Что такое согласующий трансформатор? | Лаборатория радиолюбителя
- Определение, что такое трансформатор
- Применение согласующего трансформатора
- Входной трансформатор
- Выходной трансформатор
- Согласующий трансформатор для антенны
- Балун
Когда я только-только начинал знакомиться в школьные годы с радиолюбительской тематикой и просматривал принципиальные схемы различных устройств в старых книгах и журналах, у меня часто возникал вопрос. Зачем даже в простых схемах, а особенно в ламповых устройствах, применяется столько трансформаторов?
Ведь если открыть более современный журнал Радио, то там с этим полный порядок — трансформаторов в схемах почти нет! Попробуем найти ответ на этот вопрос.
Начать следует прежде всего, что же вообще такое трансформатор и для чего он нужен.
Определение, что такое трансформатор
При реальном использовании электрического тока, часто возникает необходимость изменять напряжение. С постоянным напряжением это бывает сделать проблематично, а вот переменное можно очень просто понижать или повышать с минимальными потерями при помощи трансформатора.
Трансформатор это электромагнитное устройство, предназначенное для преобразования одного напряжения в другое (или несколько других напряжений) с сохранением частоты. Он состоится двух или более индуктивно связанных обмоток на магнитопроводе (хотя трансформатор, работающий на очень высоких частотах может и не иметь магнитопровода).
Входной ток подаётся на первичную обмотку, а выходной снимается с другой, называемой вторичной.
Если не учитывать небольшие потери в магнитопроводе, то отношение входного и выходного напряжений равно отношению числа витков на первичной обмотке к числу витков на вторичной.
Применение согласующего трансформатора
Исходя из зависимости отношения напряжений в первичной и вторичной обмотках от отношения количества витков в этих обмотках возникает следствие.
Отношение сопротивления цепи первичной обмотки по переменному току к сопротивлению вторичной, будет равно квадрату отношения витков в первичной обмотке к вторичной.
Это позволяет согласовывать сопротивление приемников и источников сигнала, уровни выходных и входных напряжений, которые находятся под разными потенциалами, ведь первичная и вторичная обмотки не связаны друг с другом напрямую.
Для чего это нужно? Вот и рассмотрим различные согласующие трансформаторы, работающие в звуковом диапазоне: входные, выходные, а так же антенный согласующий трансформатор.
Входной трансформатор
Различные, усиливающие звук, устройства имеют на входе операционные усилители. Для оптимальной работы сопротивление источника сигнала должно быть единицы или даже десятки килоом. Тогда усилитель будет работать в правильном режиме с минимальным уровнем шумов.
Но сопротивление многих источников звука гораздо ниже. Например сопротивление динамических микрофонов обычно составляет сотни или десятки ом. Если такой микрофон подключить напрямую на вход усилителя, последний будет работать в режиме, далеком от оптимального.
Справиться с этой проблемой поможет входной согласующий трансформатор. Его коэффициент трансформации можно определить по формуле: отношение количества витков во вторичной обмотке к числу витков в первичной будет равно квадратному корню из отношения эквивалентного сопротивления усилителя к сопротивлению источника.
N = W2 /W1 = √(Rш /Rи)
Для большинства случаев нормальным будет коэффициент 5-7.
Так как первичная и вторичная обмотки согласующего трансформатора не связаны между собой, то есть гальванически развязаны, такую схему можно использовать для подключения микрофонов, требующих для своей работы высоковольтного фантомного питания.
Самые современные операционные усилители при работе с низкоомным источником сигнала без входного трансформатора все равно выдают хорошие характеристики. Но при использовании длинного кабеля, между источником сигнала и входом усилителя, без трансформатора не обойтись. Иначе на качестве итогового сигнала будут отражаться различные наводки.
При использовании входного трансформатора происходит практически полное подавление синфазной помехи. Это свойство применяется в концертной аппаратуре для снижения влияния наводок, когда длина микрофонного провода может достигать десятков метров.
Выходной трансформатор
Долгое время вся техника была построена на радиолампах. Выходное сопротивление лампы очень большое и чтобы связать её например с громкоговорителем с низким сопротивлением, использовался выходной согласующий трансформатор.
Так же для связи между каскадами усиления использовались согласующиеся трансформаторы. Даже при использовании в схеме транзисторов, все равно без трансформаторов было не обойтись. Это связано с тем, что ранние модели транзисторов не обладали достаточно линейной характеристикой. И только разработка более совершенных транзисторов позволила отказаться от массового использования трансформаторов в схеме.
Вот и ответ на вопрос, куда пропали трансформаторы, которые были на принципиальных схемах в старых книгах и журналах. Сейчас применяются другие схематические решения, которые соответствуют современной элементной базе.
Согласующий трансформатор для антенны
Точно так же, как и для звукозаписывающей аппаратуры, для радиопередачи идеальным вариантом будет одинаковое выходное сопротивление передатчика, волновое сопротивление фидера и входное сопротивление антенны. В реальности эти сопротивления будут отличаться.
Для уменьшения потерь в линии передачи, а так же для снижения внеполосных излучений используются различные согласующие устройства.
Сопротивление большинства антенн разнится от сотен до единиц ом. Кабели обычно используются стандарные, на 50 или 75 Ом. Выходное сопротивление современных передатчиков обычно 50 Ом.
В случае, если выходное сопротивление передатчика и волновое сопротивление кабеля равны, то согласовывать необходимо только место соединения самой антенны и кабеля. Если же различаются сопротивления антенны, кабеля и передатчика, то понадобится два согласующих устройства: для согласования антенны и фидера, и для согласования фидера и выхода передатчика.
Согласующие трансформаторы для антенны могут быть с гальванической развязкой и без, с ферритовым сердечником и воздушные. Для высоких частот трансформатор может быть даже просто напечатан на плате.
Балун
Линии могут быть симметричные и несимметричные. Проводники симметричной линии одинаковые, как например у витой пары. У несимметричной же линии проводники разные. Примером несимметричной линии является коаксиальный кабель, в котором центральный проводник помещен в экранирующую оплетку.
При прохождении через симметричную линию, электрическое поле возбуждает в ее проводниках токи одинаковой силы и направления. Но когда электрическое поле проходит через несимметричную линию, то на проводники оно воздействует по разному.
Центральный проводник коаксиального кабеля защищен от воздействия внешнего электрического поля. По-этому ток возбуждается только во внешней оплетке и она начинает работать как часть антенны.
Чтобы этого избежать используют специальные согласующие устройства — балуны. Их название происходит от английского balanced-unbalanced, то есть подключение симметричной нагрузки к несимметричному кабелю.
Простейшим балуном будет являться тороидальный ферритовый сердечник, с проходящими через него несколькими витками кабеля. Такой балун является индуктивным фильтром. При прохождении полезного сигнала через проводники не создается магнитного поля, так как ток равен по амплитуде и противоположен по значению. А если не создается магнитного поля, значит и индуктивный фильтр не будет препятствовать прохождению полезного сигнала.
Зато при прохождении помехи через оплетку кабеля, создается магнитное поле, а значит балун будет гасить помеху и оставлять полезный сигнал.
Это лишь небольшой обзор группы трансформаторов, ведь в одной статье сложно охватить всё их разнообразие. Хоть с развитием электроники во многих случаях от трансформаторов отказались ввиду их дороговизны, габаритов и веса, все равно для некоторых задач они являются оптимальным и даже единственным выбором.
Антенна с трансформатором 1:9: как сделать своими рками
Антенна с трансформатором 1 9 является наиболее простым способом усилить сигнал. Для того, чтоб правильно установить оборудование потребуется провести верный расчет согласующего трансформатора. ТС 1 к 9 может создать самостоятельно не только опытный мастер, но и новичок для собственных нужд в домашних условиях.
Из чего состоит и как выглядит вч трансформатор 1 9 для антенны
Трансформаторы 1 к 9 используются радиолюбителями для согласования различных приборов. Удобно использовать для проволочных антенн, которые напитаны от конца. Оборудование стандартного вида, то есть широкополосное, позволяет изменить значение сопротивления до 450 Ом от 50 Ом. Оптимально подходит для антенн с небольшой реактивной составляющей, с сопротивление на входных устройствах до 500 Ом.
Простейший трансформатор 1:9 имеет миниатюрные размеры, различная форма, но чаще всего выбирают полукольцо или конус. Используется в качестве основного элемента магнитопровод из порошкового железа или феррита. Обмотку следует выполнять осторожно, ведь от этого зависит эффективность изделия. Как правило, используется три обмотки свитого плана между поводами, закрепленными на одном кольце. Возникают проблемы, касаемо смещения фаз на вторичных обмотках при работе на высоких частотах, а также проблемы, которые касаются минимальной магнитной проницаемости устройства. Поэтому используются варианты на ферритовом кольце, позволяющие решить вопрос. Но тут есть другие особенности.
Что представляет собой трансформатор 1 9 на ферритовом кольце
Трансформатор 1: 9 на ферритовым кольце позволяет решить проблему недостающей магнитной проницаемости, а также уменьшить смещение фаз при работе на высоких частотах.
Основная разница такого трансформатора в отличии от оборудования на стержне заключается в том, что получаемое магнитное поле будет разомкнуто. То в свою очередь дает возможность проходить импульсу в открытое пространство. Соотношение витков измеряется по стандартной схеме, важно правильно рассчитывать эту характеристику в зависимости от шага обмотки и толщины провода.
Какой коэффициент трансформации сопротивлений имеет устройство
Коэффициент трансформации для оборудования с сопротивлением 1 к 9 составляет 1:3. Сделанное своими руками устройство должно обладать коэффициентом трансформации напряжения 1 к 3.
Обратить внимание стоит на то, что при изготовлении обязательно используются системы заземления или специальные противовесы для антенн. При этому наибольшее внимание должно уделяться в случае, если входное сопротивление прибора минимальное.
Упрощённый расчёт согласующего трансформатора
Расчет согласующего трансформатора может провести новичок. Главное — это верно установить параметры напряжения, сопротивления.
Для начала следует принять во внимание тот факт, что мощность на вторичной обмотке равна первичной мощности. Но вместе с этим есть потери, которые зависят от исходных показателей и материала. По формуле будет: V12 / R1 = V22 / R2, если брать, что Р1 имеет идентичные показатели Р2.
Далее рассчитывают формулу с учетом того, что напряжение на вторичной и первичной обмотках пропорционально числу установленных витков. Приведя формулу к общему виду получается, что N2 / N1 = (R2 / R1)0.5. По формуле высчитываться число витков от необходимого показателя сопротивления. При самостоятельном изготовлении прибора следует витки размещать равномерно, так получится наилучшая характеристика сопротивления.
Другие показатели согласующего трансформатора, в том числе и сопротивление, частота и индуктивность рассчитываются по формуле L = 4 · R / Fmin. Берите во внимание то, что стандартное значение обычно не превышает 1,25.
Где применяются
Антенна с трансформатором 1 к 9 широко используется радиолюбителями. Дело в том, что собрать ее по пошаговой инструкции может и непрофессионал. Применяется с целью улучшения получаемого сигнала. Это достигается за счет:
- безопасного использования приборов питания;
- фиксированного напряжения;
- фазовой нагрузки, величина которой всегда известна;
- сохранения энергии.
Безусловно, можно купить трансформатор в интернет-магазинах, который обладает лучшими характеристиками, чем изготовленный своими руками. Но если вы хотите сэкономить, что не составит проблем сделать трансформатор в домашних условиях и улучшить получаемый сигнал.
Как намотать трансформатор 1:9 своими руками
Намотать тс может новичок. Главное — точно знать число обмоток (формулы для вычисления указаны выше).
Необходимые инструменты и материалы
Тс различные, но простейшее устройство, алгоритм сборки которого приводится чаще, состоит из дух ферритовых сердечников. Размер не принципиален, но следует помнить, что эксплуатация больших влияет на частоты.
Намотка производится трех проводной линией (6 мм в ширину, 0,5 мм в длину). Телефонные обмотки можно использовать, но они будут жесткими.
Пошаговая инструкция намотки
Сердечник делают безопасным при помощи бумажной или изоляционной ленты. Достаточно будет двух слоев. После этого:
- обмотку укладывают слоем;
- закрепляют термоклеем;
- концы скрепляются;
- остановится, когда число станет равно числу продевании в сердечнике (обычно 6).
Распайку проводят осторожно, так как ошибка приводит к выходу устройства из строя.
Проверка исправности работы
Для фиксации используются прокладки из пенопласта, герметизацию. Проверка состоит из подключения к клеммам резистора 450 Ом. При стабильной распайке тс работает сразу. Если прибор греется — сделайте больше обмоток.
Узнать потери можно, сделав два идентичных образца. Они соединяются высокоомными выходами, сопротивление при это составит 50 Ом.
Согласующий трансформатор: принцип действия, разновидности.
Трансформатором называют приспособление, задача которого заключается в изменении напряжения переменного тока на переменный ток другого напряжения. Такие преобразователи являются неотъемлемыми элементами различных электрических систем таких как:
- сварочные аппараты;
- нагревательные аппараты;
- выпрямительные устройства.
В данной статье речь пойдет о такой разновидности преобразующих устройств, как – согласующий трансформатор.
Сущность и принцип действия
Согласующий трансформатор (далее СТ) использует согласование импедансов различных частей электрической цепи во время трансформации и передачи электросигналов. Трансформаторные устройства согласовывают источник поступаемого сигнала с входным импедансом каскада в усилителях с низкими частотами (УНЧ).
Усилители низкой частоты – приспособления, увеличивающие частоты электрических волн до диапазона частот слышимых человеком (20 Гц – 20 кГц). Такие усилители используют как отдельное устройство либо применяют, как часть более сложного.
Примеры приборов с наличием усилителя:
- микрофон;
- телевизор;
- радиоприемник и т.п.
Сущность СТ заключается в следующем – устройство содержит подложку, выполненную из диэлектрического материала и ферритную пластину, имеющую в рабочих частотах дисперсную магнитную проницаемость. Со стороны подложки, обращенной к пластине, располагаются 1-й, 2-й, 3-й проводники, имеющие П-образную форму. С обратной стороны подложки наносится металлизация, имеющая два зазора в виде «П».
СТ состоит из:
1. Подложки диэлектрической; 2-4. Проводников; 5. Полоскового проводника; 6. Металлизации; 7. Контура щелевого; 8. Пластины ферритной; 9. Металлизации; 10–11. Зазоров; 12-13. Вспомогательных щелевых участков.
Рис. 1 Чертеж согласованного трансформатора
Принцип работы заключается:
- Первичная обмотка 4 получает входной сигнал. Пластина 8 и металлизация 6 играют роль связующего звена между проводниками 2-4.
- Затем вводятся новые элементы:
- с одной стороны проводник 4 диэлектрической подложки;
- с обратной – металлизация.
Коммутация проводников 2-4 обеспечивает уменьшение частоты в 2 раза. Данный вариант конфигурации СТ становится проще, отсутствует контакт между слоями. Согласующее устройство может быть исполнено как фрагмент печатной платы более усложненной схемы.
Конструкция
Устройства данного типа в своих конфигурациях используют ряд базовых элементов такие как:
- магнитный проводник;
- корпус для витков;
- сами обмотки;
- прочие вспомогательные элементы (крепежные фрагменты, средства защиты трансформатора).
СТ изготавливаются из магнитных проводников высокого качества. Существуют разновидности малых и больших размеров.
- Конструктивные особенности СТ малых габаритов:
- пластины сердечника не нуждаются в дополнительной изоляции;
- каждая пластина имеет оксидную пленку, которая и образует изоляцию.
- СТ больших размеров:
- пластины сердечника изолируются, путем покрытия с одной стороны изолирующего лака;
- устройства такой конфигурации используются при напряжениях на виток порядка менее десятых Вольта либо выше.
Рис 2. Согласующий трансформатор
Обмотки вокруг магнитопровода, как правило, наматывают из медной изолированной проволоки круглого сечения. Проводник прямоугольного сечения применяется в случае использования большого сечения, около 5-10 мм2.
Корпус такого трансформатора зачастую выполняется цилиндрическим. Такая конструкция более проста в изготовлении и имеет меньшую величину индуктивности рассеяния.
Сердечник отбирается по 2-м критериям:
- конструкционная постоянная характеристика нижних частот, которая определяет частотный показатель устройства на низких частотах;
- конструкционная постоянная магнитной индукции, которая определяет амплитуду составляющей магнитной индукции на самой низкой частоте.
Величину сердечника выбирают, учитывая конструкционную постоянную нижних величин частот, а также постоянную величину магнитной индукции в сердечнике.
Материал сердечника выбирают исходя из типа трансформатора, учитывая его рабочую среду, степень износа, а также конструкционные особенности и экономические затраты.
Типы согласующих сигнальных трансформаторов
В зависимости от области применения, внешних факторов и требований к аппаратуре существует большое множество разновидностей электрических преобразователей. Рассмотрим примеры моделей ТОТ, ТОЛ и ТВТ.
Трансформаторные устройства типа ТОТ
Расшифровка аббревиатуры:
Т- «трансформатор»;
О – «оконечный»;
Т- «транзисторный».
Предназначаются для работы в холодных климатических условиях при температуре (-60… +90 °С), с высокой вероятностью износа и относительной влажностью ~93 – 96%.
Рис. 3 Вид трансформаторов ТОТ-типа
Рис. 3. демонстрирует технические особенности устройства, с обозначение основных конструктивных параметров.
Конструктивные размеры указаны в таблице 1. Производство данных разновидностей трансформаторных устройств использует современную технологию производства на печатных платах с заливкой, кроме того, использование лакирования позволяет противодействовать погодным и механическим воздействиям.
Таблица 1. Конструкционные размеры преобразователей вида ТОТ.
Трансформаторные устройства типа ТОЛ
Расшифровка аббревиатуры:
Т- «трансформатор»;
О – «оконечный»;
Л- «ламповый».
Устройства данного типа применимы для работы в относительно холодных, тропических климатических условиях, с высокой вероятностью износа при температуре (-50… +130 °С) и относительной влажностью ~96 – 100%.
Рис. 4 Вид трансформаторов ТОЛ-типа
На рис. 4. представлены изображения устройства с разных видов и обозначения основных конструктивных параметров.
Таблица 2. Допустимые значения преобразователей вида ТОЛ.
Производство приборов ТОЛ – обеспечивает работу не повреждая обмотки, а также исключает возникновения коррозии на стальных деталях. Кроме того, такие приборы обладают высокой стойкостью к высоким температурам, механическим воздействиям и длительным периодом службы.
Трансформаторные устройства типа ТВТ
Расшифровка аббревиатуры:
Т- «трансформатор»;
В – «входной»;
Т- «транзисторный».
Такие СТ изготавливаются малогабаритными, и используются в умеренно-холодных климатических условиях. Рабочая температура колеблется (-60… +85°С), влажность менее 95%. В таких перепадах температуры имеет место вероятность частичного износа трансформатора.
Рис. 5 Вид трансформаторов ТВТ-типа
Таблица 3. Конструкционные размеры преобразователей вида ТВТ
Конструкционная особенность каркаса обеспечивает дополнительную жесткость посредством монтажных выводов. Участок между отводами рекомендуется выдерживать около 2,5 – 3,0 мм. При изготовлении применяются магнитные проводники в виде стержней с высокой магнитной проницаемостью (марки сталей – 79НМА и 50Н), а также высоким показателем индукции технического насыщения.
В конце стоит отметить, что устройства с согласующим трансформатором, перед тем как будут запущены в эксплуатацию, должны пройти необходимые испытания и быть гарантированными для дальнейшей службы. Условием, необходимым для обеспечения соответствующей степени надежности, является реализация ограничений перенапряжения, поскольку при работе СТ может подвергаться более серьезным нагрузкам и иметь большую вероятность износа, нежели при тех, которые проводились на предварительных испытаниях.
Видео о согласующем трансформаторе
Широкополосный трансформатор в практике согласования антенн | RUQRZ.COM
Широкополосные высокочастотные трансформаторы с магнитной связью широко применяются радиолюбителями для согласования различных устройств. В частности, широкополосный трансформатор, имеющий коэффициент трансформации сопротивлений 1:9 (коэффициент трансформации напряжений — 1:3) удобно использовать для согласования проволочных антенн, запитанных с конца. Однако следует напомнить, что для таких антенн обязательно требуются системы заземления или противовесы, и чем ниже входное сопротивление антенны, тем эффективнее должна быть «земля».
Широкополосный трансформатор с магнитной связью, имеющий коэффициент трансформации сопротивлений 1:9
«Классический» широкополосный трансформатор с магнитной связью, имеющий коэффициент трансформации сопротивлений 1:9, позволяет, например, трансформировать сопротивление с 50 до 450 Ом. Такой трансформатор можно использовать для согласования 50-омного коаксиального кабеля с длинными проволочными антеннами (70 — 100 м), имеющими входное сопротивление около 500 Ом и довольно малую реактивную составляющую, а также с антеннами Windom.
Согласования 50-омного коаксиального кабеля с длинными проволочными антеннами
Например, антенна Windom длиной 13,59 + 6,84 м (длина проволочного фидера — 4,9 м), предназначенная для работы в диапазонах 7,14 и 28 МГц, при питании с помощью широкополосного трансформатора обеспечила приемлемый КСВ в 50-омном коаксиальном кабеле.
КСВ в зависимости от диапазона
Несмотря на то что минимум КСВ часто находился за пределами любительских диапазонов, тем не менее, широкополосный трансформатор является вполне полезным устройством для согласования антенны Windom. Как известно, однопроводный фидер антенны Windom довольно трудно завести в помещение радиостанции без риска не только ухудшить работу антенны, но и в придачу получить проблемы электромагнитной совместимости с бытовой радиоаппаратурой. Используя широкополосный трансформатор, конец однопроводного фидера можно не заводить внутрь здания, а подвести к месту подключения противовесов, применяя для питания антенны коаксиальный кабель, который подключается к радиостанции. Дополнительного снижения уровня помех можно достичь, используя токовый дроссель, препятствующий излучению оплетки кабеля.
Как известно, коаксиальный кабель имеет определенное затухание. В результате КСВ, измеренный на выходе передатчика, может быть значительно меньше, чем при измерениях, проведенных непосредственно на клеммах антенны. Приводим результаты измерений на частоте 14 МГц для нескольких типовых кабелей.
результаты измерений на частоте 14 МГц для нескольких типовых кабелей
В другом случае для согласования штыревой антенны длиной 5 м с 50-омным кабелем использовался широкополосный трансформатор, намотанный на сердечнике из порошкового железа. Обмотка была выполнена из провода, применяемого для электропроводки, содержала 3×7 витков и имела индуктивность 8 мкГн. Измерялся КСВ в первичной обмотке (КСВвых) трансформатора и на выходе передатчика (КСВвх). Влияние роста затухания кабеля на КСВ в зависимости от частоты можно видеть ниже.
Влияние роста затухания кабеля на КСВ в зависимости от частоты
Таким образом, увеличение затухания в кабеле с повышением частоты приводит к уменьшению КСВ, измеряемого на выходе передатчика. Потери в кабеле неизбежны, а их снижение может повлечь за собой значительное увеличение стоимости антенно-фидерной системы. С этой точки зрения более эффективным решением при согласовании антенны с коаксиальным кабелем является использование LC-цепей, но конструкция широкополосного трансформатора значительно проще.
Применение трансформатора с магнитной связью, имеющего коэффициент трансформации сопротивлений 1:9, не предотвращает на практике появление высокого КСВ. Трансформатор с дополнительными обмотками позволяет получить 4-, 9-, 16- и 25-кратное преобразование сопротивлений и благодаря этому улучшить согласование 50-омного кабеля с антеннами, имеющими импеданс соответственно 200, 450, 800 и 1250 Ом. Однако коммутация отводов может значительно усложнить конструкцию согласующего устройства.
Разработка трансформатора, обеспечивающего пропорциональное преобразование, позволяет, в итоге, оптимизировать согласование и снизить суммарный КСВ до приемлемых значений. Однако ненагруженные части обмотки могут быть причиной появления паразитных резонансов, ухудшающих работу трансформатора.
Измерения, проведенные с трансформаторами, намотанными как на ферритовых сердечниках, так и на сердечниках из порошкового железа, показали, что с ростом числа витков частотная характеристика ухудшается независимо от индуктивности обмотки. На основе полученных результатов можно разработать следующую концепцию конструкции трансформатора.
Широкополосный трансформатор для определенного сопротивления нагрузки должен обеспечить такую индуктивность обмоток, чтобы активное сопротивление на самых низких рабочих частотах не менее чем в 4 раза превышало трансформируемое сопротивление. Это обеспечит пренебрежимо малое влияние индуктивности трансформатора на условия согласования. Однако этот принцип не удается применить в трансформаторе с магнитной связью. Теоретически он трансформирует сопротивление 450 Ом в 50 Ом, но на практике входное сопротивление антенны лежит в широких пределах (36 — 5000 Ом) и имеет в общем случае комплексный характер. Выполнение данного условия требовало бы, в итоге, чтобы реактивное сопротивление обмотки на наименьшей частоте составляло 20 кОм, что соответствует индуктивности 900 мкГн на частоте 3,5 МГц.
В том случае, когда основная индуктивность трансформатора должна оставаться низкой, она подлежит такой же трансформации, как сложный мнимый импеданс антенны. В результате получим реальную нагрузку сопротивлением 50 Ом.
Для трансформаторов, предназначенных для согласования линий, намотанных на сердечниках из порошкового железа, нагруженная добротность может составлять 10 — 20. Для сопротивления нагрузки R = 5000 Ом это означает, что реактивное сопротивление обмотки на наименьшей частоте может составлять 250 — 500 Ом. В оригинальном исполнении трансформатор содержал 3 обмотки по 9 или 7 витков, намотанных на сердечнике Т130-2, что давало соответственно индуктивность 8 или 4,85 мкГн и реактивное сопротивление соответственно 171 или 106 Ом на частоте 3,5 МГц. Для нагрузки 5000 Ом это соответствовало нагруженной добротности 28 или 47 (в диапазоне 1,8 МГц они были бы в два раза больше). В случае сердечника из порошкового железа добротность ненагруженной обмотки была еще больше требуемой нагруженной добротности. Это означает возможность использования трансформатора с такими низкими индуктивностями также на низкочастотных диапазонах, однако он будет работать на границе допустимого.
Для минимизации потерь энергии в катушках в выходных контурах передатчиков стремятся, чтобы их нагруженная добротность не превышала 10 — 15. Дополнительно низкое сопротивление обмоток затрудняет согласование по мере снижения частоты работы. На частотах выше 10 МГц потери в сердечнике не составляют существен
ной проблемы, и можно легко обеспечить согласование.
Предложение повышения индуктивности трансформатора — принципиально правильное, если имеются в виду низкочастотные диапазоны. Во избежание необходимости намотки чрезмерного числа витков вместо сердечника из порошкового железа следует применять ферритовый сердечник. Так, трансформатор, состоящий из четырех обмоток ло 9 витков, намотанных на сердечнике FT40-43 (расчетная индуктивность — 1,23 мкГн), на частоте 3,5 МГц имеет реактивное сопротивление 27 кОм и обеспечивает согласование в узком диапазоне сопротивлений.
Сердечники с большой магнитной проницаемостью проверены в конструкциях приемных антенн и обеспечивают улучшение согласования даже для коротких проводов и штыревых антенн, что позволяет отказаться от применения активных антенн. Однако в передающих устройствах, когда можно компенсировать влияние реактивности обмотки, оптимальным решением может стать использование больших сердечников из порошкового железа (например, Т200А или Т255А) либо феррито-никелево-цинковых сердечников с низкой проницаемостью.
Измерения, проведенные с использованием ВЧ моста, позволяют достаточно точно исследовать свойства трансформатора (например, появление паразитных резонансов). Эти резонансы, которые могут появиться при подключении антенны к одному из нижних отводов трансформатора, могут привести к снижению сопротивления нагрузки трансформатора до величины нескольких десятков ом. Особенно критичны с этой точки зрения трансформаторы, намотанные с большим числом отводов, особенно если большая часть обмотки остается ненагруженной. В случае нагрузки целой обмотки паразитный резонанс может появиться только в некоторых ситуациях (например, когда сопротивление антенны высокое и имеет комплексный характер, т.е. содержит реактивную составляющую). Паразитный резонанс должен бы был дополнительно попасть на частоты работы, для этого тоже необходимо избегать появления резонансов в области ниже 30 МГц.
Для области с малыми потерями и с малой проницаемостью можно выполнить это требование через соответствующее ограничение максимальной индуктивности обмотки. В случае сердечника с большой проницаемостью ситуация не столь критична, как для малой, что можно объяснить тем, что на высоких частотах большую роль играет способ выполнения обмотки, нежели величина проницаемости сердечника.
Эквивалентное параллельное сопротивление потерь для сердечников, выполненных из порошкового железа, выше, нежели для ферритовых сердечников с низкой проницаемостью. Независимо от типа сердечника это сопротивление растет с ростом индуктивности обмотки. При мощности передатчика 100 Вт не наблюдалось нагрева сердечников Т60 и ТХ36, однако сердечник из материала 43 с обмоткой 125 мкГн сильно нагревался, а сердечник из материала 77 с обмоткой 1,4 мГн — только немного, что можно объяснить относительно высокой индуктивностью обмотки.
Для устранения потерь в сердечнике эквивалентное параллельное сопротивление потерь должно быть значительно выше наибольшего входного сопротивления антенны. Для этого также считаются приемлемыми сопротивления от 5000 Ом на низких частотах и около 2000 Ом на частоте 30 МГц. Потери в сердечнике приводят к видимому «улучшению» КСВ, аналогично как и потери в питающем кабеле.
Как следует из представленных здесь противоречивых выводов, трансформаторы с магнитной связью нельзя считать идеальными согласующими устройствами. Однако они имеют простую конструкцию, небольшие потери и преобразуют импеданс антенны к границам, в которых возможно согласование с помощью типовых согласующих устройств (например, антенных тюнеров). В таблице ниже приведены данные широкополосных трансформаторов, в конструкции которых особое внимание было обращено на достижение низкой индуктивности обмоток, намотанных в четыре провода.
Данные широкополосных трансформаторов
На частоте 3,5 МГц при нагрузке сопротивлением 5000 Ом нагруженная добротность относительно низкая и составляет 2 — 5. Возможно ее снижение путем уменьшения индуктивности обмотки, но тогда не исключено, что на высших рабочих частотах появятся паразитные резонансы. При изготовлении трансформаторов рекомендуется использовать провода в тефлоновой изоляции, особенно при большой мощности передатчика.
CQ DL, №5/2005
Что еще почитать по теме:
Широкополосный согласующий трансформатор сопротивлений 1:9
Бюллетень Си-Би №12 Декабрь 1997 г
Автор Владислав «Ребус» (3А13277)
В статье “Антенна Бевереджа”, опубликованной в №7 за 1997г., мы обещали опубликовать устройство согласующего трансформатора. По разным причинам эта публикация задержалась. Принося свои извинения за задержку, приводим его описание. Входное сопротивление антенны составляет 400-500 Ом, поэтому для согласования ее с кабелем 50 Ом используется трансформатор 1:9, принципиальная схема которого приведена на рис.1. (Э.Ред, Справочное пособие по высокочастотной схемотехнике, “Мир”, М. 1990, с.12.)
Основные параметры трансформатора:
Полоса рабочих частот ………………..1 — 30 МГц,
КСВ в рабочей полосе частот ………..<1,1,
Потери ……………………………………..< 0,3 дБ,
Допустимая мощность …………………. 100 Вт.
Рис.1. Схема трансформатора НН 1:9. (Буквы НН в обозначении трансформатора означают несимметричный вход и выход.)
Трансформатор выполнен на сердечнике, состоящем из двух сложенных вместе ферритовых сердечников типоразмера К32х20х10 из материала 600НН. Могут быть использованы сердечники из материалов 1000НМ, 2000НМ (потери будут чуть выше) или 100НН (нижняя частота рабочей полосы частот увеличится до 5-6 МГц). Размер сердечника также не очень критичен. Сердечники больших типоразмеров могут быть с успехом использованы, но верхняя частота рабочей полосы частот при этом снизится пропорционально увеличению длины обмоток.
Обмотка выполнялась трехпроводной линией: двойным телефонным проводом (“лапша”) шириной 6 мм, под которым укладывался третий провод, диаметром 0,5 мм в лаковой изоляции. Обмотка содержит 6 витков.
Можно использовать и обычную телефонную “лапшу”, но она из-за своей жесткости требует больше терпения при укладке обмотки на сердечник.
Перед укладкой обмотки сердечник рекомендуется обмотать изоляционной или бумажной лентой в 1-2 слоя, чтобы защитить провода обмотки от его острых граней. Обмотка укладываются в один слой и закрепляется нитками или термоклеем. Концы проводов соединяются согласно рис.1. Начала проводов обмотки обозначены номерами 1,3,5, концы — номерами 2,4,6. Длину проводов, идущих к 50-Омному входу, постарайтесь сделать покороче.
Будьте внимательны: любая ошибка в распайке выводов делает трансформатор неработоспособным. Число витков при намотке на тороидальный сердечник равно числу продеваний в отверстие сердечника.
Трансформатор помещается в корпус (я использовал в качестве корпуса пластмассовую коробочку от крема), на котором устанавливаются ВЧ разъем и две клеммы.
Для фиксации трансформатора в корпусе нежелательно заливать весь объем компаундом (это нарушает волновые сопротивления линий), лучше для этого использовать прокладки из поролона или мягкого пенопласта.
Если предполагается использовать трансформатор на открытом воздухе, корпус необходимо герметизировать. Хороший вариант герметизации — заполнение внутреннего объема корпуса пеной “Макрофлекс”, или аналогичной, используемой для уплотнения строительных швов.
Разумеется, заливать его нужно после проверки работоспособности трансформатора, т.к. разобрать его уже будет невозможно…
Проверка трансформатора состоит в измерения КСВ с низкоомного входа. К выходным клеммам при этом должен быть присоединен безиндуктивный резистор величиной 450 Ом. Если распайка выводов выполнена правильно, трансформатор работает сразу. Если уровень КСВ не получается сразу достаточно малым, его можно улучшить, подобрав величину компенсирующего конденсатора (от 10 до 100 пФ), включаемого параллельно низкоомному входу.
Потери трансформатора измерить можно, если изготовить два идентичных образца, и, соединив между собой высокоомные выходы, получить четырехполюсник с входным и выходным сопротивлением 50 Ом. Потери при этом измеряются на два трансформатора.
Убедиться в том, что трансформатор выдерживает нужный уровень мощности, можно так: к высокоомному выходу подключается резистор 450 Ом с допустимой мощностью рассеивания 100 Вт и на вход подается сигнал с требуемой мощностью. Если трансформатор сделан правильно, заметного нагрева сердечника и обмоток быть не должно. Если сердечник греется, нужно увеличивать его сечение или число витков обмотки. Но учитывайте, что при большем числе витков труднее получить хороший КСВ на верхних частотах.
А где взять резистор на 100 Вт, да еще безиндуктивный?
Я использовал нагрузку, изготовленную из четырех резисторов МЛТ-2 120 Ом, включенных последовательно. Для того, чтобы получившийся резистор выдержал 100 Вт, необходимо погрузить его в воду. Вода имеет высокую диэлектрическую проницаемость, поэтому КСВ высокоомной нагрузки сильно ухудшается при погружении в воду (с 1,0 до 2,5-3,0).
Как же быть? Я нашел следующий простой выход: погрузил каждый из последовательно включенных резисторов в отдельную ячейку, заполненную водой. При таком варианте КСВ ухудшается незначительно (удалось получить КСВ около 1,5, что обеспечило безопасность усилителя, которым я пользовался при испытаниях трансформатора). В качестве ячеек хорошо подходит пластиковая форма из коробки с конфетами.
Вот и все. Желаю успеха!
Широкополосные трансформаторы | RUQRZ.COM — сайт радиолюбителей.
Известно, что в старых распространенных радиолюбительских конструкциях всегда рекомендовались ферриты с проницаемостью 2000…600. А они ведь очень низкочастотные! Однако же в каком ни будь “Радио-76” они стоят и на входе и во всех смесителях. Что, авторы этих конструкций, известные радиолюбители, совершили ошибку? Отнюдь! Они то помнили и понимали, что энергия в ШПТЛ-ах передается не через перемагничивание сердечника, а непосредственно от элемента линии к элементу. Феррит здесь нужен для того, что бы повысить сопротивление линии для синфазных токов и в качестве “сборщика” полей рассеивания. Т.е. поглотителя энергии, которая паразитно наводится вокруг линии. Я, например, в своих конструкциях на КВ часто использую ферритовые кольца НМ2000. Это не значит, что надо применять только такие ферриты. Я хочу сказать, что и с такими магнитопроводами трансформаторы вполне нормально работают в широкой полосе радиочастот.
Какие же условия должны соблюдаться для того, что бы трансформатор был именно на длинных линиях?
1) Его обмотки должны представлять собой длинные линии с известным волновым сопротивлением. Проще говоря — все “обмотки” трансформатора должны быть сделаны из параллельных или слегка скрученных проводов с одинаковыми расстояниями между ними. Конструкции трансформаторов, которые выполнены “традиционным” способом (первичная обмотка на одной части кольца, вторичная на другой) НЕ РАБОТОСПОСОБНЫ! В этом можно убедиться, сделав простой эксперимент. Намотайте трансформатор на кольце с коэффициентом трансформации 1:1 или 1:2 (эти цифры еще один повод для обсуждения) и нагрузите на соответственный эквивалент нагрузки, сделанный, например, из резистора МЛТ-2. В первом случае — это 50 Ом, а во втором — 200 Ом. Подайте на трансформатор постоянный сигнал небольшой мощности с любого современного трансивера, используя его, как ГСС. Так вот, когда трансформатор намотан “традиционным” способом, то он дает КСВ на входе, равный БЕСКОНЕЧНОСТИ! А когда ваш трансформатор по конструкции — истинный ШПТЛ, то КСВ будет около 1 и в широком диапазоне частот. Опыт можно повторить с различными ферритами. Такой эксперимент очень показателен, его можно проделать не выходя из дома, на своем рабочем столе,
2) ШПТЛ должен быть нагружен по входу и выходу на АКТИВНЫЕ нагрузки равные примерно волновому сопротивлению линий из которых он сделан.
Типовой пример: Наш брат — радиолюбитель применяет для “симметрирования” антенн огромные по величине ферритовые кольца возле полотна. Однако описанный выше эксперимент с активными нагрузками показывает, что колечко диаметром в 10…20 мм выдерживает мощность в 100 Вт и не нагревается! Так где же правда? Правда, в том, что антенна (диполь или рамка) имеет низкое активное сопротивление ТОЛЬКО на одной единственной частоте, частоте первой гармоники антенны. Высокие активные сопротивления, которые имеются на четных гармониках, на практике неприменимы. Низкоомные резонансы на нечетных верхних гармониках попадают уже не в радиолюбительские диапазоны. А на остальных частотах ВСЕГДА будут присутствовать значительные реактивности. Они вызывают сильный нагрев кольца и поэтому оно должно иметь большую поверхность охлаждения т.е. быть БОЛЬШИМ. К примеру, в импортных стоваттных трансиверах на выходе ПА стоят микроскопические ферритовые бинокли. И… НИЧЕГО! Это не из-за того, что они сделаны из диковинного материала. Просто одно из требований к выходной нагрузке для таких трансиверов — что бы она была АКТИВНОЙ. (Другое требование – 50 Ом). Следует опасаться тех публикаций, где рекомендуют мотать строго определенное число витков для ВЧ трансформатора. Это признак еще одной “болезни сознания” — квазирезонансного использования ШПТЛ-а. Вот от туда “ростут ноги” у легенды о необходимости применять ВЧ ферриты. Но… Широкополосности то уже НЕТ!
Теперь про упомянутые 1:1 и 1:2… В школьном курсе физики коэффициент трансформации — это соотношение витков первичной и вторичной обмоток. Т.е. соотношение входных и выходных напряжений. Почему же у радиолюбителей этот параметр превратился “по умолчанию” в коэффициент трансформации сопротивлений? Да потому, что трансформация сопротивлений более важна в нашей среде. Но не следует доходить до апсурда! Вот разговор подслушанный в эфире – два радиолюбителя обсуждают как сделать тансформатор с 50 на 75 Ом. Один предлагает мотать его с соотношением витков 1:1,5. И когда им кто-то робко возражает, в ответ слышны только обвинения в технической неграмотности. И подобное случается на каждом шагу! А всего лишь — ТЕРМИНЫ! Получается, что великий закон сохранения энергии для них не действует и можно при напряжении на входной обмотке, предположим 1 Вольт, подавая на 50-ти омный вход трансформатора мощность 20 мВт, на 75-ти оммном выходе снимать уже 30 мВт. Вот такой “вечный двигатель” получается! Здесь всего то лишь надо помнить, что коэффициент трансформации сопротивлений находится в квадратичной зависимости от коэффициента трансформации напряжений. Другими словами трансформатор 1:2 будет трансформировать сопротивление 50 Ом в 200 Ом, а трансформатор 5:6 сопротивление 50 Ом в 75 Ом. Почему я написал 5:6, а не 1:1,2? Вот здесь – один шаг до конструкции. Как уже говорилось, ШПТЛ должен мотаться линией. А линия – это два или несколько сложенных вместе и слегка скрученных провода. Волновое сопротивление такой линии зависит от диаметра проводов, расстояния между их центрами и шага скрутки. Для трансформации 50 Ом в 75 Ом необходимо использовать линию из ШЕСТИ проводов и, если нет требования к симметрированию, соединить эти провода по схеме
Как вы заметили, схема тоже нарисована по-особому, не как обычный трансформатор. Такое изображение лучше отражает суть конструкции. Привычное схемное изображение, Рис.2, и, соответственно, “традиционная” конструкция автотрансформатора с однослойной обмоткой и отводом от 0,83 общего количества витков при практических испытаниях “на столе” показывает гораздо худшие результаты по широкополосности.
По конструктивным и эксплуатационным соображениям нежелательно так же делать ШПТЛ с укороченным участком одной из линий. Рис.3. Несмотря на то, что это позволяет легко делать любые, даже дробные, коэффициенты трансформации. Такое решение приводит к появлению неоднородности в линии, вследствии чего ухудшается широкополосность.
Интересный вопрос: — “Какие предельные коэффициенты трансформации можно получить в ШПТЛ?” Особенно интересно найти ответ на этот вопрос тем, кто “заболел” идеей сделать широкополосный апериодический ламповый усилитель мощности, где необходимо трансформировать сопротивление порядка 1..2 КОм со стороны лампы в сопротивление 50 Ом. Эксперимент “на столе” дает довольно интересный результат. Опять здесь все зависит от конструкции обмоток. К примеру, если сделать “традиционный” трансформатор или автотрансформатор с коэффициентом трансформации, предположим, 1:10, нагрузить его на положенное активное сопротивление, равное 5 КОм и промерить КСВ на пятидесятиоммной стороне, то от результата волосы могут встать дыбом! А если в добавок снять АЧХ, то будет понятно, что от широкополосности ничего не осталось. Имеется один явный, довольно острый резонанс, обусловленный индуктивностью.
Эту больную тему можно было бы еще развивать до бесконечности, но… Все затмила конструкция широкополосного симметрирующего трансформатора на трансфлюксоре (двухдырочном ферритовом сердечнике) Рис.4, которую мне удалось “подсмотреть” в импортной антенне для телевизора типа “усы”. Изображение на рисунку конечно схематическое — на самом деле обмотки состоят из нескольких (3…5) витков. Долго с недоумением я рассматривал его конструкцию, пытаясь понять систему намотки. Наконец удалось нарисовать расположение “обмоток”. Вот уж – пример использования истинных длинных линий!
Если бы я не знал,что это линии, то подумал бы, что я сумасшедший! Особенно эта красная короткозамкнутая обмотка… Но, почему же мы не удивляемся в случае, когда, например в кабельном U-колене, необходимо соединить в одной точке оплетку с двух концов коаксиального кабеля. Тоже, ведь – ЛИНИЯ! При настольном эксперименте на эквивалент нагрузки этот микротрансформатор, предназначенный для работы на частотах в сотни мегагерц, показал великолепные результаты на значительно более низких частотах, вплоть до диапазона 40 м и при полной мощности трансивера.
Попутно разберемся с легендами о симметричности и симметрировании. Выясним, как очень просто определить является ли тот или иной ШПТЛ симметрирующим, или авторы только заявляют об этом свойстве, а симметрии там и в помине нет. Тут нам снова поможет “Его Величество – Эксперимент” и “Его высочество – теоретический анализ результатов эксперимента”. Сперва разберемся, что такое симметричный выход и чем он отличается от несимметричного. Оказывается тут все зависит от конструкции трансформатора. Вот, например, самый простой случай – ШПТЛ с коэффициентом трансформации 1:1. Любой настоящий или мнимый ШПТЛ (Бывают и такие! И не редко!) можно легко проверить с помощью своего домашнего трансивера. Достаточно присоединить к выходу трансформатора активную нагрузку (эквивалент) с сопротивлением, соответствующим к-ту трансформации, и проверить КСВ на 50-ти омном входе при максимальной мощности передатчика (максимальная точность КСВ метра) в заданном диапазоне частот. Если ШПТЛ настоящий, то КСВ должен быть близок к идеалу т.е. 1,0 и в ШИРОКОЙ полосе частот (на то он и ШИРОКОПОЛОСНЫЙ трансформатор!) Желательно иметь открытый на передачу трансивер с непрерывным перекрытием и не в коем случае не включать внутренний антенный тюнер. Свойство симметрии проверяется при приеме с помощью ПАЛЬЦА (не 21-го! Хотя, можно и им!). Симметрия — суть РАВНОПРАВИЕ обеих выводов нагрузки относительно земли (корпуса трансивера). При приеме какой-либо станции (можно вещательной, это удобнее…) при прикосновении ПАЛЬЦЕМ или отверткой к концам нагрузки, присоединенной к СИММЕТРИЧНОМУ выходу ШПТЛ, по показаниям S-метра и на слух все должно быть одинаково. Но уровень сигнала должен быть на один бал (-6 дБ или два раза по U) меньше на каждом несимметричном выходе. (это в случае к-та трансформации 1:1). В качестве нагрузки кратковременно даже для 100 Вт передачи удобно применять резистор МЛТ-2 на 51 Ом. При этом наблюдается интересный эффект — во время приема синала через симметрирующий транс, при проведении ПАЛЬЦЕМ по корпусу этого резистора с одного края будет слышна радиостанция, в центре резистора — ее слышно не будет, а с другого края — будет слышно так же, как с первого. Только при таких условиях трансформатор можно считать симметрирующим. Попробуйте разные конструкции ШПТЛ-ов, которые публикуются в литературе и в интернете. Результаты Вас могут сильно удивить…
Короче! Делайте свой смеситель на любом кольце с НЧ ферритом. Испытаете — напишите! Экспериментируйте смелее!
Сергей Макаркин, RX3AKT
Что еще почитать по теме:
7. Согласующий трансформатор | 9. Трансформаторы | Часть2
7. Согласующий трансформатор
Согласующий трансформатор
Поскольку трансформаторы способны понижать или увеличивать напряжение и ток на любую величину, а так же эквивалентно передавать энергию между первичной и вторичной обмотками, их можно использовать для «преобразования» импеданса нагрузки на любую величину. Последняя фраза заслуживает некоторого объяснения, поэтому давайте рассмотрим, что это означает.
Задача нагрузки обычно состоит в том, чтобы сделать что-то продуктивное с рассеиваемой мощностью. В случае с резистивным нагревательным элементом практическая цель рассеиваемой мощности состоит в том, чтобы нагреть что-либо. Все нагрузки рассчитываются на безопасное рассеивание определенного максимального количества энергии, но, две нагрузки с одинаковой номинальной мощностью не обязательно должны быть идентичными. Давайте рассмотрим два резистивных нагревательных элемента мощностью 1000 Вт каждый:
Оба нагревателя рассеивают по 1000 ватт мощности, но делают это при разных уровнях напряжения и тока (250 вольт 4 ампера, и 125 вольт 8 ампер). Применив закон Ома (R = U / I) для определения необходимого сопротивления этих нагревательных элементов, мы получим 62,5 Ом и 15,625 Ом соответственно. Поскольку обе нагрузки находятся в цепях переменного тока, мы можем говорить не о простом их сопротивлении току, а об импедансе (хотя в нашем случае простое сопротивление — это всё, из чего они состоят, и у них нет реактивного сопротивления). Нагреватель на 250 вольт считается нагрузкой с более высоким импедансом, чем нагреватель на 125 вольт.
Если мы возьмем нагревательный элемент рассчитанный на 250 В (из первой схемы), и подключим его к схеме с источником питания на 125 В (ко второй схеме), то нас ждет большое разочарование. При импедансе (сопротивлении) 62,5 Ом ток в схеме будет составлять всего 2 А (I = U / R; 125 / 62,5), а мощность, рассеиваемая на нагревательном элементе, будет составлять всего 250 Вт (P = IU; 125 x 2) или четвертую часть от его номинальной мощности. Сопротивление нагревательного элемента и напряжение источника в этом случае будут несогласованными, и мы не получим полного рассеивания мощности от нагревателя.
Однако, не все так плохо. У нас получится использовать нагревательный элемент на 250 вольт в схеме с питанием 125 вольт, если мы воспользуемся повышающим трансформатором:
Правильное соотношение обмоток трансформатора обеспечивает повышение напряжения и понижение тока до таких значений, которые необходимы для нормальной работы нагрузки, не соответствующей данному источнику питания. Давайте внимательно посмотрим на параметры первичной цепи этой схемы: напряжение в ней составляет 125 вольт, а ток — 8 ампер. При таких значениях напряжения и тока источник питания «знает», что он питает нагрузку с импедансом 15,625 Ом (R = E / I). Однако, во вторичной цепи прекрасно себя «чувствует» нагрузка с импедансом 62,5 Ом. Отсюда можно сделать вывод, что наш повышающий трансформатор преобразовал не только напряжение и ток, но и импеданс.
Коэффициенты преобразования напряжения, тока и импеданса можно рассчитать по следующим формулам:
Все это согласуется с рассмотренным ранее примером повышающего трансформатора 2:1 и коэффициентом преобразования импеданса от 62,5 Ом до 15,625 Ом (коэффициент 4:1 — это 2:1 в квадрате). Преобразование импеданса — это очень полезная особенность трансформаторов, позволяющая нагрузке рассеивать свою полную номинальную мощность даже в том случае, если система питания не обдадает необходимым напряжением, чтобы сделать это напрямую.
А теперь давайте вспомним Теорему о максимуме отдаваемой мощности. В ней говорится, что сопротивление нагрузки будет рассеивать максимальное количество энергии только в том случае, когда это сопротивление будет равно сопротивлению Тевенина / Нортона источника питания. Заменив слово «сопротивление» на «импеданс», мы получим версию данной теоремы для переменного тока. Если мы хотим получить максимальное рассеивание мощности нагрузкой, мы должны правильно согласовать импеданс нагрузки и импеданс источника питания (Тевенина / Нортона). Этот вопрос, как правило, больше касается специализированных электрических цепей, таких как радиопередатчики, антенны и аудиоусилители, акустические системы. Давайте возьмем систему аудиоусилителя и посмотрим, как она работает:
При внутреннем импедансе 500 Ом усилитель сможет отдать полную мощность только на нагрузку (динамик), также имеющую импеданс 500 Ом. Такая нагрузка будет понижать более высокое напряжение и потреблять меньше тока, чем потреблял бы динамик с импедансом 8 Ом, рассеивая при этом такое же количество энергии. Если динамик на 8 Ом подключить непосредственно к усилителю с импедансом 500 Ом, как показано на рисунке, то несоответствие импедансов приведет к значительному ухудшению характеристик (понижению пиковой мощности). Кроме того, пытаясь управлять динамиком с низким импедансом, усилитель значительное количество энергии будет рассеивать в виде тепла.
Чтобы наша система работала лучше, можно использовать трансформатор, который будет согласовывать разные импедансы. Поскольку мы переходим от источника питания с высоким импедансом (высокое напряжение, низкий ток) к нагрузке с низким импедансом (низкое напряжение, большой ток), нам необходимо использовать понижающий трансформатор:
Согласующий трансформатор согласовывает импеданс усилителя (500 Ом) с импедансом динамика (8 Ом) с целью достижения максимальной эффективности.
Чтобы получить коэффициент преобразования импеданса 500 : 8, нам понадобится соотношение витков первичной и вторичной обмоток равное квадратному корню из 500 : 8 (или квадратному корню из 62,5 : 1 или 7,906 : 1). При наличии такого трансформатора динамик будет нагружать усилитель до необходимого предела, потребляя при этом мощность на нужных уровнях напряжения и тока (чтобы соблюсти Теорему о максимуме передаваемой мощности и обеспечить наиболее эффективную подачу мощности в нагрузку). Трансформатор в данном случае будет называться согласующим.
Любой, кто ездил на «скоростном» велосипеде, может интуитивно понять принцип работы согласующего трансформатора. Ноги человека будут отдавать максимальную мощность при вращении педалей с определенной скоростью (от 60 до 90 оборотов в минуту). Выше или ниже этой скорости вращения мышцы ног человека менее эффективно вырабатывают энергию. Целью «звездочек» велосипеда является согласование импеданса ног водителя с условиями езды, чтобы они всегда вращали педали с оптимальной скоростью.
Если велосипедист попытается начать движение на «высокой» передаче, ему будет очень тяжело сдвинуться с места. Почему это произойдет, потому что велосипедист слаб? Конечно же нет. Это произойдет потому, что высокое передаточное число цепи и звездочек выбранной передачи представляет несоответствие между условием начала движения (большая инерция, которую нужно преодолеть) и ногами велосипедиста (для достижения максимальной выходной мощности ему необходимо вращать педали со скоростью 60-90 об / мин ). С другой стороны, выбор слишком «низкой» передачи позволит велосипедисту незамедлительно начать движение, но ограничит максимальную скорость, которую он сможет достичь. Опять же, является ли отсутствие скорости признаком слабости в ногах велосипедиста? И снова нет. Это произойдет потому, что более низкое передаточное число выбранной передачи создст другой тип несоответствия между условием начала движения (низкая нагрузка) и ногами велосипедиста (потеря мощности при вращении быстрее, чем 90 об / мин). То же самое касается и источников электроэнергии с их нагрузками: для максимальной эффективности системы должно быть соответствие импедансов. В цепях переменного тока трансформаторы выполняют ту же функцию, что и звездочки с цепью на велосипеде, они согласуют импедансы источника и нагрузки.
Согласующие трансформаторы по конструкции или внешнему виду принципиально не отличаются от трансформаторов любого другого типа. На следующей фотографии вы можете увидеть небольшой согласующий трансформатор (шириной около двух сантиметров), использующийся в аудиоусилителях:
На этой печатной плате, в верхнем правом углу, слева от резисторов R2 и R1, можно увидеть другой согласующий трансформатор. Он обозначен как «T1»: