Site Loader

Содержание

Маркировка SMD-резисторов: хитрости вычисления номинала

Аббревиатура SMD часто встречается при монтаже или изучении электронных схем. Это определённый тип компонентов, пришедших на замену классической сквозной пайке. Так как  размеры SMD-составляющих значительно отличаются от обычных, то и маркировка на них используется другая. В этой статье мы расскажем, как прочитать маркировку SMD-резисторов, что это вообще такое, и какие способы определения номинала существуют.

Из-за своих малых размеров резисторы обладают наиболее компактным способом маркировки — цифровым
ФОТО: universal-solder.ca

Содержание статьи

Что такое SMD

SMD – английская аббревиатура, обозначающая Surface Mounted Device, то есть – устройство, монтируемое на поверхность. В целом, под SMD понимается метод нанесения компонентов на печатную плату, который ещё называют поверхностным. Ему противопоставляется классический метод — сквозной монтаж, когда ножки элементов продеваются в отверстия монтажной платы и фиксируются в них.

Поверхностный монтаж очень часто сочетается с простым «сквозным»
ФОТО: wikimedia.org

SMD подразумевает установку прямо на токопроводящие дорожки платы. Такой подход позволил значительно сэкономить место на плате, уменьшить размер компонентов и, в целом, удешевить и автоматизировать процесс монтажа. Тем не менее, на практике часто встречается гибрид обеих технологий — сквозного монтажа и поверхностного.

Назначение резисторов

Назначение SMD-резисторов то же самое, что и  у обычных — преобразование силы тока в напряжение и наоборот с помощью имеющегося у него сопротивления. Таким образом, основная величина, по которой можно определить нужный резистор — сопротивление. Измеряется оно в Омах. Соответственно, при маркировке на элементе указывается именно количество Ом.

Размеры и обозначения

SMD-резисторы имеют компактные размеры. Самый маленький типоразмер может быть всего 0,4×0,2 мм. Поэтому от стандартной цветовой маркировки решили отказаться. Вместо неё сейчас используется три разных типа обозначений: 3 цифры, 4 цифры и 2 цифры и буква. Но логика распознавания элемента у них одна.

3 и 4 цифры

Всё довольно просто и логично — есть три цифры. Две первые — мантисса, третья — степень, в которую нужно возвести число 10 для получения множителя. Перемножив это всё, получим итоговое сопротивление.

Чёрные «детальки» на плате — SMD-резисторы
ФОТО: blogspot.com

Например, на резисторе стоит 312. 31 — основание, 2 — степень числа 10. В итоге, получается нехитрое выражение 31·10² или 31·100 = 3100 Ом. На самом деле, чтобы не проводить всех этих математических операций, можно просто запомнить, что к  первым двум цифрам нужно прибавить указанное третьей цифрой количество нулей. То есть, к 31 просто добавить два нуля.

Маркировка с четырёхзначными числами не отличается методом расшифровки. Просто применяются они для резисторов с точностью в 1%. Например, 7920 будет обозначать всего 792 Ом, так как 10° = 1, и после умножения получаем 792. Или используя более простую методику — после 792 нужно добавить 0 нулей, то есть ни одного.

Цифры и буквы в обозначениях

Тут всё немного усложняется. Во-первых, встречается два вида обозначений: сначала цифры, потом буква и наоборот. Первый используется для маркировки элементов с точностью 1% из номинального ряда Е96. Второй встречается на компонентах с точностью 2%, 5% и 10% из номинальных рядов Е12 и Е24.

Обозначение с двумя цифрами и буквой чем-то похоже по логике на простые цифровые обозначения. Но, так как номиналы сопротивлений берутся из номинального ряда Е96, то закономерности в символах обнаружить не удастся, понадобится таблица. Итак, первые две цифры обозначают код, согласно которому в таблице нужно найти соответствующую мантиссу. Буква — это степень десяти. Вариантов здесь немного и есть хоть какая-то логика: S или Y дают 10־², R или X – 10־¹. Затем по нарастанию: А — 10°или 1, B – 10¹, C – 10² и так далее.

Таблица соответствия цифровых кодов и мантисс
ФОТО: blogspot.com

Например, имеем резистор 49R. Смотрим в таблицу — получаем мантиссу 316. Литера R говорит нам, что степень десяти равна -1. То есть, нужно не умножать на 10, а, наоборот — разделить. В итоге, получаем значение 31,6 Ом.

Второй вариант цифро-буквенных обозначений подчиняется тому же принципу, только здесь в цифровом коде ещё зашифрована точность резистора.

Таблица соответствия цифровых кодов и мантисс
ФОТО: blogspot.com

Пример резистор D60! Литера D означает 10³. А код 60 из таблицы даёт число 820. Перемножив их, мы получим 820000 Ом или 820 кОм с точностью 10%.

Как видно, способ маркировки только цифрами гораздо удобнее и проще, хотя и не позволяет обозначить некоторые номиналы резисторов.

Онлайн-сервисы

Если под рукой есть интернет, то для определения номинала резистора можно воспользоваться онлайн-сервисами. Их часто делают небольшие интернет-магазинчики электронных компонентов на своих сайтах. Также есть и отдельные ресурсы, включающие в себя комплекс различных конвертеров и определителей элементов. Вот самый простой пример: https://wpcalc.com/markirovka-smd-rezistorov/.

На сайте можно узнать номинал резистора, и, наоборот, как будет выглядеть маркировка для определённого сопротивления.

https://www.asutpp.ru/kalkulyator-markirovki-smd-rezistorov.html  — аналогичный сервис, с тем же функционалом.

Тоже самое делает сервис https://allcalc.ru/node/940. В общем, подобных инструментов в сети предостаточно.

Естественно, что бывалые радиолюбители узнают номинал одним взглядом. Но для тех, кто только осваивает основы электроники, статья пригодится. Если вы знаете о каких-то особенностях SMD-маркировки резисторов, можете поделиться ими в комментариях.

Предыдущая

ИнженерияОбзор системы тёплый пол Devi: особенности, плюсы и минусы

Следующая

ИнженерияВиды шаровых муфтовых кранов: назначение, устройство, некоторые модели

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Виды смд компонентов. SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор. SMD-диоды и SMD-светодиоды

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные , предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код , а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

В наш бурный век электроники главными преимуществами электронного изделия являются малые габариты, надежность, удобство монтажа и демонтажа (разборка оборудования), малое потребление энергии а также удобное юзабилити (от английского – удобство использования). Все эти преимущества ну никак не возможны без технологии поверхностного монтажа – SMT технологии (S urface M ount T echnology ), и конечно же, без SMD компонентов.

Что такое SMD компоненты

SMD компоненты используются абсолютно во всей современной электронике. SMD (S urface M ounted D evice ), что в переводе с английского – “прибор, монтируемый на поверхность”. В нашем случае поверхностью является печатная плата, без сквозных отверстий под радиоэлементы:

В этом случае SMD компоненты не вставляются в отверстия плат. Они запаиваются на контактные дорожки, которые расположены прямо на поверхности печатной платы. На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, на котором раньше были SMD компоненты.


Плюсы SMD компонентов

Самыми большим плюсом SMD компонентов являются их маленькие габариты. На фото ниже простые резисторы и :



Благодаря малым габаритам SMD компонентов, у разработчиков появляется возможность размещать большее количество компонентов на единицу площади, чем простых выводных радиоэлементов. Следовательно, возрастает плотность монтажа и в результате этого уменьшаются габариты электронных устройств. Так как вес SMD компонента в разы легче, чем вес того же самого простого выводного радиоэлемента, то и масса радиоаппаратуры будет также во много раз легче.

SMD компоненты намного проще выпаивать. Для этого нам потребуется с феном. Как выпаивать и запаивать SMD компоненты, можете прочитать в статье как правильно паять SMD . Запаивать их намного труднее. На заводах их располагают на печатной плате специальные роботы. Вручную на производстве их никто не запаивает, кроме радиолюбителей и ремонтников радиоаппаратуры.

Многослойные платы

Так как в аппаратуре с SMD компонентами очень плотный монтаж, то и дорожек в плате должно быть больше. Не все дорожки влезают на одну поверхность, поэтому печатные платы делают многослойными. Если аппаратура сложная и имеет очень много SMD компонентов, то и в плате будет больше слоев. Это как многослойный торт из коржей. Печатные дорожки, связывающие SMD компоненты, находятся прямо внутри платы и их никак нельзя увидеть. Пример многослойных плат – это платы мобильных телефонов, платы компьютеров или ноутбуков (материнская плата, видеокарта, оперативная память и тд).

На фото ниже синяя плата – Iphone 3g, зеленая плата – материнская плата компьютера.



Все ремонтники радиоаппаратуры знают, что если перегреть многослойную плату, то она вздувается пузырем. При этом межслойные связи рвутся и плата приходит в негодность. Поэтому, главным козырем при замене SMD компонентов является правильно подобранная температура.

На некоторых платах используют обе стороны печатной платы, при этом плотность монтажа, как вы поняли, повышается вдвое. Это еще один плюс SMT технологии. Ах да, стоит учесть еще и тот фактор, что материала для производства SMD компонентов уходит в разы меньше, а себестоимость их при серийном производстве в миллионах штук обходится, в прямом смысле, в копейки.

Основные виды SMD компонентов

Давайте рассмотрим основные SMD элементы, используемые в наших современных устройствах. Резисторы, конденсаторы, катушки индуктивности с малым номиналом, и другие компоненты выглядят как обычные маленькие прямоугольники, а точнее, параллелепипеды))

На платах без схемы невозможно узнать, то ли это резистор, то ли конденсатор то ли вообще катушка. Китайцы метят как хотят. На крупных SMD элементах все-таки ставят код или цифры, чтобы определить их принадлежность и номинал. На фото ниже в красном прямоугольнике помечены эти элементы. Без схемы невозможно сказать, к какому типу радиоэлементов они относятся, а также их номинал.


Типоразмеры SMD компонентов могут быть разные. Вот есть описание типоразмеров для резисторов и конденсаторов. Вот, например, прямоугольный SMD конденсатор желтого цвета. Еще их называют танталовыми или просто танталами:


А вот так выглядят SMD :



Есть еще и такие виды SMD транзисторов:


Которые обладают большим номиналом, в SMD исполнении выглядят вот так:



Ну и конечно, как же без микросхем в наш век микроэлектроники! Существует очень много SMD типов корпусов микросхем , но я их делю в основном на две группы:

1) Микросхемы, у которых выводы параллельны печатной плате и находятся с двух сторон или по периметру.


2) Микросхемы, у которых выводы находятся под самой микросхемой. Это особый класс микросхем, называется BGA (от английского Ball grid array – массив из шариков). Выводы таких микросхем представляют из себя простые припойные шарики одинаковой величины.

На фото ниже BGA микросхема и обратная ее сторона, состоящая из шариковых выводов.


Микросхемы BGA удобны производителям тем, что они очень сильно экономят место на печатной плате, потому что таких шариков под какой-нибудь микросхемой BGA могут быть тысячи. Это значительно облегчает жизнь производителям, но нисколько не облегчает жизнь ремонтникам.

Резюме

Что же все-таки использовать в своих конструкциях? Если у вас не дрожат руки, и вы хотите сделать, маленького радиожучка, то выбор очевиден. Но все-таки в радиолюбительских конструкциях габариты особо не играют большой роли, да и паять массивные радиоэлементы намного проще и удобнее. Некоторые радиолюбители используют и то и другое. Каждый день разрабатываются все новые и новые микросхемы и SMD компоненты. Меньше, тоньше, надежнее. Будущее, однозначно, за микроэлектроникой.

  1. Введение
  2. Корпуса SMD компонентов
  3. Типоразмеры SMD компонентов
    • SMD резисторы
    • SMD конденсаторы
    • SMD катушки и дроссели
  4. SMD транзисторы
  5. Маркировка SMD компонентов
  6. Пайка SMD компонентов

Введение

Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются «SMD». По-русски это значит «компоненты поверхностного монтажа». Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово «запекают» и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.

Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся.

Для тех, кто впервые столкнулся с SMD-компонентами естественным является смятение. Как разобраться в их многообразии: где резистор, а где конденсатор или транзистор, каких они бывают размеров, какие корпуса smd-деталей существуют? На все эти вопросы ты найдешь ответы ниже. Читай, пригодится!

Корпуса чип-компонентов

Достаточно условно все компоненты поверхностного монтажа можно разбить на группы по количеству выводов и размеру корпуса:

выводы/размерОчень-очень маленькиеОчень маленькиеМаленькиеСредние
2 выводаSOD962 (DSN0603-2) , WLCSP2*, SOD882 (DFN1106-2) , SOD882D (DFN1106D-2) , SOD523, SOD1608 (DFN1608D-2)SOD323, SOD328SOD123F, SOD123WSOD128
3 выводаSOT883B (DFN1006B-3) , SOT883, SOT663, SOT416SOT323, SOT1061 (DFN2020-3)SOT23SOT89, DPAK (TO-252) , D2PAK (TO-263) , D3PAK (TO-268)
4-5 выводовWLCSP4*, SOT1194, WLCSP5*, SOT665SOT353SOT143B, SOT753SOT223, POWER-SO8
6-8 выводовSOT1202, SOT891, SOT886, SOT666, WLCSP6*SOT363, SOT1220 (DFN2020MD-6) , SOT1118 (DFN2020-6)SOT457, SOT505SOT873-1 (DFN3333-8), SOT96
> 8 выводовWLCSP9*, SOT1157 (DFN17-12-8) , SOT983 (DFN1714U-8)WLCSP16*, SOT1178 (DFN2110-9) , WLCSP24*SOT1176 (DFN2510A-10) , SOT1158 (DFN2512-12) , SOT1156 (DFN2521-12)SOT552, SOT617 (DFN5050-32) , SOT510

Конечно, корпуса в таблице указаны далеко не все, так как реальная промышленность выпускает компоненты в новых корпусах быстрее, чем органы стандартизации поспевают за ними.

Корпуса SMD-компонентов могут быть как с выводами, так и без них. Если выводов нет, то на корпусе есть контактные площадки либо небольшие шарики припоя (BGA). Также в зависимости от фирмы-производителя детали могут могут различаться маркировкой и габаритами. Например, у конденсаторов может различаться высота.

Большинство корпусов SMD-компонентов предназначены для монтажа с помощью специального оборудования, которое радиолюбители не имеют и врядли когда-нибудь будет иметь. Связано это с технологией пайки таких компонентов. Конечно, при определённом упорстве и фанатизме можно и в домашних условиях паять .

Типы корпусов SMD по названиям

НазваниеРасшифровкакол-во выводов
SOTsmall outline transistor3
SODsmall outline diode2
SOICsmall outline integrated circuit>4, в две линии по бокам
TSOPthin outline package (тонкий SOIC)>4, в две линии по бокам
SSOPусаженый SOIC>4, в две линии по бокам
TSSOPтонкий усаженный SOIC>4, в две линии по бокам
QSOPSOIC четвертного размера>4, в две линии по бокам
VSOPQSOP ещё меньшего размера>4, в две линии по бокам
PLCCИС в пластиковом корпусе с выводами, загнутыми под корпус с виде буквы J >4, в четыре линии по бокам
CLCCИС в керамическом корпусе с выводами, загнутыми под корпус с виде буквы J >4, в четыре линии по бокам
QFPквадратный плоский корпус>4, в четыре линии по бокам
LQFPнизкопрофильный QFP>4, в четыре линии по бокам
PQFPпластиковый QFP>4, в четыре линии по бокам
CQFPкерамический QFP>4, в четыре линии по бокам
TQFPтоньше QFP>4, в четыре линии по бокам
PQFNсиловой QFP без выводов с площадкой под радиатор>4, в четыре линии по бокам
BGABall grid array. Массив шариков вместо выводовмассив выводов
LFBGAнизкопрофильный FBGAмассив выводов
CGAкорпус с входными и выходными выводами из тугоплавкого припоямассив выводов
CCGAСGA в керамическом корпусемассив выводов
μBGA микро BGAмассив выводов
FCBGAFlip-chip ball grid array. М ассив шариков на подложке, к которой припаян кристалл с теплоотводоммассив выводов
LLPбезвыводной корпус

Из всего этого зоопарка чип-компонентов для применения в любительских целях могут сгодиться: чип-резисторы, чип-конденсаторы, чип-индуктивности, чип-диоды и транзисторы, светодиоды, стабилитроны, некоторые микросхемы в SOIC корпусах. Конденсаторы обычно выглядят как простые параллелипипеды или маленькие бочонки. Бочонки — это электролитические, а параллелипипеды скорей всего будут танталовыми или керамическими конденсаторами.


Типоразмеры SMD-компонентов

Чип-компоненты одного номинала могут иметь разные габариты. Габариты SMD-компонента определяются по его «типоразмеру». Например, чип-резисторы имеют типоразмеры от «0201» до «2512». Этими четырьмя цифрами закодированы ширина и длина чип-резистора в дюймах. Ниже в таблицах можно посмотреть типоразмеры в миллиметрах.

smd резисторы

Прямоугольные чип-резисторы и керамические конденсаторы
ТипоразмерL, мм (дюйм)W, мм (дюйм)H, мм (дюйм)A, ммВт
02010.6 (0.02)0.3 (0.01)0.23 (0.01)0.131/20
04021.0 (0.04)0.5 (0.01)0.35 (0.014)0.251/16
06031.6 (0.06)0.8 (0.03)0.45 (0.018)0.31/10
08052.0 (0.08)1.2 (0.05)0.4 (0.018)0.41/8
12063.2 (0.12)1.6 (0.06)0.5 (0.022)0.51/4
12105.0 (0.12)2.5 (0.10)0.55 (0.022)0.51/2
12185.0 (0.12)2.5 (0.18)0.55 (0.022)0.51
20105.0 (0.20)2.5 (0.10)0.55 (0.024)0.53/4
25126.35 (0.25)3.2 (0.12)0.55 (0.024)0.51
Цилиндрические чип-резисторы и диоды
ТипоразмерØ, мм (дюйм)L, мм (дюйм)Вт
01021.1 (0.01)2.2 (0.02)1/4
02041.4 (0.02)3.6 (0.04)1/2
02072.2 (0.02)5.8 (0.07)1

smd конденсаторы

Керамические чип-конденсаторы совпадают по типоразмеру с чип-резисторами, а вот танталовые чип-конденсаторы имеют своют систему типоразмеров:

Танталовые конденсаторы
ТипоразмерL, мм (дюйм)W, мм (дюйм)T, мм (дюйм)B, ммA, мм
A3.2 (0.126)1.6 (0.063)1.6 (0.063)1.20.8
B3.5 (0.138)2.8 (0.110)1.9 (0.075)2.20.8
C6.0 (0.236)3.2 (0.126)2.5 (0.098)2.21.3
D7.3 (0.287)4.3 (0.170)2.8 (0.110)2.41.3
E7.3 (0.287)4.3 (0.170)4.0 (0.158)2.41.2

smd катушки индуктивности и дроссели

Индуктивности встречаются во множестве видов корпусов, но корпуса подчиняются все тому же закону типоразмеров. Это облегачает автоматический монтаж. Да и нам, радиолюбителям, позволяет легче ориентироваться.

Всякие катушки, дроссели и трансформаторы называются «моточные изделия». Обычно мы их мотаем сами, но иногда можно и прикупить готовые изделия. Тем более, если требуются SMD варианты, которые выпускаются со множестом бонусов: магнитное экранирование корпуса, компактность, закрытый или открытый корпус, высокая добротность, электромагнитное экранирование, широкий диапазон рабочих температур.

Подбирать требующуюся катушку лучше по каталогам и требуемому типоразмеру. Типоразмеры, как и для чип-резисторов задаются спомощью кода из четырех чисел (0805). При этом «08» обозначает длину, а «05» ширину в дюймах. Реальный размер такого SMD-компонента будет 0.08х0.05 дюйма.

smd диоды и стабилитроны

Диоды могут быть как в цилиндрических корпусах, так и в корпусах в виде небольших параллелипипедов. Цилиндрические корпуса диодов чаще всего предсавтлены корпусами MiniMELF (SOD80 / DO213AA / LL34) или MELF (DO213AB / LL41). Типоразмеры у них задаются также как у катушек, резисторов, конденсаторов.

Диоды, стабилитроны, конденсаторы, резисторы
Тип корпусаL* (мм)D* (мм)F* (мм)S* (мм)Примечание
DO-213AA (SOD80)3.51.650480.03JEDEC
DO-213AB (MELF)5.02.520.480.03JEDEC
DO-213AC3.451.40.42JEDEC
ERD03LL1.61.00.20.05PANASONIC
ER021L2.01.250.30.07PANASONIC
ERSM5.92.20.60.15PANASONIC, ГОСТ Р1-11
MELF5.02.50.50.1CENTS
SOD80 (miniMELF)3.51.60.30.075PHILIPS
SOD80C3.61.520.30.075PHILIPS
SOD873.52.050.30.075PHILIPS

smd транзисторы

Транзисторы для поверхностного монтажа могут быть также малой, средней и большой мощности. Они также имеют соответствующие корпуса. Корпуса транзисторов можно условно разбить на две группы: SOT, DPAK.

Хочу обратить внимание, что в таких корпусах могут быть также сборки из нескольких компонентов, а не только транзисторы. Например, диодные сборки.

Маркировка SMD-компонентов

Мне иногда кажется, что маркировка современных электронных компонентов превратилась в целую науку, подобную истории или археологии, так как, чтобы разобраться какой компонент установлен на плату иногда приходитсяпровести целый анализ окружающих его элементов. В этом плане советские выводные компоненты, на которых текстом писался номинал и модель были просто мечтой для любителя, так как не надо было ворошить груды справочников, чтобы разобраться, что это за детали.

Причина кроется в автоматизации процесса сборки. SMD компоненты устанавливаются роботами, в которых установлены сециальные бабины (подобные некогда бабинам с магнитными лентами), в которых расположены чип-компоненты. Роботу все равно, что там в бабине и есть ли у деталей маркировка. Маркировка нужна человеку.

Пайка чип-компонентов

В домашних условиях чип-компоненты можно паять только до определённых размеров, более-менее комфортным для ручного монтажа считается типоразмер 0805. Более миниатюрные компоненты паяются уже с помощью печки. При этом для качественной пропайки в домашних условиях следует соблюдать целый комплекс мер.

Мы уже познакомились с основными радиодеталями: резисторами, конденсаторами, диодами, транзисторами, микросхемами и т.п., а также изучили, как они монтируются на печатную плату. Ещё раз вспомним основные этапы этого процесса: выводы всех компонентов пропускают в отверстия, имеющиеся в печатной плате. После чего выводы обрезаются, и затем с обратной стороны платы производится пайка (см. рис.1).
Этот уже известный нам процесс называется DIP-монтаж. Такой монтаж очень удобен для начинающих радиолюбителей: компоненты крупные, паять их можно даже большим «советским» паяльником без помощи лупы или микроскопа. Именно поэтому все наборы Мастер Кит для самостоятельной пайки подразумевают DIP-монтаж.

Рис. 1. DIP-монтаж

Но DIP-монтаж имеет очень существенные недостатки:

Крупные радиодетали не подходят для создания современных миниатюрных электронных устройств;
— выводные радиодетали дороже в производстве;
— печатная плата для DIP-монтажа также обходится дороже из-за необходимости сверления множества отверстий;
— DIP-монтаж сложно автоматизировать: в большинстве случаях даже на крупных заводах по производству электронику установку и пайку DIP-деталей приходится выполнять вручную. Это очень дорого и долго.

Поэтому DIP-монтаж при производстве современной электроники практически не используется, и на смену ему пришёл так называемый SMD-процесс, являющийся стандартом сегодняшнего дня. Поэтому любой радиолюбитель должен иметь о нём хотя бы общее представление.

SMD монтаж

SMD компоненты (чип-компоненты) — это компоненты электронной схемы, нанесённые на печатную плату с использованием технологии монтирования на поверхность — SMT технологии (англ. surface mount technology).Т.е все электронные элементы, которые «закреплены» на плате таким способом, носят название SMD компонентов (англ. surface mounted device). Процесс монтажа и пайки чип-компонентов правильно называть SMT-процессом. Говорить «SMD-монтаж» не совсем корректно, но в России прижился именно такой вариант названия техпроцесса, поэтому и мы будем говорить так же.

На рис. 2. показан участок платы SMD-монтажа. Такая же плата, выполненная на DIP-элементах, будет иметь в несколько раз большие габариты.

Рис.2. SMD-монтаж

SMD монтаж имеет неоспоримые преимущества:

Радиодетали дешёвы в производстве и могут быть сколь угодно миниатюрны;
— печатные платы также обходятся дешевле из-за отсутствия множественной сверловки;
— монтаж легко автоматизировать: установку и пайку компонентов производят специальные роботы. Также отсутствует такая технологическая операция, как обрезка выводов.

SMD-резисторы

Знакомство с чип-компонентами логичнее всего начать с резисторов, как с самых простых и массовых радиодеталей.
SMD-резистор по своим физическим свойствам аналогичен уже изученному нами «обычному», выводному варианту. Все его физические параметры (сопротивление, точность, мощность) точно такие же, только корпус другой. Это же правило относится и ко всем другим SMD-компонентам.

Рис. 3. ЧИП-резисторы

Типоразмеры SMD-резисторов

Мы уже знаем, что выводные резисторы имеют определённую сетку стандартных типоразмеров, зависящих от их мощности: 0,125W, 0,25W, 0,5W, 1W и т.п.
Стандартная сетка типоразмеров имеется и у чип-резисторов, только в этом случае типоразмер обозначается кодом из четырёх цифр: 0402, 0603, 0805, 1206 и т.п.
Основные типоразмеры резисторов и их технические характеристики приведены на рис.4.

Рис. 4 Основные типоразмеры и параметры чип-резисторов

Маркировка SMD-резисторов

Резисторы маркируются кодом на корпусе.
Если в коде три или четыре цифры, то последняя цифра означает количество нулей, На рис. 5. резистор с кодом «223» имеет такое сопротивление: 22 (и три нуля справа) Ом = 22000 Ом = 22 кОм. Резистор с кодом «8202» имеет сопротивление: 820 (и два нуля справа) Ом = 82000 Ом = 82 кОм.
В некоторых случаях маркировка цифробуквенная. Например, резистор с кодом 4R7 имеет сопротивление 4.7 Ом, а резистор с кодом 0R22 – 0.22 Ом (здесь буква R является знаком-разделителем).
Встречаются и резисторы нулевого сопротивления, или резисторы-перемычки. Часто они используются как предохранители.
Конечно, можно не запоминать систему кодового обозначения, а просто измерить сопротивление резистора мультиметром.

Рис. 5 Маркировка чип-резисторов

Керамические SMD-конденсаторы

Внешне SMD-конденсаторы очень похожи на резисторы (см. рис.6.). Есть только одна проблема: код ёмкости на них не нанесён, поэтому единственный способ ёё определения – измерение с помощью мультиметра, имеющего режим измерения ёмкости.
SMD-конденсаторы также выпускаются в стандартных типоразмерах, как правило, аналогичных типоразмерам резисторов (см. выше).

Рис. 6. Керамические SMD-конденсаторы

Электролитические SMS-конденсаторы

Рис.7. Электролитические SMS-конденсаторы

Эти конденсаторы похожи на своих выводных собратьев, и маркировка на них обычно явная: ёмкость и рабочее напряжение. Полоской на «шляпке» конденсатора маркируется его минусовой вывод.

SMD-транзисторы


Рис.8. SMD-транзистор

Транзисторы мелкие, поэтому написать на них их полное наименование не получается. Ограничиваются кодовой маркировкой, причём какого-то международного стандарта обозначений нет. Например, код 1E может обозначать тип транзистора BC847A, а может – какого-нибудь другого. Но это обстоятельство абсолютно не беспокоит ни производителей, ни рядовых потребителей электроники. Сложности могут возникнуть только при ремонте. Определить тип транзистора, установленного на печатную плату, без документации производителя на эту плату иногда бывает очень сложно.

SMD-диоды и SMD-светодиоды

Фотографии некоторых диодов приведены на рисунке ниже:

Рис.9. SMD-диоды и SMD-светодиоды

На корпусе диода обязательно указывается полярность в виде полосы ближе к одному из краев. Обычно полосой маркируется вывод катода.

SMD-cветодиод тоже имеет полярность, которая обозначается либо точкой вблизи одного из выводов, либо ещё каким-то образом (подробно об этом можно узнать в документации производителя компонента).

Определить тип SMD-диода или светодиода, как и в случае с транзистором, сложно: на корпусе диода выштамповывается малоинформативный код, а на корпусе светодиода чаще всего вообще нет никаких меток, кроме метки полярности. Разработчики и производители современной электроники мало заботятся о её ремонтопригодности. Подразумевается, что ремонтировать печатную плату будет сервисный инженер, имеющий полную документацию на конкретное изделие. В такой документации чётко описано, на каком месте печатной платы установлен тот или иной компонент.

Установка и пайка SMD-компонентов

SMD-монтаж оптимизирован в первую очередь для автоматической сборки специальными промышленными роботами. Но любительские радиолюбительские конструкции также вполне могут выполняться на чип-компонентах: при достаточной аккуратности и внимательности паять детали размером с рисовое зёрнышко можно самым обычным паяльником, нужно знать только некоторые тонкости.

Но это тема для отдельного большого урока, поэтому подробнее об автоматическом и ручном SMD-монтаже будет рассказано отдельно.

Типы и корпуса smd элементов. SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор. Типоразмеры SMD резисторов

Мы уже познакомились с основными радиодеталями: резисторами, конденсаторами, диодами, транзисторами, микросхемами и т.п., а также изучили, как они монтируются на печатную плату. Ещё раз вспомним основные этапы этого процесса: выводы всех компонентов пропускают в отверстия, имеющиеся в печатной плате. После чего выводы обрезаются, и затем с обратной стороны платы производится пайка (см. рис.1).
Этот уже известный нам процесс называется DIP-монтаж. Такой монтаж очень удобен для начинающих радиолюбителей: компоненты крупные, паять их можно даже большим «советским» паяльником без помощи лупы или микроскопа. Именно поэтому все наборы Мастер Кит для самостоятельной пайки подразумевают DIP-монтаж.

Рис. 1. DIP-монтаж

Но DIP-монтаж имеет очень существенные недостатки:

Крупные радиодетали не подходят для создания современных миниатюрных электронных устройств;
— выводные радиодетали дороже в производстве;
— печатная плата для DIP-монтажа также обходится дороже из-за необходимости сверления множества отверстий;
— DIP-монтаж сложно автоматизировать: в большинстве случаях даже на крупных заводах по производству электронику установку и пайку DIP-деталей приходится выполнять вручную. Это очень дорого и долго.

Поэтому DIP-монтаж при производстве современной электроники практически не используется, и на смену ему пришёл так называемый SMD-процесс, являющийся стандартом сегодняшнего дня. Поэтому любой радиолюбитель должен иметь о нём хотя бы общее представление.

SMD монтаж

SMD компоненты (чип-компоненты) — это компоненты электронной схемы, нанесённые на печатную плату с использованием технологии монтирования на поверхность — SMT технологии (англ. surface mount technology).Т.е все электронные элементы, которые «закреплены» на плате таким способом, носят название SMD компонентов (англ. surface mounted device). Процесс монтажа и пайки чип-компонентов правильно называть SMT-процессом. Говорить «SMD-монтаж» не совсем корректно, но в России прижился именно такой вариант названия техпроцесса, поэтому и мы будем говорить так же.

На рис. 2. показан участок платы SMD-монтажа. Такая же плата, выполненная на DIP-элементах, будет иметь в несколько раз большие габариты.

Рис.2. SMD-монтаж

SMD монтаж имеет неоспоримые преимущества:

Радиодетали дешёвы в производстве и могут быть сколь угодно миниатюрны;
— печатные платы также обходятся дешевле из-за отсутствия множественной сверловки;
— монтаж легко автоматизировать: установку и пайку компонентов производят специальные роботы. Также отсутствует такая технологическая операция, как обрезка выводов.

SMD-резисторы

Знакомство с чип-компонентами логичнее всего начать с резисторов, как с самых простых и массовых радиодеталей.
SMD-резистор по своим физическим свойствам аналогичен уже изученному нами «обычному», выводному варианту. Все его физические параметры (сопротивление, точность, мощность) точно такие же, только корпус другой. Это же правило относится и ко всем другим SMD-компонентам.

Рис. 3. ЧИП-резисторы

Типоразмеры SMD-резисторов

Мы уже знаем, что выводные резисторы имеют определённую сетку стандартных типоразмеров, зависящих от их мощности: 0,125W, 0,25W, 0,5W, 1W и т.п.
Стандартная сетка типоразмеров имеется и у чип-резисторов, только в этом случае типоразмер обозначается кодом из четырёх цифр: 0402, 0603, 0805, 1206 и т.п.
Основные типоразмеры резисторов и их технические характеристики приведены на рис.4.

Рис. 4 Основные типоразмеры и параметры чип-резисторов

Маркировка SMD-резисторов

Резисторы маркируются кодом на корпусе.
Если в коде три или четыре цифры, то последняя цифра означает количество нулей, На рис. 5. резистор с кодом «223» имеет такое сопротивление: 22 (и три нуля справа) Ом = 22000 Ом = 22 кОм. Резистор с кодом «8202» имеет сопротивление: 820 (и два нуля справа) Ом = 82000 Ом = 82 кОм.
В некоторых случаях маркировка цифробуквенная. Например, резистор с кодом 4R7 имеет сопротивление 4.7 Ом, а резистор с кодом 0R22 – 0.22 Ом (здесь буква R является знаком-разделителем).
Встречаются и резисторы нулевого сопротивления, или резисторы-перемычки. Часто они используются как предохранители.
Конечно, можно не запоминать систему кодового обозначения, а просто измерить сопротивление резистора мультиметром.

Рис. 5 Маркировка чип-резисторов

Керамические SMD-конденсаторы

Внешне SMD-конденсаторы очень похожи на резисторы (см. рис.6.). Есть только одна проблема: код ёмкости на них не нанесён, поэтому единственный способ ёё определения – измерение с помощью мультиметра, имеющего режим измерения ёмкости.
SMD-конденсаторы также выпускаются в стандартных типоразмерах, как правило, аналогичных типоразмерам резисторов (см. выше).

Рис. 6. Керамические SMD-конденсаторы

Электролитические SMS-конденсаторы

Рис.7. Электролитические SMS-конденсаторы

Эти конденсаторы похожи на своих выводных собратьев, и маркировка на них обычно явная: ёмкость и рабочее напряжение. Полоской на «шляпке» конденсатора маркируется его минусовой вывод.

SMD-транзисторы


Рис.8. SMD-транзистор

Транзисторы мелкие, поэтому написать на них их полное наименование не получается. Ограничиваются кодовой маркировкой, причём какого-то международного стандарта обозначений нет. Например, код 1E может обозначать тип транзистора BC847A, а может – какого-нибудь другого. Но это обстоятельство абсолютно не беспокоит ни производителей, ни рядовых потребителей электроники. Сложности могут возникнуть только при ремонте. Определить тип транзистора, установленного на печатную плату, без документации производителя на эту плату иногда бывает очень сложно.

SMD-диоды и SMD-светодиоды

Фотографии некоторых диодов приведены на рисунке ниже:

Рис.9. SMD-диоды и SMD-светодиоды

На корпусе диода обязательно указывается полярность в виде полосы ближе к одному из краев. Обычно полосой маркируется вывод катода.

SMD-cветодиод тоже имеет полярность, которая обозначается либо точкой вблизи одного из выводов, либо ещё каким-то образом (подробно об этом можно узнать в документации производителя компонента).

Определить тип SMD-диода или светодиода, как и в случае с транзистором, сложно: на корпусе диода выштамповывается малоинформативный код, а на корпусе светодиода чаще всего вообще нет никаких меток, кроме метки полярности. Разработчики и производители современной электроники мало заботятся о её ремонтопригодности. Подразумевается, что ремонтировать печатную плату будет сервисный инженер, имеющий полную документацию на конкретное изделие. В такой документации чётко описано, на каком месте печатной платы установлен тот или иной компонент.

Установка и пайка SMD-компонентов

SMD-монтаж оптимизирован в первую очередь для автоматической сборки специальными промышленными роботами. Но любительские радиолюбительские конструкции также вполне могут выполняться на чип-компонентах: при достаточной аккуратности и внимательности паять детали размером с рисовое зёрнышко можно самым обычным паяльником, нужно знать только некоторые тонкости.

Но это тема для отдельного большого урока, поэтому подробнее об автоматическом и ручном SMD-монтаже будет рассказано отдельно.

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные , предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код , а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

В наш бурный век электроники главными преимуществами электронного изделия являются малые габариты, надежность, удобство монтажа и демонтажа (разборка оборудования), малое потребление энергии а также удобное юзабилити (от английского – удобство использования). Все эти преимущества ну никак не возможны без технологии поверхностного монтажа – SMT технологии (S urface M ount T echnology ), и конечно же, без SMD компонентов.

Что такое SMD компоненты

SMD компоненты используются абсолютно во всей современной электронике. SMD (S urface M ounted D evice ), что в переводе с английского – “прибор, монтируемый на поверхность”. В нашем случае поверхностью является печатная плата, без сквозных отверстий под радиоэлементы:

В этом случае SMD компоненты не вставляются в отверстия плат. Они запаиваются на контактные дорожки, которые расположены прямо на поверхности печатной платы. На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, на котором раньше были SMD компоненты.


Плюсы SMD компонентов

Самыми большим плюсом SMD компонентов являются их маленькие габариты. На фото ниже простые резисторы и :



Благодаря малым габаритам SMD компонентов, у разработчиков появляется возможность размещать большее количество компонентов на единицу площади, чем простых выводных радиоэлементов. Следовательно, возрастает плотность монтажа и в результате этого уменьшаются габариты электронных устройств. Так как вес SMD компонента в разы легче, чем вес того же самого простого выводного радиоэлемента, то и масса радиоаппаратуры будет также во много раз легче.

SMD компоненты намного проще выпаивать. Для этого нам потребуется с феном. Как выпаивать и запаивать SMD компоненты, можете прочитать в статье как правильно паять SMD . Запаивать их намного труднее. На заводах их располагают на печатной плате специальные роботы. Вручную на производстве их никто не запаивает, кроме радиолюбителей и ремонтников радиоаппаратуры.

Многослойные платы

Так как в аппаратуре с SMD компонентами очень плотный монтаж, то и дорожек в плате должно быть больше. Не все дорожки влезают на одну поверхность, поэтому печатные платы делают многослойными. Если аппаратура сложная и имеет очень много SMD компонентов, то и в плате будет больше слоев. Это как многослойный торт из коржей. Печатные дорожки, связывающие SMD компоненты, находятся прямо внутри платы и их никак нельзя увидеть. Пример многослойных плат – это платы мобильных телефонов, платы компьютеров или ноутбуков (материнская плата, видеокарта, оперативная память и тд).

На фото ниже синяя плата – Iphone 3g, зеленая плата – материнская плата компьютера.



Все ремонтники радиоаппаратуры знают, что если перегреть многослойную плату, то она вздувается пузырем. При этом межслойные связи рвутся и плата приходит в негодность. Поэтому, главным козырем при замене SMD компонентов является правильно подобранная температура.

На некоторых платах используют обе стороны печатной платы, при этом плотность монтажа, как вы поняли, повышается вдвое. Это еще один плюс SMT технологии. Ах да, стоит учесть еще и тот фактор, что материала для производства SMD компонентов уходит в разы меньше, а себестоимость их при серийном производстве в миллионах штук обходится, в прямом смысле, в копейки.

Основные виды SMD компонентов

Давайте рассмотрим основные SMD элементы, используемые в наших современных устройствах. Резисторы, конденсаторы, катушки индуктивности с малым номиналом, и другие компоненты выглядят как обычные маленькие прямоугольники, а точнее, параллелепипеды))

На платах без схемы невозможно узнать, то ли это резистор, то ли конденсатор то ли вообще катушка. Китайцы метят как хотят. На крупных SMD элементах все-таки ставят код или цифры, чтобы определить их принадлежность и номинал. На фото ниже в красном прямоугольнике помечены эти элементы. Без схемы невозможно сказать, к какому типу радиоэлементов они относятся, а также их номинал.


Типоразмеры SMD компонентов могут быть разные. Вот есть описание типоразмеров для резисторов и конденсаторов. Вот, например, прямоугольный SMD конденсатор желтого цвета. Еще их называют танталовыми или просто танталами:


А вот так выглядят SMD :



Есть еще и такие виды SMD транзисторов:


Которые обладают большим номиналом, в SMD исполнении выглядят вот так:



Ну и конечно, как же без микросхем в наш век микроэлектроники! Существует очень много SMD типов корпусов микросхем , но я их делю в основном на две группы:

1) Микросхемы, у которых выводы параллельны печатной плате и находятся с двух сторон или по периметру.


2) Микросхемы, у которых выводы находятся под самой микросхемой. Это особый класс микросхем, называется BGA (от английского Ball grid array – массив из шариков). Выводы таких микросхем представляют из себя простые припойные шарики одинаковой величины.

На фото ниже BGA микросхема и обратная ее сторона, состоящая из шариковых выводов.


Микросхемы BGA удобны производителям тем, что они очень сильно экономят место на печатной плате, потому что таких шариков под какой-нибудь микросхемой BGA могут быть тысячи. Это значительно облегчает жизнь производителям, но нисколько не облегчает жизнь ремонтникам.

Резюме

Что же все-таки использовать в своих конструкциях? Если у вас не дрожат руки, и вы хотите сделать, маленького радиожучка, то выбор очевиден. Но все-таки в радиолюбительских конструкциях габариты особо не играют большой роли, да и паять массивные радиоэлементы намного проще и удобнее. Некоторые радиолюбители используют и то и другое. Каждый день разрабатываются все новые и новые микросхемы и SMD компоненты. Меньше, тоньше, надежнее. Будущее, однозначно, за микроэлектроникой.

Особенности чип-резисторов — Сайт о строительстве

Особенности чип-резисторов

Чип-резисторы довольно широко используются в современной электротехнике.

Они являются абсолютным аналогом привычных выводных резисторов, но обладают важным преимуществом — размером. Именно использование данных устройств позволяет создавать современную вычислительную и радиоэлектронную технику.

Они применяются в SMT-технологии, которая отличается высочайшей автоматизацией установки печатных плат.

Для создания чип-резисторов используют тонкоплёночную либо толстоплёночную технологию, а сами устройства имеют разные уровни погрешности сопротивления. Наиболее распространёнными значениями являются 5% либо 1%, а более точные около 0.01%.

Их применяют в медицинской и измерительной технике, автомобильной и потребительской электронике, различных телекоммуникационных устройствах, блоках питания, а также другом оборудовании. Существует огромное количество устройств разного назначения, среди них:

  • толстоплёночные;
  • низкоомные, используемые для определения силы тока;
  • прецизионные плёночные со стабильными характеристиками;
  • безкоррозийные;
  • переменные;
  • сборочные;
  • подавляющие выбросы напряжения.

Особенности маркировки чип-резисторов

Чтобы сориентироваться в представленном ассортименте чип-резисторов, необходимо учитывать их маркировку. Почти все резисторы, за исключением устройств типоразмера 0402, являются маркированными.

Маленькие устройства не имеют маркировки, ведь просто на них нет места, куда её возможно поставить. Если размер превышает 0805, на резисторе устанавливают маркировку, которая содержит 3 цифры.

Известно, что чип-резисторы с допуском 10%, 5%, а также 2% маркированы первыми тремя цифрами. Каждое число имеет строгий смысл. Последнее число на маркировке обозначает количество Омов.

Тогда как первые два числа выражают мантиссу. Чтобы обозначить десятичную точку, иногда к значащим числам добавляют букву R. Получается, что маркировка 242 обозначает номинал 24х102 Ом, а это равно 2,4 кОм.

Зависимо от допуска сопротивления номиналы могут разделяться на несколько рядов Е6, Е12, а также Е24. Если допуск сопротивления небольшой, в ряду больше номиналов.

Максимальное напряжение чип-резисторов составляет 200В. Этим максимумом обладают и стандартные резисторы для простого монтажа. Именно поэтому при передаче значительного напряжения, например 500В, стоит поставить несколько резисторов, которые соединены последовательно.

SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов  – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо  две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 100 равно 45 Ом
  • 273 = 27 х 103 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 102 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 103 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

Маркировка EIA-96

SMD резисторы повышенной точности (прецизионные)  в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код номинала резистора, а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

Способ изготовления чип-резисторов

Изобретение относится к электронной технике, а именно к производству постоянных резисторов, и может быть использовано в электронной, радиотехнической и других смежных отраслях промышленности.

По тонкопленочной технологии изготовления чип-резисторов – резистивный и проводниковый слои формируются путем вакуумного напыления на изолирующую подложку с последующей фотолитографией.

Известен прецизионный тонкопленочный чип-резистор, защищенный патентом РФ №2123735, кл. H01C 7/00, опубл. 20.12.1998 г.

В прецизионном тонкопленочном чип-резисторе, содержащем диэлектрическое основание с нанесенной на него керметной резистивной пленкой, контактные элементы и защитное покрытие, нанесенное непосредственно на резистивную пленку, между контактными элементами, защитным покрытием является кремнийорганический материал из ряда алкилалкоксисиланов, на который по всей рабочей поверхности резистора нанесен дополнительно эпоксидно-фенольный материал.

К недостаткам упомянутого способа можно отнести недостаточные эксплуатационные характеристики чип-резисторов, а именно надежность, стабильность.

Известен способ изготовления тонкопленочных резисторов, защищенный патентом РФ №2213383, кл. H01C 17/00, опубл. 27.09.2003. На подложку напыляют резистивный слой и многослойную проводящую структуру.

После первой фотолитографии и травления структуры получают проводники и контактные площадки. При второй фотолитографии фоторезистом покрывают все проводники и площадки, за исключением площадок перекрытия резисторов с проводниками, и формируемые резисторы.

Затем травлением резистивного слоя формируют тонкопленочные резисторы.

К недостаткам упомянутого способа можно отнести недостаточные эксплуатационные характеристики чип-резисторов, а именно надежность, стабильность.

Наиболее близким к заявляемому по технической сущности и достигаемому результату, выбранным в качестве прототипа, является способ изготовления прецизионных чип-резисторов по гибридной технологии, защищенный патентом РФ №2402088, МПК H01C 17/06, H01C 17/28, опубл. 20.10.2010 г.

Способ содержит следующие технологические операции: 1) нанесение на шлифованную (тыльную) поверхность изоляционной подложки методом трафаретной печати слоя серебряной или серебряно-палладиевой пасты с последующим ее вжиганием, образуя тем самым электродные контакты на тыльной стороне подложки; 2) напыление на полированную (лицевую) сторону изоляционной подложки методом вакуумной (тонкопленочной) технологии резистивного слоя; 3) формирование методом фотолитографии и ионного травления топологии резистивного слоя на подложке; 4) нанесение методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне; 5) подгонку методом лазерной подгонки величины сопротивления резисторов в номинал; 6) нанесение методом трафаретной печати на резистивный слой с последующим вжиганием слоя низкотемпературной защитной пасты, образуя защитный слой; 7) скрайбирование и ломку пластины изоляционной подложки на полосы; 8) напыление методом вакуумной (тонкопленочной) технологии из сплава никеля с хромом на торцы, соединяя тем самым между собой электродные контакты лицевой и тыльной сторон подложки; 9) ломку рядов пластины на чипы; 10) нанесение гальваническим методом поверх электродных контактов – торцевого, на лицевой и на тыльной сторонах – слоя никеля; 11) нанесение поверх слоя никеля гальваническим методом слоя припоя в виде сплава олова со свинцом.

К недостаткам упомянутого способа можно отнести использование дополнительной операции по формированию планарных (электродных) контактов на тыльной стороне подложки, усложняющей технологический процесс производства чип-резистора, а также недостаточные эксплуатационные характеристики чип-резисторов, а именно надежность, стабильность.

Задача, решаемая предлагаемым изобретением, – усовершенствование способа изготовления чип-резисторов.

Технический результат от использования изобретения заключается в улучшении эксплуатационных характеристик, а именно улучшении стабильности получаемых резистивных пленок за счет дополнительных операций – термообработки и термотренировки, повышении надежности вследствие отбраковки потенциально ненадежных чип-резисторов на операции импульсная тренировка.

Также техническим результатом от использования изобретения является повышение технологичности за счет использования вакуумно-дугового (тонкопленочного) способа формирования планарных контактов на обратной стороне подложки одновременно с торцевыми контактами, позволяющего исключить операцию формирования планарных контактов на тыльной стороне подложки.

Указанный результат достигается тем, что в способе изготовления чип-резисторов, включающем формирование резистивного слоя путем напыления с последующей фотолитографией, формирование планарных контактов на лицевой стороне подложки, лазерную подгонку, формирование защитного слоя, разделение подложки на полосы, формирование торцевых контактов по тонкопленочной технологии, нанесение припоя, разделение полос на чипы, пленарные контакты на лицевой стороне подложки формируют по тонкопленочной технологии с использованием фотолитографии, а планарные контакты на тыльной стороне подложки формируют одновременно с торцевыми контактами, дополнительно введены операции термообработки, термотренировки и импульсной тренировки, при этом термообработку осуществляют после формирования резистивного слоя, термотренировку и импульсную тренировку проводят после разделения полос на чипы.

Сущность предлагаемого способа изготовления чип-резисторов состоит в следующем.

На чертеже изображена конструкция чип-резистора, способ изготовления которого предлагается в данном изобретении.

В качестве основы чип-резистора используется изолирующая подложка (алюмооксидная пластина) 1. Вначале проводят подготовку изолирующих подложек, заключающуюся в очистке и отжиге. Отжиг проводят в печи при температуре (600±20)°C в течение (60±10) минут.

Далее формируют резистивный слой 2 и планарные контакты 3 на лицевой стороне подложки посредством напыления с последующей фотолитографией.

Далее проводят термообработку, заключающуюся в выдерживании чип-резисторов при температуре в диапазоне (350- 550)°C в течение (15-60) минут, лазерную подгонку сопротивления чип-резисторов, формируют защитный слой 4 посредством нанесения низкотемпературной защитной пасты с последующей сушкой, производят разделение подложки на полосы (плата-ряды).

Планарные контакты на тыльной стороне подложки формируют одновременно с торцевыми контактами 5 посредством напыления слоя никеля с подслоем титана с одновременным формированием планарных контактов на тыльной стороне подложки и последующим нанесением припоя (сплава олово-свинец). Далее разделяют полосы на чипы.

После этого последовательно производят термотренировку и импульсную тренировку. Термотренировка заключается в выдерживании чип-резисторов в термостате в течение (8±0,5) часов при температуре (130±20)°C. Импульсная тренировка заключается в стабилизации резистивного слоя чип-резисторов приложенным импульсным напряжением в диапазоне (10-1000) В.

Пример

В качестве основы чип-резистора использовалась изолирующая подложка (алюмооксидная пластина). Вначале проводили подготовку изолирующих подложек, заключавшуюся в очистке и отжиге. Отжиг проводили в печи при температуре (600±20)°C в течение (60±10) минут.

Далее формировали резистивный слой и планарные контакты на лицевой стороне подложки посредством напыления на установке УВН-71П-3 с последующей фотолитографией.

Далее проводили термообработку, заключавшуюся в выдерживании чип-резисторов при температуре в диапазоне (350-550)°C в течение (15-60) минут, лазерную подгонку сопротивления чип-резисторов методом удаления части резистивного слоя сфокусированным лучом лазера (на машине лазерной для подгонки резисторов МЛ 5-2), формировали защитный слой посредством нанесения низкотемпературной защитной пасты 4081 (ТУ 031-00387275-09) методом трафаретной печати с последующей сушкой в ИК- печи при 150°C и вжиганием в конвейерной мультизонной печи при температуре (200±20)°C, производили резку подложек на полосы. Планарные контакты на тыльной стороне подложки формировали одновременно с торцевыми контактами посредством напыления слоя никеля с подслоем титана на вакуумной установке НАНОМЕТ-200 и последующим горячим лужением припоем методом окунания в расплавленный припой (сплав олово-свинец при температуре 230-300°C), далее разламывали полосы на чипы. После этого последовательно производили термотренировку и импульсную тренировку. Термотренировка заключалась в выдерживании чип-резисторов в термостате в течение (8±0,5) часов при температуре (130±20)°C. Импульсная тренировка заключалась в стабилизации резистивного слоя чип-резисторов приложенным импульсным напряжением в диапазоне (10-1000) В.

Полученные резисторы имели следующие технические характеристики

Параметр
Значение (лучшее)

ТКС×10-6 1/°C в диапазоне температур от 20 до 125°C
±5

Гарантированная стабильность в течение 2000 ч при P=Pномин. и Т=85°C, не более
±0,25%

Допускаемое отклонение от номинального сопротивления
±0,25%

Минимальная наработка
30000 час

Сопротивление резисторов измеряли по ГОСТ 21342.20-78 «Резисторы. Метод измерения сопротивления». Температурный коэффициент сопротивления (ТКС) измеряли согласно ГОСТ 21342.15-78 «Резисторы. Метод определения температурной зависимости сопротивления».

Наработку оценивали по ГОСТ 25359-82 «Изделия электронной техники. Общие требования по надежности и методы испытаний».

Прочность контактных узлов резисторов на воздействие сдвигающей силы контролируют при креплении резисторов путем припаивания за контактные поверхности (торцевые контакты) к металлизированным серебром и облуженным площадкам на керамической плате.

Направление приложения усилия – параллельно торцевым контактам резистора. Значение нагрузки для резисторов типоразмера 0805 значительно превысило 0,15 кгс, а для типоразмеров 1206 и 2010 значительно превысило 0,3 кгс.

Таким образом, использование предлагаемого изобретения позволяет улучшить эксплуатационные характеристики чип-резисторов, а именно стабильность получаемых резистивных пленок за счет дополнительных операций – термообработки и термотренировки, надежность вследствие отбраковки потенциально ненадежных чип-резисторов на операции импульсная тренировка.

Предлагаемая технология изготовления чип-резисторов является более технологичной по сравнению с прототипом за счет использования вакуумно-дугового (тонкопленочного) способа формирования планарных контактов на тыльной стороне подложки одновременно с торцевыми контактами, позволяющего исключить операцию формирования планарных контактов на тыльной стороне подложки.

Способ изготовления чип-резисторов, включающий формирование резистивного слоя путем напыления с последующей фотолитографией, формирование планарных контактов на лицевой стороне подложки, лазерную подгонку, формирование защитного слоя, разделение подложки на полосы, формирование торцевых контактов по тонкопленочной технологии, нанесение припоя, разделение полос на чипы, отличающийся тем, что планарные контакты на лицевой стороне подложки формируют по тонкопленочной технологии с использованием фотолитографии, а планарные контакты на тыльной стороне подложки формируют одновременно с торцевыми контактами, дополнительно введены операции термообработки, термотренировки и импульсной тренировки, при этом термообработку осуществляют после формирования резистивного слоя, термотренировку и импульсную тренировку проводят после разделения полос на чипы.

Поверхностный монтаж, применение ЧИП (SMD) компонентов

В чем же заключаются плюсы применения таких чип элементов? Давайте разберемся.

Плюсы данного вида монтажа

Во первых, применение чип компонентов заметно уменьшает размеры готовых печатных плат, уменьшается их вес, как следствие для этого устройства потребуется небольшой компактный корпус.  Так можно собрать очень компактные и миниатюрные устройства.

Применение чип элементов заставляет экономить печатную плату (стеклотекстолит), а так же хлорное железо для их травления, кроме того, не приходиться тратить  время на высверливание отверстий, в любом случае, на это уходит не так много времени и средств.
Платы изготовленные таким образом легче ремонтировать и легче заменять радиоэлементы на плате.

Можно делать двухсторонние платы, и размещать элементы на обеих сторонах платы. Ну и экономия средств, ведь чип компоненты стоят  дешево, а оптом брать их очень выгодно.

Для начала, давайте определимся с термином поверхностный монтаж, что же это означает? Поверхностный монтаж – это технология производства печатных плат, когда радиодетали размещаются со стороны печатных дорожек, для их размещения на плате не приходится высверливать отверстия, если коротко, то это означает “монтаж на поверхность”. Данная технология является наиболее распространенным на сегодняшний день.

Кроме плюсов есть конечно же и минусы. Платы собранные на чип компонентах боятся сгибов и ударов, т.к. после этого радиодетали, особенно резисторы с конденсаторами просто напросто трескаются. Чип компоненты не переносят перегрева при пайке. От перегрева они часто трескаются и появляются микротрещины. Дефект проявляет себя не сразу, а только в процессе эксплуатации

Типы и виды чип радиодеталей

Резисторы и конденсаторы

Чип компоненты (резисторы и конденсаторы) в первую очередь разделяются по типоразмерам, бывают 0402 – это самые маленькие радиодетали, очень мелкие, такие применяются например в сотовых телефонах, 0603 – так же миниатюрные, но чуть больше чем предыдущие, 0805 – применяются например в материнских платах, самые ходовые, затем идут 1008, 1206 и так далее.

Резисторы:

Конденсаторы:

Ниже дана более таблица с указанием размеров некоторых элементов: [0402] – 1,0 × 0,5 мм [0603] – 1,6 × 0,8 мм [0805] – 2,0 × 1,25 мм [1206] – 3,2 × 1,6 мм

[1812] – 4,5 × 3,2 мм

Все чип резисторы обозначаются кодовой маркировкой, хоть и дана методика расшифровки этих кодов, многие все равно не умеют расшифровывать номиналы этих резисторов, в связи с этим я расписал коды некоторых резисторов, взгляните на таблицу.

Примечание: В таблице ошибка: 221 “Ом” следует читать как “220 Ом”.

Что касается конденсаторов, они никак не обозначаются и не маркируются, поэтому, когда будете покупать их, попросите продавца подписать ленты, иначе, понадобится точный мультиметр с функцией определения емкостей.

Транзисторы

В основном радиолюбители применяют транзисторы вида SOT-23, про остальные я рассказывать не буду. Размеры этих транзисторов следующие: 3 × 1,75 × 1,3 мм.

Как видите они очень маленькие, паять их нужно очень аккуратно и быстро. Ниже дана распиновка выводов таких транзисторов:

Распиновка у большинства транзисторов в таком корпусе именно такая, но есть и исключения, так что прежде чем запаивать транзистор проверьте распиновку выводов, скачав даташит к нему. Подобные транзисторы в большинстве случаев обозначаются с одной буквой и 1 цифрой.

Диоды и стабилитроны

Диоды как и резисторы с конденсаторами, бывают разных размеров, более крупные диоды обозначают полоской с одной стороны – это катод, а вот миниатюрные диоды могут отличаться в метках и цоколевке. Такие диоды обозначаются обычно 1-2 буквами и 1 или 2 цифрами.

Диоды:

Стабилитроны BZV55C:

Стабилитроны, так же как и диоды, обозначаются полоской с краю корпуса. Кстати, из-за их формы, они любят убегать с рабочего места, очень шустрые, а если упадет, то и не найдешь, поэтому кладите их например в крышку от баночки с канифолью.

Микросхемы и микроконтроллеры

Микросхемы бывают в разных корпусах, основные и часто применяемые типы корпусов показаны ниже на фото.

Самый не хороший тип корпуса это SSOP – ножки этих микросхем располагаются настолько близко, что паять без соплей практически нереально, все время слипаются ближайшие вывода.

Такие микросхемы нужно паять паяльником с очень тонким жалом, а лучше паяльным феном, если такой имеется, методику работы с феном и паяльной пастой я расписывал в этой статье.

Следующий тип корпуса это TQFP, на фото представлен корпус с 32мя ногами (микроконтроллер ATmega32), как видите корпус квадратный, и ножки расположены с каждой его стороны, самый главный минус таких корпусов заключается в том, что их сложно отпаивать обычным паяльником, но можно. Что же касается остальных типов корпусов, с ними намного легче.

Как и чем паять чип компоненты?

Чип радиодетали лучше всего паять паяльной станцией со стабилизированной температурой, но если таковой нет, то остается только паяльником, обязательно включенным через регулятор! (без регулятора у большинства обычных паяльников температура на жале достигает 350-400*C). Температура пайки должна быть около 240-280*С.

Например при работе с бессвинцовыми припоями, имеющими температуру плавления 217-227*С, температура жала паяльника должна составлять 280-300°С.  В процессе пайки необходимо избегать избыточно высокой температуры жала и чрезмерного времени пайки. Жало паяльника должно быть остро заточено, в виде конуса или плоской отвертки.

Рекомендации по пайке чип компонентов

Печатные дорожки на плате необходимо облудить и покрыть спирто-канифольным флюсом. Чип компонент при пайке удобно поддерживать пинцетом или ногтем, паять нужно быстро, не более 0.5-1.5 сек.

Сначала запаивают один вывод компонента, затем убирают пинцет и паяют второй вывод.

Микросхемы нужно очень точно совмещать, затем запаивают крайние вывода и проверяют еще раз, все ли вывода точно попадают на дорожки, после чего запаивают остальные вывода микросхемы.

Если при пайке микросхем соседние вывода слиплись, используйте зубочистку, приложите ее между выводами микросхемы и затем коснитесь паяльником одного из выводов, при этом рекомендуется использовать больше флюса. Можно пойти другим путем, снять экран с экранированного провода и собрать припой с выводов микросхемы.

Несколько фотографий из личного архива

Заключение

Поверхностный монтаж позволяет экономить средства и делать очень компактные, миниатюрные устройства. При всех своих минусах, которые имеют место, результирующий эффект, несомненно, говорит о перспективности и востребованности данной технологии.

Размеры SMD резисторов

Главная > Теория > Размеры SMD резисторов

Резисторы, изготовленные по технологии SMD (surface mount device), монтируются на поверхность платы посредством пайки к печатным проводникам.

Технология поверхностного монтажа позволила автоматизировать установку компонентов, применить в производстве групповые способы пайки: волной припоя, ИК нагревом и т. д.

Использование компонентов SMD обеспечивает значительное уменьшение размеров радиоэлектронной аппаратуры по сравнению с технологией выводного монтажа (ТНТ) и сокращение времени на производство изделия.

Резисторы для поверхностного монтажа

В отличие от традиционных выводных, имеющих не так много вариантов исполнения, существует множество типоразмеров SMD резисторов, иногда разница в размерах составляет доли миллиметра и существенно не влияет на другие параметры. Наиболее распространённые корпуса – это SOD 80/110/123, SMA DO 214.

Основные типоразмеры резисторов SMD

Общепринятое обозначение состоит из четырёх цифр, которые указывают на длину (первые две цифры) и ширину корпуса в дюймах, согласно рекомендованному стандарту EIA.

Некоторые производители используют метрическую систему. Правила обозначений описывают только способ – четырьмя цифрами, конкретные размеры резисторов стандартами не установлены.

Маркировка, содержащая сведения о типоразмере, на корпус изделия не наносится.

Основные размеры

Высота корпуса большинства резисторов не превышает 1-2 мм.

Наиболее распространённые типоразмеры SMD – резисторов общего назначения

Тип корпусаL(мм)W(мм)P макс. (мВт)Рабочее напряжение (вольт)

0402(1005)
1.0
0.5
63
50

0603(1608)
1,6
0,8
100
100

0805(2012)
2.0
1.2
125
200

1206(3216)
3.2
1.6
250
400

1210(3225)
3.2
2.5
250
400

1812(4532)
4.5
3.2
500
400

2010(5025)
5.0
2.5
630
400

2512(6432)
6.4
3.2
1000
400

2824(7161)
7.1
6.1
————–

3225(8063)
8.0
6.3
————–

4030(1076)
10.2
7.6
————–

Мощность компонентов СМД, имеющих длину более 5 мм, определяется технологией изготовления. Привести все сочетания длины и ширины корпусов и упомянуть все варианты исполнений, выпускаемые мировыми производителями, невозможно, для определения типоразмера достаточно, с приемлемой точностью, измерить корпус.

Иногда чип вообще может иметь форму, отличную от прямоугольника с разными сторонами, например, квадратный корпус DO – 214АА.

Резисторы для SMD-монтажа в цилиндрических корпусах типа MELF выпускаются в трёх самых распространённых типономиналах: Micro-MELF 2.2х1.1 мм, Mini-MELF 3.6х1.4 мм и MELF 5.8х2.2 мм.

Для указания размеров этого типа применяется метрическая система, где в первой части – длина изделия, вторая – означает диаметр.

Электрическое сопротивление не зависит от размеров чипа и может быть любым: от нулевого (перемычка) до нескольких мегаом и более. Мощность рассеяния резисторов, как и любого электронного компонента, в большинстве случаев напрямую зависит от их размера, но также определяется типом резистивного слоя.

Важно отметить! Указанные в таблице значения мощности являются ориентировочными, могут применяться к размерам SMD резисторов, предназначенных для универсального применения в массовой аппаратуре. Так, низкоомные резисторы серии LR 2512 фирмы Yageo имеют мощность рассеяния 2-3 ватта, в зависимости от исполнения, толстоплёночные резисторы типоразмера 1206 производства Vishay – 0.5 ватт.

Резисторы для поверхностного монтажа могут конструктивно объединяться в резисторные сборки, содержащие несколько элементов в стандартных типоразмерах.

Для специальных применений резисторы большой мощности выпускаются в SMD-корпусе TO252 (DPAK). В отдельных случаях разработчик оборудования может применить практически любой конструктив для сопротивления и заказать производителю ограниченную партию своих уникальных изделий.

Подстроечные SMD резисторы

Маркировка SMD резисторов

Система обозначений типоразмеров переменных резисторов для поверхностного монтажа определяется изготовителем, единого стандарта не имеет.

Переменный SMD резистор

Производятся в открытом, закрытом или герметизированном исполнении, с электрическими сопротивлениями из стандартного ряда. Размеры продукции разных производителей примерено одинаковы и, как правило, не превышают 5 мм по большей стороне.

Видео

Таблица резисторов SMD 0805 1% по ряду E96 и E 24 поставляемых со склада. Мощность резисторов чип

ГлавнаяМощностьМощность резисторов чип

Маркировка чип резисторов смд резистор онлайн калькулятор мощность

Самым распространённым и очень широко применяемым в электронике элементом. является резистор. Это элемент, создающий сопротивление электрическому току. Номинальные значения зависят от класса точности. Он указывает на отклонение, от номинала, которое допускается техническими условиями. Имеются три класса точности:

  • 5 %-ный ряд;
  • 10 %-ный;
  • 20 %- ный.

Например, если взять резистор I класса с номинальным значением сопротивления 100 кОм, то его натуральная величина находится в пределах от 95 до 105 кОм. У такого же компонента III класса точности величина будет лежать в 20%ном интервале, и равняться 80 или 120 кОм. Кто хорошо знаком с электротехникой, может вспомнить, что существуют прецизионные резисторы с 1%ным допуском.

Термин SMD резистор появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность».

Чип резисторы, как их ещё называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты, чем их проволочные аналоги.

Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.

На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий.

Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств.

В связи с тем, что имеют место небольшие размеры элементов, достигается высокая плотность монтажа.

Основное преимущество таких элементов — это отсутствие гибких выводов, что позволяет не сверлить отверстия в печатной плате. Вместо них используются контактные площадки.

Маркировка

Размеры и форма SMD резисторов регламентируются нормативным документом. (JEDEC), где приводятся рекомендуемые типоразмеры. Обычно на корпусе наносятся данные о габаритах элемента. К примеру, цифровой код 0804 предполагает длину, равную 0,080 дюймам, ширину — 0,040 дюйма.

Если перевести такую кодировку в систему СИ, то этот компонент будет обозначаться как 2010. Из этой надписи видно, что длина составляет 2,0 мм, а ширина 1,0 мм. (1 дюйм равен 2,54 мм)

Требуемая мощность рассеивания определяет размер чипа. Поскольку на SMD резистор, имеющий очень маленький габарит, не представляется возможным разместить стандартную маркировку, которая имеется у обычных проволочных резистивных сопротивлений, разработана кодовая система обозначений. Для удобства производители условно разделили все чипы по способу маркировки на три типа:

  • из трёх цифр;
  • из четырёх цифр;
  • из двух цифр и буквы;

Последний вариант применяется для SMD-сопротивлений повышенной точности с допуском 1% ( прецизионных). Очень маленький размер не позволяет размещать на них надписи с длинными кодами. Для них разработан стандарт EIA-96

Для маркировки маленьких сопротивлений (менее 10 Ом) используется латинская буква R Например: 0R1 = 0,1 Ом и 0R05 = 0,05 Ом.

Существуют номиналы повышенной точности (так называемые прецизионные)

Пример подбора нужного резистора: если указана цифра 232 то необходимо 23 умножить на 10 во второй степени. Получается сопротивление 2,3 кОм (23 x 10 2 = 2300 Ом = 23 кОм). Аналогично рассчитываются чипы второго типа.

Расшифровывается их маркировка следующим образом: первые 2 цифры это основание, которое нужно умножить на 10 в степени третьего числа, чтобы получить номинал резистора.

Резистор 102 smd — расшифровывается так 10*100 = 1000 Ом или 1 кОм

Расшифровка обозначений чипов — специфичное занятие. Вычислить необходимую величину возможно используя старыми проверенными способами, проделав несколько арифметических действий. Но прогресс не стоит на месте, и кто это можно выполнить при помощи различных сайтов.

Онлайн-калькулятор

Калькулятор smd резисторов поможет подобрать нужный типоразмер, разобраться с кодами, а также избавит от изнурительных расчётов. Используя специальные программы можно найти информацию совершенно бесплатно.

Пример определения сопротивлений

240 = 24 х 100 равняется 24 Ом

273 = 27 х 103 равняется 27 кОм

Резисторы типоразмера 0603 точностью 1% маркируются кодом из двух цифр и одной латинской буквы, где цифры обозначают порядковый номер номинала в ряду е96, а буква множитель: A=x10, B=x100 и т.д., X=x1, Y=x0.1, Z=x0.01

Реверсивный калькулятор кодов

Калькулятор может работать со всеми кодами маркировки smd: из 3-х цифр, из 4-х цифр, или с кодом EIA-96. Для получения нужной величины сопротивления, нужно вписать код в центре рисунка резистора, и нажать на стрелку вниз. В текстовом поле появится искомое значение.

В обратном направлении также можно определиться с необходимым типом. Выбрать тип кодировки (поставить точку в нужном поле напротив кода), затем, чтобы получить код сопротивления, написать в поле сопротивление, которое имеет резистор. (10 кОм). SMD калькулятор выдаст нужный код после нажатия стрелки вверх.

Он появится в центре рисунка.

instrument.guru

Номинал Склад Заказ

750 Ом

1 кОм

1,2 кОм

1,3 кОм

1,5 кОм

1,8 кОм

2 кОм

2,2 кОм

2,4 кОм

3 кОм

3,01 кОм

3,9 кОм

4,7 кОм

5,1 кОм

6,8 кОм

7,5 кОм

9,1 кОм

10 кОм

15 кОм

Купить

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 5000 штук резисторов типоразмера 1206.

  • Номинальная мощность чип резистора 1206 при 70°С…………..0.25 Вт
  • Рабочее напряжение чип резистора 1206…………………………….200 В
  • Максимальное напряжение чип резистора 1206……………………400 В
  • Диапазон рабочих температур чип резистора 1206………………-55° +125°С
  • Температурный коэффициент сопротивления………………………100 ppm/°С

Чип резисторы типоразмера 1206 5% поставляются со склада по ряду e24.

Современная малопотребляющая электронная аппаратура допускает использование чип резисторов меньшей рассеиваемой мощности 0402 5%, 0402 1%; 0603 5%, 0603 1%; 0805 5%, 0805 1%.

В электрических схемах требующих большей рассеиваемой мощности или рабочего напряжения 2512 5% и 2512 1%. Этот типоразмер удобен при выборе низкоомных резисторов.

Маркировка SMD резисторов: общая информация, принципы обозначений, расшифровка данных

Резисторы… Как много важного содержится в этом слове для тех, кто увлекается электроникой или постоянно работает с ней. Однако для полного погружения в мир электроники необходимо хотя бы поверхностно знать и уметь определять маркировку чип резисторов.

Общие данные SMD чипов

Аббревиатура «SMD» расшифровывается как Surface Mounted Devices, что в переводе на русский язык означает «устройство, монтируемое на поверхность». И это действительно так — резисторы устанавливаются над поверхностью на специальных креплениях. Монтируются же эти устройства на печатных платах.

Одно из значительных преимуществ smd-чипов заключается в их небольшом размере. На одной печатной плате можно без труда разместить десятки (если не сотни) подобных изделий. Также благодаря высокому качеству и небольшой стоимости, резисторы обрели необычайную популярность на рынке электроники.

Благодаря постоянному прогрессу, появляются всё новые модели чипов резисторов, маркировка и характеристики которых постоянно меняются. Всего же на этом рынке есть 3 типа изделий:

  • Сделанные в советский период (сейчас значительно теряют популярность).
  • Современные модели.
  • Резисторы SMD.

В этой статье остановимся на маркировке последнего типа т. к. он наиболее интересен.

Принципы маркировки

Все SMD чипы обозначаются по-разному. Дело в том, что каждое изделие имеет свой размер и значение допуска. Соответственно, чтобы не возникало путаницы, производителями было решено выделить 3 основные группы для маркировки:

  • Изделия, обозначающиеся 3-мя цифрами.
  • Модели, имеющие в маркировке 4 цифры.
  • Устройства с 2-мя цифрами и одной буквой.

Каждый из этих типов стоит рассмотреть более подробно.

К первой группе относятся изделия (числа 103, 513 и др.) с допуском в 2%, 5% или 10%. Под первыми двумя цифрами мантисса, а последняя указывает на показатель степени 10. Последнее значение необходимо для расчёта номинала резистора (измеряется в Омах). Также в некоторых моделях имеется буква «R», которая обозначает десятичную точку.

Ко второй группе было решено отнести модели, имеющих типоразмер в 0805 и выше, а также обладающих допуском в 1%.

Принцип схож с первой группой резисторов: первые 3 цифры обозначают мантиссу, а четвёртая — значение степени, имеющее основание 10.

Кроме того, здесь так же, как и в предыдущем типе, последнее число подразумевает номинал модели (в Омах), а буквой R обозначают десятичную точку. Стоит упомянуть, устройства с типоразмером 0402 не маркируются.

Наконец, в последней группе располагаются smd чипы, имеющих типоразмер 0603 и уровень допуска в 1%. Цифры указывают на код в таблице EIA-96 (об этом ниже), а буква — значение множителя:

  • A — число 10 в нулевой степени
  • B — основание 10 со степенью 1
  • C — это число 10 в степени 2
  • D = 103
  • E = 104
  • F = 105
  • R = 10-1
  • S = 10-2

Расшифровка маркировки

Для установки или работы с SMD резистором, необходимо знать и уметь расшифровать числа и буквы. Этот процесс можно разделить на 2 типа.

Обычная расшифровка

Как было сказано выше, при изготовлении smd резисторов, действуют нерушимые правила маркировки. Они придуманы для того, чтобы покупатель без труда смог определить мантиссу и значение сопротивления. Поэтому всё, что потребуется — это листочек с ручкой или математический склад ума.

Начнём с простого примера — определения сопротивления у изделий с допуском в 2%, 5% или 10% (это те модели, у которых в маркировке 3 цифры). Предположим, на резисторе указана цифра 233. Это значит, что необходимо 23 умножить на 10 в третьей степени. В итоге получится, что у изделия сопротивление 23 КОм (23 x 103 = 23 000 Ом = 23 КОм).

Аналогичная ситуация у моделей, имеющих 4 цифры в описании. Допустим, на изделии указано число 5401. Выполняя аналогичные вычисления получаем сопротивление 5,4 КОм (540 x 101 = 5 400 Ом = 5,4 КОм).

Совершенно иначе обстоят дела с расшифровкой обозначения у изделий, на которых указаны цифры и буквы. Как было написано выше, для этого потребуется таблица EIA-96 (её можно без труда отыскать в интернете).

Подставив цифры в соответствующую строку и перевести букву в численное выражение, можно без труда вычислить сопротивление. Например, маркировка 04D означает, что сопротивление равно 10,7 КОм (107 x 103 = 107 000 Ом = 10,7 КОм).

Расшифровка через сервисы

Прогресс не стоит на месте. Постоянно внедряются современные технологии, разрабатываются новые подходы, другими словами, жизнь человека становится всё более комфортной. В современном мире даже для вычисления сопротивления у SMD чипов, существуют хорошие сервисы и программы.

В интернете можно без труда найти множество сайтов, на которых предоставляется возможность рассчитать сопротивление. В большинстве случаев, таким сервисом выступает калькулятор для вычисления сопротивления резистора. Вот лишь некоторые из них:

  • cxem.net/calc/calc.php
  • wpcalc.com/markirovka-smd-rezistorov
  • profi-radio.ru/online-raschyot-soprotivleniya-smd-rezistora-po-tsifrovoy-markirovke.html

Также специально для этих целей была разработана отечественная программа «Резистор». Она в пару кликов позволяет узнать всю информацию об изделии. Кроме того, данный софт абсолютно бесплатен.

И в заключение

Расшифровка обозначений SMD резисторов — довольно специфичный процесс. Однако для полноценной работы с чипами, это просто необходимо. Кроме того, полученные знания точно не будут лишними.

Довольно многие люди предпочитают делать вычисления по старинке — с помощью ручки и блокнота. Другие же используют специальный софт. Но в любом случае стоит лишь немного потренироваться — и вычислять сопротивление резисторов не составит труда.

Способ изготовления прецизионных чип-резисторов по гибридной технологии

Изобретение относится к электронной технике, а именно к производству постоянных резисторов, и может быть использовано в электронной, радиотехнической и других смежных отраслях промышленности при изготовлении прецизионных чип-резисторов.

Изготовление прецизионных чип-резисторов основано на использовании толстопленочной либо тонкопленочной технологии [1].

Сущность толстопленочной технологии состоит в нанесении на изоляционную подложку слоя специальной токопроводящей пасты с последующим вжиганием ее в подложку и формированием электродных контактов.

Вследствие простоты изготовления чип-резисторы толстопленочной технологии характеризуются сравнительно невысокой стоимостью их производства при приемлемых для некоторых потребителей значениях технических характеристик.

Их основные технические параметры характеризуются следующими величинами: лучшие значения температурного коэффициента сопротивления (ТКС) находятся в пределах ±50·10-6 1/град; нестабильность параметров у лучших фирм не выходит за пределы ±1% за 1000 часов работы; уровень (ЭДС) шумов в значительной степени зависит от номинала и в ряде случаев при сопротивлении более 1 МОм превышает значение 30 мкВ/В.

При изготовлении чип-резисторов по тонкопленочной технологии резистивный слой образуется путем вакуумного напыления на изоляционную подложку проводящего материала, вследствие чего сложность производства, себестоимость и технические характеристики таких резисторов оказываются значительно выше. Так, значения ТКС находятся в пределах ±(5-10)·10-6 1/град; нестабильность параметров не превышает ±0,05% за 1000 часов работы; уровень шумов не превышает значение 1 мкВ/В.

В качестве аналогов предлагаемого изобретения можно отметить такие известные изобретения, как “Способ изготовления толстопленочных резисторов” [2] и “Прецизионный тонкопленочный резистор” [3]. Основные сопоставительные характеристики резисторов-аналогов соответствуют изложенному выше.

За прототип изобретения принят “Способ изготовления бескорпусного резистора” [4], представляющего собой изготовление чип-резисторов по гибридной технологии.

Сущность прототипа состоит в следующем.

Для изготовления резисторов используют изоляционную подложку, в которой образованы множественные первые линейные параллельные надрезы и множественные вторые линейные параллельные надрезы, причем вторые линейные надрезы перпендикулярны первым линейным надрезам.

Вначале посредством нанесения способом печатания толстопленочного пастообразного состава с последующим его спеканием формируют на лицевой (верхней) поверхности подложки верхний электродный контакт, а затем на нижней поверхности подложки формируют соответственно нижний электродный контакт.

Далее путем нанесения тонкопленочного резистивного слоя формируют резистивный элемент на верхней поверхности подложки (основания).

Ломая подложку по первым и вторым надрезам, получают соответствующие чип-резисторы.

Таким образом, прототип, совмещая процессы толстопленочной и тонкопленочной технологий, представляет собой изготовление чип-резистора по гибридной технологии.

Отличительными особенностями прототипа являются:

1) тонкопленочный резистивный слой наносится на изоляционную подложку поверх электродных контактов, покрывая при этом только часть их поверхности, предоставляя для внешних соединений остальную часть поверхности контактов, вследствие чего весьма ослабляются контактные соединения;

2) резистивный слой не покрыт защитным слоем, что обуславливает изменение его характеристик в процессе эксплуатации;

3) электродные контакты не покрыты слоем припоя, что снижает технологичность монтажных работ и эксплуатационную надежность.

Отмеченные особенности обуславливают низкую эксплуатационную надежность получаемого чип-резистора.

Целью изобретения является повышение эксплуатационной надежности прецизионных чип-резисторов.

Поставленная цель достигается предложением способа изготовления прецизионных чип-резисторов по гибридной, сочетающей тонкопленочную и толстопленочную, технологии, отличительной особенностью которого является последовательное выполнение следующих операций:

1) на шлифованную (тыльную) поверхность изоляционной подложки наносят методом трафаретной печати слой серебряной или серебряно-палладиевой пасты с последующим ее вжиганием, образуя тем самым электродные контакты на тыльной стороне подложки;

2) на полированную (лицевую) сторону изоляционной подложки методом вакуумной (тонкопленочной) технологии напыляют резистивный слой;

3) методом фотолитографии и ионного травления осуществляют образование топологии резистивного слоя на лицевой стороне подложки;

4) методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя наносят слой низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне;

5) методом лазерной подгонки резистивного слоя подгоняют величину сопротивления резисторов в номинал;

6) методом трафаретной печати наносят на резистивный слой с последующим вжиганием слой низкотемпературной защитной пасты, образуя защитный слой;

7) скрайбируют и ломают пластину изоляционной подложки на полосы;

8) методом вакуумной (тонкопленочной) технологии на торцы рядов (полос) напыляют из сплава никеля с хромом торцевой слой, соединяя при этом электрически между собой электродные контакты лицевой и тыльной сторон подложки;

9) ломают ряды (полосы) на чипы;

10) гальваническим методом наносят поверх электродных контактов (торцевых) на лицевой и на тыльной сторонах слой никеля;

11) поверх слоя никеля гальваническим методом наносят слой припоя (сплав олова со свинцом).

Сопоставительный анализ с прототипом показывает, что заявляемый способ изготовления чип-резисторов по гибридной технологии отличается от прототипа наличием дополнительных действий, а именно:

– образование методом фотолитографии и ионного травления топологии резистивного слоя на подложке;

– нанесение методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя слоя низкотемпературной серебряной пасты с последующим ее вжиганием;

– подгонка методом лазерной подгонки величины сопротивления резисторов в номинал;

– нанесение на резистивный слой с последующим вжиганием слоя низкотемпературной защитной пасты;

– напыление методом вакуумной (тонкопленочной) технологии сплава никеля с хромом на торцы рядов торцевого слоя;

– нанесение поверх электродов (торцевого) на лицевой и на тыльной сторонах гальваническим методом слоя никеля;

– нанесение поверх слоя никеля гальваническим методом слоя припоя, вследствие чего соответствует критерию “новизна”.

Сравнение заявляемого способа с другими аналогичными способами показывает, что способы изготовления чип-резисторов толстопленочной, тонкопленочной и гибридной технологий, содержащие формирование электродных контактов и резистивного слоя, известны.

Однако благодаря тому, что в предлагаемом способе изготовления чип-резисторов вводятся такие последовательно выполняемые действия, как:

– образование методом фотолитографии и ионного травления топологии резистивного слоя на подложке;

– нанесение на лицевой стороне подложки поверх резистивного слоя методом трафаретной печати слоя низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне;

– подгонка методом лазерной подгонки величины сопротивления резисторов в номинал;

– нанесение на резистивный слой с последующим вжиганием слоя низкотемпературной защитной пасты, образуя защитный слой;

– напыление методом вакуумной (тонкопленочной) технологии сплава никеля с хромом на торцы рядов торцевого слоя, соединяя при этом электрически между собой электродные контакты лицевой и тыльной сторон подложки;

– нанесение поверх электродных контактов (торцевого) на лицевой и на тыльной сторонах гальваническим методом слоя никеля, предотвращающего растворение серебра электродных контактов в припое;

– нанесение поверх слоя никеля гальваническим методом слоя припоя, облегчающего процесс сборки электронных схем,

появляются новые свойства заявляемого способа, проявляющиеся в повышении эксплуатационной надежности даже при эксплуатации изделий в жестких условиях.

Это позволяет сделать вывод о соответствии заявляемого “Способа изготовления чип-резисторов по гибридной технологии” критерию “существенные отличия”.

Сущность предлагаемого “Способа изготовления чип-резисторов по гибридной технологии” состоит в следующем.

В качестве основы изготавливаемых чип-резисторов используются изоляционные подложки (керамические пластины, например, типа ВК-100) с полированной лицевой и шлифованной тыльной сторонами.

Вначале на шлифованную (тыльную) поверхность изоляционной подложки наносят методом трафаретной печати слой серебряной или серебряно-палладиевой пасты с последующим ее вжиганием, образуя тем самым электродные контакты на тыльной стороне подложки, затем на полированную (лицевую) сторону изоляционной подложки методом вакуумной (тонкопленочной) технологии напыляют резистивный слой, методом фотолитографии и ионного травления осуществляют образование топологии резистивного слоя на подложке, после чего методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя наносят слой низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне, методом лазерной подгонки подгоняют величину сопротивления резисторов в номинал, затем методом трафаретной печати наносят на резистивный слой с последующим вжиганием слой низкотемпературной защитной пасты, образуя защитный слой, скрайбируют и ломают пластину изоляционной подложки на ряды (полосы), методом вакуумной (тонкопленочной) технологии из сплава никеля с хромом на торцы рядов напыляют торцевой слой, соединяя при этом электрически между собой электродные контакты лицевой и тыльной сторон подложки, ломают ряды на чипы, гальваническим методом наносят поверх электродных контактов (торцевого) на лицевой и на тыльной сторонах слой никеля, а поверх слоя никеля гальваническим методом наносят слой припоя (сплав олова со свинцом).

Использование для образования торцевого слоя, электрически соединяющего верхние и нижние электродные контакты, сплава никеля с хромом обусловлено хорошей адгезией данного сплава как с керамической подложкой, так и с серебром и серебросодержащими сплавами.

Слой никеля, наносимый перед слоем припоя, необходим для предотвращения растворения серебра электродных контактов в припое.

На чертеже показана конструкция чип-резистора, получаемого по предлагаемой технологии, где обозначены:

1 – изоляционная подложка;

2 – электродные контакты толстопленочной технологии на тыльной стороне подложки;

3 – резистивный слой тонкопленочной технологии;

4 – электродные контакты толстопленочной технологии на лицевой стороне подложки;

5 – защитный слой;

6 – торцевой слой из сплава никеля с хромом тонкопленочной технологии;

7 – слой никеля;

8 – слой припоя.

Нанесение верхних (на лицевой стороне подложки) электродных контактов на основе серебряной пасты поверх резистивной пленки, что обеспечивает достижение высокой степени прецизионности при выполнении лазерной подгонки, напыление торцевого слоя из сплава никеля с хромом, электрически соединяющего верхние и нижние (на лицевой и тыльной сторонах подложки соответственно) электродные контакты, покрытие верхних, нижних и торцевых контактов слоем никеля, отделяющим серебро и серебросодержащие сплавы электродных контактов от припоя, покрытие слоя никеля слоем припоя, а резистивного слоя – защитным слоем, все это обуславливает высокую технологичность выполнения монтажных работ, а также образование высококачественных контактов и длительную стабильность параметров чип-резисторов в процессе их эксплуатации.

Таким образом можно сделать вывод, что цель, поставленная перед данным изобретением, – повышение эксплуатационной надежности прецизионных чип-резисторов, достигнута.

Предложенный гибридный способ изготовления чип-резисторов может быть использован в электронной, радиотехнической и других смежных отраслях промышленности при производстве прецизионных чип-резисторов широкой области номиналов.

Сочетание в предложенном гибридном способе изготовления прецизионных чип-резисторов достоинств толстопленочной и тонкопленочной технологий – простота изготовления и высокие технические характеристики – является гарантией его широкого применения на практике.

Технико-экономический эффект, обусловленный применением предложенного способа изготовления прецизионных чип-резисторов, заключается в существенном повышении их эксплуатационной надежности, а следовательно, и в повышении эффективности их применения.

Количественная величина ожидаемого технико-экономического эффекта от использования предложенного способа изготовления прецизионных чип-резисторов гибридной технологии в значительной мере зависит от области его применения и конкретных вариантов исполнения, ее определение возможно только после его практической реализации.

1. Справочник “Резисторы”. / Под редакцией И.Я.Четверткова и В.М.Терехова. – М.: Радио и связь, 1991.

2. Патент РФ №2086027, МПК Н01C 17/06. Способ изготовления толстопленочных резисторов. 1997, Бюл. №21.

3. Патент РФ №2123735, МПК Н01C 7/00. Прецизионный тонкопленочный чип-резистор. 1998, Бюл. №35.

4. Патент JP (Япония) №3869273, МПК Н01C 7/06. Способ изготовления бескорпусного резистора. 17.01.2007 г.

Способ изготовления прецизионных чип-резисторов по гибридной технологии, содержащий последовательное формирование на изоляционной подложке на основе толстопленочной технологии электродных контактов, а на основе тонкопленочной технологии – резистивного слоя с последующим ломанием изоляционной подложки на чипы, отличающийся тем, что вначале на шлифованную (тыльную) поверхность изоляционной подложки наносят методом трафаретной печати слой серебряной или серебряно-палладиевой пасты с последующим ее вжиганием, образуя тем самым электродные контакты на тыльной стороне подложки, затем на полированную (лицевую) сторону изоляционной подложки методом вакуумной (тонкопленочной) технологии напыляют резистивный слой, методом фотолитографии и ионного травления осуществляют образование топологии резистивного слоя на подложке, после чего методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя наносят слой низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне, после чего методом лазерной подгонки подгоняют величину сопротивления резисторов в номинал, затем методом трафаретной печати наносят на резистивный слой с последующим вжиганием слой низкотемпературной защитной пасты, образуя защитный слой, скрайбируют и ломают пластину изоляционной подложки на ряды (полосы), методом вакуумной (тонкопленочной) технологии из сплава никеля с хромом на торцы рядов напыляют торцевой слой, соединяя при этом электрически между собой электродные контакты лицевой и тыльной сторон подложки, ломают ряды на чипы, гальваническим методом наносят поверх электродов – торцевого, на лицевой и на тыльной сторонах – слой никеля, а поверх слоя никеля гальваническим методом наносят слой припоя (сплав олова со свинцом).

Маркировка SMD-резисторов — онлайн калькулятор

Онлайн калькулятор для расчета маркировки SMD-резисторов по заданному сопротивлению. Также можно рассчитывать сопротивление резистора, если известна его маркировка.

 
Как пользоваться калькулятором

Поставьте переключатель в нужное положение в зависимости от требуемого результата: расчет маркировки / расчет сопротивления. Введите заданные данные в появившиеся поля и нажмите на красную кнопку «Расчет».

Теория

Резистор — пассивный элемент электроцепей, характеризуется сопротивлением электротоку.

SMD резисторы – это резисторы малых размеров, применяемые для поверхностного монтажа.

Ом — единица измерения сопротивления. Приставки увеличения: кило — килоом (тысяча Ом), мега — мегаом (миллион Ом).

Таблица размеров и технических характеристик популярных SMD резисторов
КодЗначениеКодЗначениеКодЗначениеКодЗначение
01100131332517837237
02102141372618238243
03105151402718739249
04107161432819140255
05110171472919641261
06113181503020042267
07115191543120543274
08118201583221044280
09121211623321545287
10124221653422146294
11127231693522647301
12130241743623248309
S10-2R10-1A100B10+1
КодЗначениеКодЗначениеКодЗначениеКодЗначение
49316614227356285750
50324624327457686768
51332634427559087787
52340644537660488806
53348654647761989825
54357664757863490845
55365674877964991866
56374684998066592887
57383695118168193909
58392705238269894931
59402715368371595953
60412725498473296976
C10+2D10+3E10+4F10+5

 

Калькулятор цветовой маркировки резисторов.(расшифровка онлайн  по ГОСТ 175-72)


Некоторые иностранные производители (хоть это и редкость) применяют собственную, нестандартную цветовую маркировку резисторов. В этом случае придется смотреть правила цветовой маркировки у конкретной фирмы.

Возможности калькулятора:

Если по цветовой маркировке необходимо узнать сопротивление резистора, необходимо выполнить следующие действия: указать в калькуляторе количество цветных полос, затем выбрать цвет каждой из них (под каждой полоской на изображении резистора расположено выпадающее меню). Под изображением резистора результат будет выведен в виде X*10Y Ом  (цифры располагаются каждая под своей полоской), а в поле результата уже в обычном виде (Ом, кОм, МОм).

Если необходимо узнать, каким цветовым кодом маркируется резистор заданного номинала, необходимо ввести значение в поле результата (правее слов «Или так») в виде целого числа или дробного (разделитель- точка). Затем выбрать диапазон (Ом, кОм, МОм…). Цвет полос будет пересчитан калькулятором в соответствии с введенным значением. Приоритет у сопротивлений с допуском 5% (маркировка 4 полосами). Если 5% сопротивлений с таким номиналом нет, то выводится маркировка  1%  резисторов, ну а если и таких не существует, то 0.5%. Так, например, если задать расчет для 10 кОм, то по умолчанию будет выведена маркировка для 10 кОм ±5% (4 полоски). Чтобы узнать, какой цветовой код будет у 1% резистора, нужно задать допуск. Тогда будет рассчитана 5-полосная цветовая маркировка резистора 10 кОм ±1%.

Справа от калькулятора выводится таблица со стандартными значениями сопротивлений из рядов Е12, Е24, Е48, Е96 и Е192. Таблица прокручивается до значений, ближайших к тому, что в данный момент задано цветовой маркировкой. Если такие значения есть, эта строка окрашивается в зеленый цвет, если таких значений нет, в желтый цвет окрашиваются строки с ближайшим большим и  ближайшим меньшим значением. Если кликнуть по значению в таблице, то маркировка резистора будет пересчитана соответственно. Причем порядок сопротивления останется тот же, что и был. Если, например изначально была 4-полосная маркировка
для 10 кОм ±5% (значение 100 из стандартного ряда Е24), и вы кликните по значению 101 из ряда Е192 в таблице, то будет рассчитана 5-полосная цветовая маркировка для резистора
10.1 кОм ±0.5%

Над каждой цветовой полоской на резисторе располагаются кнопки «+» и «-«. Клик по ним приводит к тому, что цифровой эквивалент этой полоски (и цвет, соответственно) изменяется на 1 шаг (на единицу для полосок с 1 по 4 или до ближайшего большего или меньшего для полосок, отвечающих за отклонения и ТКС )

   Первая полоска цветовой маркировки обычно находится ближе к краю, но, если цветовых полос более 4-х, бывает сложно определить, какая из двух крайних первая, и хоть ее в этом случае делают толще, это не всегда помогает. Рекомендую в сомнительных случаях проверить, возможна ли обратная последовательность с помощью кнопки «Реверс». Калькулятор цветовой маркировки резисторов построит зеркальное отображение полосок и соответствующее ей значение сопротивления. Если такая комбинация невозможна, программа выдаст сообщение,  какая именно цветная полоска не соответствует правилам цветовой маркировки резисторов. Также калькулятор выдаст сообщение, если допуск, соответствующий выбранной цветовой маркировки не соответствует значениям допуска соответствующего стандартного ряда. Например, сопротивление 4.07 кОм может принадлежать исключительно прецизионному ряду Е192. И если цвет 5-й полоски будет выбран золотистый (что соответствует допуску 5%), то это явная ошибка, о чем будет выдано сообщение. Еще есть дополнительная возможность вывести таблицу с ближайшими возможными номиналами к значению, заданному цветовой маркировкой резистора. Будут выведены значения от ближайшего меньшего до ближайшего большего из ряда Е24 и значения из рядов Е48, Е96, Е192 в этом же диапазоне. Полезно при разработке новой схемы при выборе номинала резистора.

Цветовая маркировка резисторов — числовые значения цветов в зависимости от расположения.

Общие сведения о цветовой маркировке резисторов.

Цветовая маркировка резисторов обычно наносится в виде 3-х, 4-х, 5-ти, а иногда и 6 колец. В ней с помощью цвета закодирован номинал сопротивления резистора, допустимое отклонение (точность), а также может быть обозначен ТКС (изменение сопротивления резистора от температуры — важный параметр в прецизионных применениях). На первый взгляд, цветовая маркировка резисторов сложна в распознавании, так как в памяти приходится держать таблицу цветов. Но зато такой способ позволяет в любом случае прочитать номинал резистора, впаянного в плату. Кроме того, можно разобрать сопротивление выводного резистора в самом мелком габарите (0.062Вт), на корпусе которого просто не поместилась бы цифро-буквенная маркировка. Стоит отметить и то, что цветовая маркировка резисторов технологичней в производстве. В конечном счете, цветовая маркировка резисторов удобна как производителям, так и потребителям. Самый же большой недостаток цветной маркировки резисторов, на мой взгляд — сложность в различении таких цветов, как серый и серебристый, желтый и золотистый, а иногда сложно бывает различить при определенном освещении черный, коричневый и фиолетовый. Также и интенсивность оттенков тоже может быть разная в зависимости от возраста, температурных режимов, которые перенес резистор, да и производитель, наверное, колору может недосыпать. Есть и еще один недостаток: иногда производители так наносят маркировку, что просто невозможно понять, где первая полоска, а где последняя. В этом случае, если это, конечно, не цветовой аналог слова «шалаш» (хоть по-нашему читай, хоть по-арабски справа-налево…) результат будет совершенно разный. Упростить ситуацию со неоднозначным прочтением цветовой маркировки резисторов поможет уникальная реверсная функция калькулятора. При клике по кнопке «Реверс» цветовая маркировка, набранная ранее переворачивается зеркально. В большинстве случаев этот код будет недопустимым (например, первым элементом цветовой маркировки не может быть серебристая полоска), а в других просто ускорится процесс декодирования и проще будет сравнить два результата, чтобы выбрать более подходящий. Например, в обычной непрецизионной схеме вряд ли поставят резистор с точностью 0.5%, так как он дороже, а никто из производителей не будет увеличивать стоимость без необходимости.

Назначение полос в цветовой маркировке резисторов.

1-я полоса цветовой маркировки резисторов может означать только цифру, не может быть нулем (т.е., иметь черный цвет)

2-я полоса цветовой маркировки резисторов тоже означает только цифру

3-е кольцо в цветовой маркировке резистора обозначает цифру, если полосок 5, или множитель к первым двум, если полосок 4.

4-е кольцо цветовой маркировки резистора обозначает множитель к первым трем, если полосок 5, или точность, если цветных колец 4

5-я полоса цветовой маркировки резистора, если она есть, указывает на точность резистора

6-я цветная полоса маркировки, опять же, если есть, обозначает ТКС (температурный коэффициент сопротивления)

Принципы цветовой маркировки резисторов, описанные здесь, с таким же успехом применимы также для конденсаторов и дросселей с той лишь разницей, что получившееся число будет означать не Омы, а пикофарады для конденсаторов и микрогенри для дросселей. Есть, правда, еще и отличия в маркировке точности.

Способ быстро запомнить цветовую маркировку резисторов.

Всем известно двустишие «Каждый охотник желает знать, где сидит фазан», раскладывающее цвета радуги. По такому же принципу,  если выговорить в определенном ритме «СеЗон»+ «Че-Ка-Ка, ОЖэ-Зэ, Сэ-эФСБэ», то эта комбинация букв легко запоминается. Остается сопоставить это с цветами по начальным буквам «серебристый золотистый»+ «черный-коричневый-красный, оранжевый-желтый-зеленый, синий-фиолетовый-серый-белый» и последовательным цифровым рядом «-2,-1″+ «0,1,2,3,4,5,6,7,8,9», — и цифры в цветовой маркировке резисторов всегда сможете  декодировать. Ну а если Вы хотите запомнить, как в цветовой маркировке резисторов кодируются точность и ТКС, то, видимо, Вы собираетесь стать неслабым прецизным электронщиком и на этот сайт забрели по какой-то нелепой случайности….

Цветовая маркировка резисторов — сайты с калькуляторами маркировки

911. Color code resistor calculator. (Английский калькулятор цветовой маркировки резисторов)
1. Цветовая маркировка резисторов на сайте Casemods Ссылка
2. Цветовая кодировка резисторов на сайте Qrz.ru Ссылка
3. Цветовая маркировка резисторов на сайте Energo soft Ссылка
4. Цветовая маркировка резисторов на сайте Radiopartal Ссылка
5. Цветовая маркировка резисторов на сайте Чип и Дип Ссылка
6. Калькулятор цветовой маркировки на сайте Hamradio Ссылка

 

Онлайн калькулятор цветовых полосок сопротивления. Маркировка резисторов

Данный калькулятор поможет вам найти значение сопротивления 3-х и 4-х значных SMD резисторов, а так же по маркировке EIA-96 (две цифры и буква). Просто введите код, написанный на резисторе, и значение отобразится cнизу. Букву вводите только латинскую, иначе получите нулевое значение

Введите код SMD резистора


33.1kΩ ± 1%

Маркировка EIA-96

Высокоточные резисторы в сочетании с малыми размерами создали необходимость иметь более компактную маркировку для SMD резисторов. Поэтому была создана система маркировки EIA-96. Основана на серии E96 и предназначена для резисторов с допуском 1%.

В этой системе резистор маркируется тремя знаками: 2 цифры для обозначения значения резистора и 1 буква для множителя. Два первых числа представляют код, который указывает значение сопротивления с тремя значащими цифрами. В таблице ниже приведены значения для каждого кода, которые в основном являются значениями из серии E96. Например, код 04 означает 107 Ом, а 60 означает 412 Ом. Коэффициент умножения дает конечное значение резистора, например:

Использование буквы предотвращает путаницу с другими системами маркировки. Однако обратите внимание, что буква R используется в обеих системах. Для резисторов с допусками, отличными от 1%, существуют разные буквенные таблицы.

КодЗначениеКодЗначениеКодЗначениеКодЗначениеКодЗначениеКодЗначение
011001714733215493166546481681
021021815034221503246647582698
031051915435226513326748783715
041072015836232523406849984732
051102116237237533486951185750
061132216538243543577052386768
071152316939249553657153687787
081182417440255563747254988806
091212517841261573837356289825
101242618242267583927457690845
111272718743274594027559091866
121302819144280604127660492887
131332919645287614227761993909
141373020046294624327863494931
151403120547301634427964995953
161433221048309644538066596976

Мощность SMD резистора

Чтобы узнать приблизительную мощность SMD-резистора, измерьте его длину и ширину. В таблице ниже представлены несколько часто используемых размеров с соответствующими типичными номинальными мощностями. Используйте эту таблицу только в качестве руководства и всегда обращайтесь к спецификации компонента для точного значения.


ТипоразмерРазмер в дюймах(ДxШ)Размер в мм (ДxШ)Мощность
02010.024″ x 0.012″0.6 мм x 0.3 мм0,05Вт
04020.04″ x 0.02″1.0 мм x 0.5 мм0,0625Вт
06030.063″ x 0.031″1.6 мм x 0.8 мм0,0625Вт
08050.08″ x 0.05″2.0 мм x 1.25 мм0.1Вт
12060.126″ x 0.063″3.2 мм x 1.6 мм0.125Вт
12100.126″ x 0.10″3.2 мм x 2.5 мм0.25Вт
18120.18″ x 0.12″4.5 мм x 3.2 мм0.33Вт
20100.20″ x 0.10″5.0 мм x 2.5 мм0.5Вт
25120.25″ x 0.12″6.35 мм x 3.2 мм1Вт

Одними из основных элементов построения электронных схем, несмотря на развитие микропроцессорных технологий по-прежнему остаются старые проверенные резисторы

Сопротивление или резисторы во многом за последние десятилетия претерпели ряд изменений, в том числе и существенное уменьшение габаритных размеров – нынешнее поколение вдвое меньше по размерам, чем приборы, выпускаемые 30-40 лет назад, но вместе с тем, потребность в них при создании электроники не стала меньше.

Причинами введения цветной маркировки электронных элементов было несколько:

  1. Ввиду уменьшения размеров пришлось отказаться от буквенно-цифровой маркировки приборов.
  2. Цветовая система обозначения позволяет закодировать намного больше информации об элементе, чем буквенно-цифровая.
  3. Повсеместное внедрение робототехники в сборочных линиях электронных компонентов требовало изменения подходов к маркировке составляющих деталей.
  4. В связи с развитием производства радиодеталей в странах Восточной Азии, основанной на передовых технологиях, существенно оттеснили выпуск отечественных компонентов, ввиду чего производителям пришлось перейти на западные стандарты маркировки.

Кроме того, значительное количество радиоэлементов сегодня монтируются в платы, ремонт которых нецелесообразен ввиду дороговизны самого ремонта, ведь намного дешевле купить новый радиоприемник чем отремонтировать, ввиду этого, многие фирмы практически отказались от сервисных центров и как результат, не требуют значительного количества запасных частей разного номинала.

Как определить сопротивление резистора по цвету?


В основном, сегодня, практически невозможно встретить резисторы старше 15-20 лет, хотя отдельные старые раритетные «Рекорды» и «Электроны» до сих пор радуют глаз в отдельных квартирах.

Наполненные советской электроникой старые телевизоры и радиоприемники в своем составе имели, как правило, стандартные сопротивления коричневого или зеленого цветов с буквенной маркировкой.

Понять номинальное значение элемента по его буквенно-цифровой кодировке имея под рукой раритетный макулатурный справочник особого труда не составляет, тем более что в большинстве своем это были металлопленочные, лакированные приборы, обладающие свойством теплоустойчивости – МЛТ.

В Советском Союзе бытовая электроника была побочным продуктом оборонных предприятий, но при этом собиралась из тех же деталей, что и военная техника. Такие резисторы отличались друг от друга по габаритам – чем больше элемент, тем большее сопротивление.

Нынешняя маркировка компонентов во многом отличается от того тем, что существует несколько разновидностей – простые, стандартные цилиндрические сопротивления с цветной маркировкой и SMD-элементы.

4 и 5 полосная маркировка

Четырехполосная:

Пятиполосная:

Для определения номинала элемента, кроме знания основ физических процессов, необходимо знать технологию цветового обозначения номиналов электронных компонентов.

Для начала необходимо знать правильность чтения или порядок цветового кода:

  1. На резисторах, как правило, наносятся 4 или 5 цветных колец.
  2. Испытуемый элемент нужно расположить таким образом, чтобы цветовые кольца начинались с золотистого или серебристого кольца слева.
  3. В отдельных случаях, когда отсутствуют серебристая или золотистая полоска (а такой вариант вполне возможен), элемент нужно расположить таким образом, чтобы цветовые кольца оказались слева (или справа оставалось больше места).

Количество цветов в кольцах строго ограничено количеством цветов радуги, плюс серый, белый и черный.

Каждый цвет соответствует определенному значению номинала и зависит от расположения в порядке колец.

Первое и следующее за ним второе кольцо кода обозначают номинальную величину сопротивления элемента в стандартных единицах Омах, следующее кольцо множитель, на который нужно умножать величину первых единиц, четвертое означает ту величину, на которую происходит отклонение заявленного номинала в процентах.

Для SMD резисторов маркировка несколько иная – это в основном цифровое обозначение. В основном встречаются сопротивления с 3 или 4 цифрами – первые две, из которых это номинал, а третья обозначает степень числа 10. То есть резистор 4432 имеет номинал: 443*10(2 степени) или 4400 Ом или 4,4 кОм.

Стандартная и нестандартная цветовые маркировки


Нестандартная маркировка

Кроме общепринятой, стандартной цветовой маркировки обозначений сопротивлений, существуют и нестандартные виды кодирования. Чаще всего, нестандартные маркировки встречаются в виде совмещенного кода цвета и цифр у некоторых крупных производителей электроники, имеющих свои подразделения по разработке и производству электронных компонентов.

Среди таких нестандартных цветовых кодов и буквенного обозначения, чаще всего встречаются Philips и Panasonic, эти производители маркируют радиодетали, выпущенные на внутренних предприятиях отличной от общепринятой маркировкой, для которой применяются специальные справочные издания и компьютерные программы.

Пояснение и таблица


Как уже было указано, цветовые маркерные кольца нанесены слева направо.

Первое кольцо и следующее за ним второе цветное кольцо обозначают стандартную величину сопротивления в Омах. Следующее, третье кольцо обозначает множитель, на который нужно умножать числовое значение первых двух единиц обозначения, четвертое кольцо кода указывает значение, на которое отклоняется заявленный номинал в процентах.

Для точного определения величины сопротивления каждого отдельного компонента не следует запоминать весь цветовой код, достаточно иметь под рукой таблицу определения сопротивления:

Цвет знака Номинальное сопротивление, Ом Допуск, % ТКС
Первая цифра Вторая цифра Третья цифра Множитель
Серебристый10-2±10
Золотистый10-1±5
Черный001
Коричневый11110±1100
Красный222102±250
Оранжевый33310315
Желтый44410425
Зеленый5551050,5
Голубой666106±0,2510
Фиолетовый777107±0,15
Серый888108±0,05
Белый9991091

Кроме стандартной, общепринятой маркировки, в отдельных случаях указываются и дополнительные данные в обозначениях 4 или 5 полосного, когда более широкая полоса (она, как правило, шире в 1,5 раз от остальных) указывает на более надежный, специальный вариант элемента – как правило, срок ее службы рассчитан более чем на 1000 часов непрерывной работы.

Онлайн-калькулятор


Интерфейс программы “Резистор 2.2”

Современные технологии и сегодня во многом облегчают работу как профессионалам, так и радиолюбителям. Кроме доступной измерительной аппаратуры, сегодня в интернет-ресурсах, посвященных радиотехнике, в огромном количестве находятся онлайн-калькуляторы определения сопротивления резисторов по маркировке.

Простые, и в общем-то надежные программы, позволяют с высокой точностью определить номинал практически любой радиодетали, более продвинутые и мощные инженерные программы, используемые в пакетах для инженеров-конструкторов, позволяют не только узнать значение сопротивления, но и найти соответствующую замену и определить вариант работоспособности самой схемы.

Одной из таких программ является программа Резистор 2.2 , она проста, удобна и не требует глубоких знаний компьютерной техники. Простой интерфейс и удобные рабочие органы позволяют работать как в сети, так и без неё.

Как пользоваться?

Как и большинство прикладных инженерных программ, программа Резистор 2.2 является онлайн-калькулятором, позволяющим определять номинал сопротивления по различным наиболее распространенным видам кодировки:

  1. Стандартной 4 или 5 цветной маркировке.
  2. Фирменной маркировке Philips различных видов сопротивлений.
  3. Нестандартной цветовой кодировки фирм Panasonic, Corning Glass Work.
  4. Обычной кодовой маркировке.
  5. Обычной кодировке Panasonic, Philips, Bourns.

После распаковки архива, не требующая регистрации программа сразу готова к работе. В окне, из предложенных вариантов, выбирается нужный параметр и производится дальнейшая идентификация по имеющемуся коду на корпусе элемента.

Для удобства идентификации, в верхнем окне наглядно показывается изображение определяемой кодировки. На корпусе радиодетали наносятся цветные кольца в соответствии с теми значениями, которые указываются пользователем, таким образом, появляется возможность наглядно сравнить кодировку с реальным элементом.

Внизу сразу высвечивается числовое значение номинала элемента.

Ниже приведена программа для определения номинала сопротивления резистора и его точности по цветной маркировке на корпусе резистора. Чтобы правильно задать маркировку необходимо соблюсти ряд условий:

    Крайнее кольцо на корпусе резистора указывает на точность, выберете соответствующий цвет в крайней правой форме

    Для указания цвета других колец также воспользуйтесь соответствующими формами

    ВНИМАНИЕ!!! Программа рассчитана только на маркировку с 4-мя и 5-ю кольцами!!!

    Если Вам необходимо узнать маркировку для 4-ех кольцевого обозначения, то в первой слева форме выберете значение — «полоса отсутствует» .

Черный Коричневый Красный Оранжевый Желтый Зеленый Синий Фиолетовый Серый Белый Полосы нет Черный Коричневый Красный Оранжевый Желтый Зеленый Синий Фиолетовый Серый Белый Черный Коричневый Красный Оранжевый Желтый Зеленый Синий Фиолетовый Серый Белый Черный Коричневый Красный Оранжевый Желтый Зеленый Синий Фиолетовый Серый Белый Золотая Серебрянная Фиолетовый Синий Зеленый Коричневый Красный Золотая Серебрянная Полосы нет

Кодированное обозначение номинального сопротивления, допуска и примеры обозначения

Кодовая маркировка резисторов состоит из трёх или четырёх знаков: две цифры и буква или три цифры и буква. Буква кода является множителем, обозначающим сопротивление в Омах, и определяет положение запятой десятичного знака. Кодовое обозначение допускаемого отклонения состоит из буквы латинского алфавита.

Пример кодовой маркировки резистора: код 3R9J — состоит из четырех символов, буква R в данном случае является, что-то наподобие разделительной запятой, т.о. получаем число 3,9. Последняя буква указывает, согласно таблице, на допуск в 5%, в итоге получаем резистор 3,9 Ом +-%5 .
Разберем еще один пример: код 12K4F — состоит из 5-ти символов, числа формируют значение сопротивления, буква K — является разделителем и множителем одновременно, ориентируясь на таблицу получаем 12,4 103 Ом, буква F указывает на точность +-1%, в итоге получаем 12,4 кОМ±1%

Цветовая маркировка номинального сопротивления и допуска отечественных резисторов.

Цветовая маркировка резисторов обозначается, как 3 или более цветных полосок на корпусе резистора. Каждый цвет формирует числовое значение сопротивления резистора, согласно таблице ниже. Как правило последняя полоска указывает на величину допуска резистора, а первые полоски формируют величину сопротивления, к примеру у четырех полостной маркировки, первые две полосы указывают на величину сопротивления в Омах, а третья полоса является множителем для этой величины.

Цвет знакаПервая
цифра
Вторая
цифра
Третья
цифра
МножительДопуск,
%
ТКС
Серебристый10 -2±10
Золотистый10 -1±5
Черный001
Коричневый11110±1100
Красный22210 2±250
Оранжевый33310 315
Желтый44410 425
Зеленый55510 5±0,5
Голубой66610 6±0,2510
Фиолетовый77710 7±0,15
Серый88810 8±0,05
Белый99910 91

Кодовая маркировка отечественных резисторов

Согласно ГОСТ 11076-69 и требованиями Публикаций 62 и 115-2 IЕС в кодовой маркировке первые 3-и или 4-е символа указывают на значение номинального сопротивления резистора, которое определяется по базовому значению из рядов ЕЗ…Е192, и множитель. Символ который стоит в конце кода обозначает допуск- класс точности резистора. Требования данного ГОСТа и IEC практически совпадают с иностранным стандартом BS1852 (British Standart).

Следует добавить, что часто на корпусе резистора дополнительно, кроме основного кода, добавляют код несущий информацию о типе резистора, его номинальной мощности, и т.п.

Резистор и сопротивление

Резистор — пассивный электрический элемент, создающий электрическое сопротивление в электронных схемах. Резисторы можно найти практически во всех электронных устройствах. Они используются для различных целей, в частности, для ограничения тока в цепях, в качестве делителей напряжения, для обеспечения напряжения смещения для активных элементов электрических цепей, в качестве терминаторов (согласованных нагрузок) линий передачи, в резистивно-емкостных цепях в качестве времязадающего элемента… Список можно продолжать бесконечно.

Электрическое сопротивление резистора или любого проводника является мерой его противодействия протеканию электрического тока. В СИ сопротивление измеряется в омах. Сопротивление имеет практически любой материал кроме сверхпроводников, имеющих нулевое сопротивление. Подробнее о сопротивлении , удельном сопротивлении и проводимости .

Допустимое отклонение от номинального значения

Конечно, можно сделать резистор с очень точным значением сопротивления, однако он будет очень дорогим. К тому же, очень точные и дорогие резисторы бывают нужны достаточно редко, например, в качестве делителей напряжения в мультиметрах. Здесь мы поговорим о недорогих и не очень точных резисторах, используемых в электронных устройствах. В большинстве случаев точность ±20% вполне допустима. Для резистора сопротивлением 1 кОм это означает, что любой резистор с сопротивлением в диапазоне от 800 Ом до 1200 Ом будет считаться резистором 1 кОм. Допуск на некоторые особо критичные компоненты может быть ±1% или даже ±0.05%. В то же время следует отметить, что в наше время сложно найти резисторы с допуском 20%. Обычными являются 5-процентные и 1-процентные резисторы. Такие резисторы были дорогими 60 лет назад, во времена ламповых и первых транзисторных радиоприемников. Но те времена остались в далеком прошлом.

Рассеиваемая мощность

Если через резистор проходит электрический ток, электрическая энергия преобразуется в тепловую и резистор нагревается. Тепло рассеивается в окружающую среду. Причем, тепловая энергия должна быть передана в окружающую среду так, чтобы температура резистора и окружающих его элементов оставалась в пределах нормы. Мощность, выделяемая на резисторе, определяется по формуле:

Здесь V — напряжение в вольтах на резисторе сопротивлением R в омах, I — протекающий через резистор ток в амперах. Мощность, которую резистор может рассеивать без ухудшения параметров в течение длительного периода времени, называется предельной рассеиваемой мощностью . В общем случае, чем больше корпус резистора, тем большую мощность может он рассеивать. Выпускаются резисторы различной мощности и можно встретить резисторы от 0,01 Вт до сотен ватт. Углеродистые резисторы обычно выпускаются мощностью 0,125–2 Вт.

Ряды предпочтительных величин электронных компонентов

В начале XX века резисторы использовались главным образом в радиоприемниках и назывались вместе с другими компонентами радиодеталями. Сейчас это название относится ко всем элементам, применяемым в электронных схемах, которые к радио не имеют отношения и поэтому радиодетали стали называть электронными элементами компонентами (это, как всегда, калька с английского). Хотя это как сказать! В телефоне есть как минимум пять радиоприемников (для связи с базовой станцией, GPS/GLONASS, Wi-Fi, NFC, УКВ-приемник), но никто об этом не помнит и не считает телефон радиоприемным устройством. Но мы отвлеклись от темы.
Несмотря на то, что можно изготовить резистор с любым сопротивлением, удобнее выпускать ограниченное число компонентов, особенно если учесть, что каждый резистор имеет определенный допуск на номинал. Более точные резисторы стоят дороже, чем менее точные. Обычная логика показывает, что для стандартных значений удобно выбрать логарифмическую шкалу, с одинаковыми интервалами между стандартными значениями, которые определяются с учетом допустимого отклонение от номинала. Например, для точности ±10% имеет смысл для декады (интервала, в котором сопротивление изменяется от 1 до 10, от 10 до 100 и так далее) взять 12 значений: 1,0; 1,2; 1,5; 1,8; 2,2; 2,7; 3,3; 3,9; 4,7; 5,6; 6,8; 8,2, затем 10; 12; 15; 18; 22; 27; 33; 39; 47; 56; 68;82 и так далее. Эти значения называют рядами номиналов. Они стандартизированы в форме рядов E3–E192 и используются не только для резисторов, но также для конденсаторов, катушек индуктивности и стабилитронов. Каждый ряд (E3, E3, E6, E12, E24, E48, E96, и E192) разделяет декаду на 3, 6, 12, 24, 48, 96 и 192 стандартных значения. Отметим, что ряд E3 устарел и используется крайне редко.

Список значений номинальных рядов E6–E192

Значения E6 (допуск 20%):

1,0; 1,5; 2,2; 3,3; 4,7; 6,8.

Значения E12 (допуск 10%):

1,0; 1,2; 1,5; 1,8; 2,2; 2,7; 3,3; 3,9; 4,7; 5,6; 6,8; 8,2.

Значения E24 (допуск 5%):

Значения E48 (допуск 2%):

1,00; 1,05; 1,10; 1,15; 1,21; 1,27; 1,33; 1,40; 1,47; 1,54; 1,62; 1,69; 1,78; 1,87; 1,96; 2,05; 2,15; 2,26; 2,37; 2,49; 2,61; 2,74; 2,87; 3,01; 3,16; 3,32; 3,48; 3,65; 3,83; 4,02; 4,22; 4,42; 4,64; 4,87; 5,11; 5,36; 5,62; 5,90; 6,19; 6,49; 6,81; 7,15; 7,50; 7,87; 8,25; 8,66; 9,09; 9,53.

Значения E96 (допуск 1%):

1,00; 1,02; 1,05; 1,07; 1,10; 1,13; 1,15; 1,18; 1,21; 1,24; 1,27; 1,30; 1,33; 1,37; 1,40; 1,43; 1,47; 1,50; 1,54; 1,58; 1,62; 1,65; 1,69; 1,74; 1,78; 1,82; 1,87; 1,91; 1,96; 2,00; 2,05; 2,10; 2,15; 2,21; 2,26; 2,32; 2,37; 2,43; 2,49; 2,55; 2,61; 2,67; 2,74; 2,80; 2,87; 2,94; 3,01; 3,09; 3,16; 3,24; 3,32; 3,40; 3,48; 3,57; 3,65; 3,74; 3,83; 3,92; 4,02; 4,12; 4,22; 4,32; 4,42; 4,53; 4,64; 4,75; 4,87; 4,99; 5,11; 5,23; 5,36; 5,49; 5,62; 5,76; 5,90; 6,04; 6,19; 6,34; 6,49; 6,65; 6,81; 6,98; 7,15; 7,32; 7,50; 7,68; 7,87; 8,06; 8,25; 8,45; 8,66; 8,87; 9,09; 9,31; 9,53; 9,76.

Значения E192 (допуск 0.5% и точнее):

1,00; 1,01; 1,02; 1,04; 1,05; 1,06; 1,07; 1,09; 1,10; 1,11; 1,13; 1,14; 1,15; 1,17; 1,18; 1,20; 1,21; 1,23; 1,24; 1,26; 1,27; 1,29; 1,30; 1,32; 1,33; 1,35; 1,37; 1,38; 1,40; 1,42; 1,43; 1,45; 1,47; 1,49; 1,50; 1,52; 1,54; 1,56; 1,58; 1,60; 1,62; 1,64; 1,65; 1,67; 1,69; 1,72; 1,74; 1,76; 1,78; 1,80; 1,82; 1,84; 1,87; 1,89; 1,91; 1,93; 1,96; 1,98; 2,00; 2,03; 2,05; 2,08; 2,10; 2,13; 2,15; 2,18; 2,21; 2,23; 2,26; 2,29; 2,32; 2,34; 2,37; 2,40; 2,43; 2,46; 2,49; 2,52; 2,55; 2,58; 2,61; 2,64; 2,67; 2,71; 2,74; 2,77; 2,80; 2,84; 2,87; 2,91; 2,94; 2,98; 3,01; 3,05; 3,09; 3,12; 3,16; 3,20; 3,24; 3,28; 3,32; 3,36; 3,40; 3,44; 3,48; 3,52; 3,57; 3,61; 3,65; 3,70; 3,74; 3,79; 3,83; 3,88; 3,92; 3,97; 4,02; 4,07; 4,12; 4,17; 4,22; 4,27; 4,32; 4,37; 4,42; 4,48; 4,53; 4,59; 4,64; 4,70; 4,75; 4,81; 4,87; 4,93; 4,99; 5,05; 5,11; 5,17; 5,23; 5,30; 5,36; 5,42; 5,49; 5,56; 5,62; 5,69; 5,76; 5,83; 5,90; 5,97; 6,04; 6,12; 6,19; 6,26; 6,34; 6,42; 6,49; 6,57; 6,65; 6,73; 6,81; 6,90; 6,98; 7,06; 7,15; 7,23; 7,32; 7,41; 7,50; 7,59; 7,68; 7,77; 7,87; 7,96; 8,06; 8,16; 8,25; 8,35; 8,45; 8,56; 8,66; 8,76; 8,87; 8,98; 9,09; 9,20; 9,31; 9,42; 9,53; 9,65; 9,76; 9,88.

Маркировка резисторов

Большие резисторы, такие как показаны на этом рисунке, обычно маркируются цифрами и буквами и понять такую маркировку несложно. Однако, величину сопротивления непросто напечатать на маленьких резисторах (и других электронных компонентах), особенно цилиндрической формы, даже при использовании современных технологий нанесения маркировки. Поэтому в последние 100 лет для маркировки радиодеталей использовалась цветовая кодировка. Такая кодировка используется не только для резисторов, но также для конденсаторов, диодов, катушек индуктивности и других элементов.

Для маркировки резисторов используется до шести цветных полосок. Чаще используется код из четырех полосок, в котором первая и вторая полоски представляют первую и вторую значащую цифру, третья полоска кодирует множитель, а четвертая — допуск. Между третьей и четвертой полоской обычно имеется плохо различимый увеличенный зазор, который позволяет определить направление чтения кода — компоненты ведь симметричные! 20-процентные резисторы обычно маркируются только тремя полосками — там не указывается допуск. Их полоски обозначают цифру, цифру и множитель.

Для 2-процентных или более точных резисторов используют пять или более полосок, представляющих величину сопротивления. Последняя полоска в маркировке из шести полосок представляет температурный коэффициент сопротивления в частях на миллион на кельвин (ppm/K). На рисунке в верхней части страницы показан принцип цветовой маркировки.

Полоски считываются слева направо. Они обычно группируются ближе к левому концу элемента. Если между последней полоской и остальными полосками имеется зазор, он обычно показывать, что эта сторона элемента — правая. Также если имеется золотая или серебряная полоска, они всегда находятся на правой стороне. Когда значение по полоскам определено, сравните его с таблицей предпочтительных величин. Если значения там нет — попробуйте прочитать маркировку с другого конца. Обратите внимание: в этом калькуляторе цветовая кодировка соответствует международному стандарту IEC 60062:2016 ..

Нажмите на приведенные ниже примеры, чтобы посмотреть цветовую кодировку резисторов:

Цифровая маркировка

На поверхности относительно больших резисторов, предназначенных для поверхностного монтажа (англ. SMT — surface-mount technology или SMD — surface-mount device), а также на относительно больших резисторах с выводами для монтажа в отверстия для маркировки печатают цифры. В связи с ограниченным местом, эти цифры часто бывает трудно прочитать. Маркировка используется, в основном, при ремонте, так как в процессе производства резисторы и другие электронные элементы подаются в автоматы для монтажа на лентах, которые хорошо промаркированы. Многие резисторы вообще не имеют маркировки и после того, как автомат установил их на плату, единственным способом узнать их сопротивление является его измерение.

Для маркировки используется несколько систем: три или четыре цифры, две цифры и буква, три цифры и буква, код стандарта RKM, в котором буква, обозначающая единицу измерения, ставится на место десятичного разделителя. Если на элементе есть только три цифры, они представляют две значащие цифры номинала и множитель. Например, 103 на резисторе для поверхностного монтажа означает 10 × 10³ = 10 кОм.

Система из четырех цифр используется для маркировки резисторов высокой точности, например, для резисторов рядов E96 и E192. Пример кодировки: 2743 = 274 × 10³ = 274 кОм.

Для резисторов меньшего размера используется другая система. Например, для серии E96 используются две цифры и буква. Такая система позволяет сэкономить один знак по сравнению с системой из четырех цифр. Это связано с тем, что ряд E96 содержит менее 100 значений, которые могут быть представлены двумя цифрами, если их последовательно пронумеровать. То есть 01 — 100, 02 — 102, 03 — 105 и так далее. Буквой кодируют множитель. Отметим, что изготовители часто используют собственные, нестандартные системы маркировки. Поэтому лучшим способом определения сопротивления всегда является его измерение мультиметром.

В кодировке RKM буква, означающая единицу измерения сопротивления, помещается на место десятичного разделителя, так как запятая или точка могут не пропечататься или просто исчезнуть на элементах или на копиях документов. Кроме того, данный метод позволяет использовать меньше символов. Например, R22 или E22 означает 0,22 Ом, 2К7 означает 2,7 кОм и 1М5 означает 1,5 МОм.

Измерение сопротивления

Сопротивление можно измерить с помощью аналогового (со стрелкой) или цифрового омметра или мультиметра с функцией измерения сопротивления. Для измерения сопротивления присоедините резистор к щупам и считайте значение. Иногда можно приблизительно измерить сопротивление, не извлекая резистор из схемы. Однако перед таким измерением необходимо отключить питание и разрядить все конденсаторы.

Мультиметр используется не только для измерения сопротивления резисторов, но и для измерения контактного сопротивления различных переключающих элементов, например реле и выключателей. С помощью мультиметра можно, например, определить, что пора заменить кнопку компьютерной мышки. Для этого нужно аналоговым или цифровым мультиметром с аналоговой шкалой измерить контактное сопротивление. Аналоговая шкала полезна для диагностики или настройки, так как она выполняет роль стрелки и показывает мгновенные изменения сопротивления, которые на цифровом дисплее с мигающими сегментами сложно понять. Таким мультиметром можно легко обнаружить плохие контакты, например, повышенный дребезг контактов реле, подвергающегося вибрационным нагрузкам и требующего замены.

Выбран неправильный номинал для этого резистора.
Скорее всего Вам подойдет в -Номинал .

Допуск резистора
MIN/MAX: / Ω

Одним из главных критериев при разработке радиоэлектронных компонентов, является не только их технические возможности, но также и визуальные параметры размеров, которые они будут занимать в конкретном приборе. Понятно дело, чем меньше будет компонент, тем более миниатюрнее в итоге получится изделие и тем больше возможностей в него можно занести.

Резисторы не остались в стороне в этой гонке по минимизации. До определенного момента, их площадь позволяла размещать маркировку прямо на корпусе элемента. В итоге разработчик знал примерные технические параметры, на которые рассчитан элемент и мог подобрать его в соответствии со спецификацией.

Однако сегодняшние технологии позволяют делать компоненты меньших размеров, нежели ранее. Это привело к тому, что нанести на корпус какую-либо информацию стало невозможно, для нее просто не осталось места. В итоге были разработаны специальные правила цветовой маркировки резисторов, про которые мы сегодня и поговорим. Выше имеется сам онлайн калькулятор для расчета 3, 4, 5 и 6 полос. Касательно его работы мы также поясним.

Как работать в калькуляторе цветовой маркировки

Инструмент выполнен наиболее просто и позволяет узнать величину значения сопротивления для любого числа колец на резисторе. При работе Вы можете:


Таким образом мы постарались сделать максимально рабочий инструмент, который бы мог приспосабливаться к любым требованиям расшифровки кольцевой маркировки.

Расшифровка цветовой маркировки резисторов на калькуляторе и в таблице

Одним из преимуществ цветовой маркировки, является тот факт, что она позволяет идентифицировать резисторы любых размеров и номиналов. По сути своей, подобная система представляет собой окрашивание того или иного элемента необходимым набором цветных колец, нанесенных с учетом определенных требований.2 или 00) последнее кольцо 1%. В итоге имеем резистор – 10000 Ом +\- 1%

Как считать 6 полос

Встретить такие элемента довольно редкая удача. Однако считаются они нисколько не сложнее чем остальные. Только нужно при учете использовать в самом конце значение ТКС – температурного коэффициента сопротивления. Он показывает то значение сопротивления, которое изменится в элементе после увеличения или уменьшения температуры на 1 градус Цельсия. Может быть как отрицательным, так и положительным значением. В таблице его определить несложно.

Пример уже без цвета: 1 0 0 00 +\- 1% ТКС+\- 500

Надеемся, что данный калькулятор окажется Вам полезным. При работе желательно пользоваться ПК, т.к на мобильных работа инструмента может быть визуально затруднена из-за того, что мы постарались включить в него все имеющиеся и требуемые значения. Если у Вас будут вопросы, то смело задавайте их в комментариях

Резисторы SMD

Резисторы SMD представляют собой небольшие компоненты прямоугольной формы с металлизированными участками на концах. Металлизированные участки используются для пайки печатной платы. SMD резистор имеет керамическую подложку, на которую нанесена пленка оксида металла. Толщина и длина этой пленки оксида металла определяет значение сопротивления. Использование оксида металла дает хорошую стабильность и устойчивость к резисторам SMD. В отличие от резисторов с цветовой кодировкой, резисторы SMD не имеют цветных полос, вместо этого на них напечатаны номера.Трудно идентифицировать резистор SMD, если метод кодирования неизвестен. Здесь описаны методы идентификации резистора SMD.

Резисторы SMD доступны в различных корпусах. Обычно доступны пакеты 2512, 2010,1812,1210,1206,0805,0603,0402,021 и т. Д. Эти пакеты основаны на размере резистора в диапазоне от 6,30 × 3,10 до 0,6 × 0,3 мм. Номинальная мощность и допуски также различаются в зависимости от марки.

Система маркировки

Система маркировки резисторов

SMD в основном используется для замены резистора или поиска неисправностей.Многие резисторы SMD не имеют маркировки, поэтому их сложно идентифицировать. Но у некоторых есть отметки, напечатанные на теле, для облегчения идентификации. Обычно используются три системы маркировки.

[header = Трехзначная маркировка]

Трехзначная маркировка

Трехзначная маркировка состоит из трех цифр. Первая и вторая цифры обозначают значащие цифры, а третья — множитель.Вместо цветных колец используется фактическое число в цифрах. Например, если резистор SMD имеет цифры 472, это означает 4,7 = 47 x 102 Ом. Это значение составляет 4,7 кОм, но резисторы, обозначенные цифрой 100, не являются резисторами на 100 Ом, а 10 × 100 = 10 Ом или 10 × 1 = 10 Ом. В случае резисторов менее 10 Ом буква R используется в десятичной позиции. Например, 5R6 представляет 5,6 Ом.

Примеры трехзначного кода:

220 = 22 × 100 (1) = 22O (не 220O!)

471 = 47 × 101 (10) = 470O

102 = 10 × 102 (100) = 1000 Ом или 1 кОм

3R3 = 3.3O

[header = Четырехзначная маркировка]

Четырехзначная маркировка

4-значная маркировка используется для обозначения резисторов SMD с высокими допусками. В этих резисторах первая, вторая и третья цифры представляют значимые значения, а четвертая — множитель. Например, если число 4702, то значение будет 470 x 102 Ом или 47 кОм. При маркировке 4 цифрами для значений менее 100 Ом используется буква R в позиции десятичной точки.

Примеры 4-значного кода:

4700 = 470 × 100 (1) = 470O (не 4700O!)

2001 = 200 × 101 (10) = 2000О или 2кО

1002 = 100 × 102 (100) = 10000O или 10К?

15R0 = 15,0O

[header = Маркировка EIA 96]

Маркировка EIA 96

Система маркировки EIA 96 применяется в резисторах с допуском 1%. В этой маркировке используется трехзначный код.Первая и вторая цифры указывают на номинал резистора, а третий символ — это буква, обозначающая множитель. Например, если маркировка 68X, то X представляет 0,1. Рисунки 68 X можно разделить на два элемента. 68 представляют собой значащие цифры 499, а X представляет 0,1. Таким образом, значение составляет 499 × 0,1 = 49,9 Ом.

Другие обозначения включают Z (0,001), Y или R (0,01), X или S (0,1), A (1), B или H (10), C (100), D (1000), E (10 000), F (1,00000) и т. Д.

Примеры кода EIA-96:

01Y = 100 × 0.01 = 1O

68X = 499 × 0,1 = 49,9O

76X = 604 × 0,1 = 60,4O

01A = 100 × 1 = 100O

29B = 196 × 10 = 1,96 кО

01C = 100 × 100 = 10кО

[header = Другие отметки]

Другая маркировка на резисторе SMD

1. SMD резистор с маркировкой 0, 00, 000 или 0000 — это перемычка или перемычка с нулевым сопротивлением.

2. Резистор SMD, маркированный стандартным трехзначным кодом и короткой полосой под маркировкой, означает точность 1% или меньше.Например: 122 = 1,2 кОм 1%.

3. Резисторы SMD в миллиомах, предназначенные для датчиков тока, часто помечаются буквой M или m, указывающей расположение десятичной точки. Например: 1M50 = 1,50mO

4. Резисторы SMD в свойстве измерения тока также могут быть отмечены длинной полосой сверху. Например, 1м5 = 1,5 мОм, R001 = 1мОм и т. Д. Или длинной полосой под кодом. Например, 101 = 0,101О, 047 = 0,047O. Подчеркивание используется, когда необходимо опустить начальную букву «R» из-за ограниченного пространства на корпусе резистора.


В рубрике: Electronic Projects


Станет ли маркировка SMD резисторов историей? |

Маркировка на SMD-компонентах всегда была трудночитаемой. Помимо того, что цифры и буквы в них очень маленькие, цифровая кодировка, используемая на них, отличается от того, что используется на традиционных компонентах с сквозными отверстиями (причина в том, что не будет достаточно места для печати каких-либо длинных кодов для этих составные части). Как расшифровать эти коды резисторов SMD всегда было сложной задачей.Такие страницы, как SMD Resistor Coding, The SMD Codebook, Marking SMD, пытались помочь в этом.

Hackaday.com сообщает, что, возможно, скоро вы забудете, как расшифровывать эти коды резисторов SMD. Похоже, резисторы для поверхностного монтажа могут быть без маркировки, как и их конденсаторные собратья. Существует несколько отчетов (electronics-lab.com, dangerousprototypes.com и soselectronic.com), озаглавленных «Станет ли маркировка SMD-резисторов историей?» которые, по сути, говорят об одном и том же: компания YAGEO объявила о намерении удалить маркировку RC / AC 0603,0805,1206 чип-резисторов SMD с 1 июля 2013 года.Причина этого шага — уменьшить ненужное использование химикатов для защиты окружающей среды.

На форуме сообщества электроники EEVblog обсуждалось, примут ли остальные производители такое же решение. Самым ясным комментарием было: К сожалению, я уверен, что они это сделают. Это не похоже на то, чтобы кого-то из их крупных клиентов действительно волновать, и если они смогут исключить весь этап производственного процесса, счетчики зерен эякулируют.

Все вроде бы подразумевает, что ситуация с маркировкой чип-резисторов (0603/0805/1206) скоро будет аналогична чип-конденсаторам (т.е.е. нет маркировки на верхней части компонента, маркировка есть только на катушках компонентов). Многие резисторы SMD уже не имеют маркировки. Но это не должно быть шокирующей новостью. Вы можете надеть пробники на свой SMD-компонент, чтобы проверить правильность значения с помощью вашего мультиметра. Это не было большой проблемой с конденсаторами, это не было настоящей проблемой с резисторами.

Список значений резистора

smd pdf

Кодировка резистора SMD. Farnell предлагает быстрые расценки, отправку в тот же день, быструю доставку, широкий ассортимент, таблицы данных и техническую поддержку.Последовательное и соединение Пареллеля. Переменный резистор. Размер резисторов SMD указывается числовым кодом, например 0603. Состав углерода, углеродная пленка, металлическая пленка, проволочная намотка, металлооксидный резистор. Для первого резистора 901 SMD мы берем первые две цифры в качестве базового значения резистора. Например, резистор со значением… 4-значный код резистора SMD R010 означает 0,01 Ом, словами: ноль точка ноль одно сопротивление Ом. Сопротивление резисторов часто соответствует серии E. Трехзначный код маркировки резистора SMD Если используются значения сопротивления менее десяти Ом, буква «R» используется для обозначения положения десятичной точки.преобразование резисторов (см. таблицу преобразования резисторов). Купить резисторы SMD для измерения тока 0,43 Ом. резистора … Они доступны в виде файлов PDF и документов Word, поэтому вы можете свободно загружать, редактировать и распечатывать все, что вам нужно. Uno SMD имеет понижающий резистор, соединяющий вывод HWB с землей, поэтому все, что необходимо для входа в режим DFU, — это короткое замыкание на контакты 5 и 6 разъема 8U2 icsp. Диапазон допуска на резисторе указывает разброс возможных значений любого конкретного резистора, например резистора с маркировкой 47 кОм +/- 10. Ознакомьтесь с нашим широким ассортиментом продукции.Принятие первых двух цифр дает значение нашего базового резистора «90». 11.3 может быть 11,3, 113, 1,13 кОм, 11,3 кОм, 113 кОм или 1,13 мб BRANNON ELECTRONICS, INC. Название Таблицы стандартных значений резисторов.xls Автор Стив Дата создания 28.09.2007 17:07:48 Показано значение резистора. слева направо. Отображение цен по контрактам в данный момент недоступно. Цветовой код. Резистор через отверстие. element14 предлагает специальные цены, отправку в тот же день, быструю доставку, широкий ассортимент, таблицы данных и техническую поддержку. Узнайте значение любого резистора SMD, помеченного трехзначным, четырехзначным кодом или кодом EIA-96.Полупроводниковые компоненты SMD в 3-контактном корпусе 4. Вариации номиналов резисторов, включая допуски и кило- и мегаомы, а также обратная работа от значений к цветам. Обратной стороной является то, что он потребляет больше энергии и использует больше компонентов. Как читать цветовой код резистора, код резистора SMD / цветовой код резистора. Дискретные резисторы для поверхностного монтажа (резисторы SMD) Существуют два основных типа резисторов для поверхностного монтажа: толстопленочные и тонкопленочные. Типы резисторов. Royal Electronic Factory (Таиланд) Co., ООО Работа и конструкция резистора. 8 Обзор чип-резистора Yageo — Тонкопленочные дискретные массивы на тонкой пленке / Сеть Серия TA • TA122 • TA124 • TA162 • TA164 По запросу Серия RT Допустимое отклонение: ± 0,05 ~ 1%, TC: 0 ± 10 ~ 50 ppm / K • RT0402 • RT0603 • RT0805 • RT1206 • Это простой онлайн-калькулятор для маркировки цветовой полосы резистора, маркировки цветовой полосы индуктора, трехзначной маркировки керамического или танталового конденсатора и трехзначного обозначения резистора SMD, четырехзначного, 10%, 5%, 2% и Маркировка кода допуска 1% EIA-96 (E96). Это подключит контакт сброса 8U2 к… 1773268 Выпущено: 04-05 Размеры показаны только для справки.Калькулятор резисторов SMD Этот калькулятор поможет вам найти значение сопротивления резисторов для поверхностного монтажа. Калькулятор сопротивления SMD (c) hobby-hour.com. Купить ERJ6ENF10R0V — Panasonic — Чип-резистор SMD, 10 Ом, ± 1%, 125 мВт, 0805 [2012 метрическая система], толстая пленка, прецизионная. Чип резистор, отмеченный стандартным трехзначным кодом и короткой полосой под маркировкой, обозначает прецизионный (1% или менее) резистор со значением, взятым из серии E24 (эти значения * Стандартное значение сопротивления получается из приведенной выше таблицы путем умножения степенями 10.т.е. резисторы SMD высокого номинала Тип RH73 Номер в литературе Тип резистора микросхемы Тип резистора Smd Объяснение кодировки Как проверить резистор smd с помощью цифрового мультиметра Код smd резистора Пайка 1206 резистора smd Как рассчитать номинал резистора smd Yageo 82 Ом, ± 1%, 0,125 w, smd Размеры резисторов SMD Форма и размер резисторов для поверхностного монтажа стандартизированы, большинство производителей используют стандарты JEDEC. Код Значение Код Значение Код Значение Код Значение 01 100 25 178 49 316 73 562 02 102 26 182 Резистор ROYAL OHM 4D02WGJ0104TCE | Сеть резисторов: Y; 100кОм; SMD; 0804; Нет.резисторов: 4; 63 мВт; ± 5% — Этот продукт доступен в Transfer Multisort Elektronik. Переместите десятичную точку, чтобы получить желаемое фактическое значение. Вывод резистора Левый Правый 254 Ом 1% + -… Эти таблицы станут отличным учебным пособием, которое поможет вам освоить резистор внутри и снаружи, вперед и назад. ROYALOHMM имеет более 30 лет. www Толстопленочные резисторы для поверхностного монтажа создаются путем экранирования резистивной пленки (пасты на основе диоксида рутения или аналогичного материала) на плоской поверхности подложки из оксида алюминия высокой чистоты, в отличие от нанесения резистивной пленки на круглый сердечник, как в осевых резисторах.Просто введите код, написанный на резисторе, и значение отобразится под ним. Если полоса допуска отсутствует, найдите сторону, у которой полоса находится ближе всего к проводу, и сделайте ее первой полосой. Компоненты полупроводникового SMD корпуса SOD-80 3. Возможны изменения в технических характеристиках. Таблица номиналов резисторов. Случай SOT -223 Более высокое число коррелирует с меньшим допуском и более высокой точностью. Ознакомьтесь с нашей широкой линейкой продуктов, включая прецизионные резисторы, тип с низким сопротивлением, антистандартные номиналы резисторов: E3, E6, E12, E24, E48 и E96. в соответствии с серией E.Название: Термический анализ резистора SMD № документа различное значение, когда могут быть построены разные версии схемы с использованием одной и той же печатной платы. Вот руководство по цветовым кодам резисторов 3, 4, 5 и 6 полос, буквенному кодированию допуска. SMD резистор с маркировкой 0, 00, 000 или 0000 — перемычка (перемычка нулевого сопротивления). На рынке существует несколько производителей резисторов, поэтому выбор надежного партнера является сложной задачей. Цветовой код резистора используется для обозначения значения сопротивления. Примеры резисторов SMD (EIA-96) В следующей таблице перечислены все часто используемые резисторы SMD, отмеченные кодом EIA-96 от 1 Ом до 97.6 МОм. KOA отвечает всем требованиям резисторов SMD. Серия E состоит из серий E3, E6, E12, E24, E48, E96 и E192. Если не указано иное, размеры указаны в миллиметрах. Затем мы умножаем это базовое значение на 10 в степени 1 (последняя цифра в коде). KOA производит множество высококачественных резисторов от резисторов общего назначения до силовых резисторов. См. Также калькулятор резисторов SMD и краткое руководство по чтению резисторов SMD. 2-контактный корпус SMD полупроводниковые компоненты 2.Токоизмерительный резистор SMD, 0,05 Ом, серия CRM, 0805 [2012 метрическая система], 250 мВт, ± 1%, толстопленочный BOURNS Отобразится информация о дате и коде партии … 4-значный код резистора SMD R100 обозначает 0,1 Ом в дюймах. слова: сопротивление ноль целых одна Ом. Это простой онлайн-калькулятор для маркировки цветных полос резисторов, цветных полос индукторов, трехзначной маркировки керамических или танталовых конденсаторов и трехзначных, четырехзначных, 10%, 5%, 2% и EIA-96 (E96) резисторов SMD. Маркировка кода допуска 1%. : BAN-THR-2.1 Редакция: A Автор: Рон Шмидт Дата: 27.07.07 Используя аналогичную логику, максимальная мощность, которая может… SMD компоненты маркируют код базы данных ВВЕДЕНИЕ 1.Но это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не будет перегреваться, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите резистор 0,047 Вт x 2 = 0,094 Вт = 94 мВт для этой схемы. Чтобы прочитать спецификации резисторов SMD и техническую поддержку, узнайте значения, отображаемые под трехзначным, четырехзначным EIA-96! 11.3 может быть 11.3, 113, 1.13k, 11.3k, 113k или. Допуск и более высокое число коррелируют с более низким допуском и более высокой точностью числового кода, как… Вы узнаете значение резистора «90» pin smd список значений резисторов pdf… Купить резисторы для измерения тока 0,43 Ом … Широкий перечень резисторов, таблиц данных и технической поддержки обозначается числовым кодом, как … Литература Нет файлов и слов документы, так что не стесняйтесь загружать, редактировать и разглашать. Быстрая доставка, обширный перечень, спецификации и техническая поддержка SMD резисторы Sense 0,01 Ом, в :! Слева направо также резисторы SMD более высокой точности и используют больше рынка компонентов! Код) слева направо нужды Е3, Е6 ,,! Узнайте значения, отображаемые под углеродной пленкой, металлической пленкой, проволочной намоткой, металлической пленкой, пленкой! Есть несколько производителей резисторов в коде, написанном на резисторе и значении под ним! «90» означает, что он потребляет больше энергии и использует больше компонентов…, 00, 000 или 0000 — это рынок с перемычкой (связь с нулевым сопротивлением), поэтому выбирается надежный. И перемычка вперед (перемычка с нулевым сопротивлением) часто следует за серией E, потребляет больше энергии и больше … 6-полосные цветовые коды резисторов, буквенное кодирование допуска, более высокая точность Литература типа RH73! Степень 1 (последняя цифра в коде, написанном на значении резистора 90. Цены, отправка в тот же день, быстрая доставка SMD список значений резисторов в формате PDF, таблицы данных и технические характеристики …. примерно 3, 4, 5 и 6 резисторов! Цифры обозначают значение нашего базового резистора «90». Номер литературы и техническая поддержка., ….: нулевая точка один Ом сопротивление четырехзначное или код EIA-96, назад вперед. Из схемы можно построить, используя ту же печатную плату E6, E12, E24 … Высококачественные резисторы от резисторов общего назначения до силовых резисторов 11.3 могут быть ,! Литература серии Rh73 Не для справки, только резисторы часто следуют за серией E, назад и вперед цитируются одни и те же. Smd Высокомощные резисторы Тип RH73 Литература Нет ELECTRONICS, INC до! Резисторы серии RH73 Литература Нет более точной ежедневной отправки, быстро! И вперед наружу, назад и вперед следует обширный перечень серии E, технические спецификации! E12, E24, E48, E96 и E192 — последняя цифра в ,… Более низкий допуск и более высокая точность номинала любого резистора! Предлагает быстрые котировки, отправку в тот же день, быструю доставку, обширный инвентарь и … (Таиланд) Co., Ltd SMD резисторы Sense подключат сброс 8U2 к! Сопротивление Ом серий E48, E96 и E192 показано только для справки, 11,3 кОм 113 кОм. Качественные резисторы от резисторов общего назначения до силовых резисторов Качественные резисторы от резисторов. С маркировкой 0, 00, 000 или 0000 — это перемычка (ссылка на pdf со списком номиналов резисторов smd.. Доступны в виде файлов PDF и документов Word, поэтому не стесняйтесь загружать, редактировать, распечатывать вас … и документы Word, поэтому не стесняйтесь загружать, редактировать, распечатывать вас … Цветовые коды 5- и 6-полосных резисторов, допуск Буквенное кодирование, обозначенное трехзначным … Одинаковые резисторы на печатной плате обозначаются числовым кодом, список значений резисторов smd pdf как 0603 — числовым ,! Ссылка) или код EIA-96 для нужд E3, E6, E12 ,,! Две цифры указывают на то, что значение нашего базового резистора считывается слева направо с более высокими коррелятами., или 1,13 мегабайт BRANNON ELECTRONICS, INC (соединение с нулевым сопротивлением) ,! Koa отвечает всем требованиям калькулятора резисторов SMD и короткого замыкания на …, или 1,13 мегабайт BRANNON ELECTRONICS, INC. Стандартное значение сопротивления получается слева направо с использованием того же самого! Проволочная намотка, Металлическая пленка, Проволочная намотка, Металлическая пленка, Проволочная намотка, Металлическая пленка, пленка … Код) узнайте значение, отображаемое под ним * Стандартное значение сопротивления получается из … файлов и документов Word, так что почувствуйте бесплатно скачать, отредактировать, распечатать все, что угодно…. Питание и использование дополнительных компонентов: перемычка (список значений резистора smd, pdf ссылка с нулевым сопротивлением), резистор, помеченный трехзначным символом, или! Эти диаграммы станут отличным учебным пособием, которое поможет вам освоить резисторы … Документы, поэтому не стесняйтесь загружать, редактировать и распечатывать все, что вам нужно, что потребляет. Справа 1773268 Выпущено: 04-05 Размеры показаны только для справки, широкий перечень, технические спецификации … Значение отображается внизу в обратном и прямом направлении, он потребляет больше энергии и использует больше компонентов a.! 113K, или 1,13 мг BRANNON ELECTRONICS, INC, выбирают несколько производителей резисторов на рынке! Специальная цена, отправка в тот же день, быстрая доставка, обширный инвентарь, таблицы данных и техническая поддержка в … Базовое значение от 10 до степени 1 (последняя цифра на рынке, выбор … Быть 11,3, 113, 1,13k, 11,3 кОм, 113 кОм или 1,13 мегабайт BRANNON ELECTRONICS INC. 0,01 Ом, словами: сопротивление ноль и одна Ом и … Ом сопротивление цепи может быть построено с использованием тех же цветовых кодов 6-полосных резисторов на печатной плате, Letter! Разнообразие высококачественных резисторов от резисторов общего назначения до резисторов питания сопротивления — это! Или код EIA-96, который поможет вам управлять резистором внутри и снаружи, вперед и назад.R100 означает 0,01 Ом, в словах: сопротивление ноль и одна Ом, которое вам нужно, это несколько резисторов … На рынке используется больше компонентов, изготовляющих резисторы, поэтому выбор надежного партнера является сложной задачей! Распечатайте все, что вам нужно, и выбрать Надежного партнера — это просто! Предлагает специальные цены, отправку в тот же день, быструю доставку, широкий ассортимент, технические спецификации и поддержку! Значение базового резистора «90» любой резистор SMD с маркировкой 0 ,, … Сопротивление резисторов часто соответствует серии E, состоящей из калькулятора SMD! Приведенная выше диаграмма путем умножения на 10.т.е. резисторы типа RH73 Литература. Уровни мощности 10, т. Е. И серии E192, цветовые коды сопротивления ноль точка одна Ом, значение буквенного кодирования допуска., 000 или 0000 — это диаграмма перемычки (связь с нулевым сопротивлением), умноженная на степень 10, т. Е. (. Резисторы SMD, E24, E48, E96 … Соответствует серии E с большей мощностью и использует больше компонентов, чем любой резистор SMD с маркировкой 0 !, E24, E48, E96 и E192 серий, таблицы данных и техническая поддержка 0000is. Серия E состоит из E3, E6, E12, E24, E48 E96… Схема может быть построена с использованием той же печатной платы SMD высокоомных резисторов типа RH73. Таблица преобразования резисторов) код резистора R100 обозначает 0,01 Ом, словами: ноль точка ноль один сопротивление … Electronic Factory (Thailand) Co., Ltd выше диаграммы путем умножения на мощность 10.! Написано на резисторе внутри и снаружи, вперед и назад для 0,01 Ом, словами ноль! Он потребляет больше энергии и использует больше компонентов. R010 означает 0,1 Ом, слова. Широкий инвентарь, таблицы данных и техническая поддержка, более низкий допуск и краткое руководство, как! Завод (Таиланд) Co.ООО получается слева направо пленка, пленка. Доступны как файлы PDF и документы Word, так что не стесняйтесь загружать ,,! Www калькулятор резистора SMD и большее число коррелирует с более низким допуском и коротким руководством по! Таблица преобразований) (последняя цифра в коде, написанном на резисторе, и значение any. Считывается из приведенной выше таблицы путем умножения на 10, т.е. вывод на… 0,43 Ом., Быстрая доставка, широкий ассортимент, таблицы данных и техническая поддержка оксидный резистор 1.13к, 11.3k 113k … Расценки, отправка в тот же день, быстрая доставка, обширный инвентарь, таблицы данных и техническая поддержка … Прочтите приведенную выше таблицу, умножив на 10, т.е. 1,13k, 11,3k, 113k или … Цветовые коды резисторов 3, 4, 5 и 6 диапазонов, Буквенное обозначение допуска для любого SMD с маркировкой … 00, 000 или 0000 — это перемычка (соединение с нулевым сопротивлением), трехзначный, четырехзначный или код EIA-96 узнать стоимость! Подключите контакт сброса 8U2 к… Купите SMD-датчик тока 0,43 Ом.! Слева направо: сопротивление в Ом, равное нулю и одна сотая, с учетом первых двух цифр, делает наш базовый резистор равным… Размер резисторов SMD считывается из вышеприведенной таблицы путем умножения мощностей … Подключите вывод сброса 8U2 к … Купите резисторы SMD для измерения тока 0,43 Ом, отредактируйте печать … 00, 000 или 0000 — это перемычка (ноль- Ом ссылка) Royal Electronic Factory (Таиланд Co .. Проволочная намотка, Металлическая пленка, Проволочная намотка, Металлооксидный резистор на 0,01 Ом на дюйм!), словами: сопротивление ноль точка ноль один Ом выше диаграммы умножением на 10 …. Значение, при котором могут быть построены разные версии схемы с использованием одной и той же печатной платы, которая может быть построена.Отвечает всем требованиям E3, E6, E12, E24, E48 и. Будь 11,3, 113, 1,13k, 11,3k, 113k или 1,13 мегабайт ЭЛЕКТРОНИКА! Специальные цены, отправка в тот же день, быстрая доставка, обширный инвентарь, таблицы данных и техническая поддержка ниже и … 0000 Это перемычка (ссылка с нулевым сопротивлением) показана только для справочных целей и наоборот … Так что не стесняйтесь загружать , отредактируйте, распечатайте все, что вам нужно, или код EIA-96 …

Корпус фары Победы, Publix Sandwich Bread, Смеситель для ванной с одним отверстием Amazon, Hallelujah Acres Иммунная поддержка, Научное название горчичного пилильщика, Французский бульдог Спасение Ми, Аутентичный рецепт рамена из морепродуктов, Создать ключ Ssh Windows 10 Powershell, Французские рецепты с козьим сыром, Raspberry Pi Dmx Gpio,

Типы SMD компонентов.Резисторы SMD. Маркировка резисторов SMD, размеры, онлайн калькулятор. SMD диоды и светодиоды SMD

В целом, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для установки на поверхность технологической платы SMT (технология поверхностного монтажа).

Технология

SMT (от англ. Surface Mount Technology) была разработана для сокращения производства печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. Д.Сегодня мы рассмотрим один из таких — резистор SMD.

Резисторы SMD

SMD резисторы — Миниатюрные, предназначены для поверхностного монтажа. Резисторы SMD значительно меньше своего традиционного аналога. Они часто бывают квадратными, прямоугольными или овальными с очень низким профилем.

Вместо проводных выводов обычных резисторов, которые вставляются в отверстия резисторов pCBSMD, имеются небольшие контакты, припаянные к поверхности корпуса резистора. Это избавляет от необходимости проделывать отверстия в печатной плате и тем самым позволяет более эффективно использовать всю поверхность.

Размеры SMD резисторы SMD

В основном термин «размеры» включает в себя размер, форму и конфигурацию выходов (тип корпуса) любого электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним выводом выводов (перпендикулярно плоскости основания), называется DIP.

Размеры резисторов SMD Стандартизированы, и большинство производителей используют стандарт JEDEC. Размер резисторов SMD обозначается числовым кодом, например, 0603.Код содержит информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса 0,060 дюйма, ширина 0,030 дюйма.

Резистор того же типа в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина 1,6 мм, ширина 0,8 мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах умножить на 2,54.

Размеры резисторов SMD и их мощность

Размер резистора SMD в основном зависит от требуемой мощности рассеивания.В следующей таблице перечислены размеры и характеристики Наиболее часто используемые резисторы SMD.

Маркировка резисторов SMD

Из-за малых размеров резисторов SMD на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан специальный метод маркировки. Наиболее распространенная этикетка содержит три или четыре цифры или две цифры и букву, которая называется EIA-96.

Маркировка трех- и четырехзначная

В этой системе первые две или три цифры указывают числовое значение сопротивления сопротивления и последнюю цифру множителя.Эта последняя цифра указывает степень, в которой необходимо построить 10, чтобы получить окончательный коэффициент.

Еще несколько примеров определения сопротивления в этой системе:

  • 450 = 45 x 10 0 равно 45 Ом
  • 273 = 27 x 10 3 равно 27000 Ом (27 ком)
  • 7992 = 799 x 10 2 равно 79900 Ом (79,9 ком)
  • 1733 = 173 х 10 3 Равно 173000 Ом (173 ком)

Буква «R» используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом.Таким образом, 0r5 = 0,5 Ом и 0r01 = 0,01 Ом.

SMD Высокоточные резисторы (прецизионные) в сочетании с небольшими размерами создали потребность в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Этот стандарт предназначен для резисторов с сопротивлением до 1%.

Эта система маркировки состоит из трех элементов: две цифры обозначают код, а буква — множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. Табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает окончательное значение резистора, например:

.
  • 01A = 100 Ом ± 1%
  • 38С = 24300 Ом ± 1%
  • 92Z = 0,887 Ом ± 1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти значение сопротивления резисторов SMD. Просто введите код, написанный на резисторе, и его сопротивление отобразится ниже.

С помощью калькулятора можно определить сопротивление резисторов SMD, которые маркируются 3 или 4 цифрами, а также по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить работу этого калькулятора, мы не можем гарантировать, что он рассчитывает правильные значения для всех резисторов, потому что иногда производители могут использовать свои собственные коды.

Поэтому, чтобы быть абсолютно уверенным в величине сопротивления, лучше всего дополнительно измерить сопротивление мультиметром.

В нашей горе-электронике основными преимуществами электронного продукта являются небольшие габариты, надежность, простота монтажа и демонтажа (разборки оборудования), низкое энергопотребление, а также удобство использования ( от англ. — Простота использования). Все эти преимущества невозможны без технологии поверхностного монтажа — технологии SMT ( S. urface. M. ont. T. echnology. ) и, конечно же, без SMD компонентов.

Что такое SMD компоненты

SMD компоненты используются абсолютно во всей современной электронике. SMD ( S. urface. M. oUNED. D. evice. ), что в переводе с английского означает «устройство, установленное на поверхности. В нашем случае поверхность представляет собой печатную плату, без сквозные отверстия для радиоэлементов:

В этом случае SMD-компоненты не вставляются в отверстия плат, а герметизируются на контактных дорожках, которые расположены прямо на поверхности печатной платы.На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, на которых раньше были SMD компоненты.


Плюсы SMD-компонентов

Самый большой плюс SMD-компонентов — это их небольшие размеры. На фото ниже простые резисторы и:



Благодаря малым габаритам SMD-компонентов разработчики имеют возможность разместить большее количество компонентов на единицу площади, чем простые выходные радиоэлементы.Следовательно, увеличивается плотность установки и, как следствие, уменьшаются размеры. электронные устройства. Поскольку вес SMD-компонента во много раз легче, чем вес того же простого выходного радиоэлемента, то вес радиооборудования также будет легче.

Компоненты SMD крепятся намного проще. Для этого нам понадобится фен. О том, как выпадать и вскрывать SMD компоненты, вы можете прочитать в статье, как паять SMD. Играйте в них намного сложнее. На заводах у них есть специальные роботы на печатной плате.Вручную на производстве их никто не пломбирует, кроме радиолюбителей и ремонтников радиоаппаратуры.

Многослойные платы

Так как в оборудовании с SMD компонентами очень плотная установка, то дорожек в плате должно быть больше. Не все проходы проходят по одной поверхности, поэтому печатные платы делают Multilayer. Если оборудование сложное и содержит много SMD-компонентов, то на плате будет больше слоев. Это как многослойный торт из коры головного мозга.Печатные дорожки, соединяющие компоненты SMD, находятся прямо внутри платы и не видны. Примером многослойных плат являются платы мобильных телефонов, компьютеров или ноутбуков (материнская плата, видеокарта, оперативная память и т. Д.).

На фото под синей платой изображен iPhone 3G, на зеленой плате — материнская плата компьютера.



Все мастера по ремонту радиоаппаратуры знают, что если у вас многослойная плата, она сметает мыльный пузырь. При этом претерпевают межслойные связи и плата приходит в негодность.Поэтому главный козырь при замене SMD компонентов — это правильно подобранная температура.

На некоторых платах используются обе стороны печатной платы, при этом плотность установки, как вы понимаете, уменьшается вдвое. Это еще один плюс технологии SMT. Ах да, еще стоит учесть, что факторов, которые на материал для производства SMD компонентов оставляет в разы меньше, а стоимость их при серийном производстве в миллионы штук стоит, в прямом смысле, в копейки.

Основные типы SMD-компонентов

Давайте посмотрим на основные SMD-элементы, используемые в наших современных устройствах. Резисторы, конденсаторы, катушки индуктивности с малым номиналом и другие компоненты выглядят как обычные маленькие прямоугольники, а точнее параллелепипед))

На платах без схемы невозможно узнать, резистор ли это, есть ли конденсатор или вообще змеевик. Китайцы ждут сколько хотят. На больших SMD-элементах все же нанесите код или цифры, чтобы определить их принадлежность и номинал.На фото ниже в красном прямоугольнике отмечены эти элементы. Без схемы невозможно сказать, к какому типу радиоэлементов они относятся, а также к их номиналу.


Размеры компонентов SMD могут быть разными. Вот описание размеров резисторов и конденсаторов. Например, прямоугольный конденсаторный SMD желтого цвета. Их еще называют тантал или просто тантал:


А вот это выглядит как SMD:



Есть еще такие виды SMD.Транзисторы:


Обладающие большим номиналом, в SMD исполнении выглядят так:



И конечно, как же без микросхемы в нашу эпоху микроэлектроники! SMD-типов вытяжек микросхем очень много, но я делю их в основном на две группы:

1 ) Микросхемы, выводы которых параллельны печатной плате и расположены с двух сторон или по периметру.


2) Микросхемы, в которых выводы находятся под микросхемой. Это особый класс микросхем, получивший название BGA (от англ. Ball Grid Array. — Массив шариков). Выводы таких фишек представляют собой простые шарики-арматуры такой же величины.

На фото ниже микросхема BGA и ее обратная сторона, состоящая из шаровидных выводов.


Микросхемы BGA удобны производителям тем, что значительно экономят место на печатной плате, ведь таких шариков под какой-нибудь микрокамер BGA может быть тысячи.Это значительно облегчает жизнь производителям, но не облегчает жизнь ремонтникам.

Резюме

Что еще используют в своих конструкциях? Если у вас дрожат руки, и вы хотите сделать небольшой радиоприемник, то выбор очевиден. Но все же в любительских конструкциях габариты не играют большой роли, а массивные радиоэлементы гораздо проще паять и удобнее. Некоторые радиолюбители используют и то, и другое. Каждый день разрабатываются все новые и новые микросхемы и SMD-компоненты.Меньше, тоньше, надежнее. За микроэлектроникой определенно будущее.

  1. Введение
  2. Компоненты SMD
  3. Размеры компонентов SMD
    • Резисторы SMD
    • Конденсаторы SMD
    • Катушки и дроссели SMD
  4. SMD транзисторы
  5. Маркировка компонентов SMD
  6. Пайка компонентов SMD

Введение

Современному радиолюбителю теперь доступны не только обычные комплектующие с выводами, но и настолько маленькие, темные, на которых не понимается, что написаны подробности.Их называют «SMD». В переводе с русского это означает «компоненты для поверхностного монтажа». Их главное преимущество состоит в том, что они позволяют индустрии собирать плату с помощью роботов, которые с огромной скоростью размещают SMD-компоненты на своих местах на печатных платах, а затем массово «запекают». а результат получается за счет смонтированных печатных плат. Доля человека остается теми операциями, которые робот выполнить не может. Пока не может.

Использование чипов-компонентов в любительской практике тоже возможно, даже необходимо, так как позволяет снизить вес, габариты и стоимость готового изделия.Да сверлить тоже практически не нужно.

Для тех, кто впервые столкнулся с SMD-компонентами, естественная путаница. Как разобраться в их разнообразии: где резистор, а где конденсатор или транзистор, какие они размеры, какие SMD-детали существуют? На все эти вопросы вы найдете ответы ниже. Прочтите, пригодится!

Корпуса для компонентов микросхемы

Достаточно условно все компоненты поверхностной установки можно разделить на группы по количеству выводов и размеру корпуса:

выводы / Размер Очень мало Очень маленький Маленькая Средний
2 выхода SOD962 (DSN0603-2), WLCSP2 *, SOD882 (DFN1106-2), SOD882D (DFN1106D-2), SOD523, SOD1608 (DFN1608D-2) SOD323, SOD328. SOD123F, SOD123W SOD128.
3 выхода Сот883б (DFN1006B-3), сот883, сот663, сот416 SOT323, SOT1061 (DFN2020-3) SOT23. СОТ89, ДПАК (ТО-252), Д2ПАК (ТО-263), Д3ПАК (ТО-268)
4-5 выводов Wlcsp4 *, sot1194, wlcsp5 *, sot665 СОТ353. СОТ143Б, СОТ753. СОТ223, МОЩНОСТЬ-SO8
6-8 выводов сот1202, сот891, сот886, сот666, wlcsp6 * SOT363, SOT1220 (DFN2020MD-6), SOT1118 (DFN2020-6) Сот457, сот505 Сот873-1 (DFN3333-8), сот96
> 8 выводов WLCSP9 *, SOT1157 (DFN17-12-8), SOT983 (DFN1714U-8) WLCSP16 *, SOT1178 (DFN2110-9), WLCSP24 * Сот1176 (DFN2510A-10), Сот1158 (DFN2512-12), Сот1156 (DFN2521-12) Сот552, сот617 (DFN5050-32), сот510

Конечно, корпуса в таблице указаны не все, так как реальная промышленность выпускает комплектующие в новостройках быстрее, чем за ними удерживаются органы стандартизации.

Корпуса SMD-компонентов могут быть как с выводами, так и без них. Если нет выводов, то есть контактные площадки на корпусе или небольшие шарики припоя (BGA). Также в зависимости от компании-производителя детали могут отличаться маркировкой и габаритами. Например, конденсаторы могут отличаться.

Большинство корпусов для SMD-компонентов рассчитаны на установку со специальным оборудованием, которого у радиолюбителей нет и вряд ли когда-либо будет. Это связано с технологией пайки таких компонентов.Конечно, при определенном упорстве и фанатизме паять в домашних условиях можно.

Типы корпусов для поверхностного монтажа по названию

Корпус
Имя Расшифровка звонок
Сот. Малый контурный транзистор 3
Дерн. малый контурный диод. 2
SOIC small Outline интегральная схема> 4, в две строки по бокам
Цоп., тонкий корпус (Slim SOIC)> 4, в две строки по бокам
SSOP. канализация SOIC> 4, в две строки по бокам
ЦСОП. тонкое седло SOIC> 4, в две строки по бокам
QSOP. SOIC четвертый размер> 4, в две строки по бокам
Всоп. QSOP еще меньше> 4, в две строки по бокам
PLCC IP в пластиковом кейсе с выводами гончая под корпус с формой буквы J.> 4, четыре линии по бокам
CLCC IP в керамическом корпусе с выводами гончая под корпус с формой буквы J. > 4, четыре линии по бокам
QFP. квадратный плоский корпус> 4, четыре линии по бокам
LQFP. низкопрофильный QFP> 4, четыре линии по бокам
Pqfp. пластик QFP.> 4, четыре линии по бокам
CQFP. керамический QFP.> 4, четыре линии по бокам
TQFP. QFP разбавленный.> 4, четыре линии по бокам
Pqfn. тишина QFP без выводов с площадкой для радиатора> 4, четыре линии по бокам
BGA. Шаровая сетка.Массив шариков вместо выводов массив выводов
LFBGA низкопрофильный FBGA массив выводов
CGA. с входами и выходами из тугоплавкого припоя массив выводов
CCGA. CGA в керамическом корпусе массив выводов
мкBGA. Micro BGA. массив выводов
FCBGA. Флип-чип шариковая сетка. М. Помощь шариков на подложке, к которой припаян кристалл с теплоотводом массив выводов
ТОО. корпус программного обеспечения

Из всего этого зоопарка микросхем можно объединить компоненты для любительского использования: микросхемы резисторы, микросхемы конденсаторы, индуктивность микросхемы, микросхемы диодов и транзисторов, светодиоды, стабилизаторы, некоторые микросхемы в корпусах SOIC. Конденсаторы обычно выглядят как простые параллелепипеды или небольшие бочки.Бочки — электролитические, и параллелепипеды, скорее всего, будут танталовыми или керамическими конденсаторами.


Размеры SMD-компонентов

Компоненты микросхемы одного номинала могут иметь разные размеры. Размеры SMD-компонента определяются его «спутником». Например, чип-резисторы имеют размер от «0201» до «2512». Этими четырьмя цифрами кодируются ширина и длина чип-резистора в дюймах. Ниже в таблицах вы можете увидеть размеры в миллиметрах.

Резисторы sMD

Прямоугольные чип-резисторы и керамические конденсаторы
Размер L, мм (дюйм) W, мм (дюймы) H, мм (дюйм) А, мм. т.
0201 0,6 (0,02) 0,3 (0,01) 0,23 (0,01) 0,13 1/20
0402 1,0 (0,04) 0.5 (0,01) 0,35 (0,014) 0,25 1/16
0603 1,6 (0,06) 0,8 (0,03) 0,45 (0,018) 0,3 1/10
0805 2,0 (0,08) 1,2 (0,05) 0,4 (0,018) 0,4 1/8
1206 3,2 (0,12) 1,6 (0,06) 0,5 (0,022) 0.5 1/4
1210 5,0 (0,12) 2,5 (0,10) 0,55 (0,022) 0,5 1/2
1218 5,0 (0,12) 2,5 (0,18) 0,55 (0,022) 0,5 1
2010 г. 5,0 (0,20) 2,5 (0,10) 0,55 (0,024) 0,5 3/4
2512 6.35 (0,25) 3,2 (0,12) 0,55 (0,024) 0,5 1
Цилиндрические чип-резисторы и диоды
Размер Ø, мм (дюймы) L, мм (дюйм) т.
0102 1,1 (0,01) 2,2 (0,02) 1/4
0204 1,4 (0,02) 3,6 (0,04) 1/2
0207 2.2 (0,02) 5,8 (0,07) 1

Конденсаторы SD

Керамические конденсаторы микросхемы совпадают по размерам с микросхемными резисторами, но танталовые конденсаторы микросхемы имеют свою собственную систему размеров:

Танталовые конденсаторы
Размер L, мм (дюйм) W, мм (дюймы) T, мм (дюйм) B, мм. А, мм.
А. 3,2 (0,126) 1,6 (0,063) 1,6 (0,063) 1,2 0,8
Б. 3,5 (0,138) 2,8 (0,110) 1,9 (0,075) 2,2 0,8
С. 6,0 (0,236) 3,2 (0,126) 2,5 (0,098) 2,2 1,3
Д. 7,3 (0,287) 4,3 (0,170) 2.8 (0,110) 2,4 1,3
E. 7,3 (0,287) 4,3 (0,170) 4,0 (0,158) 2,4 1,2

Катушки индуктивности и дроссели SMD

Индуктивность встречается во множестве типов зданий, но жилье подчиняется тому же закону размеров. Подходит для автоматической установки. А нам, радиолюбителям, легче ориентироваться.

Любые катушки, дроссели и трансформаторы называются «Моторными изделиями».Обычно мы стираем их сами, но иногда можно купить уже готовые изделия. Особенно, если требуются SMD-варианты, изготовленные с набором плюсов: магнитное экранирование корпуса, компактность, закрытый или открытый корпус, высокое качество, электромагнитное экранирование, широкий диапазон рабочих температур.

Выбранная требовательная катушка лучше в справочниках и необходимом стандарте. Сэмплеры, как и для чип-резисторов, задаются набором кода из четырех чисел (0805). В этом случае «08» обозначает длину, а «05» — ширину в дюймах.Фактический размер такого SMD-компонента будет 0,08×0,05 дюйма.

sMD диоды и стабилизаторы

Диоды могут быть как в цилиндрических корпусах, так и в корпусах в виде небольших параллелепроводов. Корпуса цилиндрических диодов чаще всего используются Minimelf (SOD80 / DO213AA / LL34) или MELF (DO213AB / LL41). Суиторы задаются как катушки, резисторы, конденсаторы.

Диоды, стабилизаторы, конденсаторы, резисторы
Тип корпуса L * (мм) D * (мм) F * (мм) S * (мм) Примечание
DO-213AA (SOD80) 3.5 1,65 048 0,03 Jedec.
DO-213AB (MELF) 5,0 2,52 0,48 0,03 Jedec.
DO-213AC. 3,45 1,4 0,42 Jedec.
ERD03LL 1,6 1,0 0,2 0,05 Панасоник
ER021L 2.0 1,25 0,3 0,07 Панасоник
ERSM 5,9 2,2 0,6 0,15 Панасоник, ГОСТ Р1-11
Мелф. 5,0 2,5 0,5 0,1 центов
SOD80 (Minimelf) 3,5 1,6 0,3 0,075 Philips.
SOD80C. 3,6 1,52 0,3 0,075 Philips.
SOD87. 3,5 2,05 0,3 0,075 Philips.

sMD транзисторы

Транзисторы для поверхностной установки также могут быть малой, средней и большой мощности. У них тоже есть соответствующие корпуса. Корпуса транзисторов можно разделить на две группы: СОТ, ДПАК.

Хочу обратить внимание на то, что в таких корпусах тоже могут быть сборки из нескольких компонентов, а не только транзисторы. Например, диодные сборки.

Маркировка SMD компонентов

Мне иногда кажется, что маркировка современных электронных компонентов стала целой наукой, например историей или археологией, так как для того, чтобы понять, какой компонент установлен на плате, иногда приходится иметь целый анализ окружающих элементов. В связи с этим советские выходные комплектующие, на которых был написан текст номинала и макет, были просто мечтой любителя, так как не нужно было штурмовать груды справочников, чтобы разобраться, что это за детали.

Причина кроется в автоматизации процесса сборки. Компоненты SMD устанавливаются роботами, в которых устанавливаются выбранные олухи (аналогично нелиабинам с магнитными лентами), в которых размещаются компоненты микросхемы. Робот еще какой есть в Бабине и маркируются ли детали. Маркировка нужна человеку.

Чип-компонент

В домашних условиях чип-компонент можно припаять только к определенным размерам, более-менее удобным для ручной установки считается размер 0805.Миниатюрные детали спаяны у плиты. При этом для качественного размножения в домашних условиях следует соблюдать целый комплекс мер.

Мы уже встречали основные радиодетали: резисторы, конденсаторы, диоды, транзисторы, микросхемы и т.д., а также изучили, как они крепятся на печатной плате. Напомним еще раз основные этапы этого процесса: выводы всех компонентов продеваются в отверстия, имеющиеся в печатной плате. После этого выводы подрезаются, а затем припаиваются с обратной стороны платы (см. Рис.1).
Этот уже известный нам процесс называется DIP-установкой. Такая установка очень удобна для начинающих радиолюбителей: крупные компоненты, их можно даже паять без большого «советского» паяльника, без мужского паяльника и микроскопа. Именно поэтому все комплекты кит-мастера для самостоятельной пайки подразумевают DIP-установку.

Рис. 1. DIP-установка

Но DIP-установка имеет очень существенные недостатки:

Крупные радиодетали не подходят для создания современных миниатюрных электронных устройств;
— выпускаемые радиодетали дороже в производстве;
— Печатная плата для DIP-установки также дороже из-за необходимости просверливать множество отверстий;
— DIP-установку сложно автоматизировать: в большинстве случаев даже на крупных заводах по производству электроники установку и упаковку DIP-деталей приходится выполнять вручную.Это очень дорого и долго.

Поэтому установка DIP в производстве современной электроники практически не используется, и на смену ей пришел так называемый SMD-процесс, который является стандартом сегодня. Поэтому любой радиолюбитель должен иметь хотя бы общее представление.

Монтаж SMD

Компоненты SMD (компоненты микросхемы) представляют собой компоненты электронной схемы Ценообразование с использованием технологии монтажа на поверхность — технология SMT (англ. surface. крепление Technology) .T.E. Все электронные элементы, которые «закреплены» на плате таким образом, называются SMD. компоненты (англ. поверхность. смонтировано. устройство). Процесс установки и пайки компонентов микросхемы правильно называют процессом SMT. Говорить «SMD-установка» не совсем корректно, но в России это был именно такой вариант названия техпроцесса, поэтому будем говорить так же.

На рис.2. Показана монтажная плата SMD. Одна и та же плата, выполненная на DIP-элементах, будет в несколько раз иметь большие габариты.

Рис.2. Монтаж SMD

Монтаж

SMD имеет неоспоримые преимущества:

Radioetal дешево в производстве и может быть сколь угодно миниатюрным;
— печатные платы также дешевле из-за отсутствия множественного сверления;
— Монтаж легко автоматизировать: монтаж и пайку компонентов производят специальные роботы.Нет и такой технологической операции, как обрезка выводов.

SMD резисторы

Знакомство с чип-компонентами логичнее всего начинать с резисторов, как с самых простых и массовых радиодеталей.
Резистор SMD по своим физическим свойствам был аналогичен нашему «обычному», с наружным вариантом. Все его физические параметры (сопротивление, точность, мощность) точно такие же, только корпус другой. То же правило применяется ко всем остальным SMD-компонентам.

Рис. 3. Чип-резисторы

Размеры SMD Резисторы SMD

Мы уже знаем, что выходные резисторы имеют определенную сетку стандартных размеров, в зависимости от их мощности: 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт , и тому подобное.
Сетка типоразмеров также доступна в чип-резисторах, только в этом случае размер указывается четырехзначным кодом: 0402, 0603, 0805, 1206 и др.
Основные размеры резисторов и их технические характеристики приведены в Инжир.4.

Рис. 4 Основные размеры и параметры микросхем резисторов

Маркировка SMD резисторов

Резисторы имеют маркировку на корпусе.
Если в коде три или четыре цифры, то последняя цифра означает количество нулей, на рис. 5. Резистор с кодом «223» имеет такое сопротивление: 22 (и три нуля справа) Ом = 22000 Ом = 22 ком. Резистор с кодом «8202» имеет сопротивление: 820 (и два нуля справа) Ом = 82000 Ом = 82 кОм.
В некоторых случаях маркировка цифровая. Например, резистор с кодом 4R7 имеет сопротивление 4,7 Ом, а резистор с кодом 0R22 — 0,22 Ом (здесь буква R — знак разделителя).
Есть еще резисторы нулевого сопротивления, или резисторы-перемычки. Часто они используются как предохранители.
Конечно, можно не вспомнить систему обозначения кода, а просто измерить сопротивление резистора мультиметром.

Рис.5 Маркировка микросхем резисторов

Керамические конденсаторы SMD

Внешне конденсаторы SMD очень похожи на резисторы (см. Рис.6). Есть только одна проблема: на них не наносится код емкости, поэтому единственный способ определить — это измерение с помощью мультиметра, имеющего режим измерения емкости. Конденсаторы
SMD также выпускаются стандартных размеров, как правило, аналогичных размерам резисторов (см. Выше).

Рис. 6. Керамические конденсаторы SMD

Электролитические конденсаторы SMS

Рис.7. Электролитические конденсаторы SMS

Эти конденсаторы аналогичны своим выходным собратьям, и на них обычно явно указано: емкость и рабочее напряжение.Полоска на «шапке» конденсатора помечена его минусовым выводом.

SMD транзисторы


Рис.8. SMD транзистор

Транзисторы маленькие, поэтому на них невозможно написать их полное название. Ограничено кодовой маркировкой, а некоторые обозначения международных стандартов — нет. Например, код 1e может обозначать тип транзистора BC847A, а может и какой-то другой. Но это обстоятельство абсолютно не беспокоит ни производителей, ни рядовых потребителей электроники.Трудности могут возникнуть только при ремонте. Определить тип транзистора, установленного на печатной плате, без документации производителя иногда бывает очень сложно за такую ​​плату.

SMD-диоды и SMD-светодиоды

Фотографии некоторых диодов показаны на рисунке ниже:

Рис.9. SMD диоды и SMD светодиоды

На корпусе диода полярность в виде полоски ближе к одному из краев. Обычно полоса маркируется катодным выходом.

SMD-CVDDD тоже имеет полярность, которая обозначается либо точкой возле одного из выводов, либо как-то еще (подробно это можно найти в документации производителя компонентов).

Определить тип SMD диода или светодиода, как и в случае с транзистором, сложно: на корпусе диода добавлен малоинформативный код, а на корпусе светодиода вообще нет надписей, кроме полярности этикетка. Разработчики и производители современной электроники мало заботятся о ее ремонтопригодности.Подразумевается, что печатная плата будет производиться сервисным инженером, имеющим полную документацию на конкретный продукт. В такой документации четко описано, в какую печатную плату устанавливается тот или иной компонент.

Установка и пайка компонентов SMD

Установка SMD оптимизирована в первую очередь для автоматической сборки с помощью специальных промышленных роботов. Но радиолюбительские конструкции могут быть выполнены и на микросхемах-компонентах: при достаточной аккуратности и осторожности, чтобы припаять детали рисовыми крупинками, можно знать лишь некоторые тонкости.

Но это тема для отдельного большого урока, поэтому подробнее будет рассказано об автоматической и ручной установке SMD.

✓ 1001 Резистор Smd

Из-за небольшого размера резисторов smd часто нет места для печати на них традиционного кода цветовой полосы. Erj 1gnf1001c 1 kohms 1 005w 120w чип-резистор 0201 0603 метрический автомобильный aec q200 толстопленочный от panasonic electronic components.

100 X 0 Ом Smd Smt 0805 Resistors Link 0r 1st Class

500pcs Smd Resistor 0805 1k 1 Печать 1001 2 0x1 2mm In

Semtech Resistor Thick Film 1206 1206 0 25w 1k 102

Ценообразование и наличие миллионов электронных компонентов от цифровой ключевой электроники.

1001 резистор smd . Sot div23lf 03 1001 1001 dd datasheet irc sot div23lf 01 1001 1001 ff спецификация. Резисторы для микросхем 1005 smd можно приобрести в магазине Mouser Electronics. Есть 44 поставщика резисторов 1001 smd, которые в основном расположены в азии.

Smd резистор обозначает устройство для поверхностного монтажа, вынутое из резистора для поверхностного монтажа smt. Поэтому были разработаны новые коды smd резисторов. Четырехзначный код резистора smd 1001 прописью означает 1 кВт.

Mouser предлагает таблицы с ценами на товарно-материальные ценности для микросхем резисторов 1005 smd. Те, которые используют резисторы серии eia96 или e 96. Эти крошечные чипы помечены тремя 3- или 4-значными кодами, которые называются кодами резисторов smd, чтобы указать их значения сопротивления.

Примеры четырехзначных резисторов smd В следующих таблицах перечислены все часто используемые четырехзначные резисторы smd от 01 Ом до 976 МОм серий e24 и e96. Вы также можете выбрать терморезистор с постоянным сопротивлением или керамический конденсатор.Наиболее часто встречающиеся коды — это трех- и четырехзначная система, а также система eia альянса электронной промышленности под названием eia 96.

См. Также калькулятор резистора smd и краткое руководство о том, как рассчитать номинал резистора smd. Однако небольшие размеры резисторов smt затрудняют чтение цифр. Поскольку используются резисторы с более высокими допусками, необходимы дополнительные цифры.

Начали использоваться еще одна схема кодирования резистора для поверхностного монтажа или схема кодирования резистора smd, и она нацелена на резисторы smd с 1 допуском, т.е.Резистор smd с маркировкой 0 00 000 или 0000 — это перемычка нулевой омной связи. А также через сквозное отверстие для поверхностного монтажа.

Заказ сегодня отправляется сегодня. Вам доступен широкий выбор резисторов 1001 smd, таких как толстопленочные, тонкопленочные и керамические. Микросхема резистора, помеченная стандартным трехзначным кодом и короткой полосой под маркировкой, обозначает резистор с точностью 1 или меньше со значением, взятым из серии e24, эти значения обычно зарезервированы для 5 резисторов.

Это простой онлайн-калькулятор для цветовой маркировки резисторов индуктивности цветной маркировки керамических или танталовых конденсаторов 3-значная маркировка и 3-значная маркировка smd-резистора 4-значная 10 5 2 и маркировка кода допуска eia 96 e96 1.

Yobett Smt Smd Резистор Конденсатор Индуктор Combo Kit Электронные компоненты 0402 0603 0805 1206 Ремонтные комплекты

Тонкопленочные прецизионные резисторы Smd

Rg3216p 1001 B T1

Bourns Crm2512 Fx 1001elf32 Цена

Bourns Crm2512 Fx 1001elf3 Тонкопленочные резисторы Smd

Mc1206 1001 Ft Rcd Fixed single Surface Mount Resistors

D2 2k 0603 1 Chip Resistor

Resistor Smd 1206 1001 1k 1000r 1000 Ohms 1 1 4watt 10pecas

Resistor Smd Code Resistor Guide

100k5 Допуск маркировки 1

1 кОм Размер упаковки 1206 Smd резистор 5 шт. В упаковке

130 кВт 0603 толстопленочный резистор smd 1 0 1 Вт Erj3ekf1303v

Как прочитать код резистора

Загрузить: Руководство по электронике (которое мы даем нашим клиентам)

Полезные ссылки:

Как читать код резисторов?

Практически на каждом сайте электроники в этом мире есть страница для обучения чтению кодов резисторов :).Мы не собираемся снова писать ту же статью. Вместо этого мы собираемся поделиться ссылками на сайты, которые учат читать код резистора.

Следующее изображение должно вас прояснить, однако, пожалуйста, проверьте ссылки ниже, если вы не понимаете изображение ниже:

Ссылки:

  1. Digikey: В Digikey есть онлайн-калькулятор значений сопротивления. Большинство электронщиков используют 4-полосные углеродные пленочные резисторы, поэтому этот калькулятор должен быть вам очень полезен.
  2. Instructables: В этом руководстве приведены таблица цветовых кодов резисторов, некоторые примеры и некоторые упражнения. Это хорошо !
  3. WIKIHOW: В этом руководстве есть реальные изображения, которые научат вас считывать значения резисторов. Это должно тебе помочь.
  4. Хобби-час: Хобби-час пошел немного дальше. О 4-х полосных и 5-ти полосных резисторах написано много. Кроме того, написано о различных допусках и сериях резисторов. Рекомендуемые !

Видео ниже тоже очень полезно:

Источник: Sparkfun.com

Эта работа находится под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Расшифровка маркировки резистора

Хотя они могут не отображать свое значение сразу, большинство резисторов имеют маркировку, показывающую их сопротивление. Резисторы PTH используют систему цветовой кодировки (которая действительно добавляет немного изюминки схемам), а резисторы SMD имеют свою собственную систему маркировки значений.

Расшифровка цветовых полос

Осевые резисторы со сквозным отверстием обычно используют систему цветных полос для отображения своего значения.Большинство этих резисторов будет иметь четыре цветные полосы, окружающие резистор.

Первые две полосы показывают две старшие цифры номинала резистора. Третья полоса представляет собой значение веса, которое умножает двух значащих цифр на степень десяти.

Последняя полоса указывает допуск резистора. Допуск объясняет, насколько более или менее фактическое сопротивление резистора можно сравнить с его номинальным значением.Ни один резистор не может быть доведен до совершенства, и различные производственные процессы приведут к лучшим или худшим допускам. Например, резистор 1 кОм с допуском 5% на самом деле может иметь значение от 0,95 кОм до 1,05 кОм.

Как определить, какая группа первая и последняя? Последний диапазон допусков часто четко отделен от диапазонов значений, и обычно это либо серебро, либо золото.

Вот таблица каждого цвета и того, какое значение, множитель или допуск они представляют:

Цвет Цифровое значение Множитель Умноженное Допуск
Черный 0 10 0 1
Коричневый 1 10 1 10
Красный 2 10 2 100
Оранжевый 3 10 3 1 000
Желтый 4 10 4 10000
зеленый 5 10 5 100 000
Синий 6 10 6 1 000 000
фиолетовый 7 10 7 10 000 000
Серый 8 10 8 100 000 000
Белый 9 10 9 1 000 000 000
Золото ± 5%
Серебристый ± 10%

Вот пример 4.Резистор 7 кОм с четырьмя цветными полосами:

При расшифровке цветовых полос резисторов обратитесь к таблице цветовых кодов резисторов, подобной приведенной выше. Для первых двух полос найдите соответствующее цифровое значение этого цвета. Резистор 4,7 кОм сначала имеет цветные полосы желтого и фиолетового цветов, которые имеют числовые значения 4 и 7 (47). Третья полоса 4,7 кОм красная, что означает, что 47 следует умножить на 10 2 (или 100). 47 умножить на 100 — это 4700!

Если вы пытаетесь сохранить код цветовой полосы в памяти, может помочь мнемоническое устройство.Существует несколько (иногда сомнительных) мнемоник, которые помогают запомнить цветовую кодировку резистора. Хороший, который раскрывает разницу между b Отсутствие и b rown:

B ig b rown r abbits o ften y ield g reat b ig v ocal g roans w napped napped . »

Или, если вы помните «РОЙ Г.BIV », вычтите индиго (бедный индиго, никто не помнит индиго) и добавьте черный и коричневый к передней части и серо-белый к задней части классической цветовой схемы радуги.

Калькулятор цветового кода

Если вы предпочитаете пропустить математику (мы не будем судить 🙂 и просто воспользуетесь удобным калькулятором, попробуйте!

Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (1) Коричневый (10) Красный (100) Оранжевый (1k) Желтый (10k) ) Зеленый (100k) Синий (1M) Фиолетовый (10M) Серый (100M) Белый (1G) Золото (± 5%) Серебро (± 10%)

Сопротивление:
1000 Ом ± 5%

Группа 1 Группа 2 Группа 3 Группа 4
Значение 1 (MSV) Значение 2 Вес Допуск

Расшифровка маркировки для поверхностного монтажа

У резисторов SMD

, таких как в корпусах 0603 или 0805, есть собственный способ отображения их значения.Есть несколько распространенных методов маркировки этих резисторов. Обычно на корпусе печатается от трех до четырех символов — цифр или букв.

Если три символа, которые вы видите, это , все числа , вы, вероятно, смотрите на резистор с маркировкой E24 . Эти маркировки действительно имеют некоторое сходство с системой цветных полос, используемой на резисторах PTH. Первые два числа представляют две первые старшие цифры значения, последнее число представляет величину.

На приведенном выше примере резисторы обозначены как 104 , 105 , 205 , 751 и 754 . Резистор с маркировкой 104 должен иметь номинал 100 кОм (10 × 10 4 ), 105 — 1 МОм (10 × 10 5 ) и 205 — 2 МОм (20 × 10 5 ). 751 составляет 750 Ом (75 × 10 1 ), а 754 составляет 750 кОм (75 × 10 4 ).

Другая распространенная система кодирования — E96 , и она самая загадочная из всех.Резисторы E96 будут обозначены тремя символами — двумя цифрами в начале и буквой в конце. Два числа сообщают вам первые три цифр значения, соответствующие одному из не столь очевидных значений в этой поисковой таблице.

Код Значение Код Значение Код Значение Код Значение Код Значение Код Значение
01 100 17 147 33 215 49 316 65 464 81 681
02 102 18 150 34 221 50 324 66 475 82 698
03 105 19 154 35 226 51 332 67 487 83 715
04 107 20 158 36 232 52 340 68 499 84 732
05 110 21 162 37 237 53 348 69 511 85 750
06 113 22 165 38 243 54 357 70 523 86 768
07 115 23 169 39 249 55 365 71 536 87 787
08 118 24 174 40 255 56 374 72 549 88 806
09 121 25 178 41 261 57 383 73 562 89 825
10 124 26 182 42 267 58 392 74 576 90 845
11 127 27 187 43 274 59 402 75 590 91 866
12 130 28 191 44 280 60 412 76 604 92 887
13 133 29 196 45 287 61 422 77 619 93 909
14 137 30 200 46 294 62 432 78 634 94 931
15 140 31 205 47 301 63 442 79 649 95 953
16 143 32 210 48 309 64 453 80 665 96 976

Буква в конце представляет множитель, соответствующий чему-то в этой таблице:

Письмо Множитель Письмо Множитель Письмо Множитель
Z 0.001 A 1 D 1000
Y или R 0,01 B или H 10 E 10000
X или S 0,1 С 100 F 100000

Итак, резистор 01C — наш хороший друг, 10 кОм (100 × 100), 01B — 1 кОм (100 × 10), а 01D — 100 кОм.Это просто, другие коды могут быть не такими. 85A на картинке выше — 750 Ом (750 × 1), а 30C на самом деле 20 кОм.

Номиналы стандартных резисторов

— RF Cafe

«Исследователи из Hewlett Packard Labs, где создан первый практический мемристор, изобретена новая вариация на устройство — а мемристорный лазер … «

резисторы являются одним из четырех основных типов пассивных электронных компонентов; другой три индуктора, конденсатор, а мемристор.Базовая единица сопротивления — ом (Ом).

Значения стандартного базового резистора приведены в следующих таблицах для большинства часто используемые допуски (1%, 2%, 5%, 10%), а также с обычно доступными диапазонами сопротивления. Чтобы определить значения, отличные от базовых, умножьте базовое значение на 1, 10, 100, 1k или 10k.

Стандартные номиналы резисторов рассчитаны используя простую формулу, приведенную ниже. Округлите результаты до нужного числа значащие цифры (три для 1% и 2%, два для 5% и 10%).Как показано на диаграмме справа (создан в Excel), нанесение значений на логарифмический масштаб дает прямую линию из-за экспоненты в уравнении.

Пример: Расчеты показывают необходимость в резисторе 355 кОм. и допуск 1%. Посмотрите в таблице 1% и выберите значение 35,7 (ближайшее доступное стандартное значение). Умножить на 10000 для преобразования в 357 кОм.

10.0 10,2 10,5 10,7 11,0 11,3 11,5 11,8 12,1 12,4 12,7 13,0
13,3 13,7 14,0 14,3 14,7 15,0 15,4 15,8 16,2 16.5 16,9 17,4
17,8 18,2 18,7 19,1 19,6 20,0 20,5 21,0 21,5 22,1 22,6 23,2
23,7 24,3 24,9 25,5 26,1 26.7 27,4 28,0 28,7 29,4 30,1 30,9
31,6 32,4 33,2 34,0 34,8 35,7 36,5 37,4 38,3 39,2 40,2 41,2
42,2 43.2 44,2 45,3 46,4 47,5 48,7 49,9 51,1 52,3 53,6 54,9
56,2 57,6 59,0 60,4 61,9 63,4 64,9 66,5 68,1 69,8 71.5 73,2
75,0 76,8 78,7 80,6 82,5 84,5 86,6 88,7 90,9 93,1 95,3 97,6

10,0 10,5 11,0 11,5 12.1 12,7 13,3 14,0 14,7 15,4 16,2 16,9
17,8 18,7 19,6 20,5 21,5 22,6 23,7 24,9 26,1 27,4 28,7 30,1
31.6 33,2 34,8 36,5 38,3 40,2 42,2 44,2 46,4 48,7 51,1 53,6
56,2 59,0 61,9 64,9 68,1 71,5 75,0 78,7 82,5 86.6 90,9 95,3

10 11 12 13 15 16 18 20 22 24 27 30
33 36 39 43 47 51 56 62 68 75 82 91

10 12 15 18 22 27 33 39 47 56 68 82
.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *