Site Loader

Содержание

Почему две фазы в розетке причины и решение

При выходе из строя электропроводки иногда случается, что индикатор показывает в розетке две фазы, а электроприборы при этом не работают. Такая неисправность является достаточно распространенной, но начинающий или неопытный электрик может долго над этим ломать голову.

Понятие в розетке две фазы может быть понято двояко. Либо на самом деле в розетке имеется две разные фазы, которые в сумме дают примерно 380 В, либо на каждой клемме розетки присутствует одна и та же фаза.

Последствия от этого сильно разнятся, в первом случае электроприборы начинают выходить из строя, попросту сгорая. Во втором случае ничего не горит, но и не работает.

Что предшествует таким неполадкам, как их устранить и предотвратить нежелательные последствия? Начнем с простого, когда в розетке появляется дубликат фазы.

Основные причины почему в розетке две фазы

В квартиру через счетчик и автоматы заходит только одна фаза. В розетке должна быть одна фаза и ноль, а в приведенной выше ситуации индикатор свидетельствует о наличии в обоих гнездах розетки одной и той же фазы.

Наиболее вероятной причиной возникновения неисправности в данном случае является повреждение (обрыв) нулевого провода, идущего к розетке.

Наличие фазы там, где должен быть ноль обусловлено тем, что она проходит через нагрузку – постоянно включенную лампочку или какой-нибудь другой электроприбор.

Как правило, все нулевые провода в доме или квартире замыкаются на нулевую шину электрического щита, фаза будет появляться в розетке. Проверить это очень легко – нужно просто выключить все электроприборы, которые имеются в квартире.

Чтобы лучше понять, почему в розетке две фазы, следует понимать принцип действия электрического тока. Рассмотрим однофазную схему. Электрический ток – это движение заряженных частиц по замкнутой цепи. Для произведения работы в эту цепь включают потребители электрической энергии.

В домах производится параллельное подключение нагрузки, другими словами, каждый потребитель включается в фазу и ноль. После того как электрический ток проделал работу, например, отдав тепло утюгу, он попадает в нулевой провод и уходит к трансформатору на подстанции.

1. Обрыв ноля в распредкоробке или щите

Это классический случай, объясняющий, почему появляется в розетке две фазы. Поскольку отработанному току деваться некуда, он остается в нулевом проводнике, принимая такой же потенциал, что и фазный. Где может произойти такой обрыв?

Если это квартира в многоквартирном доме, то поиск расширяется от этажного щитка до самой розетки, которая в этот момент не работает. В этом случае в розетке фазы будут одноименными.

Проверить это можно мультиметром, поставив указатель напряжения на отметку не менее 400 В. Если фаза в розетке в двух отверстиях будет одной и той же, то мультиметр покажет 0. Если же прибор укажет напряжение около 380 В, то обрыв ноля произошел дальше этажного щитка.

В этом случае следует отключить входные автоматы и вызвать электриков. Если квартира питается от трехфазной сети и розетка показывает две фазы, примерно 380 В, то обрыв ноля мог произойти внутри квартиры или в промежутке до этажного щита.

В собственном доме, если появляются две фазы в розетке, причины те же самые, но вместо этажного щитка поиск ведут до гусака или вводного автомата. Рассмотрим еще одну причину, когда в розетке на двух контактах появляется одна и та же фаза.

2. Ноль оборван и замкнут на фазу

Итак, вы выключили из розеток все потребители электроэнергии, выключили все выключатели, а две фазы в розетке все равно присутствуют. Почему после отключения всех электроприборов от сети в розетке все равно наблюдается фаза в обоих отверстиях?

В розетке две фазы появятся и тогда, когда ноль не только оборван, но и замкнут с фазным проводом. Это чаще происходит на воздушных линиях электропередач, тогда в дом придет та фаза, на которую упал ноль.

Если повезет, то фазы будут одноименными, и тогда ничего не перегорит, просто ничто не будет работать. Но если фаза будет другая, перегорание электроприборов обеспечено.

Однако ноль может закоротить и в самой квартире. Например, это может произойти при высверливании отверстия в стене. Если сверло оборвет ноль и слегка заденет фазу, то произойдет короткое замыкание, и провода могут спаяться. Обычно такое повреждение сразу обнаруживается, и его устраняют.

В старых домах могут давно не менять провод, со временем изоляция его приходит в негодность, и также происходит замыкание фазы на ноль. Иногда могут постараться и грызуны, питаясь изоляцией. В любом случае на клеммах розетки будет одно и то же напряжение.

3. Вместо автоматов установлены пробки

В современных квартирных щитах устанавливают двойные вводные автоматы для однофазной цепи. Они срабатывают независимо от того, в какой цепи происходит неисправность. Отдельные автоматы могут иметь разбег по току срабатывания. Это же происходит и в старых домах, где все еще используются пробочные выключатели.

Независимо от того, применяются плавкие вставки или автоматический расцепитель, порог срабатывания может сильно отличаться друг от друга.

Если при возникновении неисправности или превышении мощности первой срабатывает пробка на нулевом проводе, то возникает ситуация, описанные выше – обрыв нуля.

Если сеть однофазная, то ничего страшного не будет, достаточно повторно включить или заменить плавкую вставку, и снова все будет работать. Но если в дом проведено три фазы, и работает трехфазный прибор, то в розетке две фазы появятся, и напряжение будет выше 220 В.

4. Ошибка электриков, в розетке действительно две фазы

Такие вещи происходят довольно редко, и связаны они с невнимательностью, торопливостью или другими факторами. Всегда следует помнить, что электричество не терпит пренебрежительного к себе отношения и наказывает порой очень сурово.

Также это всегда связано либо с ремонтом, либо со строительством. Поэтому после ремонта или при въезде в новый дом всегда лучше пройти с мультиметром и замерить напряжение во всех розетках.

Времени много это не займет, но бытовые приборы будут защищены от повышенного напряжения.

Но иногда перепутать фазы могут и сами электрики после аварии на линии и подключить вместо ноля другую фазу. Если свет отключили на длительное время, особенно после бури, то следует отключить все электроприборы, включенной можно оставить одну лампочку. Если произойдет ошибка, то пострадает только она одна. После этого обратиться в энергоснабжающую организацию.

5. Перекос фаз

Также по вине электриков может быть неправильно распределена нагрузка на каждую фазу. В идеале нагрузка на каждую фазу должна быть одинаковой.

В этом случае в нулевом проводе отсутствует какое-либо напряжение. Однако добиться таких условий практически невозможно. В каждой квартире в одно и то же время включаются потребители разной мощности.

Из-за этого общая нагрузка на одну фазу будет максимальной, на другую средней, а на третью минимальной. Чем больше нагрузка, тем большее напряжение попадает на нулевой провод.

В трехфазной сети фазы сдвинуты относительно друг друга на 120º, это приводит к тому, что потенциал на нулевом проводнике будет увеличивать напряжение на других нагрузках.

Причем чем меньше мощность этих нагрузок, а значит выше их сопротивление, тем большее напряжение будет действовать на них. При такой схеме самая нагруженная фаза будет иметь минимальное напряжение, а там, где нагрузки мало, напряжение повысится.

Причины пропадания нуля

Если говорить о неисправностях в квартире или доме, то можно выделить несколько причин:

  • разрушение электрического контакта;
  • отгорание;
  • отключение автомата;
  • механическое повреждение.

В домашней сети могут использоваться провода с алюминиевыми или медными жилами. Если их соединить напрямую, то между ними образуется окислительная пленка, которая является изолятором.

Вследствие этого нарушается электрический контакт, и ток не может пройти через этот участок. Тем не менее такие провода можно соединять между собой, используя переходной материал, например, используя винтовой зажим с промежуточной шайбой.

Другой вариант – применение соединительных зажимов, предварительно надев и закрепив на многожильном проводе специальный наконечник.

Использование наконечников тоже можно считать как одним из вариантов.

Пропадание нуля может произойти из-за перегорания провода. Это часто бывает в местах крепления, где контакт зажима ослаблен. Неплотное прилегание металлов ведет к появлению искры или дуговому разряду. Провод нагревается, и плавится жила. Обнаружить такую неисправность можно по обуглившейся изоляции.

Если в сети используются одинарные автоматы, то автомат, поставленный на ноль, может отключиться при неисправности. Если номинал автомата выбран намного меньше требуемого, то он может выгореть. Редко, но бывают случаи ошибочного отключения ноля, или забывают включить его после устранения неисправности.

И конечно же, при механическом повреждении нулевого провода вся последующая сеть оказывается без нуля. Часто начинающие электрики делают роковую ошибку, при снятии изоляции с провода они делают круговой надрез, повреждая внешнюю поверхность проводника. Со временем он ломается, особенно часто такое происходит с алюминиевыми жилами.

В каком месте может отгореть ноль

Чаще всего оплавление и перегорание провода происходит в местах с плохим электрическим контактом. Для нахождения неисправности потребуется мультиметр.

Переключатель режимов устанавливают на переменное напряжение не менее 300 В. В первую очередь проверяют ближайший ко входу в домашнюю сеть зажим, до которого можно добраться.

Это переключатели, автоматы, стоящие после счетчика. Замеряют напряжение между фазным и нулевым проводом, которое должно быть около 220 В. Если оно соответствует указанным параметрам, неисправность ищут дальше, если оно другое, необходимо вызвать электриков.

Далее проверяют распределительные коробки. Обычно бывает достаточно снять крышку, чтобы увидеть обгоревший провод. Изоляция на таких проводах обуглившаяся.

Нередко провод отгорает на самой розетке. Если проводка спрятана под штукатуркой, необходимо снять панель розеток и визуально осмотреть провода, подходящие к ним.

Самым тяжелым случаем бывает обрыв ноля в самой магистрали. Обнаружить визуально его не получится. Рассмотрим три способа обнаружения такой неисправности.

Неисправность в одной розетке, причины

Такая неисправность возникает у розетки, расположенной в самом дальнем месте, или если к ней идет один провод.

Это говорит о том, что нет либо фазы, либо ноля, либо она вовсе обесточена. Если она располагается в середине помещения и в соседней розетке, если таковая имеется, присутствует напряжение, то неисправна сама розетка.

Если соседней розетки нет, тогда проверяют напряжение на подводящем проводе, предварительно сняв крышку. Сразу осматривают розетку, чтобы в ней не было посторонних предметов, и она не была повреждена.

При отсутствии напряжения проверяют индикаторной отверткой наличие фазы. Если фаза есть, значит оборван ноль, если фазы нет, значит обесточен весь провод или обрыв фазы.

Обесточивают сеть, отключают все электроприборы и вставляют в розетку коротыш, это может быть вилка с коротким проводом, жилы которого очищены от изоляции и скручены.

Открывают распределительную коробку и прозванивают провод, идущий к розетке. Сопротивление должно быть близко к нулю. При других значениях можно говорить о повреждении провода.

Неисправность в нескольких розетках

Если нерабочими оказываются несколько розеток, расположенных в разных местах, то нужно искать неисправность в магистральном проводе.

Для этого отключают вводные автоматы, открывают распределительную коробку, которая запитывает неисправную розетку, расположенную ближе всего к счетчику.

Отыскивают подводящий провод, он должен приходить со стороны предыдущей коробки. Разматывают или снимают изоляцию. Включают вводной автомат и измеряют напряжение на этом проводе. Его не нужно отсоединять от других проводов.

Если он располагается на клеммной колодке и на нем присутствует напряжение, причина может заключаться в плохом контакте. Снова отключают автомат, разбирают и осматривают соединения.

Если используются медные и алюминиевые провода, то между ними должна быть стальная шайба. Если же на подводящем проводе напряжение не наблюдается, то можно говорить о неисправности провода между этой и предыдущей коробкой, идущей к счетчику.

Неисправность во всех розетках

Если в квартире есть свет и не работают только розетки, то сеть разделена, и неисправность нужно искать в автомате, к которому подключен питающий кабель данной розеточной группы.

Проверить напряжение на его входе и выходе, хорошо ли затянуты контакты? Если нет напряжения на входе автомата, необходимо проверить цепь от вводного автомата до него.

Обрыв нуля в трехфазной сети

Почему обрыв нуля трехфазной системы самый опасный режим, и как от него защититься?

При таком повреждении нельзя предугадать поведение напряжения, в любом случае оно не будет соответствовать номинальному, а это негативно скажется на электроприборах. Защититься от такой проблемы можно, использовав реле напряжения.

Оно защитит домашнюю сеть от любого опасного напряжения. Недостатком является то, что оно может срабатывать при импульсном скачке напряжения.

Владельцы собственного дома могут сделать для себя резервное питание от генератора: бензинового, дизельного или ветряного. Но это уже другая тема и здесь рассматриваться не будет.

Похожие материалы на сайте:

  • Схема подключения розетки и выключателя
  • Как на электрических схемах обозначают розетки
  • Не работает выключатель освещения

В розетке две фазы – что делать и как устранить повреждение

  • Статья
  • Видео

Одной из популярных неисправностей электропроводки в квартире является появление так называемой второй фазы в розетке. Если пропал свет в комнатах, но все приборы работают, значит и Вы стали жертвой такой поломки. Далее мы расскажем, что делать, если в розетке две фазы, почему такое может произойти и как устранить повреждение самостоятельно!

  • Как это происходит?
  • Основные причины неполадки
  • Полезный совет читателям

Как это происходит?

Для того, чтобы Вы поняли причину неисправности, предоставим наглядную схему подключения розетка-выключатель-лампочка:

Как Вы понимаете, напряжение подается по фазному проводу и возвращается по нулевому. А теперь представьте, что будет, если произойдет обрыв нуля:

Если включить выключатель света, напряжение пройдет через нить накаливания либо включенный электроприбор, перейдет в нулевой провод и т.к. нули связаны, направится к розетке по второму контуру. Итог – при проверке напряжения в гнездах розетки пробником Вы увидите две фазы. Если Вы позаботились о заземлении квартиры, опасности для жизни не будет, просто нужно будет найти обрыв нулевого провода и восстановить контакт. Однако если в квартире использовалось зануление электропроводки, последствия могут быть не самыми лучшими.

Основные причины неполадки

Как Вы уже поняли, причиной появления двух фаз на розетке чаще всего является обрыв нуля. Потеря контакта может произойти на этажном щитке, на вводе в квартиру, в одной из распределительных коробок и даже просто в стене.

Если провод отгорел в электрощитке, в квартире погаснет свет, но розетки все также будут работать, но только когда включаешь электроприбор либо освещение в комнате. Если же Вы все выключите и проверите напряжение в розетке, увидите, что фаза будет только одна.

Иной случай, когда обрыв нуля происходит в распределительной коробке одой из комнат. В этом случае перестанет гореть свет только в этой комнате, в остальных все будет работать, как и раньше. Чтобы решить проблему, нужно будет раскрыть распредкоробку и восстановить соединение проводов.

Еще одна частая причина, почему две фазы в розетке – старая проводка при которой вместо автоматических выключателей на вводе вкручены пробки. Если выбьет только одну пробку, нулевую, напряжение появится в двух гнездах. Чтобы такого не произошло, рекомендуем заменить электропроводку в квартире на современную – с нулевой шиной.

Также часто встречается ситуация, когда обрыв происходит непосредственно в стене из-за Вашего непрофессионализма. Перед тем, как вешать картину необходимо обязательно найти электропроводку в стене, чтобы не повредить ее гвоздем (и себя в том числе). Если Вы перебьете только нулевой проводник, появятся две фазы в розетках. Сюда же можно отнести и повреждение провода грызунами, которые могут существовать в пустотах панелей многоквартирных домов. О том, как защитить проводку от грызунов, мы рассказывали в соответствующей статье.

Рекомендуем просмотреть видео, на котором наглядно предоставлена неисправность:

Итак, мы рассказали, почему может появиться напряжение в двух гнездах розетки, как это происходит и что делать, чтобы решить проблему. Теперь хотелось бы объяснить, как сразу же понять, что произошло повреждение провода N и это не обе фазы, а одна, которая перетекла по второй линии электросети.

Полезный совет читателям

Ситуация понятная – пропал свет в квартире и Вы сразу же пробником решили проверить напряжение в розетках. Заметив, что индикатор показывает фазу на двух проводах, Вы подумали, что это две фазные жилы у Вас в электропроводке. Как мы уже сказали, все далеко не так и убедиться в этом можно следующим образом:

С помощью мультиметра проверьте напряжение в розетке, если покажет 0, значит фаза у Вас только одна, перетекающая на нулевой проводник.

Это самый верный способ определить неисправность, ведь индикаторная отвертка это крайне не точный метод проверки. Индикатор может сработать на наводку и показать вторую фазу, хотя на самом деле она будет одна.

Напоследок рекомендуем просмотреть еще одно полезное видео по теме:

Вот и все, что хотелось рассказать Вам о такой неисправности проводки. Обращаем Ваше внимание на то, что последствия появления такого рода поломки могут быть весьма ощутимыми – если в Вашей квартире использовалось зануление, напряжение может перейти на корпус электроприборов, что крайне опасно. Надеемся, теперь Вы знаете, что делать, если в розетке две фазы, как устранить повреждение и почему такое случается!

Что делать, если в розетке 200 В появились две фазы

Поделиться на Facebook

Поделиться в ВК

Поделиться в ОК

Поделиться в Twitter

Поделиться в Google Plus

Содержание:

  • 1 Как в обычной розетке на 220 вольт может появиться две фазы?
    • 1. 1 К возникновению неисправности могут привести:
  • 2 Две фазы в нескольких розетках
  • 3 Две фазы в половине комнат
  • 4 В розетке показывает два нуля
    • 4.1 Возможные причины неисправности фазонесущего кабеля:
  • 5 Где в розетке ноль, где фаза, с какой стороны?
    • 5.1 Фаза слева, фаза справа, как правильно?
  • 6 Фаза и ноль в современной розетке
  • 7 Фаза и ноль в старой розетке
  • 8 У незаземленной розетки фаза стоит слева/справа
  • 9 Как это исправить?

Одной из наиболее часто встречающихся неприятных ситуации эксплуатации систем жизнеобеспечения квартиры являются внезапно возникающие поломки системы электрообеспечения. Часто возникающей неприятной неисправностью в частном доме или квартире является появление двух фаз в розетке.

Как в обычной розетке на 220 вольт может появиться две фазы?

Из школьных уроков физики каждый вынес для себя небольшие знания об электричестве и знает, сколько фаз в розетке. В исправных всегда одна фаза и ноль. При производстве ремонтных работ или эксплуатации системы электрообеспечения иногда пропадает освещение квартиры или отдельной комнаты. Что делать? Если после включения АЗС электрические приборы квартиры не работают. Замер наличия напряжения свидетельствует о том, что в розетке показывает две фазы, какая причина может привести к этой неисправности — это необходимо уяснить.

Опыт показывает, что часто встречаемой причиной этого явления оказывается обрыв нулевого провода. Наличие фазы вместо нуля объясняется тем, что напряжение, проходя через любой включенный элемент сети, возвращается на нулевой контакт электророзетки.

Для того чтобы убедиться в правоте этого утверждения, достаточно выключить все электрическое оборудование квартиры.

К возникновению неисправности могут привести:

  • неисправные предохранители;
  • обрыв нулевого электропровода входного распределительного щита;
  • обрыв нуля распредкоробки помещения;
  • поломка электропробок при эксплуатации старой проводки.

Две фазы в нескольких розетках

Вариант, когда индикатор определяет наличие фаз в нескольких розетках, как правило, характерен для одного помещения. Вероятно, они подключены последовательно. Для начала необходимо проверить исправность нулевую жилу распредкоробки помещения. Если она исправна, то причина неисправности выявляется методом последовательного осмотра обеих электророзеток.

Для более конкретного определения напряжения сети лучше всего применять мультиметр. Этот прибор при обрыве нуля всегда покажет его отсутствие.

Две фазы в половине комнат

Случай, когда в розетке две фазы иногда возникает для нескольких помещений одновременно. Это объясняется последовательным способом подключения распределительных короб помещений.

Напрашивается вариант вскрыть все коробки, чтобы проверить исправность соединений. Такой вариант сложен, займет много времени, поскольку контакт может быть нарушен везде, а не только в коробках. Целесообразнее на входном щитке поменять фазный и нулевые кабели местами, а для поиска повреждения воспользоваться индикатором поиска напряжения. Главное перед сменой электрожил проверить отсутствие обнуления и отключить заземление электророзеток.

В розетке показывает два нуля

При эксплуатации электроцепи возможен вариант в розетке два нуля, он зеркален примерам, описанным выше.

Для поиска дефектов однофазной электрической цепи необходимо уяснить простые истины. По фазовой жиле ток поступает к квартире, помещению, конечному источнику потребления. По нулевой он покидает потребителя, комнату или квартиру. Заземление необходимо для безопасности, а также отвода избыточного напряжения, что обеспечивает безопасность проживающих.

Появление двух нулей говорит о том, что произошел обрыв фазового провода электроцепи.

Возможные причины неисправности фазонесущего кабеля:

  • перебит во время осуществления ремонтных работ;
  • перегорание в электророзетке из-за не качественного соединения;
  • отсутствие контакта на скрутке распределительной коробки;
  • перегорание в одной из последовательно соединенных коробок;
  • отсутствие фазового напряжения на входном щитке.

Где в розетке ноль, где фаза, с какой стороны?

Осуществляя самостоятельное подключение электророзеток, придется определить, с какой стороны должны находиться нулевой провод и фазовый, так как это имеет большое значение при их подключении и в целях безопасности.

Фаза слева, фаза справа, как правильно?

Правил, определяющих конкретное место подключения, фазы в розетке нет. По неписаному правилу профессиональные электрики фазовый провод подключают справа, чтобы не путаться при дальнейших коммутациях цепи. Существуют страны, которые полярность подключения соблюдают именно так.

Есть ряд бытовых приборов, размещение проводов для которых строго регламентировано техническими документами. Это важно для коммутации соответствующего оборудования. Примером могут быть газовые котлы со встроенными электроконтроллерами. Такие устройства подключают специалисты.

Фаза и ноль в современной розетке

Розетки нового поколения имеют три контакта: ноль, фаза и земля. Электрокабель заземления преимущественно окрашивается двумя цветовыми полосами: желтой и зеленоватой. Во время короткого замыкания он отводит избыточную электроэнергию от потребителя на землю, при установленном общем контуре заземления. Соблюдение данного условия является важным элементом обеспечения электробезопасности жилого дома.

При самостоятельной установке электророзеток для домашнего пользования размещение по сторонам нулевого и фазового проводов не принципиально.

Фаза и ноль в старой розетке

Изделия старого типа имеют клеммы только для двух проводов: фазового и нулевого. Чаще всего ноль — синего цвета, соприкосновение с ним не опасно.

Второй кабель – фазовый, может быть коричневого, красного, белого или черного цветов, соприкосновение с ним небезопасно для жизни. Как правило, для стран СНГ фазовый красного или коричневого цветов, он находится под постоянным электрическим напряжением. Необходимо всегда помнить, что для человека напряжение более 50 В может быть смертельным.

У незаземленной розетки фаза стоит слева/справа

В домах со старой электропроводкой отсутствуют общие контуры заземления. Поэтому для экономии средств используются электророзетки без заземления. При проведении коммутации электроцепи нет необходимости выбирать клеммы для подключения фазового и нулевого электропроводов.

Отсутствие заземления в помещении является источником опасности при подключении неисправных электропотребителей. На несправном электроинструменте может возникнуть напряжение на корпусе. Это является опасным фактором, поскольку при соприкосновении с ним замыкается электроцепь.

Как это исправить?

Нулевой кабель может отгореть на клемме АЗС или нулевой шине. Это происходит по причине плохого контакта или механического повреждения (облома) электропровода. Со временем на месте плохого соединения по причине перенагрева электропровод может перегореть.

Для устранения возникшего повреждения необходимо обесточить все включенные электроприборы квартиры, а также выключить 100% электролампочек. После этого произвести замер фаз, второй не должно быть. Ремонт производится путем восстановления поврежденных контактов на АЗС или нуль шине подводящего щита.

При обрыве нуля в распределительной коробке или до нее неисправности будут наблюдаться только в помещении, куда транспортируется напряжение электросети. Неисправность устраняется путем вскрытия РК конкретного помещения, определяется нулевая скрутка, старое соединение удаляется, а новое исполняется. Медные провода желательно пропаять.

Осуществляя поиск возникшего дефекта необходимо вскрыть РК, раскрутить нулевую скрутку, прозвонить каждую электрожилу. Кабель, который не удастся прозвонить — является поврежденным. Если нулевой кабель обрывается до распредкоробки, то стену с конкретной электрожилой придется проштробить. Далее выполнить ряд механических работ по его замене.

Определение фазового и нулевого контактов имеет принципиальное значение для подключения электровыключателей. Для подключения бытовых электророзеток этим вопросом можно не утруждаться. Главное при проведении ремонта — всегда изолировать фазонесущий кабель.

Жми «Нравится» и получай только лучшие посты в Facebook ↓

Поделиться на Facebook

Поделиться в ВК

Поделиться в ОК

Поделиться в Twitter

Поделиться в Google Plus

Что такое однофазные и трехфазные силовые разъемы переменного тока и стандарты?

Разъемы питания в первую очередь предназначены для обеспечения безопасного и надежного подключения устройств к сети переменного тока, хотя обычно они предназначены для переменного и постоянного напряжения. Розетки и вилки переменного тока бывают различных конфигураций с разной шириной, формой, положением и размерами контактов, что делает их безопасными в использовании и не взаимозаменяемыми с различными комбинациями напряжения, допустимого тока и заземления. Этот FAQ начинается с обзора разъемов питания переменного тока без блокировки и блокировки, соответствующих стандартам Национальной ассоциации производителей электрооборудования (NEMA) в США и IEC 60309.

стандартов в Европе и завершается обзором требований к больничным разъемам переменного тока в Северной Америке.

Типичные номиналы разъемов питания переменного тока, соответствующие спецификациям ANSI/NEMA WD 6 Wiring Device в США, составляют от 15 до 60 А, до 600 В и до 400 Гц. В Европе максимальный номинальный ток разъемов IEC 60309 составляет 800 А, номинальное напряжение — до 1000 В, а максимальная частота — 500 Гц. Существует 24 распространенных конфигурации разъемов NEMA без блокировки, которые относятся к четырем классам напряжения (таблица 1).

Таблица 1: Классы разъемов переменного тока NEMA для заземленных и незаземленных соединений. (Таблица: Википедия)

Однофазные розетки классифицируются как двухполюсные (2P) и обеспечивают однофазный контакт и нейтральный контакт. Кроме того, может присутствовать защитное заземление или заземляющий контакт, и в этом случае розетка классифицируется как двухполюсная и заземляющая (2P+E).

Обозначения NEMA разделены на три элемента, разделенных дефисом (-): первая цифра — это класс и указывает напряжение, количество полюсов и наличие заземления; второе число — номинальная мощность разъема; третий элемент представляет собой букву, указывающую, является ли это вилкой (P) или розеткой (R).

Как описано ниже, вилка NEMA 7-15P представляет собой заземленную двухполюсную вилку, рассчитанную на 277 В и 15 А. Ниже приводится краткий обзор 24 распространенных классов разъемов NEMA:

NEMA 1 имеет два плоских контакта для двух полюсов, двухпроводные незаземленные соединения, рассчитанные на 125 В. NEMA 1 не используется в новых конструкциях; он был заменен заземленными конфигурациями.

NEMA 2 также устарела, она двухпроводная и рассчитана на 250 В.

NEMA 3 была запланированной серией на 277 В с двумя проводами.

NEMA 4 была запланированной серией, рассчитанной на 600 В, с двумя проводами.

NEMA 5 имеет два полюса, три провода с двумя лезвиями и штырь заземления. Он рассчитан на 120 В. (рис. 2).

Рисунок 2: Устаревший незаземленный разъем NEMA 1 (слева) и заменяющий его заземленный разъем NEMA 5 (справа). (Изображение: Википедия)

NEMA 6 имеет трехпроводное заземление, используемое для коммерческих или промышленных устройств на 208 и 240 В.

NEMA 7 — это двухполюсные заземленные разъемы, рассчитанные на 277 В. Вилка и розетка NEMA 7-15 имеют токоведущие контакты, расположенные под углом друг к другу (Рисунок 3).

Рис. 3. Вилка NEMA 7-15P представляет собой заземленную двухполюсную вилку, рассчитанную на 277 В и 15 А. (Изображение: наборы шнуров World)

Рисунок 3: Вилка NEMA 7-15P представляет собой заземленную двухполюсную вилку, рассчитанную на 277 В и 15 А. (Изображение: World Cord Sets)

NEMA 8 — это запланированная серия, которая будет иметь три провода, два полюса и заземление с номиналом 480 В. Планируется, что

NEMA 9 будет аналогичен NEMA 8 с номиналом 600 V.

NEMA 10 устарела и была заменена NEMA 14. NEMA 10 рассчитаны на 125/250 В без заземления (горячая-горячая-нейтраль) и предназначены для использования таким образом, что корпус прибора косвенно заземляется на нейтраль, которая была разрешена до того, как Национальный электротехнический кодекс добавил требование отдельного защитного заземления. Безопасная работа основывалась на соединении нейтрального проводника с заземлением системы на автоматическом выключателе. Если нейтральный провод обрывается, отсоединяется или имеет высокое сопротивление, корпус прибора может оказаться под напряжением опасного уровня.

NEMA 11 — серия трехпроводных, трехполюсных и незаземленных для трехфазного напряжения 250 В.

NEMA 12 — планируемая серия трехпроводных, трехполюсных и незаземленных для трехфазного и V.

NEMA 13 — запланированная серия, аналогичная NEMA 12, рассчитанная на 600 В.

NEMA 14 — четырехпроводная и заземленная, рассчитанная на 250 В. нейтральный проводник.

NEMA 16 — планируемая серия с четырьмя проводами, тремя полюсами, заземлением и тремя фазами с номинальным напряжением 480 В.

NEMA 17 будет аналогичен NEMA 16 с номинальным напряжением 600 В.

NEMA 18 — трехфазное незаземленное напряжение 120Y/208 В.

NEMA 19 — планируемая серия с 277/480Y четырехпроводным, трехполюсным, незаземленным.

NEMA 20 будет аналогичен NEMA 19 с незаземленным 247/600Y.

NEMA 21 — запланированная серия с 120/208Y, пятипроводная, трехполюсная с нейтралью, трехфазная и заземленная.

NEMA 22 будет аналогичен NEMA 21 для использования в 277/480Y.

NEMA 23 также будет аналогичен NEMA 21 для использования с 347/600Y.

NEMA 24 являются двухполюсными и заземленными с номинальным напряжением 347 В, в основном используются в Канаде.

Фиксатор

Коннекторы с фиксатором предназначены для обеспечения надежности соединения и невозможности его случайного разъединения. Эти разъемы имеют вилки с изогнутыми лезвиями, которые можно поворачивать при вставке в розетку. Разъемы с замком обозначаются буквой «L» перед номером серии, как в NEMA L6, NEMA L7 или NEMA L21.

Большинство разъемов с фиксатором имеют соответствующие разъемы без фиксатора. NEMA 21 является исключением. Устройства с прямым лезвием NEMA 21 «зарезервированы для будущих конфигураций», и в настоящее время не существует конструкций для этой серии. Однако существуют фиксирующие разъемы серии NEMA L21.

Рисунок 4: Разъем L21-30. (Изображение: Википедия)

Блокирующие разъемы используются в коммерческих и промышленных системах, а также в бытовых приборах повышенной мощности. Существуют также миниатюрные или миниатюрные разъемы с замком, обозначенные буквой «ML», предназначенные для использования, когда стандартные разъемы с замком слишком велики.

Разъемы IEC 60309

В Европе большинство разъемов соответствуют стандарту IEC 60309 (ранее IEC 309) и различным основанным на нем стандартам (включая BS 4343 и BS EN 60309).-2). В Великобритании их часто называют промышленными разъемами CEE, CEEform или CEE. Большинство трехфазных разъемов переменного тока имеют заземление, но могут не включать нейтраль, поскольку некоторым нагрузкам, таким как двигатели, не требуется подключение нейтрали. Эти разъемы имеют четыре соединения, три фазы и заземление, обозначенные как 3P+E.

Общие разъемы IEC 320 доступны в вариантах P+N+E (несимметричная однофазная с нейтралью), 2P+E (симметричная однофазная), 3P+E (трехфазная без нейтрали) и 3P+N+E (трехфазная). с нейтралью) с номиналом тока до 200 А. Разъемы с разным номиналом тока имеют разные габаритные размеры, что делает невозможным подключение несовместимых конфигураций. Как и NEMA, существует множество разновидностей разъемов IEC 320. Вот несколько примеров:

Разъемы IEC 320 C13/C14 широко используются в ПК и AV-индустрии. Ответным разъемом для розетки C13 является вилка C14, которая часто монтируется в утопленную панель или корпус компьютерных блоков питания или силовых трансформаторов.

IEC 320 C5 — это поляризованная розетка, часто используемая в блоках питания ноутбуков.

IEC 320 C7 (неполяризованный) — это двухконтактный разъем с двумя круглыми контактами, расположенными рядом друг с другом, используемый в основном с бытовой электроникой.

IEC 320 C7 (поляризованный) имеет квадратную форму на одном конце гнезда для обеспечения нейтрального соединения.

Соединители CEE 7/7 имеют круглую форму с двумя закругленными штырями и гнездом, в которое можно вставить заземляющий штырь от европейской настенной розетки типа F.

Больничного класса в Северной Америке

В Северной Америке на сетевые разъемы переменного тока больничного класса распространяются общие стандарты медицинского оборудования, а также специальные стандарты, касающиеся подключения к сети и крепления. Общие стандарты медицинского оборудования включают UL 60601-1, разделы 57.2 и 57.3, которые требуют сетевых разъемов переменного тока больничного класса с «оборудованием для ухода за пациентами», используемого «в непосредственной близости от пациента», и CAN / CSA C22.2 №. 21. Требования к соединителю включают:

Стандарты крепления — UL 498 и CAN/CSA C22.2 №. 42 и UL 60601 включают требования к резкому удалению вилки, удержанию заземляющего штыря, току короткого замыкания, температуре и сопротивлению контакта с землей, безопасности сборки, снятию напряжения с захвата шнура и натяжению шнура, прочности клемм, а также долговечности и ударным испытаниям материала.

Стандарты разъемов питания — UL 817 и CAN/CSA C22. 2 №. 21 и NEMA WD-6 включают: лезвия должны быть сплошными, а не гнутыми из латуни; Лезвия могут быть никелированы; Вилка должна иметь внутреннее удерживающее устройство для кабеля или компенсатор натяжения, чтобы предотвратить любую нагрузку на внутренние соединения вилки, а также; На разъеме должна быть зеленая точка, указывающая, что он соответствует требованиям к шнурам питания и комплектам шнуров для больниц (рис. 5).

Рис. 5. Этот шнур питания для больниц сочетает в себе вилку NEMA 5-15 с зеленой точкой и вилку IEC-60320-C13 с защитой от вибрации и растяжения. (Изображение: Memotronics)

Стандарты UL 498 и 817 позволяют маркировать устройства с прямыми лезвиями NEMA 5-15, 5-20, 6-15 и 6-20 только для медицинских учреждений. CSA позволит классифицировать NEMA 1-15 как медицинское оборудование, если оно имеет двойную изоляцию и соответствует всем остальным требованиям.

Краткое описание

Разъемы питания предназначены для безопасного и надежного подключения к электросети. NEMA, IEC и другие органы по стандартизации установили множество подробных стандартов, чтобы гарантировать, что разъемы питания переменного тока от разных производителей совместимы друг с другом и с инфраструктурой распределения электроэнергии. Разработаны десятки форматов соединителей для однофазных и трехфазных систем распределения электроэнергии с различными комбинациями полюсов, нулевого и заземляющего соединений. Помимо соответствия всем общеотраслевым стандартам, сетевые разъемы переменного тока больничного класса должны соответствовать нескольким дополнительным стандартам.

 

Каталожные номера

Промышленные и многофазные вилки и розетки, Википедия
Разъемы NEMA, Википедия
Справочное руководство NEMA, World Cord Sets

Электромонтаж выполняется по простым принципам, которые изучают в школе, но некоторые неисправности часто выходят за рамки стандартных представлений о работе электрической сети. Две фазы в розетке – распространенный случай, регулярно ставящий в тупик пользователей с недостаточным опытом ремонта электропроводки.

Содержание

  • Где и почему может появиться вторая фаза
  • Две фазы в одной розетке
  • Две фазы в нескольких розетках
  • Две фазы в половине комнат
  • Две фазы во всех розетках

Где и почему может появиться вторая фаза

Тут сразу нужно оговориться, что поскольку в квартиру входит только один фазный провод, то понятие «вторая фаза» подразумевает, что индикатор напряжения показывает фазу, в контактах на которой оно должно быть изначально и на нуле. Второй фазы, в правильном понимании этих слов, в квартире быть не может.

Следующий момент, который необходимо знать для понимания сути проблемы, это то, что каждое электрическое устройство является проводником электричества. Самый простой пример — лампочка — ее нить накала светится за счет того, что она является проводником электрического тока. На самом деле лампочка светит потому, что замыкает между собой фазу и ноль, а короткого замыкания не происходит, так как нить накаливания имеет определенное электрическое сопротивление. Точно так же работают и другие устройства – их часто подключают к сети через трансформаторы, обмотка которых выполнена из медного провода. Короткого замыкания, опять же, не происходит, так как из-за длины провода и его сечения он имеет электрическое сопротивление, а на самом деле при вставлении в розетку вилки любого прибора фаза и ноль в нем замкнуты.

Теперь должно быть понятно, почему в розетке две фазы — эта неисправность может появиться только при отсутствии нуля. Фаза приходит в розетку, проходит через включенный в нее электроприбор и появляется на нулевом проводе, а от него на тех розетках, которые расположены после обрыва нуля. Соответственно, если выключить все выключатели и вынуть все вилки из розеток, индикатор будет показывать фазу только на одном контакте.

В результате в одной отдельной розетке может появиться фаза вместо нуля (при условии, что она двойная или тройная и в одну из вилок вставлена ​​вилка какого-либо электроприбора). Далее 2 фазы могут быть в одной из комнат, в половине квартиры или вообще везде.

Также нельзя сбрасывать со счетов возможность короткого замыкания, например, при сверлении стены или некачественной проводке в распределительной коробке. При некотором везении можно зацепить проводку так, чтобы нулевой провод отгорел от основной сети и прилипал к фазному. В этом случае индикатор будет показывать две фазы в розетке даже тогда, когда электроприборы отключены от сети.

В этом видео можно посмотреть как эта неисправность воспроизводится на специально собранном стенде:

Две фазы в одной розетке

Такого случая практически не бывает — это редкое исключение, подтверждающее правило. Если все же это произошло — все остальные розетки работают без нареканий, свет есть везде, а в одной-единственной розетке индикатор показывает две фазы, то в первую очередь разбирается сама розетка. Поломка, скорее всего, будет в другом месте, но сначала на всякий случай нужно убедиться, что она находится не в том месте, до которого проще всего добраться.

Если повезет, то в розетке обнаружится оборванный, перегоревший или выскочивший из крепления провод.

Когда розетка исправна и без следов перегрева проводов, то следующим шагом является определение того, как она подключена — напрямую к распределительной коробке или через другую розетку. Во втором случае есть вероятность того, что нейтраль провод был плохо вкручен в «родительскую» розетку, а теперь выпал.

Далее проверяется распределительная коробка — это наиболее вероятное место, где можно обнаружить плохой контакт. Тут надо учитывать, что фазный провод не столь требователен к качеству скрутки — при плохом соединении он нагревается, но все же некоторое время работает. Нулевой провод может окислиться без видимых последствий – чтобы убедиться в этом, придется разматывать скрутки, заново зачищать провода и собирать все обратно.

Если скрутка в порядке, то остается только прозвонить провод тестером — если он покажет обрыв внутри стены, то придется разбивать штробу для ремонта.

Когда в доме, где проводка сделана недавно и по всем правилам, перестала работать розетка, то дополнительно стоит проверить, не является ли это силовой розеткой, к которой подключен водонагреватель или подобный мощный прибор. В этом случае причины нужно искать в ГРЩ, откуда его можно запитать, минуя распределительные коробки.

Две фазы в нескольких розетках

Ситуация похожа на предыдущую, но теперь две фазы определяются по индикатору сразу в нескольких розетках, часто находящихся в одном помещении. При этом освещение может либо работать, либо нет, в зависимости от способа его подключения.

 

Нет смысла здесь проверять розетки, за одним исключением — если они все соединены так называемым шлейфом. В этом случае провода идут от распределительной коробки к одному из них, а остальные соединяются последовательно. ПУЭ настоятельно не рекомендует этого делать, но все может быть.

Порядок устранения неисправности зависит от желания лезть в распределительную коробку и от того, есть ли возможность шлейфового подключения. Скорее всего, в распределительной коробке обнаружится обрыв провода, но если там все соединения в норме, то нужно разобрать по очереди все розетки в комнате.

Две фазы в половине помещений

Это происходит, если распределительные коробки соединены последовательно друг за другом. Что делать в этом случае — стандартное решение — нужно последовательно пройтись по всем коробкам в поисках плохого контакта.

Сложность в том, что зачастую схемы подключения нет, поэтому неизвестно из какой комнаты и в какую из них проложена проводка. Также следует учитывать вариант, что контакт может сгореть как в помещении, в котором розетки не работают, так и на предыдущей схеме, где индикатор показывает нормальное напряжение в розетках.

Есть решение, чтобы не разбирать клеммные коробки во всех комнатах — можно поменять фазу и ноль на вводной панели, а потом использовать индикатор напряжения, который может показывать фазу через стену. Перед этим нужно убедиться, что в розетках нигде нет зануления и на всякий случай отключить заземление, если оно есть.

Две фазы во всех розетках

Если во всем доме отключилось освещение, а индикатор напряжения показывает две фазы в розетках, проблема скорее всего во вводном щитке.

В этом случае необходимо обязательно проверить также заземляющие провода на предмет их нейтрализации. При этом, пока вы не убедитесь, что на них нет напряжения, нельзя касаться заземляющих контактов голыми руками и запрещать детям прикасаться к розеткам и электроприборам.

В старых домах часто устанавливают вилки или автоматические выключатели не только на фазу, как это рекомендовано последними редакциями ПУЭ, но и на нулевом проводе. Перегорание такой вилки равносильно обрыву нуля, поэтому в первую очередь рекомендуется проверить их.

Также нужно учитывать возможность отсутствия электрощита как такового, когда провод от счетчика идет напрямую в главную распределительную коробку — в ней может быть неисправный контакт.

Если в квартире все в порядке, то дальше проверяется нулевой провод на щитке этажа — вероятно, для этого придется пригласить электрика из ЖЭКа.

мощность — Максимальная резистивная нагрузка на 3 фазы 400В, 16А

Спрашиваемый

Изменено 3 года назад

Просмотрено 7 тысяч раз

\$\начало группы\$

У меня есть несколько резистивных нагревательных элементов, и я хочу получать максимальную мощность от трехфазной розетки 400 В, 16 А.

Если я проектирую нагревательные элементы для подключения между фазой и нулем = 230 В RMS * 16 A, я получаю 3 * 3680 Вт = 11 кВт макс. Мощность из розетки.

Если я разработаю нагревательные элементы для соединения между двумя фазами, я получу среднеквадратичное значение 400 В, но могу потреблять менее 16 А * 400 В. Насколько меньше?

12 А на элемент между двумя фазами?

В таком случае я могу получить из розетки 14,4 кВт.

  • силовой
  • сетевой
  • трехфазный

\$\конечная группа\$

1

\$\начало группы\$

Вы совершенно правы в том, что при соединении фазы с фазой через каждый резистор можно потреблять меньший ток. Фактический ток для каждого резистивного элемента будет 9,23 А, а не 11 А, которые вы рассчитали.

Ток, протекающий по каждой линии, ограничен проводкой для каждой фазы, которая рассчитана на 16 А в непрерывном режиме. Независимо от того, как вы подключите сопротивления нагрузки, в каждой фазе может быть только линейный ток 16 А.
У вас есть два варианта… Нагрузки, соединенные треугольником или звездой.

В случае схемы, соединенной треугольником, линейный ток (протекающий по проводке) составляет 1,732 * ток отдельного резистора, когда к этой линии подключены не менее двух резистивных нагрузок. И наоборот, при ограничении линейного тока 16 А вы можете получить только 16/1,732 -> 9,23 А, протекающие через каждый резистор. Это ограничивает общую мощность до 3,693 кВт на резистор и всего 11 кВт.

В случае нагрузочных резисторов, соединенных звездой, линейный ток ограничен проводкой до 16 А, напряжение на каждом резисторе становится 230 В —> 3680 Вт, поэтому общая мощность составляет 11 кВт.

Чистый результат состоит в том, что вы можете рассеивать одинаковую общую мощность только в нагрузках, соединенных треугольником или звездой.

\$\конечная группа\$

0

\$\начало группы\$

Вот как выглядит ваш стандартный трехфазный нагреватель что в центральной точке может быть подключен ваш нейтральный провод, но из-за сдвига фазы на 120°, суммирующегося с 360°, эта точка в любом случае имеет постоянный 0 В, так что это, строго говоря, необязательно¹. 92}{R} = 3R$$

Важная часть здесь заключается в том, что *мы не можем сказать снаружи, является ли это Y или Δ**! Другими словами, если ваш автоматический выключатель срабатывает на \$R\$ в Y-конфигурации, он сработает на \$3R\$ в Δ-конфигурации.

Так как мощность, подаваемая на две цепи, не может быть разной, невозможно найти одну, дающую больше тепла, чем другую.


¹ На самом деле я был у подруги, где одна из трех фаз в ее многоквартирном доме была обесточена, поэтому у нее не было света на кухне. Если только она не включила нагреватель, что привело к смещению незаземленной центральной точки Y-образного нагревателя, и, таким образом, мертвый P3 получил достаточное напряжение, чтобы тускло включить лампу накаливания. Страшные вещи.

\$\конечная группа\$

\$\начало группы\$

Ну предохранитель на 16А. Это для каждого провода/фазы в источнике питания. Таким образом, если фазный ток превышает 16 А в течение определенного периода времени, он отключится.

Какую силу вы можете извлечь из этого? Это не зависит от вашей проводки, это можно рассчитать как звезда или треугольник, но результат тот же: 11кВт.

Если вы рассчитаете это как звезда/звезда, вы получите 230 В переменного тока напряжения и 16 А тока x3.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *