Site Loader

индуктивное сопротивление | Электрознайка. Домашний Электромастер.


Одним из самых распространенных элементов электрических схем является индуктивность. Это в общем случае катушка с проводом с вставленным в нее ферромагнитным сердечником или без него. Рассмотрим применения свойств катушки индуктивности в различных областях техники.

Индуктивность применяется в различных приборах в радиотехнике, электротехнике, технике связи, электронике, автоматике и многих других областях.

Это трансформаторы, различные электрические фильтры, электромагнитные реле, преобразователи электрической энергии и т.д.

Если конденсатор – это накопитель электрической энергии (заряда), то индуктивность – это накопитель электромагнитной энергии.

Самое простое применение катушки с проводом – это электромагнит.


При прохождении электрического тока по проводу, вокруг него образуется постоянное магнитное поле. Чем больше витков в катушке и чем больше электрический ток, проходящий через нее, тем больше магнитный поток пронизывающий витки катушки.


Для увеличения силы притяжения электромагнита в катушку вводят ферромагнитный (стальной) сердечник.
Свойство катушки с проводом образовывать магнитное поле, используется в мощных электромагнитах, во всевозможных электромеханических реле, электрических двигателях и генераторах и т.д.

Катушка индуктивности — фильтр 

Катушка индуктивности имеет минимальное сопротивление для прохождения постоянного электрического тока, но для переменного тока имеет большое сопротивление.

Это свойство индуктивности используется для разделения цепей переменного и постоянного токов.


В технике электросвязи и радиосвязи используется множество различных фильтров нижних и верхних частот, схем дистанционного питания и т.д.
Катушка с ферромагнитным стальным сердечником используется в фильтрах блоков питания сетевых выпрямителей для сглаживания пульсаций переменного тока.

 

 Катушка с проводом источник Э.Д.С.

При воздействии на катушку переменного магнитного поля в ней образуется переменный электрический ток.
Это свойство катушки индуктивности используется в электрических генераторах постоянного и переменного тока.
В них идет преобразование механической энергии в электрическую энергию.

Дизель-генераторные электростанции используют энергию сгорания дизельного топлива; 

Тепловые электростанции – ТЭЦ используют энергию газа, угля, и др.;

Гидроэлектростанции – ГЭС используют энергию падающей воды;
Атомные электростанции — АЭС используют энергию деления атомного ядра.
Во всех циклах преобразования энергии конечным элементом является электрический генератор одно или трех — фазного переменного тока.

 

Катушка индуктивности — трансформатор.

При протекании переменного тока через катушку вокруг нее образуется переменное магнитное поле, которое в свою очередь воздействует на соседнюю катушку (обмотку) и создает в ней переменный электрический ток.


Трансформаторы тока – напряжения используются для преобразования переменного электрического напряжения и тока одной величины в напряжение и ток другой величины.
Трансформаторы служат также для согласования сопротивления нагрузки с внутренним сопротивлением источника (генератора) электрической энергии.
Трансформаторы используются во всех областях электротехники, радиотехники, электросвязи, автоматики и т.д.

 Катушка индуктивности — элемент колебательного контура.

Если объединить свойства конденсатора и индуктивности, то можно создать электромагнитный контур для получения синусоидальных колебаний переменного тока. В этом контуре заряд, накопленный в конденсаторе, передается в катушку и преобразуется в магнитное поле. Магнитное поле в свою очередь, наводит ЭДС самоиндукции в катушке, которая и заряжает конденсатор. Процесс этот повторяется многократно, постепенно затухая из-за потерь в контуре.


Колебательные контуры бывают двух видов — параллельный и последовательный.
Колебательные контуры используются для получения незатухающих колебаний синусоидальной формы низкой – НЧ, высокой ВЧ и сверхвысокой СВЧ частот.
Электросвязь, радиотехника, автоматика, космическая связь – перечень применения колебательного контура в технике безграничен.

Вот далеко не полный перечень свойств катушки с проводом в различных устройствах и приборах.

Катушка индуктивности в цепи переменного тока

 

Если катушка индуктивности включена в цепь переменного тока, то в такой цепи, фаза тока всегда отстает от фазы напряжения. Разберем причины этого отставания на простейшем примере, когда в цепи имеется только индуктивное сопротивление, а омического сопротивления нет вовсе, или вернее омическим сопротивлением провода катушки самоиндукции можно пренебречь, так как оно мало.

Для удобства рассмотрения явлений будем считать, что мы присоединяем катушку индуктивности к источнику переменного тока в тот момент, когда напряжение U на его зажимах имеет максимальное амплитудное значение (рис. 1а.). Этот момент будем считать началом периода.

 Рисунок 1. Самоиндукция-инерция. а) соотношения фаз тока, напряжения и ЭДС самоиндукции при включение катушки индуктивности в цепь переменного тока; б) соотношение фаз скорости движения, внешней силы и силы инерции

В момент включения катушки в ней немедленно возникнет электрический ток. Но ток не может сразу достичь своего амплитудного значения потому, что при его возникновении вокруг катушки начнет появляться магнитное поле, которое будет наводить в катушке ЭДС самоиндукции, направленную против внешнего напряжения, т. е. напряжения источника переменного тока. Электродвижущая сила самоиндукции будет препятствовать быстрому нарастанию силы тока в катушке. Поэтому нарастание тока будет длиться целую четверть периода.

По мере приближения к концу первой четверти периода скорость нарастания тока в катушке постепенно уменьшается.

Но вместе с тем ослабевает и ЭДС самоиндукции, так как величина ее зависит от скорости изменения силы тока.

Итак, в конце первой четверти периода внешнее напряжение, приложенное к катушке, будет равно нулю, ЭДС самоиндукции также будет, равна нулю, а ток в катушке и магнитный поток вокруг нее будут иметь максимальные амплитудные значения. В магнитном поле катушки будет запасено некоторое количество энергии, полученной от источника тока.

С началом второй четверти периода внешнее напряжение, переменив свое направление, будет возрастать, вследствие чего ток в катушке, текущий все еще в прежнем направлении, начнет уменьшаться. Но теперь в катушке снова возникнет ЭДС самоиндукции, обусловленная уменьшением магнитного потока, которая будет поддерживать ток в прежнем направлении.

В течение всей второй четверти периода внешнее напряже¬ние будет увеличиваться, а сила тока — уменьшаться. Ско¬рость уменьшения силы тока, оставаясь небольшой в начале второй четверти, станет постепенно нарастать и в конце этой четверти достигнет наибольшей величины.

Итак, к концу второй четверти периода внешнее напряжение приближается к амплитудному значению, а сила тока и магнитный ноток приближаются к нулю, убывая все с большей скоростью, вследствие чего ЭДС самоиндукции достигает своего амплитудного значения. Направление ЭДС самоиндукции, как всегда, остается противоположным направлению внешнего напряжения. Энергия, запасенная в магнитном поле за первую четверть периода, теперь возвращается обратно в цепь.

В течение второй половины (третья и четвертая четверти) периода все явления будут происходить в том же порядке, с той лишь разницей, что направления тока, внешнего напряжения и ЭДС самоиндукции изменяются на противоположные (рис. 1а.).

Таким образом, фаза тока все время отстает от фазы напряжения, причем нетрудно заметить, что сдвиг фаз тока и напряжения равен 90°.

Представим себе, что мы толкаем вдоль по рельсам груженую вагонетку. В первый момент, когда вагонетка только начинает трогаться с места, мы прилагаем к ней максимум усилий, которые по мере увеличения скорости вагонетки будем постепенно уменьшать. При этом мы почувствуем, что вагонетка, обладая инерцией, как бы сопротивляется нашим усилиям. Это противодействие (реакция) вагонетки будет особенно сильным вначале, по мере же ослабления наших усилий будет ослабевать и противодействие вагонетки, она постепенно будет переставать «упрямиться» и покорно покатится по рельсам.

Затем мы вовсе перестанем толкать вагонетку и даже, наоборот, начнем понемногу тянуть ее в обратном направлении. При этом мы почувствуем, что вагонетка снова сопротивляется нашим усилиям. Если мы будем все сильнее и сильнее тянуть вагонетку назад, то и ее противодействие будет соответственно все более и более возрастать. Наконец, нам удастся остановить вагонетку и даже изменить направление ее движения. Когда вагонетка покатится обратно, мы будем постепенно ослаблять наши усилия, т. е. будем тянуть ее все слабее и слабее, однако, несмотря на это, скорость вагонетки будет все-таки увеличиваться (при слабом трении в подшипниках).

Когда вагонетка пройдет половину пути в обратном направлении, мы совсем перестанем тянуть ее и снова переменим направление наших усилий, т. е. начнем ее снова задерживать, постепенно увеличивая силу торможения до тех пор, пока вагонетка не остановится, заняв первоначальное (исходное) положение. После этого мы можем продолжать все наши действия сначала.

В этом примере наши усилия, прилагаемые к вагонетке, соответствуют внешней ЭДС, противодействие вагонетки, обусловленное ее инерцией, — ЭДС самоиндукции, а скорость вагонетки — электрическому току. Если изобразить графически изменение наших усилий, а также изменение противодействия вагонетки и ее скорости с течением времени, то мы получим графики (рис. 1б), в точности соответствующие графикам рис.1а.

Из этого примера становится более понятной сущность реактивного (безваттного) сопротивления. В самом деле, в течение первой четверти периода мы толкали вагонетку, а она противодействовала нашим усилиям; в течение второй четверти периода она катилась сама, а мы «упирались»; в течение третьей четверти периода мы опять тянули ее, а вагонетка снова оказывала противодействие нашим усилиям и, наконец, в течение четвертой четверти периода она снова катилась сама, а мы ее тормозили.

Короче говоря, в течение первой и третьей четверти периода мы работали «на вагонетку», а в течение второй и четвертой четвертей она работала «на нас», возвращая обратно полученную то нас энергию. В результате наша работа оказалась «безваттной».

Таким образом катушка индуктивности в цепи переменного тока может работать как безваттный резистор.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

 

Добавить комментарий

Активное сопротивление цепи переменного тока

Активным или ваттным сопротивлением называется всякое сопротивление, поглощающее электрическую энергию или вернее превращающее ее в другой вид энергии, например в тепловую, световую или химическую.

Потери энергии, а, следовательно, и активное сопротивление в электрической цепи при переменном токе всегда больше потерь энергии в этой же цепи при постоянном токе. Причина этого заключается в том, что в цепях переменного тока потери энергии обусловлены не только обычным омическим сопротивлением проводников, но и многими другими причинами.

Рассмотрим некоторые из этих.

Так, например, наличие конденсатора в цепи переменного тока связано с дополнительными потерями энергии в результате периодического (с частотой переменного тока) изменения поляризации диэлектрика или, попросту говоря, в результате непрерывного переворачивания взад и вперед молекулярных парных зарядов. При этом происходит нагревание диэлектрика, т. е. электрическая энергия превращается в тепловую. Эти потери энергии называются диэлектрическими потерями.

Кроме диэлектрических потерь, как уже говорилось раньше, происходят потери энергии из-за утечки тока вследствие несовершенства изоляции между пластинами конденсаторов. Эти потери называются потерями утечки.

Вокруг всякого переменного тока существует переменное магнитное поле. Следовательно, во всех окружающих железных предметах происходит непрерывное переворачивание молекулярных магнитиков в такт с частотой переменного тока. В результате железные предметы, находящиеся в поле переменного тока, нагреваются, т. е электрическая энергия превращается в тепловую. Эти потери называются потерями на гистерезис.

Благодаря электромагнитной индукции переменный электрический ток наводит в близлежащих замкнутых электрических цепях индукционные токи, что связано с нагреванием этих цепей, т. е. с дополнительными потерями энергии.

Кроме того, такие же индукционные круговые токи возникают не только в замкнутых электрических цепях, но и в близлежащих металлических предметах и нагревают их. Эти токи называются токами Фуко. Возникновение токов Фуко также сопряжено с потерями электрической энергии.

Токи Фуко не всегда являются вредными. Например, на принципе токов Фуко основана защита радиоприборов медными или алюминиевыми экранами от переменных магнитных полей высокой частоты.

Наконец, при очень высоких частотах цепь переменного тока может излучать электромагнитные волны (радиоволны), что связано с потерями на излучение.

Наличие всех этих потерь увеличивает активное сопротивление цепи переменному току.

Опыт показывает, что при высоких частотах и омическое сопротивление проводника оказывается значительно большим, чем при постоянном токе.

Для объяснения этого явления увеличим мысленно сечение проводника (рис. 1) и посмотрим, что происходит в нем при прохождении по нему переменного тока. Вдоль проводника взад и вперед с частотой переменного тока движется огромное количество электронов.

Рисунок 1. Поверхностный эффект, как фактрор увеличения активного сопротивления в цепи переменного тока. Ток вытесняется магнитным полем на поверхность проводника (а), поэтому у поверхности проводника плотность тока больше, чем внутри проводника (б).

До сих пор нам было известно, что движущийся по проводнику переменный поток электронов создает вокруг него переменное магнитное поле. Теперь же, когда мы заглянем внутрь проводника, мы увидим, что магнитное поле имеется и внутри проводника. Это вызвано тем, что каждый электрон при движении создает вокруг себя магнитное поле, а так как часть электронов движется вблизи оси проводника, то они создают магнитное поле не только во вне, но и внутри проводника.

Продолжая присматриваться к происходящему внутри проводника, мы заметим, что наиболее быстро движутся электроны, находящиеся у поверхности проводника, а по мере приближения к середине проводника амплитуда (размах) колебаний электронов становится все меньше и меньше.

Почему же электроны колеблются с различными амплитудами в разных точках сечения проводника?

Это явление также имеет свое объяснение. Вспомним, что при всяком изменении скорости движения электрона на него действует ЭДС самоиндукции, противодействующая этому изменению. Вспомним также, что ЭДС самоиндукции зависит от числа магнитных силовых линий вокруг движущегося электрона. Чем большим числом магнитных силовых линий охватывается электрон, тем труднее ему совершать колебательное движение.

Теперь становится ясным, почему электроны, находящиеся у поверхности проводника, колеблются с большой амплитудой, а электроны, находящиеся глубоко внутри проводника, — с малой. Ведь первые охватываются только теми магнитными силовыми линиями, которые расположены вне проводника, а вторые охватываются и внешними и внутренними магнитными силовыми линиями.

Таким образом, плотность переменного тока получается большей у поверхности проводника и меньшей внутри его.

На рис. 1,б плотность тока характеризуется количеством красных точек. Как видим, наибольшая плотность тока получается около самой поверхности проводника.

При очень высоких частотах противодействие ЭДС самоиндукции внутри проводника становится настолько сильным, что все электроны движутся только по поверхности проводника. Это явление и называется поверхностным эффектом. Так как активное сопротивление проводника зависит от его сечения, а полезным сечением при токе высокой частоты оказывается только тонкий наружный слой проводника, то вполне понятно, что его активное сопротивление увеличивается с повышением частоты переменного тока.

Для уменьшения поверхностного эффекта проводники, по которым протекают токи высокой частоты, делают трубчатыми и покрывают их слоем хорошо проводящего металла, например серебра.

В целях борьбы с явлением поверхностного эффекта применяют также провода специальной конструкции, так называемый литцендрат.

Такой проводник свивают из отдельных тонких медных жилок, имеющих эмалевую изоляцию, причем скрутка жилок производится таким образом, чтобы каждая из них проходила поочередно то внутри проводника, то снаружи его.

Явление поверхностного эффекта особенно сильно сказывается в железных проводах, в которых вследствие большой магнитной проницаемости железа внутренний магнитный поток оказывается особенно большим и поэтому явление поверхностного эффекта становится очень заметным даже при сравнительно низких (звуковых) частотах.

 

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Индуктивное сопротивление в цепи переменного тока

Сопротивление в электрических цепях бывает двух видов – активное и реактивное. Активное представлено резисторами, лампами накаливания, нагревательными спиралями и пр. Другими словами, всеми элементами, в которых протекающий ток непосредственно совершает полезную работу или, частный случай, вызывает желаемый нагрев проводника. В свою очередь, реактивное – это обобщающий термин. Под ним понимают емкостное и индуктивное сопротивление. В элементах цепи, обладающих реактивным сопротивлением, при прохождении электрического тока происходят различные промежуточные преобразования энергии. Конденсатор (емкость) накапливает заряд, а затем отдает его в контур. Другой пример — индуктивное сопротивление катушки, в которой часть электрической энергии превращается в магнитное поле.

На самом деле «чистых» активных или реактивных сопротивлений нет. Всегда присутствует противоположная составляющая. Например, при расчете проводов для линий электропередач большой протяженности, учитывают не только активное сопротивление, но и емкостное. А рассматривая индуктивное сопротивление, нужно помнить, что как проводники, так и источник питания вносят свои корректировки в расчеты.

Определяя общее сопротивление участка цепи, необходимо сложить активную и реактивную составляющие. Причем, получить прямую сумму обычным математическим действием невозможно, поэтому используют геометрический (векторный) способ сложения. Выполняют построение прямоугольного треугольника, два катета которого представляют собой активное и индуктивное сопротивление, а гипотенуза – полное. Длина отрезков соответствует действующим значениям.

Рассмотрим индуктивное сопротивление в цепи переменного тока. Представим простейшую цепь, состоящую из источника питания (ЭДС, E), резистора (активная составляющая, R) и катушки (индуктивность, L). Так как индуктивное сопротивление возникает благодаря ЭДС самоиндукции (E си) в витках катушки, то очевидно, что оно возрастает с увеличением индуктивности цепи и ростом значения протекающего по контуру тока.

Закон ома для такой цепи выглядит как:

E + E си = I*R.

Определив производную тока от времени (I пр), можно вычислить самоиндукцию:

E си = -L*I пр.

Знак «-» в уравнении указывает на то, что действие E си направлено против изменения значения тока. Правило Ленца гласит, что при любом изменении тока возникает ЭДС самоиндукции. А так как такие изменения в цепях переменного тока естественны (и постоянно происходят), то E си формирует существенное противодействие или, что также верно, сопротивление. В случае источника питания постоянного тока данная зависимость не выполняется и при попытке подключить катушку (индуктивность) в подобную цепь произошло бы классическое к.з.

Для преодоления E си источник питания должен создавать на выводах катушки такую разность потенциалов, чтобы ее хватило, как минимум, на компенсацию сопротивления E си. Отсюда следует:

U кат = -E си.

Другими словами, напряжение на индуктивности численно равно электродвижущей силе самоиндукции.

Так как с ростом тока в цепи увеличивается магнитное поле, в свою очередь генерирующее вихревое поле, вызывающее рост противотока в индуктивности, то можно сказать, что имеет место смещение фаз между напряжением и током. Отсюда следует одна особенность: так как ЭДС самоиндукции препятствует любому изменению тока, то при его возрастании (первая четверть периода на синусоиде) происходит генерация полем противотока, а вот при падении (вторая четверть) наоборот – индуцированный ток сонаправлен с основным. То есть, если теоретически допустить существование идеального источника питания без внутреннего сопротивления и индуктивность без активной составляющей, то колебания энергии «источник – катушка» могли бы происходить неограниченное время.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *