Site Loader

Содержание

Описание модели электромагнитного двигателя с КПД > 100%

Энергоинформ / Точка зрения / Описание модели электромагнитного двигателя с КПД > 100%

Давно уже не секрет, что двигатели с КПД больше 100% считаются невозможными. Их существование противоречит основному закону физики — Закону о сохранении энергии.

Этот закон гласит: Энергия не может появиться ниоткуда и исчезнуть в никуда. Она лишь может преобразовываться из одного вида энергии в другую. Например, из электрической в световую с помощью электрической лампы, или из механической в электрическую с помощью электрогенератора тока и так далее.

Конечно, это справедливо. Любому двигателю нужен источник энергии. Двигателю внутреннего сгорания — бензин, электродвигателю — источник электроэнергии. Например, аккумуляторы. Но бензин не вечен, его нужно постоянно пополнять, да и аккумуляторы требуют периодической подзарядки.

Но, если использовать источник энергии, который бы не нуждался в пополнении, то есть неисчерпаемый источник энергии, двигатель с КПД больше 100% вполне мог бы иметь право на существование.

На первый взгляд существование такого источника в природе невозможно. Однако это только на первый, неподготовленный, взгляд.

Возьмём, к примеру, гидроэлектростанцию. Вода, собранная в огромное водохранилище, падает с большой высоты плотины и вращает гидротурбину, которая в свою очередь вращает электрогенератор. Электрогенератор вырабатывает электроэнергию.

Вода падает под действием гравитации Земли. При этом совершается работа по выработке электроэнергии, хотя гравитация Земли, являясь источником энергии притяжения, не уменьшается. Затем вода под действием излучения Солнца и всё той же гравитации снова возвращается в водохранилище. Солнце, конечно, не вечное, но на пару миллиардов лет его хватит.

Ну а гравитация опять совершает работу, вытягивая влагу из атмосферы, и опять не уменьшаясь ни на йоту. По своей сути гидроэлектростанция является гидроэлектрогенератором с КПД больше 100%. Только громоздким и дорогим в обслуживании. Тем не менее работа гидроэлектростанций наглядно показывает то, что создание двигателя с КПД больше 100%, вполне осуществимо.

Ведь не только гравитация может служить источником неисчерпаемой энергии.

«Постоянный магнит ниоткуда не получает энергию, а его магнитное поле не расходуется, когда им что-либо притягиваешь».

Постоянный магнит притянул к себе железный предмет. Тем самым совершил работу. Но его сила при этом совершенно не уменьшилась. Это уникальное свойство постоянного магнита позволяет использовать его в качестве источника неисчерпаемой энергии.

Конечно, создание двигателя на основе постоянного магнита и с КПД больше 100% очень смахивает на создание пресловутого «Вечного двигателя», модели коего заполонили страницы интернета, но это не так.

Магнитный двигатель не Вечный, но Даровой. Рано или поздно его детали износятся и потребуют замены, а источник энергии, постоянный магнит, практически вечен.

Правда некоторые «специалисты» утверждают, что постоянный магнит постепенно теряет свою притягивающую силу в результате так называемого старения. Это утверждение неверно, но даже если это и так, он не изнашивается механически и вернуть его в прежнее, рабочее состояние можно всего одним магнитным импульсом. А производители современных постоянных магнитов гарантируют его неизменное состояние в течение не менее 10 лет.

Двигатель, требующий перезарядки один раз в десять лет, и при этом дающий чистую и безопасную энергию, вполне может претендовать на роль спасителя человеческой цивилизации от неизбежного энергетического Армагеддона.

Попытки создания магнитного двигателя с КПД больше 100% делались неоднократно.

К сожалению, пока никому не удалось создать чего-либо серьёзного. Хотя потребность в таком двигателе в наше время растёт с небывалой скоростью. А если есть спрос, то предложения обязательно будут.

Одна из моделей такого двигателя и предлагается на суд специалистов в области электротехники и энтузиастов альтернативной энергетики.

В принципе, ничего сложного в модели магнитного двигателя нет. Однако создание модели весьма не просто. Требуются достаточно серьёзное станочное оборудование и высокое качество производства. Модель невозможно сделать одним напильником и на «коленке». Хотя «тульские левши» ещё не перевелись на Руси.

На рисунке схематически изображена конструкция магнитного двигателя с КПД больше 100%.

  1. Постоянные магниты неодим-железо-бор с максимально возможной индукцией магнитного поля.
  2. Немагнитный диэлектрический ротор. Материал ротора — текстолит или стеклотекстолит.
  3. Статор. Или подшипниковые щиты. Материал — алюминий.
  4. Контактные кольца. Материал — медь.
  5. Электромагнитные катушки. Соленоиды, навитые тонким медным проводом.
  6. Контактные щётки. Материал — электрографит.
  7. Диск управления подачи электрического импульса на электромагнитные катушки.
  8. Оптопары на просвет. Датчики управления подачи электрического импульса на электромагнитные катушки.
  9. Шпильки статора, регулирующие зазор между постоянными магнитами и электромагнитными катушками.
  10. Вал ротора. Материал сталь.
  11. Замыкающие магнитопроводы. Кольца из мягкого железа, усиливающие силу постоянных магнитов.

Постоянные магниты расположены в подшипниковых щитах по диаметру с чередующейся полярностью.

Электромагнитные катушки расположены в роторе аналогичным способом.

Принцип работы магнитного двигателя основан на взаимодействии постоянного и электромагнитного полей.

Если по катушке, намотанной медным проводом (соленоидом), пропустить электрический ток, то в нём возникнет магнитное поле, которое станет взаимодействовать с магнитным полем постоянных магнитов. Другими словами, катушка втянется в зазор между постоянными магнитами.

Если ток выключить, катушка выйдет из зазора между постоянными магнитами без сопротивления.

По своей сути магнитный двигатель является синхронным электромагнитным двигателем. Только многополюсным и без использования железа в электромагнитных катушках. Железо, хоть и усиливает магнитную силу электромагнитной катушки, в этом двигателе использоваться не может, поскольку остаточная индукция неодимовых магнитов достигает 1,5Тл и на перемагничивание железных сердечников электромагнитных катушек, которые намагничиваются под действием постоянных магнитов, затрачивается огромное количество энергии.

А катушка без сердечника будет взаимодействовать с постоянным магнитом при любых (

даже самых малых) значениях электрического тока. И будет абсолютно инертна к постоянным магнитам, если тока в катушке не будет.

Конечно, конструкция электромагнитного двигателя, в котором применяются катушки медного провода без железного сердечника, не нова. Есть масса вариантов и масса оригинальных конструкций, в которых используется принцип взаимодействия постоянного тока и электромагнитной катушки без сердечника. Но ни одна конструкция не имеет КПД больше 100%. Причина этого не в конструкции двигателя, а в неправильном понимании природы, как постоянного магнита, так и электрического тока.

Дело в том, что до сих пор магнитное поле постоянного магнита считается сплошным и однородным. И электромагнитное поле соленоида также считается однородным и сплошным. К сожалению, это большое заблуждение. Так называемое магнитное поле постоянного магнита в принципе не может быть сплошным, поскольку сам магнит имеет составную структуру из множества спрессованных в одно тело, доменов (элементарных магнитов).

По своей сути, домены — это те же магниты, только очень маленькие. Их размер порядка 4 микрон. А если взять два обычных магнита, положить их на стол одноимёнными полюсами вниз и попытаться сблизить, то нетрудно заметить, что они отталкиваются друг от друга. Также отталкиваются и их магнитные поля. Так как же магнитное поле постоянного магнита может быть сплошным? Однородным — да, но не сплошным.

Магнитное поле постоянного магнита состоит из множества отдельных магнитных полей размером порядка 4 микрон. Их называют силовыми линиями магнитного поля и ещё из школьной программы по физике все знают, как их обнаружить с помощью железных опилок и листа бумаги. На самом деле железные опилки сами становятся доменами и продолжают постоянный магнит. Но, поскольку они не закреплены механически, как в толще постоянного магнита, они расходятся веерообразно, что ещё раз подтверждает утверждение о том, что магнитное поле постоянного магнита не является сплошным.

Но если магнитное поле постоянного магнита состоит из множества магнитных полей, то и электромагнитное поле соленоида тоже не может быть сплошным. Оно также должно состоять из множества отдельных магнитных полей. Однако в катушке медного провода нет доменов. Есть проводник и электрический ток. А электрический ток это поток свободных электронов. Каким образом этот электронный поток может создавать магнитное поле?

Магнитный момент электронов обусловлен собственным вращением электронов. Спином. Если электроны вращаются в одном направлении и в одной плоскости их магнитные моменты суммируются. Поэтому они ведут себя подобно доменам в постоянном магните, выстраиваясь в электронные столбы и создавая отдельное электромагнитное поле. Количество таких электромагнитных полей зависит от напряжения электрического тока приложенного к проводнику.

К сожалению, пока не установлена количественная связь между напряжением и числом магнитных полей. Нельзя сказать, что напряжение в 1 Вольт создаёт одно поле. Над решением этой задачи ещё предстоит поломать голову учёным. Но то, что связь есть, установлено определённо. Определённо установлено и то, что одно магнитное поле постоянного магнита может соединиться только с одним магнитным полем соленоида. Причём наиболее эффективна эта связь будет тогда, когда толщина этих полей совпадёт.

Толщина магнитных полей постоянного магнита порядка 4 микрон. Поэтому площадь магнитного полюса не должна быть большой. Иначе придётся пускать на обмотку соленоида слишком большое напряжение.

Возьмём, например, магнит, у которого площадь полюса равна 1 квадратному сантиметру. Разделим его на 4 микрометра. 1/0,0004=2500.

То есть для эффективной работы катушки с магнитом, у которого площадь магнитного полюса 1 квадратный сантиметр, необходимо подать на эту катушку электрический ток с напряжением 2500 Вольт. При этом сила тока должна быть очень маленькой. Примерно 0,01 Ампера. Точные значения силы тока ещё не установлены, но известно одно, чем меньше сила тока, тем выше КПД. Очевидно, причиной этому является то обстоятельство, что электрическая энергия переносится электронами. Однако один электрон не может перенести большое количество энергии. Чем больше энергии переносит электрон, тем больше потерь от столкновения электронов с атомами в кристаллической решётке проводника электротока. Это как движение снежного кома по склону горы поросшей деревьями. Чем больше снежный ком, тем чаще он сталкивается с деревьями, оставляя часть снега на стволах. Так и электрон, сталкиваясь с атомами, отдаёт им часть своей энергии.

Если же в работе участвует множество слабо возбуждённых электронов, то энергия между ними распределяется поровну и электроны гораздо свободнее проскальзывают между атомами кристаллической решётки проводника. Вот почему по одному и тому же проводнику ток малой силы и высокого напряжения можно передать с гораздо меньшими потерями на сопротивление, чем ток малого напряжения и большой силы.

Таким образом, для эффективного взаимодействия электромагнитной катушки без сердечника с постоянным магнитом, необходимо навить катушку тонким проводом, порядка 0,1 мм и с большим количеством витков, порядка 6 000. И подать на эту катушку электроток большого напряжения. Только при таких условиях двигатель получит возможность иметь КПД больше 100%. Причем, чем меньше сила тока в электромагнитных катушках, тем выше КПД. Более того, электрический ток на катушку можно подавать короткими импульсами. В тот момент, когда катушка приблизилась к постоянному магниту на минимальное расстояние. Это ещё больше повысит эффективность работы двигателя. Но самую большую эффективность двигатель приобретёт в том случае, когда электромагнитные катушки закольцевать с конденсаторами, создав некоторое подобие колебательного контура, широко применяемого в радиоэлектронике для создания электромагнитных волн. Ведь по закону о сохранении энергии электроток не может исчезнуть бесследно. В колебательном контуре он всего лишь перемещается из электромагнитной катушки в конденсатор и обратно, создавая при этом электромагнитные волны. При этом потери электроэнергии минимальные и обусловлены только сопротивлением материала. А на создание электромагнитных волн энергия практически не тратится. По крайней мере, так утверждает учебник по физике. И если использовать это явление на взаимодействие с постоянными магнитами, получим механическую энергию, практически не потратив на это электрическую.

В общем можно констатировать, что секрет двигателя с КПД больше 100% не в конструкции двигателя, а в принципе взаимодействия постоянного магнита и электромагнитной катушки с электрическим током.

Возьмём, к примеру, автомобильный двигатель внутреннего сгорания. Есть автомобили двигатели, которых имеют простейшую конструкцию и потребляют 20 литров топлива на 100 километров пути. При этом обладая мощностью каких-то 70 лошадиных сил. А есть автомобили, двигатели которых увешаны электроникой, потребляющие всего 10 литров топлива на 100 километров пути, но имеющие мощность до 200 лошадиных сил. Хотя принцип действия у обоих автомобилей одинаков. Разница лишь в том, как используется этот принцип действия. Можно просто залить порцию топлива в цилиндр двигателя и как попало поджечь его, а можно подготовить высококачественную топливную смесь, вовремя впрыснуть её в цилиндр и вовремя поджечь.

В электромагнитном двигателе цилиндром служит электромагнитная катушка. А топливом электрический ток. Но для двигателей внутреннего сгорания придуманы различные виды топлива. От дизельного до высокооктанового. И для каждого типа двигателя предназначен свой тип топлива. Двигатель, рассчитанный на работу с высокооктановым бензином, не может работать на дизельном топливе. И даже работая на низкооктановом бензине, он не сможет дать тех технических возможностей, которые от него требуют.

У электрического тока тоже два параметра. Сила тока и напряжение. Электрический ток высокого напряжения можно сравнить с высокооктановым бензином. Пуская на катушку электрический ток высокого напряжения, необходимо следить, чтобы смесь не была слишком обогащённой. То есть сила тока должна быть достаточной, но не превышала необходимой. Иначе излишняя энергия просто вылетит в трубу и значительно уменьшит КПД двигателя.

Конечно, сравнивать электромагнитный двигатель с двигателем внутреннего сгорания не совсем уместно. Повысить мощность двигателя внутреннего сгорания можно, увеличив давление в камере сгорания. С электромагнитным двигателем такой фокус не удастся. Можно увеличить длину импульса в электромагнитной катушке. Мощность, конечно, увеличится, но и КПД упадёт.

Увеличивать мощность электромагнитного двигателя следует лишь путём увеличения количества полюсов. Это словно собачья упряжка. Одно животное, конечно, из себя реальной силы не представляет, но два десятка — это уже что-то весьма серьёзное. Поэтому, в двигателе применяется многополюсная система, все катушки в которой подключены параллельно. В мощных двигателях количество полюсов может исчисляться сотнями.

В небольшой модели двигателя, гораздо эффективнее применять систему в которой электромагнитные катушки расположены в роторе. В данном случае катушка работает одновременно с двумя магнитами. Это в два раза увеличивает эффективность работы катушки даже при том, что импульс на катушки передаётся через щёточный узел.

В больших двигателях с многороторной ситемой гораздо эффективнее применять систему с постоянными магнитами на роторе. Кострукция упрощается, а катушки которые работают только на одну сторону, находятся только на крайних статорах. Катушки же внутренних статоров работают сразу на две стороны.

В природе самым сильным животным является слон. Но он много ест, и вес, который он способен поднять, значительно меньше его собственного веса. Поэтому КПД его работы очень низок.

Маленький муравей ест очень мало. А вес, который он может поднять, превышает его собственный вес в 20 раз. Чтобы получить упряжку с большим КПД нужно запрягать в неё не слона, а кучу муравьёв.

Автор: Владимир Чернышов / [email protected]

✅ Как сделать Соленоидный Двигатель своими руками


Как сделать игрушку автомашину с соленоидным двигателем

Как сделать автомобиль с соленоидным двигателем
Возможно, вы видели много видео о создании автомобиля с электромагнитным двигателем в Интернете. На YouTube есть сотни таких видео. Но этот проект совершенно другой. Мы разработали его так, как работают автомобильные двигатели. Вы можете увидеть много компонентов, похожих на те, что в двигателе внутреннего сгорания. Вы можете видеть поршни, шатун, кривошип, коленчатый вал, цилиндр, головку цилиндров, маховик и т. Д. Двигатель с микросхемой работает от взрыва топлива внутри цилиндра, тогда как в соленоидном двигателе движущей силой является электромагнетизм.

Соленоид – это тип электромагнита, когда целью является создание контролируемого магнитного поля. Если вместо этого целью соленоида является предотвращение изменений электрического тока, соленоид можно более конкретно классифицировать как индуктор, а не электромагнит

. В технике этот термин может также относиться к множеству преобразовательных устройств, которые преобразуют энергию в линейное движение. Термин также часто используется для обозначения соленоидного клапана , который представляет собой интегрированное устройство, содержащее электромеханический соленоид, который приводит в действие пневматический или гидравлический клапан, или соленоидный переключатель, который является реле определенного типа. внутри которого используется электромеханический соленоид для управления электрическим выключателем; например, соленоид автомобильного стартера или линейный соленоид, который является электромеханическим соленоидом. Также существуют электромагнитные болты, тип электронно-механического запирающего механизма.

Соленоидный двигатель

Современные инженеры регулярно проводят эксперименты по созданию устройств с нетрадиционной и нестандартной конструкцией, таких как, например, аппарат вращения на неодимовых магнитах.

Среди этих механизмов следует отметить и соленоидный двигатель, преобразующий энергию электрического тока в механическую энергию.

Соленоидные двигатели могут состоять из одной или нескольких катушек – соленоидов.

В первом случае задействована всего лишь одна катушка, при включении и выключении которой происходит механическое движение кривошипно-шатунного механизма.

Во втором варианте используется несколько катушек, включающихся поочередно с помощью вентилей, когда подача тока от источника питания осуществляется в один из полупериодов синусоидального напряжения.

Возвратно-поступательные движения сердечников приводят в движение колесо или коленчатый вал.

Соленоидный двигатель принцип работы

В соответствии с основной классификацией, соленоидные двигатели бывают резонансными и нерезонансными. В свою очередь, существует однокатушечная и многокатушечная конструкции нерезонансных двигателей.

Известны также параметрические двигатели, в которых сердечник втягивается в соленоид, но занимает нужное положение при достижении магнитного равновесия после нескольких колебаний.

При совпадении частоты сети с собственными колебаниями сердечника может произойти резонанс.

Соленоидные двигатели отличаются компактностью и простотой конструкции. Среди недостатков следует отметить низкий коэффициент полезного действия этих устройств и высокую скорость движения. До настоящего времени эти недостатки не удалось преодолеть, поэтому данные механизмы не нашли широкого применения на практике.

Рабочая катушка однокатушечных устройств включается и выключается с помощью механического выключателя, за счет действия тела сердечника или полупроводниковым вентилем. В обоих вариантах обратный ход обеспечивается пружиной, обладающей упругостью.

В двигателях с несколькими катушками рабочие органы включаются только вентилями, когда к каждой катушке по очереди подводится ток в промежутке одного из полупериодов синусоидального напряжения. Сердечники катушек начинают поочередно втягиваться, в результате, это приводит к совершению возвратно-поступательных движений.

Эти движения через приводы передаются на различные двигатели, выполняющие функцию исполнительных механизмов.

Устройство соленоидного двигателя

Существуют различные типы механических и электрических устройств, работа которых основывается на преобразовании одного вида энергии в другой. Их основные типы широко используются во всех машинах и механизмах, применяемых на производстве и в быту.

Существуют и нетрадиционные аппараты, работа над которыми осуществляется пока на уровне экспериментов. К ним можно отнести и соленоидные двигатели, работающие на основе магнитного действия тока.

Его основным преимуществом считается простота конструкции и доступность материалов для изготовления.

Основным элементом данного устройства является катушка, по которой пропускается электрический ток. Это приводит к образованию магнитного поля, втягивающего внутрь плунжер, выполненный в виде стального сердечника.

Далее, с помощью кривошипно-шатунного механизма, поступательные движения сердечника преобразуются во вращательное движение вала. Можно использовать любое количество катушек, однако, наиболее оптимальным считается вариант с двумя элементами.

Все эти факторы нужно обязательно учитывать при решении вопроса как сделать соленоидный двигатель своими руками из подручных материалов.

Как сделать соленоид Enginen Car

Шаг 1: Изготовление соленоидного цилиндра

  • Прежде всего, нарежьте две одинаковые части ACP или лист волокна.
  • И отметьте диаметр шприца на листе. Затем удалите ненужную часть.
  • Теперь отрежьте 2 дюйма от цилиндрической части шприца. Зафиксируйте часть шприца на листе.
  • Теперь настало время намотать медный провод 26 калибра на шприц.
  • Ветер магнитный провод плотно. Минимум поворотов 60, максимум: максимально.
  • Чем больше вы накручиваете магнитную проволоку, ваш двигатель будет работать быстрее и мощнее
  • Сделайте необходимые отверстия. Смотреть видео.

Шаг 2: Изготовление поршня

  • Поршень состоит из трех частей. Головка поршня, шатун и кривошип.
  • Мы использовали цилиндрический магнит в качестве головки поршня,
  • устройство для крепления волоконного винта в качестве шатуна,
  • маленький кусочек еще глубже как рукоятка.
  • Шатун играет важную роль в легкой передаче мощности на коленчатый вал.
  • Я сделал это гибким. Обратите внимание.
  • Смотреть видео для более подробной информации

Магнитный двигатель: миф или реальность?

Идея разработки вечного бестопливного двигателя не нова, за разработку такого агрегата во все времена брались именитые ученные своего времени. Однако ни технических средств для реализации задумки, не возможностей того времени не хватало. В некоторых случаях дело доходило только до теоретического обоснования, но существуют примеры реально разработанных альтернативных двигателей, которые призваны создать конкуренцию классическим электрическим машинам. Одним из таких вариантов является магнитный двигатель.

Миф или реальность?

Вечный двигатель знаком практически каждому еще со школьной скамьи, только на уроках физики четко утверждалось, что добиться практической реализации невозможно из-за сил трения в движущихся элементах. Среди современных разработок магнитных моторов представлены самоподдерживающие модели, в которых магнитный поток самостоятельно создает вращательное усилие и продолжает себя поддерживать в течении всего процесса работы. Но основным камнем преткновения является КПД любого двигателя, включая магнитный, так как он никогда не достигает 100%, со временем мотор все равно остановится.

Поэтому все практические модели требуют повторного вмешательстве через определенное время или каких-либо сторонних элементов, работающих от независимого источника питания. Наиболее вероятным вариантом бестопливных двигателей и генераторов выступает магнитная машина. В которой основной движущей силой будет магнитное взаимодействие между постоянными магнитами, электромагнитными полями или ферромагнитными материалами.

Актуальным примером реализации являются декоративные украшения, выполненные в виде постоянно двигающихся шаров, рамочек или других конструкций. Но для их работы необходимо использовать батарейки, которые питают постоянным током электромагниты. Поэтому далее рассмотрим тот принцип действия, который подает самые обнадеживающие ожидания.

Устройство и принцип работы

Сегодня существует достаточно большое количество магнитных двигателей, некоторые из них схожи, другие имеют принципиально отличительную конструкцию.

Для примера мы рассмотрим наиболее наглядный вариант:


Принцип действия магнитного двигателя

Как видите на рисунке, мотор состоит из следующих компонентов:

  • Магнит статора здесь только один и расположен он на пружинном маятнике, но такое размещение требуется только в экспериментальных целях. Если вес ротора окажется достаточным, то инерции движения хватит для преодоления самого малого расстояния между магнитами и статор может иметь стационарный магнит без маятника.
  • Ротор дискового типа из немагнитного материала.
  • Постоянные магниты, установленные на роторе в форме улитки в одинаковое положение.
  • Балласт — любой увесистый предмет, который даст нужную инерционность (в рабочих моделях эту функцию может выполнять нагрузка).

Все, что нужно для работы такого агрегата, придвинуть магнит статора на достаточное расстояние к ротору в точке самого наибольшего удаления, как показано на рисунке. После этого магниты начнут притягиваться по мере приближения формы улитки по кругу, и начнется вращение ротора. Чем меньше размер магнитов и чем более плавная форма получится, тем легче произойдет движение. В месте максимального сближения на диске установлена собачка, которая сместит маятник от нормального положения, чтобы магниты на притянулись в статическое положение.

Плюсы и минусы магнитных двигателей

Плюсы:

  • Экономия и полная автономия;
  • Возможность собрать двигатель из подручных средств;
  • Прибор на неодимовых магнитах достаточно мощный, чтобы обеспечить энергией 10 кВт и выше жилой дом;
  • Способен на любой стадии износа выдавать максимальную мощность.

Минусы:

Магнитные линейные двигатели сегодня стали реальностью и имеют все шансы заменить привычные нам моторы других видов. Но сегодня это ещё не совсем доработанный и идеальный продукт, способный конкурировать на рынке, но имеющий довольно высокие тенденции.

Электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции.

Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.

Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.

Разновидности магнитных двигателей и их схемы

Сегодня существует много моделей бестопливных генераторов, электрических машин и моторов, чей принцип действия основан на природных свойствах постоянных магнитов. Некоторые варианты были спроектированы именитыми ученными, достижения которых стали основополагающим камнем в фундаменте науки. Поэтому далее мы рассмотрим самые популярные из них.

Николы Тесла

В данном примере мы рассмотрим одну из разработок известного ученого, конструкция которой приведена на рисунке ниже:


Магнитный двигатель Тесла

Конструктивно магнитный двигатель Тесла состоит из таких элементов:

  • электрического генератора, который представлен двумя дисками из проводника, помещенными в униполярной магнитной среде;
  • гибкого ремня, изготовленного из проводящего материала, расположенного по периферии дисков;
  • независимых магнитов, сохраняющих униполярность полей при вращении дисков.

Такой двигатель, по словам изобретателя, может функционировать и в качестве генератора, вырабатывая электрическую энергию при вращении дисков.

Минато

Этот пример нельзя назвать самовращающимся двигателем, так как для его работы требуется постоянная подпитка электрической энергией. Но такой электромагнитный мотор позволяет получать значительную выгоду, затрачивая минимум электричества для выполнения физической работы.


Схема двигателя Минато

Как видите на схеме, особенностью этого вида является необычный подход к расположению магнитов на роторе. Для взаимодействия с ним на статоре возникают магнитные импульсы за счет кратковременной подачи электроэнергии через реле или полупроводниковый прибор.

При этом ротор будет вращаться, пока его элементы не размагнитятся. Сегодня все еще ведутся разработки по улучшению и повышению эффективности устройства, поэтому назвать его полностью завершенным нельзя.

Николая Лазарева

Это не только простейший гравитационный двигатель, но и одна из реально работающих моделей вечного двигателя. Пример приведен на рисунке ниже:


Двигатель Лазарева

Как видите, для изготовления такого двигателя или генератора вам потребуется:

  • колба;
  • жидкость;
  • трубка;
  • прокладка из пористого материала;
  • крыльчатка и нагрузка на вал.

Принцип действия заключается в том, что вода по тонкой трубке из-за избытка давления будет подниматься вверх и скапывать на прокладку и вращать крыльчатку. Далее вода будет просачиваться сквозь губку и под воздействием магнитного поля Земли дальше стекать в нижний резервуар. Цикл будет повторяться до тех пор, пока жидкость не исчезнет, что в идеально герметичном контуре не произойдет никогда. Для усиления момента на вращаемый вал добавляют магнитные усилители.

Говарда Джонсона

В своих исследованиях Джонсон руководствовался теорией потока непарных электронов, действующих в любом магните. В его двигателе обмотки статора формируются из магнитных дорожек. На практике эти агрегаты получили реализацию в конструкции роторного и линейного двигателя. Пример такого устройства приведен на рисунке ниже:


Двигатель Джонсона

Как видите, на оси вращения в двигателе устанавливаются сразу и статор и ротор, поэтому классически вал вращаться здесь не будет. На статоре магниты повернуты одноименным полюсом к роторным, поэтому они взаимодействуют на силах отталкивания. Особенность работы ученого заключалась в длительном вычислении расстояний и зазоров между основными элементами мотора.

Перендева

Данный вид двигателя, как и предыдущий, представляет собой еще одну модель магнитного взаимодействия между статором и ротором, где обе части содержат постоянные магниты. Схема конструкции обоих представляет собой диск или кольцо, в котором точечно устанавливаются вектолиты.

Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах

. К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.

Устройство магнитного двигателя

Конечно, аппараты на постоянных магнитах не имеют ничего общего с привычным нам электродвигателем. Если во втором движение происходит

за счёт электротока, то магнитный, как понятно, работает исключительно за счёт постоянной энергии магнитов. Состоит он из трёх основных частей:

  • Сам двигатель;
  • Статор с электромагнитом;
  • Ротор с установленным постоянным магнитом.

На один вал с двигателем устанавливается электромеханический генератор. Статический электромагнит, выполненный в виде кольцевого магнитопровода с вырезанным сегментом или дугой, дополняет эту конструкцию. Сам электромагнит дополнительно оснащён катушкой индуктивности. К катушке подключён электронный коммутатор, за счёт чего подаётся реверсивный ток. Именно он и обеспечивает регулировку всех процессов.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы

заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками

. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе»

. Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее

не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала

устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

Электромагнетизм

. Может ли линейный соленоид быть таким же эффективным, как коллекторный двигатель с редуктором?

спросил

Изменено 3 года, 11 месяцев назад

Просмотрено 9к раз

\$\начало группы\$

Я слышал, что линейные соленоиды энергоемки и склонны к перегреву, особенно если ход длинный. Может ли линейный соленоид быть таким же энергоэффективным, как двигатель с редуктором, преобразующим вращательное движение в возвратно-поступательное?

  • двигатель
  • электромагнетизм
  • соленоид

\$\конечная группа\$

\$\начало группы\$

Части соленоидной катушки, находящиеся далеко от плунжера в любой момент времени, будут рассеивать мощность, но не будут передавать большую полезную силу. Если бы у вас был соленоид с множеством коротких витков по всей его длине, и в каждый момент времени возбуждались бы только те из них, которые выполняли бы полезную работу, теоретически соленоид мог бы быть весьма эффективным. К сожалению, для этого потребовалось бы множество дискретных обмоток и схем управления для них, что было бы довольно сложно.

Большое преимущество линейного привода, приводимого в движение поворотным двигателем, заключается в том, что если 3-полюсный двигатель сделает 100 оборотов во время движения привода, это будет аналогично делению линейного соленоида на 300 переключаемых секций. Поместить 3 полюса на вращающийся двигатель, а затем иметь механизм, превращающий 100 оборотов в линейный диапазон движения, может быть намного дешевле, чем разделить катушку на 300 отдельных частей.

\$\конечная группа\$

\$\начало группы\$

Обычный рабочий соленоид никогда не будет таким же энергоэффективным, как двигатель, если каждый из них идеально приспособлен для выполнения одной и той же рабочей задачи. Простая причина заключается в том, что собственная масса плунжера соленоида должна быть ускорена, чтобы привести в движение нагрузку, но затем резко останавливается в конце своего движения, тем самым выбрасывая свою кинетическую энергию. Кроме того, катушка должна быть отключена, а ее накопленная индуктивная энергия выбрасывается через ограничитель катушки или искру на переключателе. Эти две потери энергии легко могут составить более 30% входной электрической энергии. Этот цикл продолжается до тех пор, пока задача не будет выполнена. Напротив, двигатель продолжает вращаться, сохраняя тем самым свою кинетическую энергию, а твердотельный драйвер может сохранять индуктивную энергию во время вращения.0005

\$\конечная группа\$

\$\начало группы\$

Теоретически да, на практике нет.

Основная проблема соленоида заключается в том, что он потребляет ток в неподвижном состоянии. Эффективность – это отношение между полезным выходом и вложенными усилиями. Потребляемая энергия равна Вольтам х Ампер х время, выходная энергия равна силе х расстояние. Когда соленоид держится, он потребляет электрическую энергию, но не производит никакого выхода. Вся электрическая энергия преобразуется в тепло в сопротивлении катушки, поэтому ее КПД равен ноль .

Основной принцип работы электродвигателя и соленоида одинаков. Оба используют электромагнитное притяжение/отталкивание для создания механического движения. В обоих устройствах при движении якоря/ротора/заготовки генерируется напряжение обратной ЭДС, что снижает падение напряжения на сопротивлении катушки и, таким образом, снижает потери мощности. Однако двигатель постоянно вращается, поэтому он делает это непрерывно, в то время как соленоид делает это только во время хода. Как и соленоид, мотор-редуктор имеет низкий КПД при запуске или остановке. Но как только он набирает скорость, его эффективность возрастает, а с хорошей коробкой передач ему почти не требуется мощность, чтобы удерживать свое положение.

Но эффективность — это еще не все. Мотор-редуктор лучше всего подходит, когда что-то необходимо переместить на большое расстояние и/или в течение длительного периода времени. Но абсолютную позицию трудно контролировать, и она не любит, когда ее останавливают. Соленоид может быть лучше, если вам нужен простой способ получить короткие и быстрые движения между двумя четко определенными положениями.

Есть способы повысить эффективность соленоида.

  1. Ток удержания можно уменьшить, подключив резистор последовательно с катушкой после ее срабатывания или подав на нее более высокое напряжение во время хода. Ток удержания можно уменьшить до нуля с помощью постоянного магнита, чтобы пуля «прилипала» к поверхности полюса, когда она работает (затем вы должны подать обратный ток, чтобы освободить ее).

  2. Во время хода соленоид создает магнитное поле, энергия которого преобразуется в механическую мощность, но сопротивление катушки тратит энергию впустую. Чтобы уменьшить эти потери, отношение индуктивности к сопротивлению должно быть большим, но для этого требуется небольшой воздушный зазор, что несовместимо с длинным ходом. Однако, если стержень и торец полюса сделать коническими, то воздушный зазор может быть намного меньше.

  3. Соленоид может только «подтолкнуть» нагрузку, а затем импульсы должны быть кратковременными, поэтому эффективность не так важна. Если груз «подталкивается» в самом конце хода, то почти вся кинетическая энергия, накопленная в снаряде, может быть передана грузу, и КПД может быть довольно высоким (возможно, даже выше, чем у мотор-редуктора в том же состоянии). ситуация).

\$\конечная группа\$

\$\начало группы\$

Может ли линейный соленоид быть таким же эффективным, как коллекторный двигатель с редуктором?

Только для очень части случаев.
Соленоид изменяет воздушный зазор и магнитную силу при движении.
В зависимости от требуемого профиля возбуждения и силы и т. д. обычно требуется вкладывать больше энергии на протяжении большей части хода для достижения желаемого профиля силы или и/или скорости.

Если приложение может быть приспособлено к характеристикам соленоида, тогда оно МОЖЕТ быть очень эффективным, например накопление энергии в ускоряющемся ударнике, который затем подает импульс, например, на шар для игры в пинбол. Вы не слишком «заботитесь» о том, как нападающий достигает мяча, если скорость правильная.

Двигатель не на 100% эффективен (щеточный или нещеточный), а коробка передач не на 100% эффективна, но в большинстве случаев вполне вероятно, что вы можете получить лучшее соответствие тому, что хотите, чем с соленоидом. В некоторых случаях, если соленоид хорошо подходит для задачи, максимальная эффективность двигателя и коробки передач все еще не может конкурировать.

Зачем тогда использовать соленоид? — Соленоид имеет преимущества относительно низкой стоимости и размера, и в некоторых случаях вы можете вложить невероятно большое количество энергии в небольшое недорогое устройство. И не другие.

\$\конечная группа\$

\$\начало группы\$

Это как сравнивать, скажем, эффективность газового двигателя и оконного механизма. Бесщеточные двигатели эффективны, когда они движутся. Если у вас есть приложение, в котором бесщеточный двигатель делает именно то, что делает соленоид (перемещает определенную нагрузку, а затем сохраняет некоторую силу без движения), его эффективность будет просто нулевой, потому что не выполняется никакой работы (F * dx = 0) — вся энергия тратится впустую. .

Кроме того, соленоиды приводятся в действие дешевыми и простыми драйверами. Я имею в виду, что если вы просто управляете каким-то простым устройством, вы не будете вкладывать средства в высокотехнологичную схему управления током, за которой стоит куча программного обеспечения. Вы будете использовать только двухуровневый ШИМ-драйвер, и все. Таким образом, вы будете использовать больше тока, чем требуется, только для того, чтобы удерживать соленоид на месте, который будет нагревать его.

Но если по какой-либо причине вы хотите сделать соленоид очень эффективным — просто найдите подходящее применение, используйте все средства управления двигателем, которые вы можете найти, и все будет хорошо.

\$\конечная группа\$

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

. Двигатель

— Скорость и эффективность электромагнитного поезда?

Задай вопрос

спросил

Изменено 2 года, 10 месяцев назад

Просмотрено 328 раз

\$\начало группы\$

Я говорю о простой цепи соленоидов, как показано на рисунке ниже, которая работает по тому же принципу, что и униполярный двигатель. Он состоит из электрического элемента (типа AA или AAA), выводы которого снабжены дисковыми неодимовыми магнитами. Эта установка называется поездом. Когда этот поезд помещается внутрь медной катушки, поезд движется. Принцип работы объясняется в этом видео на YouTube.

Как теперь определить скорость и эффективность электропоезда?

Для определения эффективности, я думаю, я мог бы разделить произведение смещения поезда и силы Лоренца на выходную мощность батареи, пренебрегая трением между поездом и катушкой, как указано в уравнении ниже:

μ= (Мощность поезда) / (Мощность батареи) = (D × IBL) / (I × V)

Где
мк — КПД поезда.
D – водоизмещение поезда.
I — ток в катушке. Это то же самое, что и выходной ток из ячейки.
B — магнитная сила неодимовых магнитов.
L — длина части катушки, действующей как соленоид, равная длине поезда.
В – напряжение ячейки.

Могу ли я использовать второй закон движения Ньютона для расчета скорости поезда:

F = m x (v/t)

Отсюда

v = (F x t)/m

Где,

v — скорость поезда.
F — сила Лоренца, движущая поезд.
т — время, за которое поезд переместится.
м — масса поезда.

  • двигатель
  • двигатель постоянного тока
  • электромагнетизм
  • электромагнит
  • электромагнит

\$\конечная группа\$

2

\$\начало группы\$

Вы пренебрегаете трением.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *