Site Loader

Содержание

Сопротивление проводника — Справочник химика 21

    Действие термометров сопротивления основано на изменении электрического сопротивления проводника в зависимости от температуры. Большинство чистых металлов при нагревании увеличивает свое электрическое сопротивление, а некоторые изменяют сопротивление в определенных температурных интервалах более или менее равномерно. Таким образом, зная зависимость между изменением сопротивления проводника и температурой, можно но величине сопротивления определить температуру, до которой нагрет проводник. Для фиксации этого изменения сопротивления применяют вторичные приборы с температурной шкалой, работающие по той или иной схеме и отстоящие от термометров сопротивления на некотором расстоянии. Между собой термометр сопротивления и вторичный прибор связаны электрическими проводами. [c.53]
    Электрическое сопротивление проводника связано с удельным сопротивлением р уравнением 
[c.268]

    В технической литературе удельное сопротивление часто выражается в ом мм 1м, т. а. как сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм . [c.931]

    В собранном виде термометр сопротивления помещают в среду, где нужно измерить температуру. Определение температуры сводится к замеру сопротивления проводника определенной длины и определенного сечения. [c.115]

    Электрическое сопротивление проводника определяется по формуле  [c.367]

    И пламенно-ионизационный детектор (ДИП). Принцип работы детектора по теплопроводности основан на изменении электрического сопротивления проводника в зависимости от теплопроводности окружающей среды. На рис. 3.4 показана схема измерительного моста детектора по теплопроводности. Плечи моста, представляющие собой металлические нити, изготавливаемые из материала, электрическое сопротивление которого значительно зависит от температуры, в сравнительной и рабочей ячейках нагреваются постоянным электрическим током от батареи. От нитей происходит интенсивная теплоотдача газу. Температура нитей, а следовательно, и сопротивление зависят от природы газа. Если через обе ячейки про.ходит газ одинакового состава, то выходной сигнал моста равен нулю. При изменении состава потока через одну из ячеек меняются характер теплоотдачи и температура соответствующего плеча, а следовательно, и сопротивление. Нарушается электрическое равновесие, между точками а и Ь возникает разность потенциалов, не компенсирующаяся дополнительным сопротивлением Я. Эта разность регистрируется в виде сигнала, который усиливается и записывается регистратором в виде пика. 

[c.193]

    Из формулы (202) следует, что величина омического сопротивления возрастает при индукционном нагреве с увеличением частоты тока вследствие того, что уменьшается тот объем (и сечение), по которому циркулируют вихревые токи. Возрастание омического сопротивления эквивалентно усилению теплогенерации (теплогенерация определяется только активным сопротивлением). Чем больше частота тока, тем меньше глубина его проникновения, что получило название поверхностного или скин-эффекта. Такое течение тока неизбежно связано с относительным перегревом поверхностных слоев тела. Так как величины р и недоступны для регулирования, то при конструировании печей варьировать можно только частотой тока /. Резюмируя, можно охарактеризовать контактный способ как преодоление током сопротивления проводника в продольном направлении, тогда как при индукционном — в поперечном. 

[c.210]


    За единицу удельного сопротивления обычно принимают сопротивление проводника длиной в 1 м и сечением в 1 мм  [c.182]

    Сопротивление проводника любого вида Я пропорционально его длине I и обратно пропорционально сечению х Н = р-1/з (р — удельное сопротивление, равное / при единичных длине и сечении проводника). 

[c.182]

    Сопротивление проводника прямо пропорционально его длине I и обратно пропорционально поперечному сечению д  [c.318]

    Проводник, по которому течет электрический ток, представляет для него определенное сопротивление. За единицу сопротивления, хак известно, принят Ом, который представляет собой сопротивление проводника, между концами которого при силе тока 1 А возникает напряжение 1 В. [c.120]

    Сопротивление проводника любого вида пропорционально его длине 1 и обратно пропорционально сечению 5  

[c.59]

    При сверхвысоких частотах проявляется много физических явлений, которые приводят к большим отличиям методов СВЧ от методов НЧ и ВЧ. Прежде всего здесь сильно проявляется поверхностный эффект, вследствие которого ток проходит не через всю толщу проводника, а только в его поверхностном слое. Такие понятия, как сопротивление проводника, индуктивность и емкость, утрачивают свой обычный смысл и их невозможно отделить друг от друга. Поэтому теряет смысл использование эквивалентной электрической схемы замещения ячейки, которую было удобно применять для расчетов при низких и высоких частотах. Измерительная ячейка представляет из себя систему с объемно распределенными параметрами, в которой исследуемый образец и измерительное устройство представляют собой одно целое. Кроме того, в измерительных системах СВЧ велико влияние паразитных параметров. Поэтому в таких системах соединительные провода укорачивают до минимума и применяют хорошее экранирование. 

[c.268]

    При /=1 м и 5 = 1 удельное сопротивление р = / . Удельное сопротивление — это сопротивление проводника, имеющего длину 1 м и поперечное сечение 1 м . Общая электрическая проводимость является нестандартной величиной, поэтому практически используют удельную электрическую проводимость. Удельная электрическая проводимость — это проводимость столбика раствора, помещенного между электродами, расположенными на расстоянии 1 м, и площадью 1 м , т. е. это электрическая проводимость 1 м раствора. 

[c.140]

    Электрическое сопротивление ом Ом Ом равен сопротивлению проводника, между концами которого при силе тока 1 А возникает напряжение 1 В [c.478]

    Удельная электрическая проводимость х — величина, обратная удельному сопротивлению х= 1/р. Электрическое сопротивление проводника R связано с удельным сопротивлением р уравнением [c.270]

    Удельное электрическое сопротивление — это сопротивление проводника длиной 1 м и площадью поперечного сечения 1 м оно-измеряется в Ом-м. [c.136]

    Проводники I рода, или эл( Ктронопроводящие тела. К ним относятся металлы, их некоторые оксиды и углеродистые материалы. Прохождение тока в проводн1 ках I рода обеспечивается элект- юнамн. Удельное сопротивление проводников I рода лежит в интервале от 10 до 10 Ом-м, температурный коэффициент про- 

[c.102]

    Таким путем в промышленности получают чистую меДь, пригодную для электротехнических целей. Для этого используют аноды, выплавляемые из черновой меди, которые подвергаются электролизу в кислых растворах сульфата меди. Катодами служат листы из чистой меди. Удельная электропроводность. Способность раство-ров или расплавов проводить электрический ток характеризуется удельной электропроводностью х, т. е. электропроводностью столбика раствора длиной 1 см и сечением 1 см . Сопротивление проводника 

[c.98]

    Катарометр. Принцип работы катарометра основан на изменении электрического сопротивления проводника в зависимости от теплопроводности окружающей среды (элю-ата). Катарометр надежен в работе и прост в изготовлении. [c.92]

    Детектирование может быть интегральным и дифференциальным. При интегральном детектировании фиксируется общее количество компонентов (например, их общий объем). Вследствие малой чувствительности и инерционности интегральные детекторы применяют крайне редко. Дифференциальное детектирование (более чувствительное) обеспечивает фиксацию концентрации компонентов. Наиболее распространенными детекторами являются ка-тарометры (регистрируют изменение теплопроводности газов по изменению электрического сопротивления проводника), ионизационные детекторы (по току ионизации молекул газа под воздействием пламени или радиоактивного излучения), детекторы плотностн, или плотномеры (по плотности газа), пламенные детекторы (по температуре пламени, в котором сгорает элюат) и др. 

[c.178]

    Это соотношение лежит в основе мостового метода измерений сопротивлений проводников если известны сопротивления трех плечей (Ri, Ra и R3) сбалансированного моста, то сопротивление четвертого (R ) легко рассчитать. [c.461]

    Удельная электропроводность. Известно, что сопротивление проводника прямо пропорционально длине I и обратно пропорционально площади поперечного сечения S проводника  

[c.39]

    При измерении сопротивления проводников 1-го рода в качестве источника напряжения используют обычно батарею постоянного тока, а в качестве нуль-инструмента — гальванометр постоянного тока. Для растворов электролитов использование постоянного тока в мостовой схеме вызывает химические и концентрационные изменения на границе раствора электролита с поверхностью электродов, подводящих ток, в результате этого сопротивление проводника может заметно изменяться в процессе измерения. Поэтому в случае проводников 2-го рода в мостовых схемах применяют переменный ток (используя мост Кольрауша). Источником переменного напряжения обычно служит генератор переменного тока звуковой частоты, а нуль-инструментом— гальванометр переменного тока, осциллограф (до недавнего времени широко применяли низкоомный телефон). 

[c.461]


    Следует упомянуть еше о методе измерения сопротивления проводников 2-го рода, основанном на использовании постоянного тока. По этому методу измеряют падение напряжений Аф1 и Дфл на двух сопротивлениях, включенных последовательно измеряемом сопротивлении раствора Ях и известном эталонном сопротивлении / В соответствии с законом Ома  [c.464]

    В качестве детектора чаще всего применяется катарометр, т. е. прибор, основанный на изменении электрического сопротивления проводника в зависимости от теплопроводности окружающей среды (элюента, газа-носителя, содержащего исследуемые компоненты). [c.55]

    Электропроводность. Электропроводностью называют способность веществ проводить электрический ток. Электропроводность обозначает величину, обратную сопротивлению проводника тока  [c.37]

    Удельное электрическое сопротивление проводников изменяется от 10″ до 10 Ом-м. С повышением температуры оно увеличивается. Носителями заряда в них служат электроны. Валентная зона и зона проводимости электронной структуры метгиллов пересекаются (рис. 33.1, проводник). Это позволяет электронам из валентной зоны при небольшом возбуждении переходить на молекулярные орбитали зоны проводимости, а это значит, что электрон с другой вероятностью появляется в той или иной точке компактного металла. [c.637]

    Электропроводность электролитов обычно определяется при помощи мостовой схемы, используемой для измерения сопротивления проводников I рода. В случае растворов электролитов применяют мосты, работающие на переменном токе, пак как прохождение постоянного тока через растворы приводит к значительным ошибкам, связанным с явлениями электролиза и поляризации (изменение состава ])аствора вблизи электродов, изменение состояния электродов, налолэлектродной поляризации на подаваемое папряженне н т. д.). Необходимость применения переменного тока достаточно высокой частоты (для избежания указанных ошибок) усложняет измерительную схему. Кроме моста она содержит генератор неременного тока, а также специальные устройства для выпрямления тока перед прохождением его через нуль-инструмеи и для компенсации емкостных эффектов. Современные установки по измерению электропроводности электролитов, и которых учтены все особенности проводников II рода, позволяют получать надежные результаты. [c.106]

    Термометры сопротивленпя основаны на изменении сопротивления проводников при изменениях температуры. Металлические проводники увеличивают сопротивление с повышением техмпературы и уменьшают — с понижением. Эти изменения строго обратимы, т. е. каждому значению температуры соответствует строго определенное сопротивление проводника. В термометре сопротивлеипя есть проволока (в виде большого числа витков), подключенная к измерительному прибору. Измерительный прибор по существу измеряет сопротивление проволоки-проводника. [c.142]


Сопротивление медного провода: таблица, формула расчета сопротивления

Опорные конспекты, онлайн-учебники.

Зависимость сопротивления проводника от длины, площади поперечного сечения и материала.

На основании опытов было установлено, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально его поперечному сечению

Где р — коэффициент пропорциональности, или Удельное сопротивление проводника, I — длина проводника, S — поперечное сечение проводника.

Удельным сопротивлением Является сопротивление проводника из данного вещества единичной длины и единичного поперечного сечения. Удельное сопротивление проводника зависит от материала проводника.

В СИ единица измерения удельного сопротивления

Зависимость сопротивления проводника от температуры

Сопротивление проводников зависит от температуры. Величина, характеризующая зависимость изменения сопротивления проводника от температуры, называется Температурным коэффициентом сопротивления И обозначается А. Температурный коэффициент сопротивления показывает, на какую часть первоначального сопротивления изменяется сопротивление этого проводника при нагревании от 0° С до Г С, то есть

Из этой формулы можно получить единицы измерения температурного коэффициента сопротивления

Проделав соответствующие преобразования, получим

Сопротивление всех металлов при нагревании возрастает, их температурные коэффициенты сопротивления положительны. Сопротивление растворов солей, кислот, щелочей, а также угля при нагревании уменьшается, их температурные коэффициенты отрицательны, для них формулу зависимости сопротивления от температуры можно записать так:

В формуле (1), заменив

Получим общую формулу сопротивления

Где р0 — удельное сопротивление проводника при 0° С. Если в формуле (2) заменить

То получим

Где Pt — удельное сопротивление проводника при температуре t° С.

Сверхпроводимость.

С приближением температуры чистых металлов к абсолютному нулю их сопротивление резким скачком падает до нуля (рис. 77).

Ток, идущий по замкнутому проводнику, при температурах, близких к абсолютному нулю, может циркулировать в нем достаточно долгое время. Такое явление называется Сверхпроводимостью.

Метки:

«Электрическое сопротивление.


Удельное электрическое сопротивление»

Собрав электрическую цепь, состоящую из источника тока, резистора, амперметра, вольтметра, ключа, можно показать, что сила тока (I), протекающего через резистор, прямо пропорциональна напряжению (U) на его концах: I — U. Отношение напряжения к силе тока U/I — есть величина постоянная.

Следовательно, существует физическая величина, характеризующая свойства проводника (резистора), по которому течёт электрический ток. Эту величину называют электрическим сопротивлением проводника, или просто сопротивлением. Обозначается сопротивление буквой R.

Электрическое сопротивление (R) – это физическая величина, равную отношению напряжения (U) на концах проводника к силе тока (I) в нём. R = U/I. Единица измерения сопротивления – Ом (1 Ом).

Один Ом — сопротивление такого проводника, в котором сила тока равна 1А при напряжении на его концах 1В: 1 Ом = 1 В / 1 А.

Причина того, что проводник обладает сопротивлением, заключается в том, что направленному движению электрических зарядов в нём препятствуют ионы кристаллической решетки, совершающие беспорядочное движение. Соответственно, скорость направленного движения зарядов уменьшается.

Удельное электрическое сопротивление

Электрическое сопротивление (R) прямо пропорционально длине проводника (l), обратно пропорционально площади его поперечного сечения (S) и зависит от материала проводника. Эта зависимость выражается формулой: R = p*l/S

р — это величина, характеризующая материал, из которого сделан проводник. Она называется удельным сопротивлением проводника, её значение равно сопротивлению проводника длиной 1 м и площадью поперечного сечения 1 м2.

Единицей удельного сопротивления проводника служит: [р] = 1 0м • 1 м2 / 1 м. Часто площадь поперечного сечения измеряют в мм2, поэтому в справочниках значения удельного сопротивления проводника приводятся как в Ом • м так и в Ом • мм2 / м.

Изменяя длину проводника, а следовательно его сопротивление, можно регулировать силу тока в цепи. Прибор, с помощью которого это можно сделать, называется реостатом.

Конспект урока «Электрическое сопротивление. Удельное электрическое сопротивление».

Следующая тема: «Закон Ома. Соединение проводников».

Расчет сопротивления электрического проводника

Сопротивление электрического проводника рассчитываем по формуле:

R = ρ * L / S

  • R – сопротивление электрического проводника
  • ρ – удельное сопротивление проводника
    вычисляется по формуле (1): ρ = ρ20[1 + α(t – 20)]
    • ρ20 – удельное сопротивление проводника при температуре t = 20°C (Таблица 1)
    • t – температура проводника
    • α – температурный коэффициент электрического сопротивления (Таблица 1)
  • L – длина электрического проводника
  • S – сечение электрического проводника

Ответ читателю

Приветствуем Вас, к сожалению не представившийся читатель! С расчетами мы вам естественно поможем, но все- таки рекомендуем привлечь к проблеме специалиста, ведь потребуется правильно подобрать не только проводник, но и автомат. Однако если вы точно знаете, что параметры автомата подойдут, то вам осталось всего ничего…

Расчёт сопротивления провода

Расчёт сопротивления провода
ВВЕСТИ ДАННЫЕ:
Удельное электрическое сопротивление материала при t=20°С Ом/м
Другая температура °С
Диаметр провода
Площадь сечения провода
Длинна провода
Сопротивление провода,
(при t=20°С)
Связанные статьи
Online калькуляторы

Расчет делителя напряжения

Online калькуляторы

Расчет однослойной катушки

Online калькуляторы

Расчет зарядного устройства с гасящим конденсатором

Online калькуляторы

Расчет гасящего конденсатора

Подписаться на новости
Введите Ваш e-mail

Усилители мощности
Блоки питания
Arduino
Программаторы
Радиоконструкторы
Прочее…

© vip-cxema.org 2021, Все права защищены.

Все проекты на сайте являются полностью авторскими материалами, при копировании ссылка на сайт

vip-cxema.org

обязательна.

Что влияет на сопротивление медного провода

Электрический импеданс медного кабеля зависит от нескольких факторов:

  • Удельного сопротивления;
  • Площади сечения проволоки;
  • Длины провода;
  • Внешней температуры.

Последним пунктом можно пренебречь в условиях бытового использования кабеля. Заметное изменение импеданса происходит при температурах более 100°C.

Зависимость сопротивления

Удельное сопротивление в системе СИ обозначается буквой ρ. Оно определяется, как величина сопротивления проводника, имеющего сечение 1 м2 и длину 1 м, измеряется в Ом ∙ м2. Такая размерность неудобна в электротехнических расчетах, поэтому часто используется единица измерения Ом ∙ мм2.

Важно! Данный параметр является характеристикой вещества — меди. Он не зависит от формы или площади сечения. Чистота меди, наличие примесей, метод изготовления проволоки, температура проводника — факторы, влияющие на удельное сопротивление.

Зависимость параметра от температуры описывается следующей формулой: ρt= ρ20[1+ α(t−20°C)]. Здесь ρ20— удельное сопротивление меди при 20°C, α— эмпирически найденный коэффициент, от 0°Cдо 100°C для меди имеет значение, равное 0,004 °C-1, t — температура проводника.

Ниже приведена таблица значений ρ для разных металлов при температуре 20°C.

Таблица удельного сопротивления

Согласно таблице, медь имеет низкое удельное сопротивление, ниже только у серебра. Это обуславливает хорошую проводимость металла.

Чем толще провод, тем меньше его резистентность. Зависимость R проводника от сечения называется «обратно пропорциональной».

Важно! При увеличении поперечной площади кабеля, электронам легче проходить сквозь кристаллическую решетку. Поэтому, при увеличении нагрузки и возрастании плотности тока, следует увеличить площадь сечения.

Увеличение длины медного кабеля влечет рост его резистентности. Импеданс прямо пропорционален протяженности провода. Чем длиннее проводник, тем больше атомов встречаются на пути свободных электронов.

Выводы

Последним элементом, влияющим на резистентность меди, является температура среды. Чем она выше, тем большую амплитуду движения имеют атомы кристаллической решетки. Тем самым, они создают дополнительное препятствие для электронов, участвующих в направленном движении.

Важно! Если понизить температуру до абсолютного нуля, имеющего значение 0° Kили -273°C, то будет наблюдаться обратный эффект — явление сверхпроводимости. В этом состоянии вещество имеет нулевое сопротивление.

Температурная корреляция

Сопротивление тела человека.

Грань между безопасным и опасным для здоровья человека воздействием электрического тока зафиксирована на значении 1кОм при частоте напряжения тока 50 Гц. Но данную величину никак нельзя назвать сопротивлением человеческого тела. Сопротивление тела человека зависит от множества факторов и является нелинейным по отношению к приложенному напряжению, а также не омическим. Здесь важны изменения во времени, также нужно учитывать тот факт, что человек при волнении потеет и его сопротивление понижается. Существуют и другие причины, из-за которых однозначно определить сопротивление тела человека не так просто, как сопротивление электрической цепи.

Заметные повреждения человек получает при прохождении через его тело тока силой от 100 мА и выше. Ток силы 1 мА принят как абсолютно безопасный. Также удельное сопротивление тела человека подвержено влиянию со стороны состояния его кожи. Если она сухая, то ее сопротивление равно примерно 10000 Ом•м и чтобы достигнуть повреждений, необходимо подать ток с большим напряжением. Если же кожа сырая, то сопротивление сильно понижается и ток напряжением выше 12 В становится опасным. Удельное сопротивление крови равно 1 Ом•м при 50 Гц.

Нахождение параметра

Найти сопротивление — значит, рассчитать потери тока. Существует 2 принципиально разных подхода к расчёту. В одном случае он ведётся для электрической цепи, а в другой — для материала. Если во втором случае всё предельно понятно, используется одна формула, в которую подставляют размеры тела и табличное значение удельной проводимости, то для электрической цепи не так всё просто.

В цепи может встречаться 3 вида соединения элементов:

  1. Параллельное. При таком соединении цепь разветвляется, то есть появляются ветви, по которым течёт ток. Ветви могут пересекаться между собой.
  2. Последовательное. Схема соединения представляет единую цепь, в которой нет разветвлений.
  3. Смешанное. Состоит из комбинированного соединения, включающего комбинации из параллельного и последовательного подключения.

Вычисление сопротивления для каждого типа соединения имеет особенности. При последовательном включении общее значение определяется путём простого складывания: R = r1 + r2 +…+ rn. При параллельном же соединении полное сопротивление цепи будет меньше самого малого из сопротивлений ветвей. Для такого включения верна формула: 1 / R = 1 / r1 + 1 / r2 +…+ 1 / rn.

Принцип расчёта смешанного соединения построен на группировке электрической цепи по виду подключения элементов. Определение параметра выполняют поочерёдно. Сначала высчитывают сопротивление одного узла, включающего однотипное соединение, затем к результату добавляют следующий элемент. Эту операцию повторяют до тех пор, пока не останется один элемент.

В радиотехнике деталь, применяющуюся в качестве сопротивления, называют резистором. С его помощью обозначают и так называемый эквивалентный параметр, используемый при расчётах электрических цепей. Его вводят, если нужно определить, например, мощность источника тока, выходное напряжение.

Таким образом, чтобы правильно посчитать сопротивление, нужно учитывать несколько факторов. При этом нужно помнить о единой системе измерений. Следует придерживаться СИ. Все величины, используемые в формулах, должны подставляться в стандартных единицах измерения. Почти во всех таблицах значение удельного сопротивления даётся в мм2/м, что связано с измерением площади.

Зависимость сопротивления от геометрических параметров проводника

Сопротивление- это величина, характеризующая противодействие проводника прохождению по нему электрического тока.

Из закона Ома для участка цепи сопротивление можно найти R= U / I

Единица электрического сопротивления — Ом.

Сопротивление проводника объясняется тем, что при прохождении по проводнику электрического тока, заряды взаи­модействуют с ионами кристаллической решетки. В результате, скорость движения зарядов уменьшается.

Электрическое сопротивление проводника прямо пропорционально его длине l и обратно пропорционально площади S поперечного сечения:

Постоянный для данного вещества параметр ρ- называется удельным сопротивлением вещества(Ом м).

Сопротивление проводника связано с температурой — при повышении температуры сопротивление проводника тоже увеличивается. При повышении температуры ионы в узлах кристаллической решетки начинают совершать колебания с большой скоростью и амплитудой и поэтому оказывают влияние на большее число проходящих мимо зарядов.

Где Ro — сопротивление данного проводника при 0 о С

α — температурный коэффициент сопротивления вещества.(характеризует зависимость изменения сопротивле­ния при изменении температуры)

Если температура проводника понижается до температуры, близкой к абсолютному нулю, то наблюдается явле­ние сверхпроводимости- сопротивление проводника стремится к нулю. Это происходит потому, что при такой тем­пературе практически прекращается тепловое движение молекул.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8464 — | 7349 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Колледж экономики, права и информатики

Отчет по лабораторной работе

По дисциплине

«Электротехнические основы источников питания»

студент 25 группы

Лабораторная работа №1

«Измерение зависимости сопротивления реальных проводников от их геометрических параметров и удельных сопротивлений материалов»

Цель:определить удельное сопротивление проводника и сравнить его с табличным значением.

2) L = 100м; S=0.1мм 2

6) P=0.0724*100/0.1=0.0000724мОм=0.0724Ом*мм 2 /м

№ опыта Длина, м Напряжение, В Сила тока, А Сопротивление, Ом Удельное сопротивление, Ом*м
1,44 0,198 0,7272 0,07272
1,493 0,02 72,475 0,07247
1,496 0,01 149,6 0,07262
1,498 0,0041 365,3 0,07307
1,499 0,002 0,07495

8) ρср=0,0731 Ом*мм 2 /м

Табличное значение для никеля ρ

Определили удельное сопротивление проводника и сравнили его с табличными данными, в итоге мы получили приблизительное значения. Произошли расхождения в результате погрешности в измерениях и погрешности в вычислениях.

Ответы на контрольные вопросы:

1. Что называют удельным сопротивлением проводника?

Постоянный параметр для определенного вещества, определяющийся произведением сопротивления на длину и деленным на площадь поперечного сечения проводника

2. Как зависит сопротивление проводника от его длины?

Сопротивление прямо пропорционально его длине

3. По какой формуле можно рассчитать удельное сопротивление проводника?

4. В каких единицах измеряется удельное сопротивление проводника?

Лабораторная работа №2

«Исследование сопротивлений проводников при параллельном и последовательном соединении»

Цель:изучить законы протекания тока через последовательно и параллельно соединенные проводники и определить формулы расчета сопротивлений таких участков

По данным измерений

По данным расчета :

Теоретические расчеты частично потверждают практический данные

5)I(Rac)=0.315 A I=0.136 A I (RCD)=0.181A

6)I=1.5/4.76=0.315 A I+I=0.136+0.181=0.317

Ответы на контрольные вопросы:

1. Может ли сопротивление участка двух параллельно соединненых проводников быть больше (меньше) любого из них? Объясните ответ.

Может быть меньше, так как 1/Rобщ=1/R1+1/R2

2. Какие законы сохранения используются для вывода формул сопротивления параллельного и последовательного соединения проводников?

Первый и второй законы Кирхгофа

3. Проанализируйте аналогию между приводимыми здесь формулами и формулой для расчета сопротивления одного проводника через его геометрические параметры: . В чем заключается эта аналогия?

Аналогичная пропорция R=U/I можно привести к U=p*L и I=S

Лабораторная работа №3

«ЭДС и внутреннее сопротивление источников постоянного тока. Закон Ома для полной цепи»

Цель:определить сопротивление источника цепи и его ЭДС

3. V=0.950 B I=0.33 A

5) R= (0,75-0,6)/(0,24-0,29)=0,3 Ом

Ответы на контрольные вопросы:

1. Сформулируйте закон Ома для полной цепи.

Сила тока пропорциональна ЭДС и обратно пропорциональна сумме внутреннего и внешнего сопротивлений.

2. Чему равна ЭДС источника при разомкнутой цепи?

В таком случае ЭДС равна напряжению

3. Чем обусловлен внутреннее сопротивление источника тока?

Отношению изменения силы тока к изменению напряжения

4. Чем измеряется сила тока короткого замыкания батарейки?

Отношением ЭДС в внутреннему сопротивлению

Лабораторная работа № 4

«Исследование сложных цепей постоянного электрического тока»

Цель:изучить приемы расчета сложных электрических цепей постоянного тока.

Вывод: Разность потенциалов в точках О и О ’ равна 0, и ток тоже равен 0. Замкнутое и разомкнутое состояние не влияют на работу схемы

Ответы на контрольные вопросы:

1. Какие свойства схемы могут оказаться полезными при расчете сложных схем?

Из симметрии ясно, что токи через элементы CO и DO должны быть одинаковы и равны токам, текущим через элементы OF и OE. А раз так, то в точке О цепь можно разорвать, при этом токи через элементы сетки не изменятся:

2. Между какими точками схемы, изображенной на рисунке 3, напряжение равно нулю?

3. Исследуйте аналогичным способом сопротивление между противоположными вершинами проволочного куба? Чему равно сопротивление между этими точками?

Пусть сопротивление одного ребра куба = r, тогда

RAB= + + =

Лабораторная работа №5

«Мощность в цепи постоянного тока»

Цель:изучить законы выделения мощности в цепях постоянного тока и согласования источников тока с нагрузкой.

0,1363 0,136 0,018537
0,1 0,499 0,0499
0,088 0,617 0,054296
0,0883 0,666 0,058808
0,075 0,749 0,056175
0,0681 0,818 0,055706
0,06 0,899 0,05394
0,0535 0,964 0,051574
0,04 0,04
0,03 1,1 0,033
0,02 1,2 0,024

Вывод: При сопротивлении нагрузки0,65 ОмМощность, отдаваемая источником питания будет максимальна.

Чем ниже сопротивление нагрузки, тем больше теряется мощности.

Оптимальное сопротивление нагрузки ≥ внутреннему сопротивлению источника питания.

Ответы на контрольные вопросы:

1. Почему при увеличении сопротивления нагрузки напряжение на ней растет?

По закону Ома, напряжение прямо пропорционально сопротивлению.

2. Объясните, почему выделяемая на нагрузке мощность мала, если сопротивление нагрузки сильно отличается от внутреннего сопротивления источника? Обратите внимание на формулы для силы тока (1) и напряжения (2) на нагрузке.

По формуле видно, что мощность обратно пропорциональная сумме сопротивлений нагрузки и источника питания, таким образом, наибольшая мощность будет выделяться на нагрузке при равенстве этих сопротивлений.

Лабораторная работа № 6.

«Принцип работы плавких предохранителей в электрических цепях»

Цель:рассчитать предохранители для защиты электронной сети с напряжением 220 В, питающей осветительные и электронагревательные приборы.

U генератора = 220В

Р лампочек = 60 Вт и 150 Вт

Р нагревательных приборов = 600Вт и 1000Вт

Рабочее напряжение = 240В

P,Вт U,В I,А
0,27
0,68
2,72
4,54

Вывод: Номинальный ток вставки должен удовлетворять требованию Iвст>Ip.

Каждый предохранитель сработал лишь тогда, когда будет превышение тока плавкой вставки на участке в цепи, который он защищает, величина тока предохранителя должна быть больше расчетного тока участка цепи.

Ответы на контрольные вопросы:

1. Какова цель установки предохранителей в электрических цепях?

Предохранитель необходим для защиты электрической цепи

2. Как рассчитать номинальный ток плавкой вставки предохранителя?

Рассчитать по формуле I=P/U

3. Почему правилами техники безопасности запрещается установка так называемых «жучков» — случайно выбранных проводников вместо целых предохранителей?

Потому, что случайно выбранные проводники могу не расплавиться при критической силе тока.

Презентация была опубликована 6 лет назад пользователемГалина Надежина

Похожие презентации

Презентация на тему: » Расчет сопротивления проводника. Удельное сопротивление Зависимость сопротивления проводника от его геометрических параметров и рода материала Дома: §» — Транскрипт:

1 Расчет сопротивления проводника. Удельное сопротивление Зависимость сопротивления проводника от его геометрических параметров и рода материала Дома: § 45,46

2 Опытным путем Георг Ом установил, от каких факторов зависит сопротивление проводника

3 1. Зависимость сопротивления проводника от его длины S 1 =S 2 =S S 1 =S 2 =S никелин никелин Таким образом, сопротивление проводника зависит прямопропорционально от его длины: R

4 2. Зависимость сопротивления проводника от площади его поперечного сечения l 1 =l 2 =l l 1 =l 2 =l никелин никелин Таким образом, сопротивление проводника зависит обратнопропорционально от площади его поперечного сечения: R

5 3. Зависимость сопротивления проводника от рода материала l, S, никелин R 1 R 1 l, S, нихром R2R2R2R2 Очевидно, что сопротивление проводника зависит от рода вещества, из которого изготовлен проводник

6 4. Итак, обобщаем установленные зависимости R – сопротивление проводника l – длина проводника S – площадь поперечного сечения проводника ρ – удельное сопротивление проводника Сопротивление проводника зависит прямопропорционально от его длины, обратнопропорционально от площади поперечного сечения проводника и зависит от рода материала, из которого он изготовлен.

7 5. Удельное сопротивление проводника, ρ — это физическая величина, показывающая, каково сопротивление проводника из данного вещества длиной 1 м и площадью поперечного сечения 1м 2

8 Свинец, Pb: ρ=0,21 Ом·мм2/м – это значит, что сопротивление свинцового проводника длиной 1 м и площадью поперечного сечения 1 мм2 равно 0,21 Ом.

9 6. Решение задач 1. Сколько метров никелиновой проволоки сечением 0,1 мм2 потребуется для изготовления реостата с сопротивлением 180 Ом? l l — ? ρ=0,4 Ом·мм2/м S=0,1 мм2 R=180 Ом

10 2. Определите силу тока, проходящего через реостат, изготовленный из константановой проволоки длиной 50 м и площадью сечения 1 мм2, если напряжение на зажимах реостата равно 45 В. I -? ρ=0,5 Ом·мм2/м l=50 м S=1 мм2 U=45 В

Формула сопротивления проводника

Оставьте свои комментарии?

Формула электрического сопротивления Формула для электрического сопротивления

8 часов назад Формула Для электрического сопротивления . Когда мы знаем длину и площадь поперечного сечения проводника , электрическое сопротивление и проводника является произведением удельного сопротивления проводника и длины проводника , разделенного на . площадь поперечного сечения проводника .Математически это представлено следующим образом:

Расчетное время чтения: 2 минуты

Веб-сайт: Byjus.com