффективность.

Рядом с некоторыми значениями индуктивности стоит знак «?». Это означает, что компонент не был отмечен, а значение было оценено на основе рекомендаций в таблице данных. Обычно для более низкой частоты требуется индуктор большего размера и большей мощности.

Тестирование

Измерение тока с обеих сторон

Сначала я измерил ток, используемый моим устройством на выходе преобразователя, который составил около 50 мА. Затем я создал фиктивную нагрузку 100 Ом, подключив два резистора по 200 Ом параллельно.Я использовал массив резисторов, чтобы уменьшить нагрузку на каждый отдельный резистор, который был рассчитан на 0,25 Вт. В соответствии с законом Ома резистор на 100 Ом будет вызывать нагрузку 50 мА при напряжении 5 вольт, аналогично тому, как это делает устройство.

Затем я измерил ток, используемый преобразователем на входе, как для нагрузки устройства, так и для фиктивной нагрузки. Я заметил, что реальная нагрузка и фиктивная нагрузка с одинаковым средним током имеют одинаковую эффективность. Разница могла возникнуть, поскольку потребляемая мощность фиктивной нагрузки является фиксированной, в то время как устройство может потреблять мощность пачками, но это не оказало существенного влияния на результаты.Я пришел к выводу, что использование фиктивных резисторов — достаточно хорошее приближение для этого теста.

Затем я сделал фиктивные нагрузки для токов 25 мА, 50 мА и 100 мА, используя 1, 2 и 4 резистора, включенных параллельно.

Измерение тока с имитацией нагрузки

Чтобы как можно меньше повлиять на измерение, я использовал амперметр на входе (последовательно) и рассчитал ток на выходе, используя закон Ома I = V / R. Таким образом, не было никакого воздействия на выходную сторону, которое могло бы добавить падение напряжения и повлиять на результаты.Напряжение V измерялось параллельно, а сопротивление R известно и зависит от фиктивной нагрузки, используемой для каждого испытания.

Блок питания для теста был на 12 В, но из-за падения напряжения на амперметре входное напряжение модулей немного ниже.

Результаты

Я рассчитал эффективность каждого модуля для каждого типа нагрузки как:

 eff = Pin / Pout = (Vin * Iin) / (Vout * Iout) 

Таблицы данных некоторых микросхем, используемых в модулях, содержат график эффективности.Эффективность зависит от напряжения и тока. Если возможно, я добавил в последний столбец перечисленную эффективность микросхемы для соответствующих Vin и Iout. У некоторых модулей есть диаграммы эффективности, которые не охватывают диапазоны малых токов, что может указывать на тип нагрузки, для которой (не) были разработаны микросхемы.

Выходной ток 25 мА

Модуль In V Out V In mA Эффективность Эффективность микросхемы
Сигара 11.82 5,46 21 60%
Регулируемый 11,63
5,08 35,65 31%
Амперметр 11,58 5,04
40,04 27%
Мелкое 11,91 5,12 13,7 80% 87%
600 мА 11,9
5.04 14,2 75% 74%
Precise 11,9
4,98 14,75 71% 75%

Выходной ток 50 мА

Модуль In V Out V In mA Эффективность Эффективность микросхемы
Сигара 11,52 5,49 38,6 68%
Регулируемый 11.45 5,08 47,44 48%
Амперметр 11,39 5,05 52,2 43%
Мелкий 11,73 5,13 26,98 83% 89%
600 мА 11,72 5,01 26,66 80% 86%
Precise 11,72 4,98 27.3 78% 77,5%

Выходной ток 100 мА

Модуль In V Out V In mA Эффективность Эффективность микросхемы
Сигара 11,15 5,54 76,3 72%
Регулируемый 11,22 5,08 79,8 58%
Амперметр 11.18 5,04 76,1 60%
Мелкий 11,41 5,12 54,6 84% 91%
600 мА 11,46 4,9 51 82% 88%
Precise 11,38 4,96 53,5 81% 82%

Заключение

Различия могут быть значительными, как показано выше.При тесте с наименьшей нагрузкой (25 мА) худший исполнитель потребляет в 3 раза больше энергии, чем лучший.

Различия в эффективности между модулями становятся более тонкими по мере увеличения нагрузки: 2x для 50 мА и 1,5x для 100 мА.

Входные напряжения разные. Более высокий ток на входе означает большее падение напряжения на амперметре, что приводит к более низкому входному напряжению по сравнению с выходным напряжением источника питания.

Указанный КПД микросхемы находится в пределах 5-10% от измеренного КПД модуля. Дельта может быть связана с неэффективностью самого модуля или с различиями в общих условиях (температура и т. Д.).

И победитель: «Отлично»! Этот модуль явно лучше всего подходит для сценариев с низким энергопотреблением. При достижении токов 100 мА различия между 3 ведущими модулями минимальны.

Чем «Fine» лучше других? Это относительно новая микросхема. Таблица относится к 2014 году, а MP2307 — с 2008 года. Он также имеет очень низкие значения Rds (on) (90 мОм / 40 мОм), но, что наиболее интересно, MP2315 имеет режим энергосбережения AAM (Advanced Asynchronous Modulation) для легкая нагрузка.

Расширенная асинхронная модуляция (AAM) — это запатентованная технология MPS. Используя эту технологию, ИС будет снижать свою частоту при обнаружении низких нагрузок, тем самым уменьшая накладные расходы на переключение, но потенциально вызывая нестабильность и колебания. Значение резистора на выводе AAM определяет, когда начать это поведение. Не стесняйтесь поправлять меня в комментариях, если я неправильно это объясняю.

В заключение, если вам нужен эффективный модуль для легких нагрузок, вы можете попробовать его от QSKJ с чипом MPS MP2315, помеченным как AGCx (я видел, как AGCG или AGCE используются специально).Если у вас есть другие рекомендации, поделитесь ими в комментариях ниже. Удачного проекта!

Источник питания переменного напряжения

с использованием LM317T

Продолжая наш учебник по преобразованию блока питания ATX в настольный блок питания, одним очень хорошим дополнением к этому является положительный стабилизатор напряжения LM317T.

LM317T представляет собой регулируемый трехконтактный стабилизатор положительного напряжения, способный подавать различные выходные напряжения постоянного тока, кроме источника питания с фиксированным напряжением +5 или +12 В, или в качестве переменного выходного напряжения от нескольких вольт до некоторого максимального значения все с токами около 1.5 ампер.

С помощью небольшой дополнительной схемы, добавленной к выходу блока питания, мы можем получить настольный блок питания, способный поддерживать диапазон фиксированных или переменных напряжений, положительных или отрицательных по своей природе. На самом деле это проще, чем вы думаете, поскольку трансформатор, выпрямление и сглаживание уже были выполнены блоком питания заранее, все, что нам нужно сделать, — это подключить нашу дополнительную схему к выходу желтого провода +12 В. Но сначала давайте рассмотрим фиксированное выходное напряжение.

Фиксированный источник питания 9 В

В стандартном корпусе TO-220 доступно большое количество трехконтактных регуляторов напряжения, причем наиболее популярным стабилизатором постоянного напряжения являются положительные регуляторы серии 78xx, которые варьируются от очень распространенных стабилизаторов напряжения 7805 + 5 В до 7824, Постоянный стабилизатор напряжения +24 В. Существует также серия стабилизаторов постоянного отрицательного напряжения 79xx, которые создают дополнительное отрицательное напряжение от -5 до -24 вольт, но в этом руководстве мы будем использовать только положительные типы 78xx .

Фиксированный 3-контактный регулятор полезен в приложениях, где регулируемый выход не требуется, что делает выходной источник питания простым, но очень гибким, поскольку выходное напряжение зависит только от выбранного регулятора. Они называются трехконтактными регуляторами напряжения, потому что у них есть только три клеммы для подключения, и это вход , общий и выход соответственно.

Входным напряжением регулятора будет желтый провод +12 В от блока питания (или отдельного источника питания трансформатора), который подключается между входом и общими клеммами.Стабилизированное +9 вольт подается на общий выход, как показано.

Цепь регулятора напряжения

Итак, предположим, что нам нужно выходное напряжение +9 В от нашего настольного блока питания, тогда все, что нам нужно сделать, это подключить регулятор напряжения + 9 В к желтому проводу + 12 В. Поскольку блок питания уже выполнил выпрямление и сглаживание на выходе +12 В, единственными необходимыми дополнительными компонентами являются конденсатор на входе и еще один на выходе.

Эти дополнительные конденсаторы способствуют стабильности регулятора и могут иметь диапазон от 100 до 330 нФ.Дополнительный выходной конденсатор емкостью 100 мкФ помогает сгладить характерные пульсации, обеспечивая хорошую переходную характеристику. Этот конденсатор большой емкости, помещенный на выходе схемы источника питания, обычно называют «сглаживающим конденсатором».

Эти регуляторы серии 78xx обеспечивают максимальный выходной ток около 1,5 А при фиксированных стабилизированных напряжениях 5, 6, 8, 9, 12, 15, 18 и 24 В соответственно. Но что, если бы нам нужно было выходное напряжение + 9 В, но у нас был только регулятор 7805, + 5 В ?.Выход + 5V 7805 привязан к клемме «земля, Gnd» или «0v».

Если мы увеличим это напряжение на выводе 2 с 0 В до 4 В, то выходной сигнал также увеличится на дополнительные 4 В при условии, что входное напряжение будет достаточным. Затем, поместив небольшой стабилитрон на 4 В (ближайшее предпочтительное значение 4,3 В) между контактом 2 регулятора и землей, мы можем заставить регулятор 7805 5 В выдавать выходное напряжение +9 В, как показано.

Увеличение выходного напряжения

Так как же это работает.Стабилитрон на 4,3 В требует обратного тока смещения около 5 мА для поддержания выходного сигнала, когда регулятор потребляет около 0,5 мА. Этот общий ток 5,5 мА подается через резистор «R1» с вывода 3.

Таким образом, номинал резистора, необходимого для регулятора 7805, будет R = 5 В / 5,5 мА = 910 Ом. Диод обратной связи D1, подключенный между входами и выходами, предназначен для защиты и предотвращает обратное смещение регулятора, когда входное напряжение питания отключено, а выходное питание остается включенным или активным в течение короткого периода времени из-за большой индуктивной нагрузка, такая как соленоид или двигатель.

Затем мы можем использовать трехконтактные регуляторы напряжения и подходящий стабилитрон для получения различных фиксированных выходных напряжений из нашего предыдущего настольного источника питания в диапазоне от + 5 В до +12 В. Но мы можем улучшить эту конструкцию, заменив фиксированный регулятор напряжения регулятором переменного напряжения, таким как LM317T .

Источник питания переменного напряжения

LM317T — полностью регулируемый трехконтактный стабилизатор положительного напряжения, способный обеспечивать 1,5 А с выходным напряжением в диапазоне от 1.25 вольт до чуть более 30 вольт. Используя соотношение двух сопротивлений, одно из фиксированного значения и другое переменное (или оба фиксированных), мы можем установить выходное напряжение на желаемый уровень с соответствующим входным напряжением в пределах от 3 до 40 вольт.

Регулятор переменного напряжения LM317T также имеет встроенные функции ограничения тока и теплового отключения, что делает его устойчивым к коротким замыканиям и идеальным для любого низковольтного или самодельного настольного источника питания.

Выходное напряжение LM317T определяется соотношением двух резисторов обратной связи R1 и R2, которые образуют цепь делителя потенциала на выходной клемме, как показано ниже.

LM317T Регулятор переменного напряжения

Напряжение на резисторе обратной связи R1 представляет собой постоянное опорное напряжение 1,25 В, В ref , возникающее между клеммой «выход» и «регулировка». Ток на клеммах регулировки — это постоянный ток 100 мкА. Поскольку опорное напряжение на резисторе R1 является постоянным, через другой резистор R2 будет протекать постоянный ток i, в результате чего выходное напряжение составит:

.

Тогда любой ток, протекающий через резистор R1, также протекает через резистор R2 (игнорируя очень небольшой ток регулировочной клеммы), при этом сумма падений напряжения на R1 и R2 равна выходному напряжению Vout.Очевидно, что входное напряжение Vin должно быть как минимум на 2,5 В больше, чем выходное напряжение, необходимое для питания регулятора.

Кроме того, LM317T имеет очень хорошее регулирование нагрузки, при условии, что минимальный ток нагрузки превышает 10 мА. Таким образом, чтобы поддерживать постоянное опорное напряжение 1,25 В, минимальное значение резистора обратной связи R1 должно быть 1,25 В / 10 мА = 120 Ом, и это значение может находиться в диапазоне от 120 Ом до 1000 Ом с типичными значениями R1 от 220 до 240 Ом. для хорошей устойчивости.

Если нам известно значение требуемого выходного напряжения Vout и сопротивление резистора R1 обратной связи составляет, скажем, 240 Ом, то мы можем рассчитать значение резистора R2 из приведенного выше уравнения. Например, наше исходное выходное напряжение 9 В даст резистивное значение для R2:

.

R1. ((Vout / 1.25) -1) = 240. ((9 / 1.25) -1) = 1488 Ом

или 1500 Ом (1k5Ω) с точностью до ближайшего предпочтительного значения.

Конечно, на практике резисторы R1 и R2 обычно заменяются потенциометром для создания источника питания переменного напряжения или несколькими переключаемыми предварительно установленными сопротивлениями, если требуется несколько фиксированных выходных напряжений.

Но для того, чтобы сократить математические вычисления, необходимые при вычислении значения резистора R2 каждый раз, когда нам нужно определенное напряжение, мы можем использовать стандартные таблицы сопротивлений, как показано ниже, которые дают нам выходное напряжение регулятора для различных соотношений резисторов R1 и R2 с использованием сопротивления E24. значения.

Отношение сопротивлений R1 к R2

R2
Значение
Резистор R1 Номинал
150 180 220 240 270 330 370 390 470
100 2.08 1,94 1,82 1,77 1,71 1,63 1,59 1,57 1,52
120 2,25 2,08 1,93 1.88 1,81 1,70 1,66 1,63 1,57
150 2,50 2,29 2,10 2,03 1,94 1.82 1,76 1,73 1,65
180 2,75 2,50 2,27 2,19 2,08 1,93 1,86 1,83 1,73
220 3,08 2,78 2,50 2,40 2,27 2,08 1,99 1,96 1,84
240 3.25 2,92 2,61 2,50 2,36 2,16 2,06 2,02 1,89
270 3,50 3,13 2,78 2,66 2,50 2,27 2,16 2,12 1,97
330 4,00 3,54 3,13 2,97 2,78 2.50 2,36 2,31 2,13
370 4,33 3,82 3,35 3,18 2,96 2,65 2,50 2,44 2,23
390 4,50 3,96 3,47 3,28 3,06 2,73 2,57 2,50 2,29
470 5.17 4,51 3,92 3,70 3,43 3,03 2,84 2,76 2,50
560 5,92 5,14 4,43 4,17 3,84 3,37 3,14 3,04 2,74
680 6,92 5,97 5,11 4,79 4,40 3.83 3,55 3,43 3,06
820 8,08 6,94 5,91 5,52 5,05 4,36 4,02 3,88 3,43
1000 9,58 8,19 6,93 6,46 5,88 5,04 4,63 4,46 3,91
1200 11.25 9,58 8,07 7,50 6,81 5,80 5,30 5,10 4,44
1500 13,75 11,67 9,77 9,06 8,19 6,93 6.32 6,06 5,24

Заменив резистор R2 на потенциометр 2 кОм, мы можем контролировать диапазон выходного напряжения нашего настольного блока питания примерно от 1.25 вольт до максимального выходного напряжения 10,75 (12-1,25) вольт. Затем наша последняя модифицированная схема переменного источника питания показана ниже.

Цепь источника питания переменного напряжения

Мы можем еще немного улучшить нашу базовую схему регулятора напряжения, подключив амперметр и вольтметр к выходным клеммам. Эти инструменты будут визуально отображать как ток, так и напряжение на выходе регулируемого регулятора напряжения. При желании в конструкцию можно также включить быстродействующий предохранитель, чтобы обеспечить дополнительную защиту от короткого замыкания, как показано.

Недостатки LM317T

Один из основных недостатков использования LM317T как части схемы источника питания переменного напряжения для регулирования напряжения заключается в том, что до 2,5 вольт падает или теряется в виде тепла на регуляторе. Так, например, если требуемое выходное напряжение должно составлять +9 В, то входное напряжение должно быть не менее 12 В, чтобы выходное напряжение оставалось стабильным в условиях максимальной нагрузки. Это падение напряжения на регуляторе называется «выпадением».Также из-за этого падения напряжения требуется некоторая форма радиатора для охлаждения регулятора.

К счастью, доступны регуляторы переменного напряжения с малым падением напряжения, такие как регулятор напряжения с низким падением напряжения National Semiconductor «LM2941T», который имеет низкое падение напряжения всего 0,9 В при максимальной нагрузке. За такое низкое падение напряжения приходится платить, поскольку это устройство способно выдавать только 1,0 А при регулируемом выходном напряжении от 5 до 20 вольт. Однако мы можем использовать это устройство для получения выходного напряжения около 11.1 В, что чуть ниже входного напряжения.

Итак, чтобы подвести итог, наш настольный блок питания, который мы сделали из старого блока питания ПК в предыдущем учебном пособии, можно преобразовать для обеспечения источника питания переменного напряжения с помощью LM317T для регулирования напряжения. Подключив вход этого устройства к желтому выходному проводу + 12 В блока питания, мы можем получить как фиксированные + 5 В, + 12 В, так и переменное выходное напряжение в диапазоне от 2 до 10 В при максимальном выходном токе 1,5 А.

SuperDroid Robots — регуляторы напряжения

Пололу 12В, 4.Понижающий регулятор напряжения на 5А D36V50F12

Этот мощный синхронный импульсный понижающий стабилизатор принимает входное напряжение до 50 В и снижает его до 12 В. Размер платы составляет 1 ″ × 1 ″, но типичный максимальный продолжительный выходной ток составляет от 2,3 до 6,5 А.

TE-390-000

21,95 долл. США

36 Готово к отправке!

Повышающий / понижающий стабилизатор напряжения Pololu 24V

Повышающий / понижающий регулятор, обеспечивающий постоянное выходное напряжение 24 В.Это надежный стабилизатор напряжения, сделанный из качественных комплектующих.

TE-386-024

25,49 долл. США

8 Готово к отправке!

Понижающий регулятор напряжения Pololu 5V, 500mA D24V5F5

Компактный (0.4 ″ × 0,5 ″) импульсный понижающий (или понижающий) стабилизатор напряжения D24V5F5 принимает входное напряжение от 7 В до 36 В и эффективно снижает его до 5 В, обеспечивая максимальный выходной ток 500 мА.

TE-176-505

4,95 $

165 Готово к отправке!

Пололу 12В, 2.Понижающий регулятор напряжения на 2А D24V22F12

Этот небольшой синхронный импульсный понижающий стабилизатор принимает входное напряжение до 36 В и снижает его до 12 В. Размер платы составляет всего 0,7 ″ × 0,7 ″, но при этом он обеспечивает типичный непрерывный выходной ток до 2,2 А и имеет защиту от обратного напряжения. .

TE-297-000

19 долларов.95

6 Готово к отправке!

Понижающий регулятор напряжения Pololu 5V, 5A D24V50F5

Этот небольшой синхронный импульсный понижающий (или понижающий) стабилизатор принимает входное напряжение до 38 В и эффективно снижает его до 5 В.Размер платы составляет всего 0,7 ″ × 0,8 ″, но она обеспечивает типичный непрерывный выходной ток до 5 А.

TE-296-000

$ 16,95

72 Готово к отправке!

Преобразователь постоянного тока в постоянный, 5 В, 50 Вт

Компактный 46 x 32 x 18 мм (1.8 x 1,26 x 0,71 дюйма) регулятор напряжения — отличный компонент для снижения напряжения с 24 до 5 вольт.

TE-278-005

$ 7,09

21 Готово к отправке!

Преобразователь постоянного тока в постоянный, 12 В, 60 Вт

Компактный 46 x 32 x 18 мм (1.8 x 1,26 x 0,71 дюйма) регулятор напряжения — отличный компонент для снижения напряжения с 24 до 12 вольт.

TE-277-012

$ 7,09

90 готово к отправке!

Преобразователь постоянного тока в постоянный, 5 В, 25 Вт

Компактный 46 x 32 x 18 мм (1.8 x 1,26 x 0,71 дюйма) регулятор напряжения — отличный компонент для снижения напряжения с 24 до 5 вольт.

TE-277-005

5,99 долл. США

72 Готово к отправке!

Пололу 3.Повышающий стабилизатор напряжения на 3 В NCP1402

Этот компактный повышающий (или повышающий) стабилизатор генерирует 3,3 В при напряжении всего 0,8 В и выдает до 200 мА, что делает его идеальным для питания небольших электронных проектов на 3,3 В от одного или двух NiMH, NiCd или щелочных элементов.

TE-175-003

4,95 $

45 Готово к отправке!

Пололу 3.Понижающий стабилизатор напряжения 3 В, 600 мА D24V6F3

Компактный (0,4 ″ × 0,5 ″) импульсный понижающий (или понижающий) стабилизатор напряжения D24V6F3 принимает входное напряжение от 4,8 В до 42 В и эффективно снижает его до 3,3 В, обеспечивая максимальный выходной ток 600 мА.

TE-174-003

5,95 долл. США

57 Готово к отправке!

Повышающий стабилизатор напряжения Pololu 5V U3V12F5

Компактный (0.32 «× 0,515») Импульсный повышающий стабилизатор напряжения U3V12F5 принимает входное напряжение от 2,5 В и эффективно повышает его до 5 В. Расстояние между выводами составляет 0,1 дюйма.

TE-173-005

7,95 долл. США

59 Готово к отправке!

Повышающий / понижающий стабилизатор напряжения Pololu 5V

Импульсный повышающий / понижающий стабилизатор S7V7F5 эффективно вырабатывает 5 В при входном напряжении между 2.7В и 11,8В.

TE-172-005

9,95 долл. США

47 готов к отправке!

Силовой модуль двигателя PowerBotix — ПРОДАЖА

Модуль питания двигателя является частью роботизированной системы питания PowerBotix.Эта плата подключается к модулю ввода батареи и подает отфильтрованное питание для различной электроники, двигателей и других компонентов в вашем роботизированном проекте.

TE-149-000

86,24 $ 65,00 $

4 Готово к отправке!

Модуль ввода батареи PowerBotix — ПРОДАЕТСЯ

Модуль ввода батареи является частью роботизированной системы питания PowerBotix.Эта плата подключается к двум банкам батарей и подает питание на различную электронику, двигатели и другие компоненты в вашем робототехническом проекте.

TE-148-000

429,57 долл. США 320,00 долл. США

5 Готово к отправке!

AnyVolt Micro Универсальный преобразователь постоянного тока в постоянный

Dimension Engineering AnyVolt Micro — это миниатюрный повышающий / понижающий импульсный преобразователь постоянного тока в постоянный.Выход регулируется от 2,6 В до 14 В и может потребляться ток до 0,5 А.

TE-112-ADJ

$ 19,99

Не более 6 штук на одного покупателя: Свяжитесь с нами для получения большего количества.

Комплект регулируемой платы регулятора переключения 25 Вт

Это плата регулятора напряжения.Он имеет клеммную колодку с общим заземлением, входом и регулируемым выходом. Включает предохранитель, фильтр и индикатор питания. В нем используется импульсный источник питания Dimension Engineering 3 А для максимальной эффективности и изоляции.

TE-111-ADJ

34,90 долл. США

23 Готово к отправке!

Понижающий регулируемый импульсный регулятор мощностью 25 Вт

Dimension Engineering DE-SWADJ 3 — это увеличенная версия регулируемого понижающего регулятора напряжения DE-SWADJ.Он может обрабатывать ток 3А, типичная пульсация составляет 25 мВ, а в идеальных условиях регулятор может иметь КПД до 96%.

TE-110-ADJ

25,00 долл. США

Не более 6 штук на одного покупателя: Свяжитесь с нами для получения большего количества.

Регулируемый понижающий импульсный регулятор мощностью 10 Вт

Dimension Engineering DE-SWADJ — это регулируемая версия наших понижающих регуляторов напряжения SW0XX.Это самый простой способ добавить регулируемый источник напряжения в новый или существующий проект.

TE-092-ADJ

$ 15,00

Не более 6 штук на одного покупателя: Свяжитесь с нами для получения большего количества.

Комплект регулируемой платы регулятора переключения

Это плата регулятора напряжения.Он имеет клеммную колодку с общим заземлением, входом и выходом 5 В. Включает предохранитель, фильтр и индикатор питания. В нем используется импульсный источник питания Dimension Engineering, обеспечивающий максимальную эффективность и изоляцию.

TE-090-ADJ

$ 20,92

12 Готово к отправке!

Комплект платы регулятора 9В

Это плата регулятора напряжения.Он имеет клеммную колодку с общим заземлением, входом и выходом 9 В. Включает предохранитель, фильтр и индикатор питания.

TE-045-009

8,32 долл. США

9 Готово к отправке!

Комплект платы регулятора 6В

Это плата регулятора напряжения.Он имеет клеммную колодку с общим заземлением, входом и выходом 6 В. Включает предохранитель, фильтр и индикатор питания. Можно добавить дополнительный радиатор.

TE-045-006

8,32 долл. США

28 Готово к отправке!

Комплект платы регулятора 5V

Это плата регулятора напряжения.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *