Как велика сила притяжения Солнца, удерживающая Землю на орбите вокруг него?
Как велика сила притяжения Солнца, удерживающая Землю на орбите вокруг него?. Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицинаВикиЧтение
Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина
Кондрашов Анатолий Павлович
Содержание
Как велика сила притяжения Солнца, удерживающая Землю на орбите вокруг него?
Гравитационная сила, удерживающая Землю на орбите вокруг Солнца, равна 35 секстиллионам ньютонов (секстиллион – число, изображаемое единицей с 21 нулем). Эта сила могла бы разорвать стальной трос диаметром 3000 километров.
МИР БЕЗ СОЛНЦА ИЛИ СОЛНЕЧНЫЙ МИР?
МИР БЕЗ СОЛНЦА ИЛИ СОЛНЕЧНЫЙ МИР? На этот счет существуют две точки зрения.
Можно ли поверить волку, что на него охотятся?
Можно ли поверить волку, что на него охотятся? — Я не могу поверить, будто иммунная система защищает организм от раковых клеток только на основании того, что эти клетки имеют необычные антигены. — Почему? — Это все равно, что поверить волку, будто на него
Вернемся на землю
Предисловие «У него была яркая жизнь и таинственная смерть»
Предисловие «У него была яркая жизнь и таинственная смерть» У известного ученого Владимира Михайловича Бехтерева было трудное детство, бурная юность, яркая жизнь и таинственная смерть. Он до сих пор остается одной из самых крупных фигур в отечественной медицине – и не
Какая планета Солнечной системы имеет наибольший наклон экватора к орбите?
Какая планета Солнечной системы имеет наибольший наклон экватора к орбите? В этом отношении бесспорным рекордсменом Солнечной системы является Уран. Плоскость его экватора наклонена к плоскости орбиты на 98 градусов (второе место занимает Нептун, у которого этот угол
С какой скоростью движется Земля на орбите вокруг Солнца?
С какой скоростью движется Земля на орбите вокруг Солнца? Земля движется по околосолнечной орбите со средней скоростью 29,79 километра в секунду (107 244 километра в час). В перигелии ее скорость увеличивается до 30,29 километра в секунду (109 044 километра в час), в перигелии
Какое первое крупное научное открытие сделано с помощью аппаратуры на околоземной орбите?
Какое первое крупное научное открытие сделано с помощью аппаратуры на околоземной орбите? Первым крупным научным открытием, сделанным с помощью искусственных спутников Земли, стало обнаружение в 1958–1960 годах радиационных поясов Земли – внутренних областей земной
Кто и как впервые добился успеха в борьбе с бактериями и чем это для него закончилось?
Кто и как впервые добился успеха в борьбе с бактериями и чем это для него закончилось? Первую успешную атаку на бактерии предпринял венгерский акушер Игнац Филипп Земмельвейс (1818–1865).
Право на землю
Право на землю От составителя: это глава из 4го издания. Не знаю, где она должна быть. У кого есть 4е издание на бумаге — проверьте.Скорее всего, кардинальный для России вопрос о земельной собственности в окончательной бесповоротной форме будет решаться не указом или
Глава XIV. ЧТО ТАМ У НЕГО НИЖЕ ПОЯСА? Независимая жизнь пениса
Глава XIV. ЧТО ТАМ У НЕГО НИЖЕ ПОЯСА? Независимая жизнь пениса ЯЛВ: Секс у большинства мужчин ассоциируется только с одним очень важным органом — с пенисом. Существует расхожее мнение: чтобы понять мысли мужчины, надо начать снизу, то есть с его подбрюшья. Обычно поляки
Как мы понимаем окружающий мир и как на него реагируем
Как мы понимаем окружающий мир и как на него реагируем В коре головного мозга есть несколько ассоциативных зон, где происходит «сборка» всей поступающей сенсорной информации. Некоторые зоны посвящены одному типу ощущений, другие получают данные от двух и более
Что такое гравитация и как она работает, простыми словами
Гравитация (от лат. gravis, «тяжелый») — это сила, которая притягивает два тела друг к другу. Все, что имеет материю, то есть все, к чему можно прикоснуться, имеет также гравитационное притяжение. Гравитация является одной из четырех фундаментальных сил во Вселенной наряду с электромагнетизмом, а также сильными и слабыми ядерными взаимодействиями. Хотя это самая слабая сила, она наиболее видима. Из-за работы гравитационной силы люди могут ходить по Земле, а планеты — вращаться по орбите вокруг Солнца.
Степень гравитации любого объекта пропорциональна его массе. Таким образом, объекты с большей массой имеют большую гравитацию. Поскольку Земля является самым крупным и ближайшим объектом вокруг, то все предметы и объекты притягивается к ней. Например, яблоки падают на землю, а не притягиваются, к примеру, к голове человека.
Луна притягивается к Земле как к объекту с большей массой (Фото: Shutterstock)
Расстояние также влияет на гравитацию. Чем дальше объект, тем гравитационное притяжение слабее.
Древние ученые, пытавшиеся описать мир, придумали собственные объяснения того, почему предметы падают на землю. Древнегреческий философ Аристотель утверждал, что объекты имеют естественную тенденцию двигаться к центру Вселенной, который, по его мнению, находился в середине Земли.
Однако поляк Николай Коперник в XVI веке понял, что траектории планет на небе определяются положением Солнца, которое и является центром Солнечной системы. Век спустя британский математик и физик Исаак Ньютон расширил идеи Коперника и пришел к выводу, что, поскольку Солнце притягивает планеты, все объекты притягиваются друг к другу.
В наши дни действующей теорией, описывающей гравитацию, является общая теория относительности Эйнштейна.
Классическая теория тяготения Ньютона
Английский физик Исаак Ньютон рассказывал, что идея о всемирном тяготении пришла ему в голову на прогулке. Он шел по яблоневому саду в поместье своих родителей и вдруг увидел Луну в дневном небе, а затем — как с ветки оторвалось и упало на землю яблоко. Ньютон к тому моменту уже работал над законами движения и понимал, что яблоко упало под воздействием гравитационного поля Земли. Он также знал, что Луна не занимает статичную позицию в небе, а вращается по орбите вокруг Земли, то есть, на нее воздействует какая-то сила, которая не дает спутнику улететь в космос. Физик понял, что, возможно, на яблоко и Луну действует одна и та же сила.
Предшественники Ньютона рассуждали иначе. Итальянский физик Галилео Галилей считал, что на Земле действует природное притяжение. Немецкий астроном Иоганн Кеплер полагал, что в небесных сферах действуют совсем иные законы движения, чем на Земле. Ньютон же объединил эти два типа гравитации в своем сознании.
Закон всемирного тяготения Ньютона, сформулированный им в 1687 году, гласит, что между любой парой тел во Вселенной действует сила взаимного притяжения. Он выражен математическим уравнением: если M и m — массы двух тел, а r — расстояние между ними, тогда сила F взаимного гравитационного притяжения между ними равна F = GMm/r², где G — гравитационная постоянная, равная силе, с которой действуют друг на друга тела с массами в 1 кг каждое, находясь на расстоянии в 1 метр друг от друга. Уравнение гласит, что сила (F) пропорциональна массам двух объектов, разделенным на квадрат расстояния между ними. Из него следует, что чем массивнее объекты, тем больше сила притяжения между ними, но чем дальше они друг от друга, тем слабее притяжение.
Закон гравитации Ньютона (Фото: praxilabs.com)
Действие закона распространяется на все без исключения физические материальные тела во Вселенной. Сила притяжения Земли у ее поверхности в равной мере воздействует на все материальные тела, находящиеся в любой точке земного шара. На каждого человека действует сила земного притяжения, которая ощущается как вес.
Закон всемирного тяготения Ньютона говорит, что не только Земля притягивает яблоко, но и яблоко притягивает Землю. Но огромная масса Земли означает, что требуется гораздо больше силы, чтобы сдвинуть ее на ощутимую величину, поэтому яблоко падает, а Земля остается практически неподвижной. То же самое верно и в более широком контексте. Каждый объект во Вселенной притягивает любой другой объект, и чем он ближе и массивнее, тем больше его гравитационная сила.
По Ньютону, сила притяжения действует на любых расстояниях и мгновенно. 2. Чтобы получить точное значение, ученые должны разработать невероятно чувствительное оборудование.
Немецко-американский физик Альберт Эйнштейн произвел следующую революцию в нашем понимании гравитации. Его общая теория относительности показала, что гравитация возникает из-за искривления пространства-времени, а это означает, что даже лучи света, которые должны следовать этой кривизне, преломляются чрезвычайно массивными объектами. В рамках его теории гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы и энергии.
Теории Эйнштейна использовались для предположений о существовании черных дыр — небесных объектов с такой большой массой, что даже свет не может выйти из-под их поверхности. Вблизи черной дыры закон всемирного тяготения Ньютона уже не может точно описать, как движутся объекты.
Теория, которую Эйнштейн опубликовал в 1915 году, расширила его специальную теорию относительности, которую ученый разработал за десятилетие до этого. Специальная теория относительности утверждала, что пространство и время неразрывно связаны, но эта теория не признавала существование гравитации.
В своей специальной теории относительности Эйнштейн определил, что законы физики одинаковы для всех наблюдателей, не движущихся с ускорением, и показал, что скорость света в вакууме одинакова независимо от скорости, с которой движется наблюдатель. В результате он обнаружил, что пространство и время переплетаются, и события, происходящие в одно и то же время для одного наблюдателя, могут происходить в разное время для другого.
Разрабатывая уравнения своей общей теории относительности, Эйнштейн понял, что массивные объекты вызывают искажение пространства-времени. Представьте, что вы устанавливаете большой объект в центре батута. Объект вдавливался в ткань, вызывая появление ямочек. Если затем попытаться катить шарик по краю батута, он будет двигаться по спирали внутрь к этому объекту.
Вращение тяжелого объекта, такого как Земля, должно скручивать и искажать пространство-время вокруг него. В 2004 году NASA запустило гравитационный зонд Gravity Probe B. По данным агентства, оси точно откалиброванных гироскопов спутника с течением времени очень незначительно дрейфовали, что соответствует теории Эйнштейна.
Эйнштейн предсказал, что такие события, как столкновение двух черных дыр, создают рябь в пространстве-времени, известную как гравитационные волны. А в 2016 году Лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) объявила, что впервые определила такой сигнал. Гравитационная волна была вызвана столкновением двух черных дыр массой в 29 и 36 раз больше массы Солнца. После этого они слились в одну большую черную дыру. Это произошло, предположительно, 1,3 млрд лет назад.
Гравитационные волны, создаваемые двумя сталкивающимися черными дырами (Фото: Р. Хёрт / Caltech-JPL)
С тех пор LIGO и ее европейский аналог Virgo обнаружили в общей сложности 50 гравитационно-волновых событий.
Чему равна сила гравитации
Гравитационное поле Земли — это поле силы тяжести, которое образуется из-за силы тяготения Земли и центробежной силы, вызванной ее суточным вращением.
Сила тяжести на поверхности Земли варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах. В приблизительных расчетах значение обычно принимают равным 9,81; 9,8 или 10 м/с². Однако оно учитывает только силу тяжести и не учитывает центробежную силу, возникающую за счет вращения Земли. При подъеме тела над поверхностью Земли значение уменьшается.
NASA в рамках проекта GRACE создало визуализацию гравитационных аномалий на Земле. Красным цветом показаны области, где гравитация сильнее, а синим — где она слабее стандартных значений (Фото: NASA)
Французские ученые утверждают, что различие в гравитационной постоянной в различных регионах нашей планеты зависит от величины напряженности магнитного поля Земли. Они предположили, что такое влияние может объясняться наличием дополнительных и скрытых для непосредственного наблюдения измерений пространства. Ученые подсчитали, что земное тяготение будет сильнее в тех местах, где сильнее магнитное поле. Таким образом, своих максимальных значений оно достигает в районах северного и южного магнитных полюсов. Они не совпадают с географическими полюсами. Так, северный магнитный полюс располагается в границах нынешней канадской Арктики, а южный лежит на краю Антарктиды.
Если принимать значение гравитации на Земле за единицу, то на Солнце оно будет равно 27,9, на Меркурии — 0,37, на Венере — 0,9, на Луне — 0,16, на Марсе — 0,37, на Юпитере — 2,6. Таким образом, если человек, который на Земле весит 60 кг, взвесится на Юпитере, то весы покажут 142 кг.
Космонавты на орбите также испытывают микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
Современное представление о гравитации
Научные исследования в области гравитации продолжаются. Теория относительности Эйнштейна объясняет некоторые аномалии в ньютоновской гравитации; однако открытия в атомной, ядерной физике и физике элементарных частиц показали, что ее нельзя отнести к взаимодействиям в квантовой физике. Проще говоря, эйнштейновская теория не работает в микромире. В связи с этим получило развитие направление «квантовой гравитации» или квантового описания гравитационного взаимодействия.
Однако теория квантовой гравитации пока не построена. Основная трудность заключается в том, что две физические теории, которые она пытается связать воедино, — квантовая механика и общая теория относительности — опираются на разные наборы принципов. Первая описывает временну́ю эволюцию физических систем (например, атомов или элементарных частиц) на фоне внешнего пространства-времени. Во второй внешнего пространства-времени вообще нет — оно само является динамической переменной в теории.
В квантовой гравитации развиваются два основных направления — это теория струн и петлевая квантовая гравитация. В первой теории вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги — браны.
Во второй делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону; пространство и время по этой теории состоят из дискретных частей. Это маленькие квантовые ячейки пространства, которые определенным способом соединены друг с другом, так что на малых масштабах времени и длины они создают дискретную структуру пространства, а в больших масштабах плавно переходят в непрерывное гладкое пространство-время. Предполагается, что именно петлевая квантовая гравитация может описать сам процесс взрыва, который предшествовал образованию Вселенной.
Сотрудники Университета штата Пенсильвания с 1980-х годов разрабатывают парадигму, основанную на представлении о петлевой квантовой гравитации. Она описывает все современные крупные структуры во Вселенной как квантовые флуктуации пространства-времени, имевшие место при рождении мира.
Существующая теория Большого взрыва, как уже говорилось, не объясняет, что было до зарождения Вселенной. Ученые из Пенсильвании придерживаются альтернативной гипотезы Большого отскока, согласно которой текущая расширяющаяся Вселенная возникла из распада предыдущей вселенной. Для описания этого состояния они объединили квантовую механику и теорию относительности. Авторы работы утверждают, что смогли описать космическое излучение, которое возникло непосредственно после зарождения Вселенной. Они заявили, что в эйнштейновскую ткань пространства-времени вплетены квантовые нити. Именно это в будущем может позволить объяснить, почему галактики и материя распространены во Вселенной неравномерно.
В 1990-х годах астрономы обнаружили, что расширение Вселенной ускоряется. Это противоречит предсказаниям общей теории относительности, согласно которой гравитация должна замедлять расширение. Чтобы объяснить это явление, космологи начали ссылаться на «темную энергию», силу, которая составляет почти три четверти материи и энергии во Вселенной и поэтому раздвигает ее. Но происхождение темной энергии по сей день остается загадкой. Некоторые исследователи пытаются объяснить ускорение расширения Вселенной без темной энергии, предполагая, что если общая теория относительности неверна, а гравитация ослабевает в космических масштабах. Но до сих пор никто не придумал способ проверить данную теорию.
Существует и такое понятие как антигравитация — предполагаемое противодействие, которое гасит или даже превышает гравитационное притяжение путем отталкивания.
Нынешний подход к антигравитации заключается в том, чтобы освободить объект от действия силы тяжести, чтобы он какое-то время не был подвержен гравитации. Например, полет человека в аэродинамической трубе обеспечивается за счет того, что силе тяжести противодействует поток воздуха.
Полет в аэротрубе (Фото: FlyStation)
Пока вопрос существования антигравитации как самостоятельного явления остается открытым, так как само явление гравитации только изучается.
Как преодолеть гравитацию
Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы объект двигался по орбите вокруг планеты. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость. Чтобы выйти за границу сферы земного притяжения, которая заканчивается на расстоянии около 930 тыс. км от Земли, скорость объекта должна составлять около 16,6 км/с. Это третья космическая скорость.
Если бы не было гравитации
В соответствии с вышеприведенными законами физики на практике такая ситуация невозможна.
Бывший астронавт NASA, физик Джей Баки, отмечает, что наш организм адаптирован к силе земного притяжения. Когда сила тяжести почти исчезает (например, на борту МКС), организм начинает перестраиваться. За время миссий в космосе члены экипажей кораблей теряют костную массу и мышечный тонус, а также чувство равновесия.
Доктор Кевин Фонг добавляет, что количество эритроцитов в организме падает, что приводит к так называемой космической анемии. При этом раны заживают дольше, а также снижается иммунитет, наблюдаются проблемы со сном. Таким образом, в отсутствие гравитации мышцы, вестибулярный аппарат, сердце и кровеносные сосуды развивались бы иначе.
Астроном Карен Мастерс из Портсмутского университета в Великобритании предположил, что в отсутствие гравитации Земля начала бы вращаться с большой угловой скоростью как раскручиваемая над головой веревка. Таким образом, любые объекты на планете улетели бы прямо в космос, как и вода с атмосферой. Только укрепленные строения могли бы какое-то время держаться на поверхности Земли.
В конечном счете отсутствие гравитации разрушит саму планету. Земля развалится на части, которые разлетятся в разные стороны.
Похожий пример, но с Солнцем, приводит канал Discovery News в своем видео.
Что произойдет, если гравитации не станет
Без гравитации не осталось бы ни звезд, ни планет, а Вселенная стала бы смесью рассеянных атомов и молекул.
Возможна ли искусственная гравитация
Когда человек оказывается в космосе, далеко от гравитационных воздействий, испытываемых на поверхности Земли, он переживает невесомость. Хотя все массы Вселенной продолжат притягивать его, они продолжат притягивать и космический корабль, поэтому человек как бы «плавает» внутри него. В связи с этим возникает вопрос — как создать условия искусственной гравитации, при которых человек сможет не летать, а спокойно ходить по космическому кораблю?
Пока нужный эффект можно получить только через ускорение. В случае с космическим кораблем — заставить его вращаться. Тогда можно можно получить центробежную тягу, как на Земле. Но для путешествия в другую звездную систему придется ускорять корабль по пути туда и замедлять по прибытии обратно. Человеческий организм вряд ли сможет перенести такие нагрузки. Например, чтобы разогнаться до «импульсной скорости» как в фильме «Звездный путь», до нескольких процентов от скорости света, то пришлось бы выдержать ускорение в 4000 g (единиц ускорения, вызванного гравитацией) в течение часа. Это в 100 раз больше ускорения, которое предотвращает ток крови в теле человека. В Роскосмосе изучают идею встроенной центрифуги на борту корабля, в которую космонавты смогут периодически заходить, чтобы испытывать силу тяжести и снижать негативные последствия от пребывания в невесомости.
Кадр из фильма «Звездный путь» (Фото: YouTube)
Предполагалось, что искусственная гравитация возможна при отрицательной гравитационной массе, которая, как ожидалось, свойственна антиматерии. Однако Европейская организация по ядерным исследованиям (ЦЕРН) обнаружила, что инертная масса антипротона («зеркального отражения» протона, который отличается знаками всех характеристик физического взаимодействия) совпадает с массой протона. Если бы гравитация действовала на антипротоны как-то иначе, то физики заметили бы разницу. Получается, что действие гравитации на антипротоны и протоны совпадает. Кроме того, в ЦЕРН получили антиводород — первую стабильную форму антиматерии. Но ее изучают, и пока сдвигов в теории антиматерии нет.
понятие и особенности применения формулы для их расчета
Не смотря на то, что гравитация — это слабейшее взаимодействие между объектами во Вселенной, ее значение в физике и астрономии огромно, так как она способна оказывать влияние на физические объекты на любом расстоянии в космосе.
Если вы увлекаетесь астрономией, вы наверняка задумывались над вопросом, что собой представляет такое понятие, как гравитация или закон всемирного тяготения. Гравитация — это универсальное фундаментальное взаимодействие между всеми объектами во Вселенной.
Открытие закона гравитации приписывают знаменитому английскому физику Исааку Ньютону. Наверное, многим из вас известна история с яблоком, упавшим на голову знаменитому ученому. Тем не менее, если заглянуть вглубь истории, можно увидеть, что о наличии гравитации задумывались еще задолго до его эпохи философы и ученые древности, например, Эпикур. Тем не менее, именно Ньютон впервые описал гравитационное взаимодействие между физическими телами в рамках классической механики. Его теорию развил другой знаменитый ученый — Альберт Эйнштейн, который в своей общей теории относительности более точно описал влияние гравитации в космосе, а также ее роль в пространственно-временном континууме.
Закон всемирного тяготения Ньютона говорит, что сила гравитационного притяжения между двумя точками массы, разделенными расстоянием обратно пропорциональна квадрату расстояния и прямо пропорциональна обеим массам. Сила гравитации является дальнодействующей. То есть, в независимости от того, как будет двигаться тело, обладающее массой, в классической механике его гравитационный потенциал будет зависеть сугубо от положения этого объекта в данный момент времени. Чем больше масса объекта, тем больше его гравитационное поле — тем более мощной гравитационной силой он обладает. Такие космически объекты, как галактики, звезды и планеты обладают наибольшей силой притяжения и соответственно достаточно сильными гравитационными полями.
Гравитационные поля
Гравитационное поле Земли
Гравитационное поле — это расстояние, в пределах которого осуществляется гравитационное взаимодействие между объектами во Вселенной. Чем больше масса объекта, тем сильнее его гравитационное поле — тем ощутимее его воздействие на другие физические тела в пределах определенного пространства. Гравитационное поле объекта потенциально. Суть предыдущего утверждения заключается в том, что если ввести потенциальную энергию притяжения между двумя телами, то она не изменится после перемещения последних по замкнутому контуру. Отсюда выплывает еще один знаменитый закон сохранения суммы потенциальной и кинетической энергии в замкнутом контуре.
В материальном мире гравитационное поле имеет огромное значения. Им обладают все материальные объекты во Вселенной, у которых есть масса. Гравитационное поле способно влиять не только на материю, но и на энергию. Именно за счет влияния гравитационных полей таких крупных космических объектов, как черные дыры, квазары и сверхмассивные звезды, образуются солнечные системы, галактики и другие астрономические скопления, которым свойственна логическая структура.
Последние научные данные показывают, что знаменитый эффект расширения Вселенной так же основан на законах гравитационного взаимодействия. В частности расширению Вселенной способствуют мощные гравитационные поля, как небольших, так и самых крупных ее объектов.
Гравитационное излучение в двойной системе
Гравитационное излучение или гравитационная волна — термин, впервые введенный в физику и космологии известным ученым Альбертом Эйнштейном. Гравитационное излучение в теории гравитации порождается движением материальных объектов с переменным ускорением. Во время ускорения объекта гравитационная волна как бы «отрывается» от него, что приводит к колебаниям гравитационного поля в окружающем пространстве. Это и называют эффектом гравитационной волны.
Хотя гравитационные волны предсказаны общей теорией относительности Эйнштейна, а также другими теориями гравитации, они еще ни разу не были обнаружены напрямую. Связано это в первую очередь с их чрезвычайной малостью. Однако в астрономии существуют косвенные свидетельства, способные подтвердить данный эффект. Так, эффект гравитационной волны можно наблюдать на примере сближения двойных звезд. Наблюдения подтверждают, что темпы сближения двойных звезд в некоторой степени зависят от потери энергии этих космических объектов, которая предположительно затрачивается на гравитационное излучение. Достоверно подтвердить эту гипотезу ученые смогут в ближайшее время при помощи нового поколения телескопов Advanced LIGO и VIRGO.
В современной физике существует два понятия механики: классическая и квантовая. Квантовая механика была выведена относительно недавно и принципиально отличается от механики классической. В квантовой механике у объектов (квантов) нет определенных положений и скоростей, все здесь базируется на вероятности. То есть, объект может занимать определенное место в пространстве в определенный момент времени. Куда переместиться он дальше, достоверно определить нельзя, а только с высокой долей вероятности.
Интересный эффект гравитации заключается в том, что она способна искривлять пространственно-временной континуум. Теория Эйнштейна гласит, что в пространстве вокруг сгустка энергии или любого материального вещества пространство-время искривляется. Соответственно меняется траектория частиц, которые попадают под воздействие гравитационного поля этого вещества, что позволяет с высокой долей вероятности предсказать траекторию их движения.
Теории гравитации
Сегодня ученым известно свыше десятка различных теорий гравитации. Их подразделяют на классические и альтернативные теории. Наиболее известными представителем первых является классическая теория гравитации Исаака Ньютона, которая была придумана известным британским физиком еще в 1666 году. Суть ее заключается в том, что массивное тело в механике порождает вокруг себя гравитационное поле, которое притягивает к себе менее крупные объекты. В свою очередь последние также обладают гравитационным полем, как и любые другие материальные объекты во Вселенной.
Следующая популярная теория гравитации была придумана всемирно известным германским ученым Альбертом Эйнштейном в начале XX века. Эйнштейну удалось более точно описать гравитацию, как явление, а также объяснить ее действие не только в классической механике, но и в квантовом мире. Его общая теория относительности описывает способность такой силы, как гравитация, влиять на пространственно-временной континуум, а также на траекторию движения элементарных частиц в пространстве.
Среди альтернативных теорий гравитации наибольшего внимания, пожалуй, заслуживает релятивистская теория, которая была придумана нашим соотечественником, знаменитым физиком А.А. Логуновым. В отличие от Эйнштейна, Логунов утверждал, что гравитация — это не геометрическое, а реальное, достаточно сильное физическое силовое поле. Среди альтернативных теорий гравитации известны также скалярная, биметрическая, квазилинейная и другие.
- Людям, побывавшим в космосе и возвратившимся на Землю, достаточно трудно на первых порах привыкнуть к силе гравитационного воздействия нашей планеты. Иногда на это уходит несколько недель.
- Доказано, что человеческое тело в состоянии невесомости может терять до 1% массы костного мозга в месяц.
- Наименьшей силой притяжения в Солнечной системе среди планет обладает Марс, а наибольшей — Юпитер.
- Известные бактерии сальмонеллы, которые являются причиной кишечных заболеваний, в состоянии невесомости ведут себя активнее и способны причинить человеческому организму намного больший вред.
- Среди всех известных астрономических объектов во Вселенной наибольшей силой гравитации обладают черные дыры. Черная дыра размером с мячик для гольфа, может обладать той же гравитационной силой, что и вся наша планета.
- Сила гравитации на Земле одинакова не во всех уголках нашей планеты. К примеру, в области Гудзонова залива в Канаде она ниже, чем в других регионах земного шара.
Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к .
Вконтакте
Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.
Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу , остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.
В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.
Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции .
Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.
Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к , но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.
Задача движения
Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.
Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?
Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает ? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?
Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.
Гравитация Ньютона
В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:
Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.
Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.
Для закона тяготения формула выглядит следующим образом:
,
- F – сила притяжения,
- – массы,
- r – расстояние,
- G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).
Что же представляет собой вес, если только что мы рассмотрели силу притяжения?
Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:
.
Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:
.
Закон гравитационного взаимодействия
Вес и гравитация
Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное . Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.
Насколько нам известно, сила тяжести равна:
где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с 2).
Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.
Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:
Таким образом, поскольку F = mg:
.
Массы m сокращаются, и остается выражение для ускорения свободного падения:
Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с 2 .
На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.
Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.
Примем для удобства массу человека: m = 100 кг. Тогда:
- Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙10 6 м.
- Масса Земли равна: M ≈ 6∙10 24 кг.
- Масса Солнца равна: Mc ≈ 2∙10 30 кг.
- Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙10 10 м.
Гравитационное притяжение между человеком и Землей:
Данный результат довольно очевиден из более простого выражения для веса (P = mg).
Сила гравитационного притяжения между человеком и Солнцем:
Как видим, наша планета притягивает нас почти в 2000 раз сильнее.
Как найти силу притяжения между Землей и Солнцем? Следующим образом:
Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.
Первая космическая скорость
После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.
Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше .
Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с 2 , а почти м/с 2 . Именно по этой причине там настолько разряженный , частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.
Постараемся узнать, что такое космическая скорость.
Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.
Постараемся узнать численной значение этой величины для нашей планеты.
Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:
,
где h — высота тела над поверхностью, R — радиус Земли.
На орбите на тело действует центробежное ускорение , таким образом:
.
Массы сокращаются, получаем:
,
Данная скорость называется первой космической скоростью:
Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.
Первая космическая скорость
Вторая космическая скорость
Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.
Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.
Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету.
Закон всемирного тяготения. Физика 9 класс
Закон Всемирного тяготения.
Вывод
Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.
Гравитация, она же притяжение или тяготение, — это универсальное свойство материи, которым обладают все предметы и тела во Вселенной. Суть гравитации залучается в том, что все материальные тела притягивают к себе все другие тела, находящиеся вокруг.
Земное притяжение
Если гравитация — это общее понятие и качество, которым обладают все предметы во Вселенной, то земное притяжение — это частный случай этого всеобъемлющего явления. Земля притягивает к себе все материальные объекты, находящиеся на ней. Благодаря этому люди и животные могут спокойно перемещаться по земле, реки, моря и океаны — оставаться в пределах своих берегов, а воздух — не летать по бескрайним просторам Космоса, а образовывать атмосферу нашей планеты.
Возникает справедливый вопрос: если все предметы обладают гравитацией, почему Земля притягивает к себе людей и животных, а не наоборот? Во-первых, мы тоже притягиваем к себе Землю, просто, по сравнению с ее силой притяжения наша гравитация ничтожно мала. Во-вторых, сила гравитации прямо пропорционально зависит от массы тела: чем меньше масса тела, тем ниже его гравитационные силы.
Второй показатель, от которого зависит сила притяжения — это расстояние между предметами: чем больше расстояние, тем меньше действие гравитации. В том числе благодаря этому, планеты движутся на своих орбитах, а не падают друг на друга.
Примечательно, что своей сферической формой Земля, Луна, Солнце и другие планеты обязаны именно силе тяготения. Она действует в направлении центра, подтягивая к нему вещество, составляющее «тело» планеты.
Гравитационное поле Земли
Гравитационное поле Земли — это силовое энергетическое поле, которое образуется вокруг нашей планеты благодаря действию двух сил:
- гравитации;
- центробежной силе, которая своим появление обязана вращению Земли вокруг своей оси (суточное вращение).
Поскольку и гравитация, и центробежная сила действуют постоянно, то и гравитационное поле является постоянным явлением.
Незначительное воздействие на поле оказывают силы тяготения Солнца, Луны и некоторых других небесных тел, а также атмосферных масс Земли.
Закон всемирного тяготения и сэр Исаак Ньютон
Английский физик, сэр Исаак Ньютон, согласно известной легенде, однажды гуляя по саду днем, увидел на небе Луну. В это же время с ветки упало яблоко. Ньютон тогда занимался изучением закона движения и знал, что яблоко падает под воздействием гравитационного поля, а Луна вращается по орбите вокруг Земли.
И тут в голову гениальному ученому, озаренную инсайтом, пришла мысль, что, возможно, яблоко падает на землю, подчиняясь той же силе, благодаря которой Луна находится на своей орбите, а не носится беспорядочно по всей галактике. Так был открыт закон всемирного тяготения, он же Третий закон Ньютона.
На языке математических формул этот закон выглядит так:
F = GMm/D 2 ,
где F — сила взаимного тяготения между двумя телами;
M — масса первого тела;
m — масса второго тела;
D 2 — расстояние между двумя телами;
G — гравитационная постоянная, равная 6,67х10 -11 .
Высоты, на которых движутся искусственные спутники, уже сравнимы с радиусом Земли, так что для расчета их траектории учет изменения силы земного притяжения с увеличением расстояния совершенно необходим.
Итак, Галилей утверждал, что все тела, отпущенные с некоторой высоты вблизи поверхности Земли будут падать с одинаковым ускорением g (если пренебречь сопротивлением воздуха). Сила, вызывающая это ускорение называется силой тяжести. Применим к силе тяжести второй закон Ньютона, рассматривая в качестве ускорения a ускорение свободного падения g . Таким образом, действующую на тело силу тяжести можно записать как:
F g =mg
Эта сила направлена вниз, к центру Земли.
Т.к. в системе СИ g = 9,8 , то сила тяжести, действующая на тело массой 1кг, составляет.
Применим формулу закона всемирного тяготения для описания силы тяжести — силы тяготения между землей и телом, находящимся на ее поверхности. Тогда m 1 заменится на массу Земли m 3 , а r — на расстояние до центра Земли, т.е. на радиус Земли r 3 . Таким образом получим:
Где m — масса тела, находящегося на поверхности Земли. Из этого равенства следует, что:
Иными словами ускорение свободного падения на поверхности земли g определяется величинами m 3 и r 3 .
На Луне, на других планетах, или в космическом пространстве сила тяжести, действующая на тело одинаковой массы, будет различна. Например, на Луне величина g представляет всего лишь одну шестую g на Земле, и на тело массой 1 кг действует сила тяжести, равная всего лишь 1,7 Н.
До тех пор, пока не была измерена гравитационная постоянная G, масса Земли оставалась неизвестной. И только после того, как G была измерена, с помощью соотношения удалось вычислить массу земли. Это впервые проделал сам Генри Кавендиш. Подставляя в формулу ускорение свободного падения значение g=9,8м/с и радиуса земли r з =6,3810 6 получаем следующее значение массы Земли:
Для силы тяготения, действующей на тела, находящиеся вблизи поверхности Земли, можно просто пользоваться выражением mg. Если же необходимо рассчитать силу притяжения, действующую на тело, расположенное на некотором отдалении от Земли, или силу, вызываемую другим небесным телом(например Луной или другой планетой), то следует использовать значение величины g, вычисленное с помощью известной формулы, в которой r 3 и m 3 должны быть заменены на соответствующее расстояние и массу, можно также непосредственно воспользоваться формулой закона всемирного тяготения. Существует несколько методов очень точного определения ускорения силы тяжести. Можно найти g просто взвешиванием стандартного груза на пружинных весах. Геологические весы должны быть удивительны — их пружина изменяет растяжение при добавлении нагрузки меньше чем в миллионную долю грамма. Превосходные результаты дают крутильные кварцевые весы. Устройство их в принципе несложно. К горизонтально натянутой кварцевой нити приварен рычаг, весом которого нить слегка закручивается:
Для тех же целей применяется и маятник. Еще недавно маятниковые способы измерения g были единственными, и лишь в 60-е — 70-е гг. Их стали вытеснять более удобные и точные весовые методы. Во всяком случае, измеряя период колебания математического маятника, по формуле можно найти значение g достаточно точно. Измеряя на одном приборе значение g в разных местах, можно судить об относительных изменениях силы тяжести с точностью до миллионных долей.
Значения ускорения свободного падения g в разных точках Земли несколько различаются. Из формулы g = Gm 3 можно увидеть, что величина g должна быть меньше, например, на вершинах гор, чем на уровне моря, поскольку расстояние от центра Земли до вершины горы несколько больше. Действительно, этот факт установили экспериментально. Однако формула g=Gm 3 /r 3 2 не дает точного значения g во всех точках, так как поверхность земли не является в точности сферической: на ее поверхности не только существуют горы и моря, но также имеет место изменение радиуса Земли на экваторе; кроме того, масса земли распределена неоднородно; вращение Земли также влияет на изменение g.
Однако свойства ускорения свободного падения оказались сложнее, чем предполагал Галилей. Выяснить, что величина ускорения зависит от широты, на которой его измеряют:
Величина ускорения свободного падения меняется также с высотой над поверхностью Земли:
Вектор ускорения свободного падения всегда направлен по вертикали вниз, а вдоль отвесной линии в данном месте Земли.
Таким образом, на одной и той же широте и на одной и той же высоте над уровнем моря ускорение силы тяжести должно быть одинаковым. Точные измерения показывают, что весьма часто встречаются отклонения от этой нормы — аномалии тяготения. Причина аномалий состоит в неоднородном распределении массы вблизи места измерения.
Как уже было сказано, сила тяготения со стороны большого тела может быть, представлена как сумма сил, действующих со стороны отдельных частиц большого тела. Притяжение маятника Землей есть результат действия на него всех частиц Земли. Но ясно, что близкие частицы вносят наибольший вклад в суммарную силу — ведь притяжение обратно пропорционально квадрату расстояния.
Если вблизи места измерения сосредоточены тяжелые массы, g будет больше нормы, в обратном случае g меньше нормы.
Если, например, измерить g на горе или на самолете, летящем над морем на высоте горы, то в первом случае получится большая цифра. Также выше нормы величина g на уединенных океанских островах. Ясно, что в обоих случаях возрастание g объясняется сосредоточением дополнительных масс в месте измерения.
Не только величина g, но и направление силы тяжести может отклоняться от нормы. Если подвесить груз на нитке, то вытянутая нить покажет вертикаль для этого места. Эта вертикаль может отклониться от нормы. “Нормальное” направление вертикали известно геологам из специальных карт, на которых по данным о значениях g построена “идеальная” фигура Земли.
Произведем опыт с отвесом у подножия большой горы. Грузик отвеса притягивается Землей к ее центру и горой — в сторону. Отвес должен отклониться при таких условиях от направления нормальной вертикали. Так как масса Земли много больше массы горы, то такие отклонения не превышают нескольких угловых секунд.
“Нормальная” вертикаль определяется по звездам, так как для любой географической точки вычислено, в какое место неба в данный момент суток и года “упирается” вертикаль “идеальной” фигуры Земли.
Отклонения отвеса приводят иногда к странным результатам. Например, во Флоренции влияние Апеннин приводит не к притяжению, а к отталкиванию отвеса. Объяснение может быть одно: в горах есть огромные пустоты.
Замечательный результат дают измерения ускорения силы тяжести в масштабе материков и океанов. Материки значительно тяжелее океанов, поэтому, казалось бы, значения g над материками должны быть больше. Чем над океанами. В действительности же значения g, вдоль одной широты над океанами и материками, в среднем одинаковы.
Объяснение опять -таки лишь одно: материки покоятся на более легких породах, а океаны — на более тяжелых. И действительно, там, где возможны непосредственные изыскания, геологи устанавливают, что океаны покоятся на тяжелых базальтовых породах, а материки- на легких гранитах.
Но сразу же возникает следующий вопрос: почему тяжелые и легкие породы точно компенсируют различие весов материков и океанов? Такая компенсация не может быть делом случая, причины ее должны коренится в устройстве оболочки Земли.
Геологи полагают, что верхние части земной коры как бы плавают на подстилающей пластичной, то есть легко деформируемой массе. Давление на глубинах около 100 км должно быть всюду одинаковым, так же как одинаково давление на дне сосуда с водой, в котором плавают куски дерева разного веса. Поэтому столб вещества площадью 1 м 2 от поверхности до глубины 100 км должен иметь и под океаном и под материками одинаковый вес.
Это выравнивание давлений (его называют изостазией) и приводит к тому, что над океанами и материками вдоль одной широтной линии значение ускорения силы тяжести g не отличается существенно. Местные аномалии силы тяжести служат геологической разведке, цель которой- найти залежи полезных ископаемых под землей, не роя ям, не копая шахт.
Тяжелую руду нужно искать в тех местах, где g наибольшее. Напротив, залежи легкой соли обнаруживают по местным заниженным значениям величины g. Измерить g можно с точностью до миллионных долей от 1 м/сек 2 .
Методы разведки при помощи маятников и сверхточных весов называют гравитационными. Они имеют большое практическое значение, в частности для поисков нефти. Дело в том, что при гравитационных методах разведки легко обнаружить подземные соляные купола, а очень часто оказывается, что где есть соль, там и нефть. Причем нефть лежит в глубине, а соль ближе к земной поверхности. Методом гравитационной разведки была открыта нефть в Казахстане и в других местах.
Вместо того, чтобы тянуть тележку с помощью пружины, ей можно придать ускорение, прикрепив перекинутый через блок шнур, к противоположному концу которого подвешивается груз. Тогда сила, сообщающая ускорение, будет обусловлена весом этого груза. Ускорение свободного падения опять таки сообщается телу его весом.
В физике вес — это официальное наименование силы, которая обусловлена притяжением предметов к земной поверхности — “притяжением силы тяжести”. То обстоятельство, что тела притягиваются по направлению к центру Земли, делает такое объяснение разумным.
Как бы его не определили, вес — это сила. Он ничем не отличается от любой другой силы, если не считать двух особенностей: вес направлен вертикально и действует постоянно, его невозможно устранить.
Чтобы непосредственно измерить вес тела, мы должны воспользоваться пружинными весами, проградуированными в единицах силы. Поскольку это зачастую сделать неудобно, мы сравниваем один вес с другим при помощи рычажных весов, т.е. находим отношение:
ЗЕМНОЕ ПРИТЯЖЕНИЕ, ДЕЙСТВУЮЩЕЕ НА ТЕЛО Х ЗЕМНОЕ ПРИТЯЖ-Е, ДЕЙСТВУЮЩЕЕ НА ЭТАЛОН МАССЫ
Предположим, что тело Х притягивается в 3 раза сильнее, чем эталон массы. В этом случае мы говорим, что земное притяжение, действующее на тело Х равно 30 ньютонам силы, что означает, что оно в 3 раза больше земного притяжения, которое действует на килограмм массы. Нередко путают понятие массы и веса, между которыми имеется существенное различие. Масса — это свойство самого тела (она является мерой инертности или его “количества вещества”). Вес же — это сила, с которой тело действует на опору или растягивает подвес (вес численно равен силе тяжести, если опора или подвес не имеют ускорения).
Если мы при помощи пружинных весов измерим вес какого-нибудь предмета с очень большой точностью, а потом перенесем весы в другое место, то обнаружим, что вес предмета на поверхности Земли несколько меняется от места к месту. Мы знаем, что вдали от поверхности Земли, или в глубине земного шара, вес должен быть значительно меньше.
Меняется ли масса? Ученые, размышляя над этим вопросом, давно пришли к выводу, что масса должна оставаться неизменной. Даже в центре Земли, где тяготение, действуя во всех направлениях, должно давать нулевую результирующую силу, тело по-прежнему имело бы ту же самую массу.
Таким образом, масса, оцениваемая по трудности, которую мы встречаем при попытке ускорить движение маленькой тележки, одна и та же всюду: на поверхности Земли, в центре Земли, на Луне. Вес, оцениваемый по удлинению пружинных весов(и ощущению
в мускулах руки человека, держащего весы), будет значительно меньше на Луне и практически равен нулю в центре Земли. (рис.7)
Как велико земное притяжение, действующее на разные массы? Как сравнить веса двух предметов? Возьмем два одинаковых куска свинца, скажем, по 1 кг каждый. Земля притягивает каждый из них с одинаковой силой, равной весу 10 Н. Если соединить оба куска в 2 кг, то вертикальные силы просто складываются: Земля притягивает 2 кг вдвое сильнее, чем 1 кг. Мы получим точно такое же удвоенное притяжение, если сплавим оба куска в один или поместим их один на другой. Гравитационные притяжения любого однородного материала просто складываются, и нет ни поглощения, ни экранирования одного куска вещества другим.
Для любого однородного материала вес пропорционален массе. Поэтому мы считаем, что Земля является источником “поля силы тяжести”, исходящего из ее центра по вертикали и способного притягивать любой кусок вещества. Поле силы тяжести воздействует одинаково, скажем, на каждый килограмм свинца. А как обстоит дело с силами притяжения, действующими на одинаковые массы разных материалов, например 1 кг свинца и 1 кг алюминия? Смысл этого вопроса зависит от того, что нужно понимать под одинаковыми массами. Наиболее простой способ сравнения масс, которым пользуются в научных исследованиях и в торговой практике — это применение рычажных весов. В них сравниваются силы, которые тянут оба груза. Но получив таким путем одинаковые массы, скажем свинца и алюминия, можно предположить, что равные веса имеют равные массы. Но фактически здесь разговор идет о двух совершенно разных видах массы — об инертной и о гравитационной массе.
Величина в формуле Представляет собой инертную массу. В опытах с тележками, которым придают ускорение пружины, величина выступает как характеристика “тяжеловесности вещества” показывающая, насколько трудно сообщить ускорение рассматриваемому телу. Количественной характеристикой служит отношение. Эта масса представляет собой меру инертности, тенденции механических систем сопротивляться изменению состояния. Масса — это свойство, которое должно быть одним и тем же и вблизи поверхности Земли, и на Луне, и в далеком космосе, и в центре Земли. Какова ее связь с тяготением и что на самом деле происходит при взвешивании?
Совершенно независимо от инертной массы можно ввести понятие гравитационной массы как количества вещества, притягиваемого Землей.
Мы считаем, что поле тяготения Земли одинаково для всех находящихся в нем предметов, но приписываем различным пред
метам разные массы, которые пропорциональны притяжению этих предметов полем. Это гравитационная масса. Мы говорим, что разные предметы имеют разный вес, поскольку они обладают различными гравитационными массами, которые притягиваются полем тяготения. Таким образом, гравитационные массы по определению пропорциональны весам, а также силе тяжести. Гравитационная масса определяет, с какой силой тело притягивается Землей. При этом тяготение взаимно: если Земля притягивает камень, то камень точно также притягивает Землю. Значит, гравитационная масса тела определяет также, насколько сильно оно притягивает другое тело, Землю. Таким образом, гравитационная масса измеряет количество вещества, на которое действует земное притяжение, или количество вещества, обуславливающее гравитационные притяжения между телами.
Гравитационное притяжение действует на два одинаковых куска свинца вдвое сильнее, чем на один. Гравитационные массы кусков свинца должны быть пропорциональны инертным массам, поскольку массы того и другого вида, очевидно, пропорциональны числу атомов свинца. То же самое относится к кускам любого другого материала, скажем, воска, но как сравнить кусок свинца с куском воска? Ответ на этот вопрос дает символический эксперимент по изучению падения тел всевозможных размеров с вершины наклонной Пизанской башни, тот, который по легенде производил Галилей. Сбросим два куска любого материала любых размеров. Они падают с одинаковым ускорением g. Сила, действующая на тело и сообщающая ему ускорение6 — это притяжение Земли, приложенное к этому телу. Сила притяжения тел Землей пропорциональна гравитационной массе. Но силы тяжести сообщают всем телам одинаковое ускорение g. Поэтому сила тяжести, как и вес, должна быть пропорциональна инертной массе. Следовательно, тела любой формы содержат одинаковые пропорции обеих масс.
Если принять 1 кг в качестве единицы обеих масс, то гравитационная и инертная массы будут одинаковы у всех тел любых размеров из любого материала и в любом месте.
Вот как это доказывается. Сравним эталон килограмма, сделанный из платины6 с камнем неизвестной массы. Сравним их инертные массы, перемещая поочередно каждое из тел в горизонтальном направлении под действием некоторой силы и измеряя ускорение. Предположим, что масса камня равна 5,31 кг. Земное тяготение в этом сравнении не участвует. Затем сравним гравитационные массы обоих тел, измерив гравитационное притяжение между каждым из них и каким-нибудь третьим телом, проще всего Землей. Это можно проделать путем взвешивания обоих тел. Мы увидим, что гравитационная масса камня тоже равна 5,31 кг .
Более чем за полстолетия до того как Ньютон предложил свой закон всемирного тяготения, Иоганн Кеплер (1571-1630) обнаружил, что “запутанное движение планет Солнечной системы можно было бы описать с помощью трех простых законов. Законы Кеплера укрепили веру в гипотезу Коперника о том, что планеты вращаются вокруг Солнца, а.
Утверждать в начале XVII века, что планеты вокруг Солнца, а не вокруг Земли, было величайшей ересью. Джордано Бруно открыто защищавший систему Коперника, как еретик был осужден святой инквизицией и сожжен на костре. Даже великий Галлилей, несмотря на тесную дружбу с папой римским, был заточен в тюрьму, осужден инквизицией и вынужден был публично отречься от своих взглядов.
В те времена священными и неприкосновенными считались учения Аристотеля и Птолемея, гласившие, что орбиты планет возникают в результате сложных движений по системе окружностей. Так для описания орбиты Марса требовалась дюжина, или около того, окружностей различного диаметра. Иоганн Кеплер поставил задачу “доказать”, что Марс и Земля должны обращаться вокруг Солнца. Он пытался найти орбиту простейшей геометрической формы, которая точно бы соответствовала многочисленным измерениям положения планеты. Прошли годы утомительных вычислений, прежде чем Кеплер смог сформулировать три простых закона, очень точно описывающих движение всех планет:
Первый закон: Каждая планета движется по эллипсу, в
одном из фокусов которого находится
Второй закон: Радиус-вектор (линия, соединяющая Солнце
и планету) описывает за равные промежутки
времени равные площади
Третий закон: Квадраты периодов обращения планет
пропорциональны кубам их средних
расстояний от Солнца:
R 1 3 /T 1 2 = R 2 3 /T 2 2
Значение трудов Кеплера огромно. Он открыл законы, которые затем Ньютон связал с законом всемирного тяготения Конечно, сам Кеплер не отдавал себе отчета в том, к чему приведут его открытия. “Он занимался утомительными намеками эмпирических правил, которые в будущем должен был привести к рациональному виду Ньютон”. Кеплер не мог объяснить, чем обусловлено существование эллиптических орбит, но восхищался тем, что они существуют.
На основе третьего закона Кеплера Ньютон сделал вывод, что силы притяжения должны убывать с увеличением расстояния и что притяжение должно изменяться как (расстояние) -2 . Открыв закон всемирного тяготения, Ньютон перенес простое представление о движении Луны на всю планетную систему. Он показал, что притяжение по выведенным им законам обусловливает движение планет по эллиптическим орбитам, причем в одном из фокусов эллипса должно находится Солнце. Ему удалось легко вывести два других закона Кеплера, которые также вытекают из его гипотезы всемирного тяготения. Эти законы справедливы, если учитывается только притяжение Солнцем. Но нужно учитывать и действие на движущуюся планету других планет, хотя в Солнечной системе эти притяжения малы по сравнению с притяжением Солнца.
Второй закон Кеплера следует из произвольной зависимости силы притяжения от расстояния, если эта сила действует по прямой, соединяющей центры планеты и Солнца. Но первому и третьему законам Кеплера удовлетворяет только закон обратной пропорциональности сил притяжения квадрату расстояния.
Чтобы получить третий закон Кеплера, Ньютон просто объединил законы движения с законом всемирного тяготения. Для случая круговых орбит можно рассуждать следующим образом: пусть планета, масса которой равна m, движется со скоростью v по окружности радиуса R вокруг Солнца, масса которого равна М. Это движение может осуществляться только в том случае, если на планету действует внешняя сила F = mv 2 /R, создающая центростремительное ускорение v 2 /R. Предположим, что притяжение между Солнцем и планетой как раз и создает необходимую силу. Тогда:
GMm/r 2 = mv 2 /R
и расстояние r между m и M равно радиусу орбиты R. Но скорость
где Т — время, за которое планета совершает один оборот. Тогда
Чтобы получить третий закон Кеплера, нужно перенести все R и Т в одну сторону уравнения, а все остальные величины — в другую:
R 3 /T 2 = GM/4 2
Если перейти теперь к другой планете с другим радиусом орбиты и периодом обращения, то новое отношение опять будет равно GM/4 2 ; эта величина будет одинаковой для всех планет, так как G -универсальная постоянная, а масса М — одна и та же для всех планет, вращающихся вокруг Солнца. Таким образом, величина R 3 /T 2 будет одной и той же для всех планет в согласии с третьим законом Кеплера. Такое вычисление позволяет получить третий закон и для эллиптических орбит, но в этом случае R — средняя величина между наибольшим и наименьшим расстоянием планеты от Солнца.
Вооруженный мощными математическими методами и руководимый великолепной интуицией, Ньютон применил свою теорию к большому числу задач, вошедших в его ПРИНЦИПЫ, касающиеся особенностей Луны, Земли других планет и их движения, а также других небесных тел: спутников, комет.
Луна испытывает многочисленные возмущения, отклоняющие ее от равномерного кругового движения. Прежде всего, она движется по кеплеровскому эллипсу, в одном из фокусов которого находится Земля, как и любой спутник. Но эта орбита испытывает небольшие вариации за счет притяжения Солнцем. При новолунии Луна находится ближе к Солнцу, чем полная Луна, появляющаяся на две недели позднее; эта причина изменяет притяжение, что ведет к замедлению и ускорению движения Луны в течение месяца. Этот эффект увеличивается, когда зимой Солнце ближе, так, что наблюдаются и годовые вариации скорости движения Луны. Кроме того, изменения солнечного притяжения меняют эллиптичность лунной орбиты; лунная орбита отклоняется вверх и вниз, плоскость орбиты медленно вращается. Таким образом, Ньютон показал, что отмеченные нерегулярности в движении Луны вызваны всемирным тяготением. Он не разработал во всех деталях вопрос о солнечном притяжении, движение Луны осталось сложной проблемой, которая разрабатывается со все возрастающими подробностями и до наших дней.
Океанские приливы и отливы долгое время оставались загадкой, объяснить которую казалось можно было бы, установив их связь с движением Луны. Однако люди считали, что такая связь реально существовать не может, и даже Галилей осмеял эту идею. Ньютон показал, что приливы и отливы обусловлены неравномерным притяжением воды в океане со стороны Луны. Центр лунной орбиты не совпадает с центром Земли. Луна и Земля вместе вращаются вокруг их общего центра масс. Этот центр масс находится на расстоянии примерно 4800 км от центра Земли, всего лишь в 1600 км от поверхности Земли. Когда Земля притягивает Луну, луна притягивает Землю с равной и противоположно направленной силой, благодаря чему возникает сила Mv 2 /r, вызывающая движение Земли вокруг общего центра масс с периодом, равным одному месяцу. Ближайшая к Луне часть океана притягивается сильнее (она ближе), вода поднимается — и возникает прилив. Находящаяся на большем от Луны расстоянии часть океана притягивается слабее, чем суша, и в этой части океана также поднимается водяной горб. Поэтому, за 24 часа наблюдается два прилива. Солнце тоже вызывает приливы, хотя и не столь сильные, ибо большое расстояние от Солнца сглаживает неодинаковость притяжения.
Ньютон раскрыл природу комет — этих гостей солнечной системы, которые всегда вызывали интерес и даже священный ужас. Ньютон показал, что кометы движутся по очень вытянутым эллиптическим орбитам, водном из фокусов которого находится Солнце. Их движение определяется, как и движение планет, гравитацией. Но они имеют очень малую величину, так что их можно увидеть только тогда, когда и они проходят вблизи Солнца. Эллиптическая орбита кометы может быть измерена, и время ее возвращения в нашу область точно предсказано. Их регулярное возвращение в предсказанные сроки позволяет проверить наши наблюдения и дает еще одно подтверждение закона всемирного тяготения.
В некоторых случаях комета испытывает сильное гравитационное возмущение, проходя вблизи больших планет, и переходит на новую орбиту с другим периодом. Вот почему мы знаем, что у комет масса невелика: планеты оказывают воздействие на их движение, а кометы не влияют на движение планет, хотя и действуют на них с такой же силой.
Кометы движутся так быстро и приходят так редко, что еще до сих пор ученые ждут момента, когда можно применить современные средства к исследованию большой кометы.
Если вдуматься, какую роль играют силы тяготения в жизни нашей планеты, то открываются целые океаны явлений, и даже океаны в буквальном смысле этого слова: океаны воды, воздушный океан. Без тяготения они бы не существовали.
В природе существуют различные силы, которые характеризуют взаимодействие тел. Рассмотрим те силы, которые встречаются в механике.
Гравитационные силы. Вероятно, самой первой силой, существование которой осознал человек, являлась сила притяжения, действующая на тела со стороны Земли.
И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. Первым этот факт понял английский физик Ньютон. Анализируя законы, которым подчиняется движение планет (законы Кеплера), он пришёл к выводу, что наблюдаемые законы движения планет могут выполняться только в том случае, если между ними действует сила притяжения, прямо пропорциональная их массам и обратно пропорциональная квадрату расстояния между ними.
Ньютон сформулировал закон всемирного тяготения . Любые два тела притягиваются друг к другу. Сила притяжения между точечными телами направлена по прямой, их соединяющей, прямо пропорциональна массам обоих и обратно пропорциональна квадрату расстояния между ними:
Под точечными телами в данном случае понимают тела, размеры которых во много раз меньше расстояния между ними.
Силы всемирного тяготения называют гравитационными силами. Коэффициент пропорциональности G называют гравитационной постоянной. Его значение было определено экспериментально: G = 6,7 10¯¹¹ Н м² / кг².
Сила тяготения действующая вблизи поверхности Земли, направлена к её центру и вычисляется по формуле:
где g – ускорение свободного падения (g = 9,8 м/с²).
Роль силы тяготения в живой природе очень значительна, так как от её величины во многом зависят размеры, формы и пропорции живых существ.
Вес тела. Рассмотрим, что происходит, когда некоторый груз кладут на горизонтальную плоскость (опору). В первый момент после того, как груз опустили, он начинает двигаться вниз под действием силы тяжести (рис. 8).
Плоскость прогибается и возникает сила упругости (реакция опоры), направленная вверх. После того как сила упругости (Fу) уравновесит силу тяжести, опускание тела и прогиб опоры прекратятся.
Прогиб опоры возник под действием тела, следовательно, со стороны тела на опору действует некоторая сила (Р), которую называют весом тела (рис. 8, б). По третьему закону Ньютона вес тела равен по величине силе реакции опоры и направлен в противоположную сторону.
Р = — Fу = Fтяж.
Весом тела называют силу Р, с которой тело действует на неподвижную относительно него горизонтальную опору .
Поскольку сила тяжести (вес) приложены к опоре, она деформируется и за счёт упругости оказывает противодействие силе тяжести. Силы, развиваемые при этом со стороны опоры называются силами реакции опоры, а само явление развития противодействия — реакцией опоры. По третьему закону Ньютона сила реакции опоры равна по величине силе тяжести тела и противоположна ему по направлению.
Если человек на опоре движется с ускорением звеньев его тела, направленных от опоры, то сила реакции опоры возрастает на величину ma, где m – масса человека, а – ускорения с которыми движутся звенья его тела. Эти динамические воздействия можно фиксировать с помощью тензометрических устройств (динамограммы).
Вес не следует путать с массой тела. Масса тела характеризует его инертные свойства и не зависит ни от силы тяготения, ни от ускорения, с которым оно движется.
Вес тела характеризует силу, с которой оно действует на опору и зависит как от силы тяготения, так и от ускорения движения.
Например, на Луне вес тела примерно в 6 раз меньше, чем вес тела на Земле, Масса же в обоих случаях одинакова и определяется количеством вещества в теле.
В быту, технике, спорте вес часто указывают не в ньютонах (Н), а в килограммах силы (кгс). Переход от одной единицы к другой осуществляется по формуле: 1 кгс = 9,8 Н.
Когда опора и тело неподвижны, то масса тела равна силе тяжести этого тела. Когда же опора и тело движутся с некоторым ускорением, то в зависимости от его направления тело может испытывать или невесомость или перегрузку. Когда ускорение совпадает по направлению и равно ускорению свободного падения, вес тела будет равен нулю, поэтому возникает состояние невесомости (МКС, скоростной лифт при опускании вниз). Когда же ускорение движения опоры противоположно ускорению свободного падения, человек испытывает перегрузку (старт с поверхности Земли пилотируемого космического корабля, Скоростной лифт, поднимающийся вверх).
Притяжение земли и луны.
Каждую ночь, горя не зная,
Ходит Луна, как заводная.
(из песни, сл. Н. Матвеева)
Рис. 1 Луна. Полушарие X всегда обращено к Земле. S – излучение Солнца, E – излучение Земли, M – излучение Луны (показаны условно).
Согласно традиционным расчетам, притяжение Земли и Луны в 2,2 раза слабее, чем притяжение между Солнцем и Луной. Такой расчет приводит к парадоксальному выводу – Луна должна быть планетой, но никак не спутником Земли. С данным парадоксом мне удалось частично разобраться в предыдущей статье . Расчет получился не в пользу Земли, поэтому данной статьей хочу добавить несколько теплых отношений между Землей и Луной с учетом селено-физики, логики и просто здравого смысла.
Cмена лунных фаз составляет около 29,5 суток (синодический месяц). За все время движения одно полушарие Луны освещено Солнцем, а второе находится в тени (рис. 1 ). День сменяется ночью, также как на Земле, но только с большим периодом, около двух недель. Мы также знаем, что Луна неравновесное тело, всегда обращена к Земле более массивным полушарием, у которого и большая поверхность.
Когда мы наблюдаем новолуние, то в это время Луна находится на самом близком расстоянии от Солнца и обращена к нему легким полушарием «Y». Когда Луна в полнолуние – Луна находится на самом удаленном расстоянии от Солнца и обращена к Солнцу и к Земле тяжелым полушарием «X».
Кроме того, лунный ландшафт существенно отличается между видимой и невидимой сторонами Луны. Даже невооруженным глазом на Луне видны обширные темные области – лунные моря. Особенно отчетливо такую картину земляне наблюдали в период недавнего суперлуния 14-15 ноября 2016 г. Лунные моря – это обширные районы с достаточно ровной поверхностью, представляют собой низменности, залитые застывшей лавой, сверху прикрыты реголитом и пылью, характеризуются более темной окраской (рис. 2 ). Темная поверхность морей указывает на ее свойство – данная поверхность меньше отражает солнечной энергии. Воспользуемся научным термином «альбедо», или белизна, который означает, какая часть падающего на поверхность света отражается от нее в том же направлении. Луна отражает около 10% солнечной энергии, остальные 90% превращаются в теплоту. Учитывая, что гравитацию переносят фотоны и крафоны , то один только этот факт уменьшает силу притяжения Солнца на 10%.
На обратной стороне Луны только два моря (море Москвы и море Мечты) и они относительно небольшого размера. На видимой стороне Луны моря занимают более 30% всей поверхности полушария, а на обратной стороне, около 2,5%, т.е. разница более чем на порядок. Я специально акцентирую на этом внимание, т.к. это еще один важный момент в понимании неравновесности полушарий Луны.
Из школьной программы физики мы помним, что черное тело всегда нагревается солнечными лучами сильнее, чем белое. В свою очередь, черное тело также излучает больше энергии, чем светлое. Данное правило применимо и к лунной поверхности. Темные области морей, за время двухнедельного лунного дня, нагреваются сильней, а во время лунной ночи, излучают также сильней. День видимого полушария приходится на полнолуние, когда Луна удалена от Солнца за орбиту Земли, а ночь приходится, когда Луна приближена к Солнцу в новолуние. Неравномерность нагрева обоих лунных полушарий создает следующую картину: 1) Луна в новолуние – излучение с ее ночной поверхности в сторону Земли – максимально; 2) Луна в полнолуние – излучение с дневного полушария в сторону Земли также максимально; 3) в четвертях излучение равновесно.
Отсюда промежуточный вывод: несмотря на то, что Луна в новолуние обращена к Земле темной стороной, она посылает ей больше гравитационной энергии, нежели, если бы она в этот момент была повернута обратной стороной. Этому способствует и большая поверхность полушария «X». Это еще один аргумент, почему Луна спутник, а не планета.
Почему такое отличие, казалось бы двух одинаковых полушарий? Почему так много излитой лавы на видимой стороне? Очевидно это действие приливных сил Земли. В свою очередь приливные силы Луны также должны действовать на Землю. В науке прочно утвердилась теория, что приливные волны в морях и океанах создает лунное притяжение. Здесь, также как с притяжением Луны к Солнцу и Луны к Земле, стоит явное противоречие, притом, еще более критичное. По расчетам Солнце воздействует на земную поверхность в 170 раз сильнее, чем Луна. Однако в приливных поднятиях воды предпочтение отдано Луне. Повторюсь, у Луны слабое свечение отраженным светом, отсюда и слабое притяжение, которое не способно поднять такую высокую волну с противоположных сторон земного шара. Тему земных приловов в данной статье не рассматриваем, она требует отдельного разбирательства.
Масконыa b
Рис. 2. Видимая (a) и обратная (b) стороны Луны. 1-море Дождей, 2-море Ясности, 3-море Кризисов.
Начну с цитаты: «В 1968 году, за год до высадки человека на Луну, американские ученые П.Мюллер и У.Сьегрен исследовали лучевые ускорения ИСЛ Лунар Орбитер-5. Они обнаружили на морях, где обязаны быть отрицательные гравитационные аномалии, в действительности имеются крупные положительные аномалии, которые нельзя объяснить ничем, кроме как концентрацией тяжелых масс. Такие структуры они назвали масконами (mass concentrations). На высоте полета спутника (100 км) гравитационные аномалии достигали 200 мГал и более. В частности, над морем Дождей (1) гравитационная аномалия равна 250 мГал, над морем Ясности (2) – 220 мГал, над морем Кризисов (3) – 130 мГал. . В то же время над Апеннинскими хребтами наблюдается отрицательная гравитационная аномалия -100–120 мГал . Протяженность Апеннин более 600 км вдоль юго-восточного берега Моря Дождей, ровные хребты с редкими пересечениями ущелий и долин. Это протяженные и высокие горы, обрамляя берег 15-30 километровыми склонами. Некоторые вершины достигают высоты до 5400 метров, что дает им право называться самыми высокими горами на видимой стороне Луны.
Закон всемирного тяготения на Луне показывает удивительную противоречивость: там, где находятся горные вершины и должны быть большие массы, там гравитационное притяжение слабее, там, где находятся низменности, залитые лавой моря, там притяжение сильнее. Приведу пример из книги М.У. Сагитова, он пишет: «Необычайное образование, – Море Восточное, – отличается от подобных ему масконов на видимой стороне. В центральной части оно имеет положительную аномалию, окруженную кольцом отрицательных аномалий. Своеобразие Моря Восточного могло быть объяснено тем, что это образование находится в высокогорной области вдали от морских образований, а может быть, причиной является и то, что в этой части Луны более тонкая кора». (Конец цитаты) .
Далее автор акцентирует внимание на масконах «интересных образованиях на Луне», которые «представляют собой поверхностные образования типа материальных дисков. Будучи изостатически нескомпенсированными, избыточные массы порядка 800 кг/см 2 создают напряжение в верхних слоях лунной коры». Дается ссылка на источник (я ее тоже даю) . Здесь я вижу сомнения автора, который написав данное число, понимает его несуразность, поэтому отсылает читателя куда подальше, по-сути переводит стрелки и умывает руки. Переведем для наглядности, «избыточные массы» масконов в систему СИ и получим 8000000 кг/м 2 , или 8000 т/м 2 . Что это за космическое давление (напряжение) на верхний слой коры? Такие давления на Земле-то невозможно получить без специальных прессов, а тут на Луне притяжение в 6 раз меньше чем на Земле, откуда могут возникнуть такие массы, чтобы опустить или поднять орбиту ИСЛ.
Что творит наука, чтобы хоть как-то объяснить лунные гравитационные аномалии в рамках закона всемирного тяготения. Мало того, ранее предполагалось, что эти масконы залегают на глубинах порядка 50 км в виде компактных масс, а сейчас их фактически подняли на поверхность Луны.
Когда намечал план данной статьи, я не планировал долго останавливаться на масконах, т.к. для меня аномальные гравитационные пятна в локальных геологических полях Луны были понятны сразу. По мере изучения материала на данную тему выяснилось, что для ученого мира масконы, как масоны для несведущих людей.
В 2012 году NASA целенаправленно потратила полмиллиарда долларов на изучение и расшифровку этих масконов. 1 января 2012 года на орбиту Луны были выведены два спутника «Ebb» и «Flow» (Прилив и Отлив) под кодовым названием GRAIL (The Gravity Recovery and Interior Laboratory) (Чаша Грааля) (рис. 3) . Спутники двигались вокруг Луны по орбитам на расстоянии от 175 до 225 км друг от друга. Расстояние между спутниками измерялось с высокой точностью. По изменениям расстояния и выявлялись особенности гравитационного поля Луны и ее внутреннее строение.
Целью этой космической миссии было более детально просканировать лунную кору на предмет обнаружения и дальнейшей расшифровки этих масконов.
Спутники GRAIL проработали до декабря 2012 года, после выработки топлива упали на лунную поверхность в районе кратера Гольдшмидт. Полученные данные миссии продолжают обрабатываться и по сей день .
Рис. 3. GRAIL
Какое объяснение получили наличие данных аномалий? Да все просто! У всех исследователей перед глазами маячит закон Всемирного тяготения, а что в нем отвечает за гравитацию? Ну конечно масса! «Сами Мюллер и Сьегрен считали, что положительную аномалию создает железоникелевый метеорит, который упал на Луну и остался в лунной коре» . Несколько позднее трудами уже большего количества ученых на суд природы и общества была представлена гипотеза, что в Луну врезается астероид и образует «морскую впадину». Впадина создает на некоторое время отрицательную аномалию, но расплавленная лава поднимается наверх и заполняет все трещины и полости до полной изостатической компенсации. Кора застывает, бассейн заполняется реголитом и пылью, таким способом создается избыточная масса, которая и дает положительную гравитационную аномалию. Правда, как указывает тот же источник: «Современные данные говорят о том, что лавовые излияния возникли не сразу, а спустя 0,5 млрд. лет». Но ничего страшного, изощренный ум ученых нашел новое объяснение: «Изостатически не компенсированная кора имеет положительные аномалии за счет внедрения более плотных масс из недр Луны».
Ну откуда же еще. Но опять возникает очередной вопрос: каким образом плотные массы искали и находили свое пристанище именно под лунными морями, а не под материками, которых все-таки гораздо больше? А потом откуда столько плотной массы в худосочной Луне. Почему я так небрежно отозвался о нашем спутнике, а потому, что Вы наверняка помните плотность лунного вещества, указанного в справочниках (3346 кг/м³).
В очередной раз заостряю внимание читателей, что в гравитационном притяжении участвует энергия, а масса является лишь аккумулятором этой энергии. Поэтому никаких масконов вместе с изостазией ни на Луне, ни вообще в природе – не существует! Тогда что, с поверхности морей и океанов больше излучается энергии? Именно так! Остается только объяснить явление гравитационных аномалий, имеющих место на спутнике Земли.
Гравитационные аномалии связаны не с массой, а с неравномерным температурным нагревом ландшафта Луны. Линзы морей «закачивают» больше солнечной энергии, чем взрыхленная, холмистая пересеченная местность с многочисленными теневыми участками, где в условиях вакуума, происходит быстрое охлаждение. На плоских линзах морей электромагнитный поток крафонов поглощения и излучения идет интенсивней, который создает дополнительную силу притяжения, отсюда и положительные гравитационные аномалии.
Обратная ситуация на полюсах. На полюсы поступает гораздо меньше солнечной энергии, поэтому притяжение там меньше, чем в других территориальных поясах спутника. Земля, в отличие от Луны, более сплюснута на полюсах. За счет этого земные полюсы ближе располагаются к раскаленной мантии и ядру. Хотя на земные полюсы Солнце также реже заглядывает, зато крафонное излучение из недр Земли интенсивней, чем в экваториальной зоне.
Какие же выводы сделали специалисты из института космических исследований имени Годдарда под руководством Марии Зубер: «Увеличение плотности и гравитации в мишени масконов вызвано лунным материалом, расплавленным от тепла давно упавших астероидов».
«Знание о масконах означает, что мы, наконец, начинаем понимать геологические последствия больших воздействий», сказал Мелош. «Наша планета перенесла подобные воздействия в своем отдаленном прошлом и понимание, что масконы обогатят наши знания о древней Земле и о тектонике плит, и что создало первые месторождения руды» .
Такие расплывчатые выводы никого не трогают.
Не могу согласиться с уважаемыми учеными и в том, когда они пишут: «Данные также показывают, что область силы тяжести луны не похожа на область любой земной планеты в нашей солнечной системе». Такого не может быть по причине, что подобные моря найдутся практически на всех планетах и спутниках этих планет за орбитой Земли. Единственное, что разница в силе тяжести будет не велика, из-за меньшего перепада температур. На Меркурии подобных ландшафтов также вполне достаточно, но там окружающая температура так велика, что практически выравнивает тепловое излучение между гористой и морской поверхностью.
В заключение данного параграфа приведу цитату, дословно переведенную компьютером с сайта NASA: «Слежка масконов ниже лунной поверхности и не может быть замечена нормальными оптическими камерами». В данном случае, как ребенок, что видит, то и переводит. Что тут сделаешь, если оптика не может, как рентген просветить кору и обнаружить необнаружаемое. Остается отправить на Луну астронавтов с мощными рентгеновскими аппаратами, а если не получится обнаружить, то пробурить сверхглубокую лунную скважину. Дерзайте, если денег не жалко!
Рис. 4. Море Восточное
Перейдем к Морю Восточному и его аномалиям. Море Восточное, но это не значит, что оно расположено на востоке. Название морю дал немецкий астроном Юлиус Генрих Франц в 1906 году, однако в 1961 году Международный астрономический союз провел рокировку сторон света на Луне, и море Восточное оказалось на западной окраине видимого полушария Луны. Море Восточное имеет три концентрических горных кольца, окружающих центральную лавовую долину. Этот бассейн (диаметр котловины составляет 960 км) сформировался около 3,8 млрд лет назад в результате столкновения Луны с огромным астероидом. Удар вызвал колебания в лунной коре, в результате чего получились три концентрических окружности .
Данный объект астрономы называют «бычий глаз», именно такое сходство отражают фотографии спутниковых снимков. Море Восточное, очередная загадка для астрономов: почему на периферийных кольцах данного бассейна отрицательная гравитационная аномалия, а в центре – положительная. С Морем Восточным астрономы связывают один из крупнейших масконов концентрического строения с хорошо выраженной центральной положительной гравитационной аномалией .
Для анализа следует присмотреться к двум снимкам (рис.4), на которых Море Восточное предстает в анфас и в профиль. На фотографиях отчетливо видна плоская темная центральная арена и три кольцевых горных массива.
Что представляет собой центральная арена. Пожалуй, она напоминает перевернутую вверх дном старую закопченную сковородку. На снимке сковородка, которая нагревалась на газовых горелках, поэтому ее центр остался не закопченным, это ее отличает от лавовых лунных морей. Мысленно заретушируем ее и представим, что данная сковородка имеет диаметр 500 км и две недели находится под палящими лучами Солнца. Вот здесь сравнение будет более корректным, если сковородка будет стоять над зажженной газовой горелкой.
Лунные моря около своих побережий имеют достаточно толстый слой реголита, но чем дальше от краев, тем тоньше его слой. В центре, предполагаю, что его нет вовсе. Реголит плохо проводит тепло, поэтому предгория прогреваются на небольшую глубину. А вот цирки морей, имея гладкую поверхность, в течение дня прогреваются очень сильно и на значительную глубину. Центральная часть моря, как ледовый каток, слегка прикрытый серой пылью, под которой твердая застывшая базальтовая лава. Такой налет создает прекрасные условия для прогрева солнечными лучами лунной коры.
Центральный цирк интенсивно поглощает и излучает энергию, отсюда и положительная гравитационная аномалия. Периферийные кольцевые горы нагреваются слабее, соответственно, гравитационное притяжение над ними также слабее. Протяженные рукава долин между кольцевыми горами имеют довольно развитую поверхность, засыпанные толстым слоем реголита, поэтому накапливают меньше энергии, по сравнению с основным морем. Следует подчеркнуть еще одну немаловажную деталь в аномальном притяжении Моря Восточного. Как правило, поглощение и, особенно излучение энергии с плоской поверхности, идет по нормали к данной поверхности, а излучение с пересеченной, гористой поверхности происходит спонтанно во всех направлениях, отсюда больше отраженной и рассеянной энергии. Когда спутник пролетает над таким морем, то его орбиту пересекает мощный поток тепловой (гравитационной) энергии с поверхности моря, который заставляет космический зонд нырять вниз. Над хребтовой и горной поверхностью более слабый поток энергии, спутник вновь поднимается вверх.
Резюме: вместо несуществующих масконов выступает электромагнитное излучение в виде крафонов, которые и создают эти положительные аномалии. Такие псевдо масконы – это дополнительный поток гравитационной энергии, вносящий свою лепту в гравитационные отношения между планетой и спутником.
Ученому миру давно известно, что температура поверхности видимого полушария Луны намного выше, чем противоположного полушария. Об этом говорят данные масс-спектрометрических анализов. Объяснение такого феномена сводится к тому, что на видимой стороне большое количество тепловыделяющих элементов (урана и тория), а связано это с вулканической деятельностью .
Снова должен не согласиться с заключением ученых. Это сколько же нужно разбросать радиоактивного вещества на видимой стороне, чтобы ее основательно разогреть? Причина разности температур кроется не в радиоактивности, а в разности, полученной от Солнца энергии. Ученые предполагают, что толщина реголита более или менее распределена по поверхности обоих полушарий, но это не так. Я уже отметил ранее, что в центральных областях морей реголита почти нет, что создает прогрев этих районов на большую глубину, отсюда и разница в закаченной энергии. Данное обстоятельство – это еще один штрих, почему Луна спутник, а не планета.
Суммарное действие всех гравитационных эффектов, описанных в данной статье и предыдущей, не позволяют Луне оторваться от Земли. Луна по праву является спутником Земли.
Полученные данные показывают, что области силы тяжести Луны не похожи на земные. Это связано, прежде всего, с тем, что, во-первых, на Земле нет подобных сухих морей, во-вторых, на Земле стабильная температура из-за присутствия плотной атмосферы.
Луна слабо разогревается из ядра, поэтому ее энергия пополняется, в основном, от Солнца и частично от Земли.
Выводы
Почему Луна, невзирая на расчеты с использованием закона всемирного тяготения, является спутником, а не планетой?
Четыре пункта выводов представлены , а здесь только выводы о пятом пункте: неравновесная и аномальная гравитация Луны.
- Более массивное полушарие Луны, обращенное всегда к Земле, аккумулирует больше солнечной энергии за счет трех факторов:
- за счет большей массы и поверхности;
- за счет большей площади, покрытой морями;
- за счет разности альбедо. Рассеяние света при отражении нивелирует рельеф,
а поглощение света рисует рельеф.
- Расчеты, проведенные с использованием гравитационной постоянной в формуле закона всемирного тяготения – не корректны. Масса Солнца завышена на порядок, а масса Луны несколько занижена.
- В традиционных расчетах не учитывается энергия и скорость переноса гравитации (она бесконечно велика). На самом деле гравитация всецело зависит от энергии гравитирующих тел, а гравитационное взаимодействие осуществляется с помощью дискретных импульсов, переносчиками которых являются фотоны и крафоны, перемещающиеся в вакуумном пространстве со скоростью света.
- Загадочные Масконы – они не существуют.
- Сложив все аргументы, описанные выше можно приблизиться к цифре 2-2,5, т. е. Луна должна притягиваться к Земле примерно в 2 раза сильнее, чем к Солнцу.
Исходя из сказанного, физический и «здравый» смысл вращения Луны вокруг Земли – не нарушается. Луна не планета, Луна – спутник!
Источники
- Ершов Г.Д..html
- Ершов Г.Д., Гравитация Земли. Фотонно-квантовая гравитация, The scientific heritage, No 5 (5) (2016) Р.1с.79-93 / URL: http://tsh-journal.com/wp-content/uploads/2016/11/VOL-1-No-5-5-2016.pdf
- Пантелеев В.Л. Геофизика на Луне, Гравитационное поле Луны, Физика Земли и планет, МГУ, курс лекций, М. 2001 /Астронет, URL: http://www.astronet.ru/db/msg/1169697/node33.html
- Сагитов М.У., Лунная гравиметрия, Наука, М.,1979, URL: http://ikfia.ysn.ru/images/doc/Astronomy_Astrophysics_and_Cosmology/Sagitov1979ru.pdf
- Kopal Z., The constants of the Moon´s physical libration derived on the basis of four series of heliometric observations from the years 1877-1915, Ikarus, 1967, v.7, №1, p. 1-28
- Центр НАСА, Missions GRAIL: In Depth, Институт космических исследований имени Годдарда, Лаборатория реактивного движения /URL: http://solarsystem. nasa.gov/missions/grail/indepth
- Research helps explain formation of ringed crater on the moon, October 27, 2016 /http://m.phys.org/news/2016-10-formation-crater-moon.html
- Алифанов О.М., Анфимов Н.А., Беляев В.С. и др., Фундаментальные космические исследования. Кн.2. Солнечная система, Физматлит, М. 2014, 456 с.
- Учёные объяснили различия ударных кратеров двух сторон Луны, Вести. ru /URL: http://www.vesti.ru/doc.html?id=1151772&cid=2161
- 45 лет первой съемке обратной стороны Луны / Астрогалактика, URL: http://www.astrogalaxy.ru/142.html
Как известно науке, Луна – естественный спутник Земли, шаровидное небесное тело, холодное, но неостывшее (считается, что Луна изначально была холодной). Луна расположена на расстоянии 384 000 километров от Земли, ее радиус 1738 километров. На Луне нет воды, нет атмосферы, а любая тяжесть там в шесть раз легче, чем на Земле.
На Луне нет воды. Но связь ее с водой – самая непосредственная.
Большую часть поверхности Земли покрывают моря и океаны. На нашей планете очень много воды. Будь это не так, здесь вряд ли появилась бы жизнь. Всему живому необходимо большое количество жидкости. Человеческий организм на шестьдесят с лишним процентов состоит из воды. Это и вода, которая содержится в составе каждой клетки организма, и кровь, и прочие жидкости.
С Луной связаны приливы и отливы земных морей и океанов. Луна с огромной силой притягивает к себе водную поверхность той части Земли, над которой находится. Представьте себе: огромная приливная волна все время «бежит» вслед за Луной по земной поверхности, когда Луна делает полный оборот вокруг Земли.
Происходит это по вполне естественной причине – согласно закону всемирного тяготения, который действует во всей Вселенной. Все небесные тела, включая Солнце, Луну и Землю, обладают силой притяжения – одни большей, другие меньшей, в зависимости от размеров. Именно благодаря этой силе мы все прочно стоим на земле: силы земного притяжения, силы гравитации притягивают нас. Благодаря силе солнечного притяжения Земля вращается вокруг Солнца и не улетает от него. А притяжение Земли удерживает Луну на околоземной орбите.
Луна по размеру значительно меньше Земли, а потому притянуть к себе Землю она, конечно, не в состоянии. Но она может притягивать земные водные массы. И не только их: ученые выяснили, что Луна силой притяжения деформирует даже твердую оболочку Земли, вытягивая ее примерно на 50 сантиметров! Земля словно все время дышит, вдыхает и выдыхает разными своими частями вслед за притяжением движущейся вокруг нее Луны.
Но деформация твердой поверхности Земли для нас менее заметна, чем приливы и отливы. За этим явлением наблюдали все, кто был у моря. Придя утром на пляж, вы видите, что вода отступила, оголив прибрежные камни, оставив на мокрой гальке водоросли и медуз. А через несколько дней оказывается, что полоска пляжа, на которой вы еще вчера удобно располагались для отдыха, сегодня скрылась под водой.
Наиболее сильные приливы случаются в новолуние. Почему? Потому что в новолуние и Солнце, и Луна находятся по одну сторону относительно Земли. Поэтому в новолуние Луны не видно на небе: Солнце в это время освещает ее обратную сторону. В этот момент к притяжению Луны добавляется притяжение Солнца и оба светила тянут Землю в одну сторону. В эту сторону устремляются наземные водные массы. Начинается прилив, в то время как с противоположной стороны Земли наблюдается отлив.
В полнолуние Солнце и Луна находятся по разные стороны Земли; Земля оказывается между Солнцем и Луной, а оба светила – в противоположных от нее сторонах. Тогда водные массы частично устремляются в сторону Солнца, а частично – в сторону Луны, приливы наблюдаются и там, и там, но меньше, чем в новолуние.
В прочие фазы Луны – когда Луна и Солнце и не на одной стороне от Земли, и не в противоположных сторонах, а занимают промежуточные позиции – приливы и отливы практически незаметны, так как Солнце и Луна нейтрализуют притяжение друг друга и водная оболочка распределяется равномерно по всей поверхности Земли.
Поскольку воды на Земле очень много, то именно от состояния воды зависит земной климат. Океаны и моря – это та кухня, где «варится» земная погода. И естественно, любая перемена в состоянии морей и океанов тут же сказывается на состоянии погоды. Перемены погоды впрямую связаны с приливами и отливами. От этого зависит поведение атмосферы, зарождение в ней циклонов и антициклонов, а значит, и влажность воздуха, направление и скорость ветра и другие факторы. А от погоды зависит и наше самочувствие, и многие процессы в организме: перемены кровяного давления, скорость кровотока, активность разных органов – всего не перечислишь. Не говоря уже о настроении и состоянии нервов, психики, души – на все это погода влияет непосредственно. Солнечная, ясная погода нас возбуждает и тонизирует, тихая, пасмурная – успокаивает, низкие тучи угнетают, а сильный ветер с сыростью и холодом могут привести к депрессии.
Мы зависим от погоды, погода зарождается в океанах, а состояние океанов связано с Луной. Получается, что наше состояние зависит в итоге от Луны.
Но это только один пример не самого сильного и очень опосредованного влияния на нас Луны – через приливы и отливы морей и океанов. Кроме этого, Луна влияет на нас многими другими способами – абсолютно непосредственно и очень разнообразно.
Как мы уже знаем, человеческий организм на шестьдесят с лишним процентов состоит из воды. Но если Луна притягивает земную воду, то и вода, входящая в состав нашего организма, не исключение.
В новолуние, в самые сильные приливы, вода внутри организма вместе с водой морей и океанов устремляется вверх, к Луне. В этот момент кажется, что мы стали легче, что не ходим, а как будто летаем над землей, и даже хочется подпрыгивать, ноги сами отрываются от земли. В это время надо быть осторожнее – не потерять равновесие и точку опоры в физическом и в душевном смысле. Трудно быть активными, заниматься своими обычными земными делами – ведь организм как бы отрывается от земли, его тянет вверх.
После новолуния притяжение Луны ослабевает и мы тихо спускаемся с небес на землю. Притяжение Земли снова воздействует на нас с обычной силой. Мы снова приобретаем обычное ощущение собственного веса. Можно постепенно возвращаться к нормальной активности и к повседневным делам, теперь это дается легче.
По мере роста лунного серпа и приближения к полнолунию Солнце и Луна расходятся все дальше. Они начинают притягивать все земные жидкости с разных сторон. И наше тело начинает как бы распирать, жидкости тянутся в разных направлениях, идет процесс расширения. Представьте себе: только что вас тянули вверх, потом вниз, а теперь вдруг в стороны. Для организма это серьезный стресс: ему надо только успевать перестраиваться.
В полнолуние Солнце и Луна воздействуют на нас с противоположных сторон. Поэтому все жидкости человеческого организма притягиваются ближе к поверхности тела. Организм максимально распирает изнутри, внутри образуется как бы пустота, зато снаружи выплескивается энергия – она буквально хлещет мощным потоком.
Но вот Луна начинает убывать, и расширявшийся до этого организм переходит к сжатию. Все жидкости от поверхности устремляются внутрь, энергия тоже течет внутрь. Такая перестройка – опять стресс. Но по мере устремления жидкостей внутрь человек чувствует себя сильнее и активнее: ведь теперь энергия концентрируется внутри, и он готов действовать, использовать эту энергию для достижения разных целей в своей жизни.
После максимального сжатия энергии внутри организма наступают новые перемены – снова приходит новолуние, и жидкости вновь устремляются к голове.
Как видим, организм не замер в неподвижности: в нем все время что-то меняется, преобразовывается, переходит из одного состояния в другое; причем перемены происходят синхронно с Луной, а значит, и со всей Вселенной. Если мы будем знать и учитывать перемены, происходящие в нас, то придет и здоровье, и внутренняя гармония, и благополучие. Если мы живем в унисон со Вселенной, то Вселенная всеми своими необъятными силами помогает нам и поддерживает нас.
Убывающая или нарастающая Луна не только причина наземных приливов и отливов; от нее зависит самочувствие человека, о котором можно заранее позаботиться, сверяясь с лунным календарем.
Как именно учитывать лунные ритмы, еще не раз будет говориться в этой книге. А пока разберемся до конца в механизмах нашей взаимосвязи с Луной.
Все то, о чем мы говорили, – это физическое воздействие Луны. Но существует и другое воздействие – энергетическое.
Министерство образования Российской Федерации
МОУ «СОШ с. Солодники».
Реферат
на тему:
Почему Луна не падает на Землю?
Выполнил: Ученик 9 Кл,
Феклистов Андрей.
Проверил:
Михайлова Е.А.
С. Солодники 2006
1. Введение
2. Закон всемирного тяготения
3. Можно ли силу, с которой Земля притягивает Луну, назвать весом Луны?
4. Есть ли центробежная сила в системе Земля-Луна, на что она действует?
5. Вокруг чего обращается Луна?
6. Могут Земля и Луна столкнуться? Их орбиты вокруг Солнца пересекаются, и даже не один раз
7. Заключение
8. Литература
Введение
Звездное небо во все времена занимало воображение людей. Почему зажигаются звезды? Сколько их сияет в ночи? Далеко ли они от нас? Есть ли границы у звездной Вселенной? С глубокой древности человек задумывался над этими и многими другими вопросами, стремился понять, и осмыслить устройство того большого мира, в котором мы живем. При этом открылась широчайшая область для исследования Вселенной, где силы тяготения играют решающую роль.
Среди всех сил, которые существуют в природе, сила тяготения отличается, прежде всего, тем, что проявляется повсюду. Все тела обладают массой, которая определяется как отношение силы, приложенной к телу, к ускорению, которое приобретает под действием этой силы тело. Сила притяжения, действующая между любыми двумя телами, зависит от масс обоих тел; она пропорциональна произведению масс рассматриваемых тел. Кроме того, сила тяготения характеризуется тем, что она подчиняется закону обратно-пропорционально квадрату расстояния. Другие силы могут зависеть от расстояния совсем иначе; известно немало таких сил.
Все весомые тела взаимно испытывают тяготение, эта сила обуславливает движение планет вокруг солнца и спутников вокруг планет. Теория гравитации — теория созданная Ньютоном, стояла у колыбели современной науки. Другая теория гравитации, разработанная Эйнштейном, является величайшим достижением теоретической физики 20 века. В течение столетий развития человечества люди наблюдали явление взаимного притяжения тел и измеряли его величину; они пытались поставить это явление себе на службу, превзойти его влияние, и, наконец, уже в самое последнее время рассчитывать его с чрезвычайной точностью во время первых шагов вглубь Вселенной
Широко известен рассказ о том, что на открытие закона всемирного тяготения Ньютона навело падения яблока с дерева. Насколько достоверен этот рассказ, не знаем, но остается фактом, что вопрос: «почему луна не падает на землю?», интересовал Ньютона и привел его к открытию закона всемирного тяготения. Силы всемирного тяготения иначе называют гравитационными.
Закон всемирного тяготения
Заслуга Ньютона заключается не только в его гениальной догадке о взаимном притяжении тел, но и в том, что он сумел найти закон их взаимодействия, то есть формулу для расчета гравитационной силы между двумя телами.
Закон всемирного тяготения гласит: два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними
Ньютон рассчитал ускорение, сообщаемое Луне Землей. Ускорение свободно падающих тел у поверхности земли равно 9,8 м/с 2 . Луна удалена от Земли на расстояние, равное примерно 60 земным радиусам. Следовательно, рассуждал Ньютон, ускорение на этом расстояние будет: . Луна, падая с таким ускорением, должна бы приблизиться к Земле за первую секунду на 0,27/2=0,13 см
Но Луна, кроме того, движется и по инерции в направлении мгновенной скорости, т.е. по прямой, касательной в данной точке к ее орбите вокруг Земли (рис. 1). Двигаясь по инерции, Луна должна удалиться от Земли, как показывает расчет, за одну секунду на 1,3 мм. Разумеется, такого движения, при котором за первую секунду Луна двигалась бы по радиусу к центру Земли, а за вторую секунду — по касательной, мы не наблюдаем. Оба движения непрерывно складываются. Луна движется по кривой линии, близкой к окружности.
Рассмотрим опыт, из которого видно, как сила притяжения, действующая на тело под прямым углом к направлению движения по инерции, превращает прямолинейное движение в криволинейное (рис. 2). Шарик, скатившись с наклонного желоба, по инерции продолжает двигаться по прямой линии. Если же сбоку положить магнит, то под действием силы притяжения к магниту траектория шарика искривляется.
Как ни стараться, нельзя бросить пробковый шарик так, чтобы он описывал в воздухе окружности, но, привязав к нему нитку, можно заставить шарик вращаться по окружности вокруг руки. Опыт (рис. 3): грузик, подвешенный к нитке, проходящей через стеклянную трубочку, натягивает нить. Сила натяжения нити вызывает центростремительное ускорение, которое характеризует изменение линейной скорости по направлению.
Луна обращается вокруг Земли, удерживаемая силой притяжения. Стальной канат, который заменил бы эту силу, должен иметь диаметр около 600 км. Но, несмотря на такую огромную силу притяжения, Луна не падает на Землю, потому что имеет начальную скорость и, кроме того, движется по инерции.
Зная расстояние от Земли до Луны и число оборотов Луны вокруг Земли, Ньютон определил величину центростремительного ускорения Луны.
Получилось то же число — 0,0027 м/с 2
Прекратись действие силы притяжения Луны к Земле — и она по прямой линии умчится в бездну космического пространства. Улетит по касательной шарик (рис. 3), если разорвется нить, удерживающая шарик при вращении по окружности. В приборе на рис.4, на центробежной машине только связь (нитка) удерживает шарики на круговой орбите. При разрыве нити шарики разбегаются по касательным. Глазом трудно уловить их прямолинейное движение, когда они лишены связи, но если мы сделаем такой чертеж (рис. 5), то из него следует, что шарики будут двигаться прямолинейно, по касательной к окружности.
Прекратись движение по инерции — и Луна упала бы на Землю. Падение продолжалось бы четверо суток девятнадцать часов пятьдесят четыре минуты пятьдесят семь секунд — так рассчитал Ньютон.
Используя формулу закона всемирного тяготения, можно определить с какой силой Земля притягивает Луну: где G -гравитационная постоянная, т 1 и m 2 — массы Земли и Луны, r — расстояние между ними. Подставив в формулу конкретные данные, получим значение силы, с которой Земля притягивает Луну и она равна приблизительно 2 10 17 Н
Закон всемирного тяготения применим ко всем телам, значит, и Солнце тоже притягивает Луну. Давайте посчитаем с какой силой?
Масса Солнца в 300 000 раз больше массы Земли, но расстояние между Солнцем и Луной больше расстояния между Землей и Луной в 400 раз. Следовательно, в формуле числитель увеличится в 300 000 раз, а знаменатель — в 400 2 , или 160 000 раз. Сила тяготения получится почти в два раза больше.
Но почему же Луна не падает на Солнце?
Луна падает на Солнце так же, как и на Землю, т. е. лишь настолько, чтобы оставаться примерно на одном расстоянии, обращаясь вокруг Солнца.
Вокруг Солнца обращается Земля вместе со своим спутником — Луной, значит, и Луна обращается вокруг Солнца.
Возникает такой вопрос: Луна не падает на Землю, потому что, имея начальную скорость, движется по инерции. Но по третьему закону Ньютона силы, с которыми два тела действуют друг на друга, равны по величине и противоположно направлены. Поэтому, с какой силой Земля притягивает к себе Луну, с такой же силой Луна притягивает Землю. Почему же Земля не падает на Луну? Или она тоже обращается вокруг Луны?
Дело в том, что и Луна, и Земля обращаются вокруг общего центра масс, или, упрощая, можно сказать, вокруг общего центра тяжести. Вспомните опыт с шариками и центробежной машиной. Масса одного из шариков в два раза больше массы другого. Чтобы шарики, связанные ниткой, при вращении оставались в равновесии относительно оси вращения, их расстояния от оси, или центра вращения, должны быть обратно пропорциональны массам. Точка, или центр, вокруг которого обращаются эти шарики, называется центром масс двух шариков.
Третий закон Ньютона в опыте с шариками не нарушается: силы, с которыми шарики тянут друг друга к общему центру масс, равны. В системе Земля — Луна общий центр масс обращается вокруг Солнца.
Можно ли силу, с которой Земля притягивает Лу ну, назвать весом Луны?
Нет, нельзя. Весом тела мы называем вызванную притяжением Земли силу, с которой тело давит на какую-нибудь опору: чашку весов, например, или растягивает пружину динамометра. Если подложить под Луну (со стороны, обращенной к Земле) подставку, то Луна на нее не будет давить. Не будет Луна растягивать и пружину динамометра, если бы смогли ее подвесить. Все действие силы притяжения Луны Землей выражается лишь в удержании Луны на орбите, в сообщении ей центростремительного ускорения. Про Луну можно сказать, что по отношению к Земле она невесома так же, как невесомы предметы в космическом корабле-спутнике, когда прекращается работа двигателя и на корабль действует только сила притяжения к Земле, но эту силу нельзя называть весом. Все предметы, выпускаемые космонавтами из рук (авторучка, блокнот), не падают, а свободно парят внутри кабины. Все тела, находящиеся на Луне, по отношению к Луне, конечно, весомы и упадут на ее поверхность, если не будут чем-нибудь удерживаться, но по отношению к Земле эти тела будут невесомы и упасть на Землю не могут.
Есть ли центробежная сила в системе Земля — Луна, на что она действует?
В системе Земля — Луна силы взаимного притяжения Земли и Луны равны и противоположно направлены, а именно к центру масс. Обе эти силы центростремительные. Центробежной силы здесь нет.
Расстояние от Земли до Луны равно примерно 384 000 км. Отношение массы Луны к массе Земли равно 1/81. Следовательно, расстояния от центра масс до центров Луны и Земли будут обратно пропорциональны этим числам. Разделив 384 000 км на 81, получим примерно 4 700 км. Значит, центр масс находится на расстоянии 4 700 км от центра Земли.
Радиус Земли равен Около 6400 км. Следовательно, центр масс системы Земля — Луна лежит внутри земного шара. Поэтому, если не гнаться за точностью, можно говорить об обращении Луны вокруг Земли.
Легче улететь с Земли на Луну или с Луны на Землю, т.к. известно, для того чтобы ракета стала искусственным спутником Земли, ей надо сообщить начальную скорость ≈ 8 км/сек . Чтобы ракета вышла из сферы притяжения Земли, нужна так называемая вторая космическая скорость, равная 11,2 км/сек. Для запуска ракет с Луны нужна меньшая скорость т.к. сила тяжести на Луне в шесть раз меньше, чем на Земле.
Тела внутри ракеты становятся невесомыми с того момента, когда прекращают работу двигатели и ракета будет свободно лететь по орбите вокруг Земли, находясь при этом в поле тяготения Земли. При свободном полете вокруг Земли и спутник, и все предметы в нем относительно центра массы Земли движутся с одинаковым центростремительным ускорением и потому невесомы.
Как двигались не связанные ниткой шарики на центробежной машине: по радиусу или по касательной к окружности? Ответ зависит от выбора системы отсчета, т. е. относительно какого тела отсчета мы будем рассматривать движение шариков. Если за систему отсчета принять поверхность стола, то шарики двигались по касательным к описываемым ими окружностям. Если же принять за систему отсчета сам вращающийся прибор, то шарики двигались по радиусу. Без указания системы отсчета вопрос о движении вообще не имеет смысла. Двигаться — значит перемещаться относительно других тел, и мы должны обязательно указать, относительно каких именно.
Вокруг чего обращается Луна?
Если рассматривать движение относительно Земли, то Луна обращается вокруг Земли. Если же за тело отсчета принять Солнце, то — вокруг Солнца.
Могут Земля и Луна столкнуться? Их ор биты вокруг Солнца пересекаются, и даже не один раз .
Конечно, нет. Столкновение возможно только в том случае, если бы орбита Луны относительно Земли пересекала Землю. При положении же Земли или Луны в пункте пересечения показанных орбит (относительно Солнца) расстояние между Землей и Луной в среднем равно 380 000 км. Чтобы лучше в этом разобраться, давайте начертим следующею. Орбиту Земли изобразил в виде дуги окружности радиусом 15см (расстояние от Земли до Солнца, как известно, равно 150 000 000 км). На дуге, равной части окружности (месячный путь Земли), отметил на равных расстояниях пять точек, считая и крайние. Эти точки будут центрами лунных орбит относительно Земли в последовательные четверти месяца. Радиус лунных орбит нельзя изобразить в том же масштабе, в каком вычерчена орбита Земли, так как он будет слишком мал. Чтобы начертить лунные орбиты, надо выбранный масштаб увеличить примерно в десять раз, тогда радиус лунной орбиты составит около 4 мм. После этого указал на каждой орбите положение Луны, начав с полнолуния, и соединил отмеченные точки плавной пунктирной линией.
Главной задачей было разделить тела отсчета. В опыте с центробежной машиной оба тела отсчета одновременно проецируются на плоскость стола, поэтому очень трудно сосредоточить внимание на одном из них. Мы решили свою задачу так. Линейка из плотной бумаги (ее можно заменить полоской жести, плексигласа и т. п.) будет служить стержнем, по которому скользит картонный кружок, напоминающий шарик. Кружок двойной, склеенный по окружности, но с двух диаметрально противоположных сторон оставлены прорези, через которые продета линейка. Вдоль оси линейки сделаны отверстия. Телами отсчета служат линейка и лист чистой бумаги, который мы кнопками прикрепили к листу фанеры, чтобы не портить стола. Насадив линейку на булавку, как на ось, воткнули булавку в фанеру (рис.6). При повороте линейки на равные углы последовательно расположенные отверстия оказывались на одной прямой линии. Но при повороте линейки вдоль нее скользил картонный кружок, последовательные положения которого и требовалось отмечать на бумаге. Для этой цели в центре кружка тоже сделали отверстие.
При каждом повороте линейки острием карандаша отмечали на бумаге положение центра кружка. Когда линейка прошла через все заранее намеченные для нее положения, линейку сняли. Соединив метки на бумаге, убедились, что центр кружка перемещался относительно второго тела отсчета по прямой линии, а точнее по касательной к начальной окружности.
Но во время работы над прибором я сделал несколько интересных открытий. Во-первых, при равномерном вращении стержня (линейки) шарик (кружок) перемещается по нему не равномерно, а ускоренно. По инерции тело должно двигаться равномерно и прямолинейно — это закон природы. Но двигался ли наш шарик только по инерции, т. е. свободно? Нет! Его подталкивал стержень и сообщал ему ускорение. Это всем будет понятно, если обратиться к чертежу (рис. 7). На горизонтальной линии (касательной) точками 0, 1, 2, 3, 4 отмечены положения шарика, если бы он двигался совсем свободно. Соответствующие положения радиусов с теми же цифровыми обозначениями показывают, что шарик движется ускоренно. Ускорение шарику сообщает упругая сила стержня. Кроме того, трение между шариком и стержнем оказывает сопротивление движению. Если допустить, что сила трения равна силе, которая сообщает шарику ускорение, движение шарика по стержню должно быль равномерным. Как видно из рисунка 8, движение шарика относительно бумаги на столе криволинейное. На уроках черчения нам говорили, что такая кривая называется «спиралью Архимеда». По такой кривой вычерчивают профиль кулачков в некоторых механизмах, когда хотят равномерное вращательное движение превратить в равномерное поступательное движение. Если приставить друг к другу две такие кривые, то кулачок получит сердцевидную форму. При равномерном вращении детали такой формы упирающийся в нее стержень будет совершать поступательно-возвратное движение. Я сделал модель такого кулачка (рис. 9) и модель механизма для равномерной намотки ниток на катушку (рис. 10).
Я никаких открытий при выполнении задания не сделал. Но я многому научился, пока составлял эту диаграмму (рис. 11). Надо было правильно определить положение Луны в ее фазах, подумать о направлении движения Луны и Земли по их орбитам. В чертеже есть неточности. О них я сейчас скажу. При выбранном масштабе неправильно изображена кривизна лунной орбиты. Она должна быть все время вогнута по отношению к Солнцу, т. е. центр кривизны должен находиться внутри орбиты. Кроме того, в году не 12 лунных месяцев, а больше. Но одну двенадцатую часть окружности легко построить, поэтому я условно принял, что в году 12 лунных месяцев. И, наконец, вокруг Солнца обращается не сама Земля, а общий центр масс системы Земля — Луна.
Заключение
Одним из ярких примеров достижений науки, одним из свидетельств неограниченной познаваемости природы было открытие планеты Нептун путем вычислений -«на кончике пера».
Уран — планета, следующая за Сатурном, который много веков считался самой далекой из планет, была открыта В. Гершелем в конце XVIII в. Уран с трудом виден невооруженным глазом. К 40-м годам XIX в. точные наблюдения показали, что Уран едва заметно уклоняется от того пути, по которому он должен следовать» с учетом возмущений со стороны всех известных планет. Таким образом, теория движения небесных тел, столь строгая и точная, подверглась испытанию.
Леверье (во Франции) и Адаме (в Англии) высказали предположение, что, если возмущения со стороны известных планет не объясняют отклонение в движении Урана, значит, на него действует притяжение еще неизвестного тела. Они почти одновременно рассчитали, где за Ураном должно быть неизвестное тело, производящее своим притяжением эти отклонения. Они вычислили орбиту неизвестной планеты, ее массу и указали место на небе, где в данное время должна была находиться неведомая планета. Эта планета и была найдена в телескоп на указанном ими месте в 1846 г. Ее назвали Нептуном. Нептун не виден невооруженным глазом. Так, разногласие между теорией и практикой, казалось, подрывавшее авторитет материалистической науки, привело к ее триумфу.
Список литературы:
1. М.И. Блудов – Беседы по физике, часть первая, второе издание, переработанное, Москва «Просвещение» 1972.
2. Б.А. Воронцов-вельямов – Астрономия!1 класс, издание 19-ое, Москва «Просвещение» 1991.
3. А.А. Леонович – Я познаю мир, Физика, Москва АСТ 1998.
4. А.В. Перышкин, Е.М. Гутник – Физика 9 класс, Издательский дом «Дрофа» 1999.
5. Я.И. Перельман – Занимательная физика, книга 2, Издание 19-ое, издательство «Наука», Москва 1976.
Репетиторство
Нужна помощь по изучению какой-либы темы?
Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.
Ученик . Широко известен рассказ о том, что на открытие закона всемирного тяготения Ньютона навело падение яблока с дерева. Насколько достоверен этот рассказ, мы не знаем, но остается фактом, что вопрос, который мы собрались сегодня обсудить: «Почему Луна не падает на Землю?», интересовал Ньютона и привел его к открытию закона тяготения. Ньютон утверждал, что между Землей и всеми материальными телами существует сила тяготения, которая обратно пропорциональна квадрату расстояния.
Ньютон рассчитал ускорение, сообщаемое Луне Землей. Ускорение свободно падающих тел у поверхности Земли равно g=9,8 м/с 2 . Луна удалена от Земли на расстояние, равное примерно 60 земным радиусам. Следовательно, рассуждал Ньютон, ускорение на этом расстоянии будет: . Луна, падая с таким ускорением, должна бы приблизиться к Земле за первую секунду на 0,0013 м. Но Луна, кроме того, движется и по инерции в направлении мгновенной скорости, т. е. по прямой, касательной в данной точке к ее орбите вокруг Земли (рис. 25).
Двигаясь по инерции, Луна должна удалиться от Земли, как показывает расчет, за одну секунду на 1,3 мм. Разумеется, такого движения, при котором за первую секунду Луна двигалась бы по радиусу к центру Земли, а за вторую секунду – по касательной, в действительности не существует. Оба движения непрерывно складываются. В результате Луна движется по кривой линии, близкой к окружности.
Проведем опыт, из которого видно, как сила притяжения, действующая на тело под прямым углом к направлению его движения, превращает прямолинейное движение в криволинейное. Шарик, скатившись с наклонного желоба, по инерции продолжает двигаться по прямой линии. Если же сбоку положить магнит, то под действием силы притяжения к магниту траектория шарика искривляется (рис. 26).
Луна обращается вокруг Земли, удерживаемая силой притяжения. Стальной канат, который мог бы удержать Луну на орбите, должен был бы иметь диаметр около 600 км. Но, несмотря на такую огромную силу притяжения, Луна не падает на Землю, потому что, имея начальную скорость, движется по инерции.
Зная расстояние от Земли до Луны и число оборотов Луны вокруг Земли, Ньютон определил центростремительное ускорение Луны. Получилось уже известное нам число: 0,0027 м/с2.
Прекратись действие силы притяжения Луны к Земле – и Луна по прямой линии умчится в бездну космического пространства. Так в устройстве, показанном на рисунке 27, улетит по касательной шарик, если разорвется нить, удерживающая шарик на окружности. В известном вам приборе на центробежной машине (рис. 28) только связь (нитка) удерживает шарики на круговой орбите.
При разрыве нити шарики разбегаются по касательным. Глазом трудно уловить их прямолинейное движение, когда они лишены связи, но если мы сделаем чертеж (рис. 29), то будет видно, что шарики двигаются прямолинейно, по касательной к окружности.
Прекратись движение по инерции – и Луна упала бы на Землю. Падение продолжалось бы четверо суток девятнадцать часов пятьдесят четыре минуты пятьдесят семь секунд, так рассчитал Ньютон.
Учитель , присутствующий на занятии кружка. Доклад окончен. У кого есть вопросы?
Вопрос . С какой силой Земля притягивает Луну?
Ученик . Это можно определить по формуле, выражающей закон тяготения: , где G – гравитационная постоянная, M и m – массы Земли и Луны, r – расстояние между ними. Я ожидал этого вопроса и сделал вычисление заранее. Земля притягивает Луну с силой около 2 * 10 20 Н.
Вопрос . Закон всемирного тяготения применим ко всем телам, значит, и Солнце тоже притягивает Луну. Интересно, с какой силой?
Ответ . Масса Солнца в 300000 раз больше массы Земли, но расстояние между Солнцем и Луной больше расстояния между Землей и Луной в 400 раз. Следовательно, в формуле числитель увеличится в 300000 раз, а знаменатель – в 400 2 , или 160000 раз. Сила тяготения получится почти в два раза больше.
Вопрос . Почему же Луна не падает на Солнце?
Ответ . Луна падает на Солнце так же, как и на Землю, т. е. лишь на столько, чтобы оставаться примерно на одном расстоянии, обращаясь вокруг Солнца.
– Вокруг Земли!
– Неверно, не вокруг Земли, а вокруг Солнца. Вокруг Солнца обращается Земля вместе со своим спутником – Луной, значит, и Луна обращается вокруг Солнца.
Вопрос . Луна не падает на Землю, потому что, имея начальную скорость, движется по инерции. Но по третьему закону Ньютона силы, с которыми два тела действуют друг на друга, равны по модулю и противоположно направлены. Поэтому, с какой силой Земля притягивает к себе Луну, с такой же силой Луна притягивает Землю. Почему же Земля не падает на Луну? Или она обращается вокруг Луны?
Учитель . Дело в том, что и Луна, и Земля обращаются вокруг общего центра масс. Вспомните опыт с шариками и центробежной машиной. Масса одного из шариков в два раза больше массы другого. Чтобы шарики, связанные ниткой, при вращении оставались в равновесии относительно оси вращения, их расстояния от оси, или центра вращения, должны быть обратно пропорциональны массам. Точка, вокруг которой обращаются эти шарики, называется центром масс двух шариков.
Третий закон Ньютона в опыте с шариками не нару|лается: силы, с которыми шарики тянут друг друга к общему центру масс, равны. Общий центр масс Земли и Луны обращается вокруг Солнца.
Вопрос . Можно ли силу, с которой Земля притягивает Луну, назвать весом Луны?
Ученик . Нет, нельзя! Весом тела мы называем вызванную притяжением Земли силу, с которой тело давит на какую-нибудь опору, чашку весов например, или растягивает пружину динамометра. Если подложить под Луну (со стороны, обращенной к Земле) подставку, то Луна на нее не будет давить. Не будет Луна растягивать и пружину динамометра, если бы мы смогли ее подвесить. Все действие силы притяжения Луны Землей выражается лишь в удержании Луны на орбите, в сообщении ей центростремительного ускорения. Про Луну можно сказать, что по отношению к Земле она невесома так же, как невесомы предметы в космическом корабле-спутнике, когда прекращается работа двигателя и на корабль действует только сила притяжения к Земле.
Вопрос . Где находится центр масс системы Земля – Луна?
Ответ . Расстояние от Земли до Луны составляет 384000 км. Отношение массы Луны к массе Земли равно 1:81. Расстояния от центра масс до центров Луны и Земли будут обратно пропорциональны этим числам. Разделив 384000 км на 82, получим примерно 4700 км. Значит, центр масс находится на расстоянии 4700 км от центра Земли.
– А чему равен радиус Земли?
– Около 6400 км.
– Следовательно, центр масс системы Земля – Луна лежит внутри земного шара (рис. 30, точка O). Поэтому, если не гнаться за точностью, можно говорить об обращении Луны вокруг Земли.
Вопрос . Что легче: улететь с Земли на Луну или с Луны на Землю?
Ответ . Чтобы ракета стала искусственным спутником Земли, ей надо сообщить начальную скорость, приблизительно равную 8 км/с. Чтобы ракета вышла из сферы притяжения Земли, нужна так называемая вторая космическая скорость, равная 11,2 км/с. Для запуска ракет с Луны нужна меньшая скорость: ведь сила тяжести на Луне в шесть раз меньше, чем на Земле.
Вопрос . Я плохо понимаю, почему внутри ракеты тела не имеют веса. Может быть, это только в той точке на пути к Луне, в которой сила притяжения к Луне уравновешивается силой притяжения к Земле?
Учитель . Нет. Тела внутри ракеты становятся невесомыми с того момента, когда прекращают работу двигатели и ракета начинает свободный полет по орбите вокруг Земли, находясь при этом в поле тяготения Земли. При свободном полете вокруг Земли и спутник, и все предметы в нем относительно центра массы Земли движутся с одинаковым центростремительным ускорением и потому невесомы.
1-й вопрос . Как двигались не связанные ниткой шарики на центробежной машине: по радиусу или по касательной к окружности?
Ответ зависит от выбора системы отсчета, т. е. от выбора того тела, относительно которого мы рассматриваем движение шариков. Если за систему отсчета принять поверхность стола, то шарики двигались по касательным к описываемым ими окружностям. Если же принять за систему отсчета сам вращающийся прибор, то шарики двигались по радиусу. Без указания системы отсчета вопрос о характере движения не имеет смысла. Двигаться – значит перемещаться относительно других тел, и мы должны обязательно указывать, относительно каких именно.
2-й вопрос . Вокруг чего обращается Луна?
Если рассматривать движение относительно Земли, то Луна обращается вокруг Земли. Если же за тело отсчета принять Солнце, то – вокруг Солнца. Поясню сказанное рисунком из книги «Занимательная астрономия» Перельмана (рис. 31). Скажите, относительно какого тела показано здесь движение небесных тел.
– Относительно Солнца.
– Верно. Но нетрудно заметить, что Луна все время меняет свое положение и относительно Земли.
Учитель . Конечно, не могут. При положении Земли или Луны (заметьте, я говорю «или», а не «и») в пункте пересечения показанных орбит расстояние между Землей и Луной составляет 380000 км. Чтобы лучше в этом разобраться, начертите к следующему занятию диаграмму этого сложного движения. Орбиту Земли изобразите в виде дуги окружности радиусом 15 см (расстояние от Земли до Солнца, как известно, равно 150000000 км). На дуге, равной 1/12 части окружности (месячный путь Земли), отметьте на равных расстояниях пять точек, считая и крайние. Эти точки будут центрами лунных орбит относительно Земли в последовательные четверти месяца. Радиус лунных орбит нельзя изобразить в том же масштабе, в каком вычерчена орбита Земли, так как он будет слишком мал. Чтобы начертить лунные орбиты, надо выбранный масштаб увеличить примерно в десять раз, тогда радиус лунной орбиты составит около 4 мм. Укажите на каждой орбите положение Луны, начав с полнолуния, и соедините отмеченные точки плавной пунктирной линией.
На следующем занятии кружка одна из учениц показала требуемую диаграмму (рис. 32).
Рассказ ученицы, чертившей диаграмму: «Я многому научилась, пока рисовала эту диаграмму. Надо было правильно определить положение Луны в ее фазах, подумать о направлении движения Луны и Земли по их орбитам. В чертеже есть неточности. О них я сейчас скажу. При выбранном масштабе неправильно изображена кривизна лунной орбиты. Она должна быть все время вогнута по отношению к Солнцу, т. е. центр кривизны должен находиться внутри орбиты. Кроме того, в году не 12 лунных месяцев, а больше. Но одну двенадцатую часть окружности легко построить, поэтому я условно приняла, что в году 12 лунных месяцев. И наконец, вокруг Солнца обращается не сама Земля, а общий центр масс системы Земля – Луна».
О путешествиях к звездам люди мечтали издревле, начиная с тех времен, когда первые астрономы рассмотрели в примитивные телескопы иные планеты нашей системы и их спутники. С тех пор прошло много веков, но увы, межпланетные и тем более полеты к другим звездам невозможны и сейчас. А единственным внеземным объектом, где побывали исследователи, является Луна.
Мы знаем, что силой тяжести называется сила, с которой Земля притягивает различные тела.
Сила тяжести всегда направлена к центру планеты. Сила тяжести сообщает телу ускорение, которое называется ускорением свободного падения и численно равно 9,8м/с 2 . Это значит, что любое тело, независимо от его массы при свободном падении (без сопротивления воздуха) изменяет свою скорость за каждую секунду падения на 9,8 м/с.
Используя формулу для нахождения ускорения свободного падения
Масса планет M и их радиус R известны благодаря астрономическим наблюдениям и сложным расчетам.
а G — гравитационная постоянная (6,6742 10 -11 м 3 с -2 кг -1).
Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли (масса М = 5,9736 1024 кг, радиус R = 6,371 106 м), мы получим g=6,6742 * 10 *5,9736 / 6,371*6,371 = 9,822м/с 2
Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с 2 , а в технических расчётах обычно принимают g = 9,81 м/с 2 .
Стандартное значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.
Благодаря притяжению к Земле течет вода в реках. Человек, подпрыгнув, опускается на Землю, потому что Земля притягивает его. Земля притягивает к себе все тела: Луну, воду морей и океанов, дома, спутники и т. п. Благодаря силе тяжести облик нашей планеты непрерывно меняется. Сходят с гор лавины, движутся ледники, обрушиваются камнепады, выпадают дожди, текут реки с холмов на равнины.
Все живые существа на земле чувствуют ее притяжение. Растения также «чувствуют» действие и направление силы тяжести, из-за чего главный корень всегда растет вниз, к центру земли, а стебель вверх.
Земля и все остальные планеты, движущиеся вокруг Солнца, притягиваются к нему и друг к другу. Не только Земля притягивает к себе тела, но и эти тела притягивают к себе Землю. Притягивают друг друга и все тела на Земле. Например, притяжение со стороны Луны вызывает на Земле приливы и отливы воды, огромные массы которой поднимаются в океанах и морях дважды в сутки на высоту нескольких метров. Притягивают друг друга и все тела на Земле. Поэтому ВЗАИМНОЕ ПРИТЯЖЕНИЕ ВСЕХ ТЕЛ ВСЕЛЕННОЙ НАЗЫВАЕТСЯ ВСЕМИРНЫМ ТЯГОТЕНИЕМ.
Чтобы определить силу тяжести, действующую на тело любой массы, необходимо ускорение свободного падения умножить на массу этого тела.
F = g * m ,
где m-масса тела, g – ускорение свободного падения.
Из формулы видно, что значение силы тяжести увеличивается с увеличением массы тела. Так же видно, что сила тяжести зависит также от величины ускорения свободного падения. Значит, делаем вывод: для тела неизменной массы значение силы тяжести меняется с изменение ускорения свободного падения.
Используя формулу для нахождения ускорения свободного падения g=GМ/R 2
Мы можем рассчитать значения g на поверхности любой планеты. Масса планет M и их радиус R известны благодаря астрономическим наблю¬дениям и сложным расчетам. где G — гравитационная постоянная (6,6742 10 -11 м 3 с -2 кг -1).
Планеты издавна делились учеными на две группы. Первая – это планеты земного типа: Меркурий, Венера, Земля, Марс, с недавних пор – Плутон. Для них характерны относительно небольшие размеры, малое количество спутников и твердое состояние. Оставшиеся – Юпитер, Сатурн, Уран, Нептун – планеты-гиганты, состоящие из газообразного водорода и гелия. Все они движутся вокруг Солнца по эллиптическим орбитам, отклоняясь от заданной траектории, если рядом проходит планета-сосед.
Наша «первая космическая станция» — Марс. Сколько же человек будет весить на Марсе? Сделать такой расчет нетрудно. Для этого необходимо знать массу и радиус Марса.
Как известно, масса «красной планеты» в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго — в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53: 9,31 = 0,38). Она составляет 0,38 g от земной, это примерно в два раза меньше. Это значит, что на красной планете можно скакать и прыгать гораздо выше, чем на Земле, и все тяжести весить будут также значительно меньше. Таким же образом можно определить напряжение силы тяжести на любом небесном теле.
Теперь определим, напряжение силы тяжести на Луне. Масса Луны, как мы знаем, в 81 раз меньше массы Земли. Если бы Земля обладала такой маленькой массой, то напряжение силы тяжести на ее поверхности было бы в 81 раз слабее, чем теперь. Но по закону Ньютона шар притягивает так, словно вся его масса сосредоточена в центре. Центр Земли отстоит от ее поверхности на расстоянии земного радиуса, центр Луны – на расстоянии лунного радиуса. Но лунный радиус составляет 27/100 земного, а от уменьшения расстояния в 100/27 раза сила притяжения увеличивается в (100/27) 2 раз. Значит, в конечном итоге напряжение силы тяжести на поверхности Луны составляет
100 2 / 27 2 * 81 = 1 / 6 земного
Любопытно, что если бы на Луне существовала вода, пловец чувствовал бы себя в лунном водоеме так же, как на Земле. Его вес уменьшился бы в шесть раз, но во столько же раз уменьшился бы и вес вытесняемой им воды; соотношение между ними было бы такое же, как на Земле, и пловец погружался бы в воду Луны ровно на столько же, на сколько погружается он у нас.
ускорение свободного падения на поверхности некоторых небесных тел, м/с 2
Солнце 273,1
Меркурий 3,68-3,74
Венера 8,88
Земля 9,81
Луна 1,62
Церера 0,27
Марс 3,86
Юпитер 23,95
Сатурн 10,44
Уран 8,86
Нептун 11,09
Плутон 0,61
Как видно из таблицы, почти идентичное значение ускорения свободного падения присутствует на Венере и составляет 0,906 от земной.
Теперь условимся, что на Земле космонавт-путешественник весит ровно 70кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса):
А вот на Солнце гравитация (притяжение) в 28 раз сильнее, чем на Земле. Человеческое тело весило бы там 20000 Н и было бы мгновенно раздавлено собственной тяжестью.
Если нам предстоит космическое путешествие по планетам Солнечной системе, то нужно быть готовым к тому, что наш вес будет меняться. Сила притяжения также оказывает различные воздействия на живых существ. Попросту говоря, когда будут открыты другие обитаемые миры, мы увидим, что их обитатели сильно отличаются друг от друга в зависимости от массы их планет. К примеру, будь Луна обитаема, то ее населяли бы очень высокие и хрупкие существа, и наоборот, на планете массой с Юпитер жители были бы очень низкие, крепкие и массивные. А иначе на слабых конечностях в таких условиях попросту не выживешь при всем желании. Сила притяжения сыграет важную роль и при будущей колонизации того же Марса.
Почему Луна не притянется к Солнцу, ведь её сила притяжения в 2 раза больше??? и получил лучший ответ Ответ от Дядя Фёдор[гуру] Ответ от Николай Горелов [гуру] Ответ от Владимир Медведев [новичек] Ответ от Анатолий Низгодинский [гуру] Ответ от Константин Охотник [гуру] Ответ от Евгений Юртаев [эксперт] Ответ от Влада Шатрова [активный] Ответ от White Rabbit [гуру] Ответ от Данилочкин фёдор [гуру] Ответ от 3 ответа [гуру] Привет! Вот подборка тем с ответами на Ваш вопрос: Почему Луна не притянется к Солнцу, ведь её сила притяжения в 2 раза больше??? Почему система Земля-Луна не падает на Солнце? Притяжение Солнцем системы Земля-Луна очень велико. Ведь масса Солнца в 329000 раз больше суммарной массы Земли и Луны. Приливы , вызываемые взаимным притяжением Земли и Луны, сильнее солнечных. Солнце вызывает и сравнительно слабые приливы и отливы в системе Земля-Луна, вытягивая орбиту Луны вокруг Земли и сжимая ее с боков. Приливные действия со стороны Солнца слабы, потому, что зависят от РАЗНОСТИ сил, действующих на ближнюю и дальную стороны притягивающихся объектов, а размеры этих объектов малы по сравнению с расстоянием до Солнца. В то же время притяжение Солнцем ВСЕЙ СИСТЕМЫ Земля-Луна ЦЕЛИКОМ очень велико. Почему же она не падает на Солнце? Ведь масса Солнца в 329000 раз больше суммарной массы Земли и Луны. Конечно, упала бы прямо на Солнце, если бы Земля остановилась на орбите, а не двигалась бы, как сейчас, вокруг Солнца со скоростью 30 километров в секунду. (С такой скоростью можно на машине доехать до Самары за 7 секунд!). А если бы не притяжение Солнца, Земля улетела бы по касательной к своей орбите. Солнце препятствует этому и заставляет все тела Солнечной системы вращаться вокруг него. Почему же тела Солнечной системы вращаются по орбитам с такими большими скоростями? Потому, что Солнечная система образовалась из быстро вращавшегося облака. Увеличение его угловой скорости явилось следствием гравитационного сжатия облака к своему центру масс, в котором впоследствии образовалось Солнце. Еще до сжатия облако уже имело угловую и поступательную скорости. Поэтому Солнечная система не только вращается, но и движется в направлении созвездия Геркулеса со скоростью 20 километров в секунду. И Земля с Луной также участвуют в этом движении. В чем причина поступательного и вращательного движений облака до начала его гравитационного сжатия? «Наше» облако — небольшая часть одного из огромных газопылевых комплексов, заполняющих нашу Галактику. Из многочисленных причин, вызывающих сложное движение этих комплексов, назовем несколько основных. Нетвердотельное вращение Галактики. Галактика — не твердое тело. Скорость вращения той части комплекса, которая ближе к центру Галактики, больше той, которая дальше, возникает пара сил, поворачивающая газовопылевой комплекс. Магнитные поля Галактики. Газовая составляющая содержит ионы, а пылевая — железо и другие металлы. Взаимодействуя со сложными галактичскими полями, комплексы движутся вдоль магнитных силовых линий. Взрывы сверхновых звед. Сбрасываемое во время взрыва вещество сверхновой разгоняет окружающее гозопылевое вещество со скоростми в тысячи километров в секунду. Менее эффективно действуют «новые» и другие звезды, сбрасывающие атмосферы. Звездный ветер. Горячие гигантские звезды своим звездным ветром разгоняют газопылевое вещество, из которого они образовались, Причин много. В Галактике все объекты имеют свои собственные вращательные и поступательные скорости. Проблема, о которой говорится в данной заметке, относится к задачам космогонии. Над ней голову ломали ученые с момента общего понимания устройства нашей Солненой системы. Как минимум лет триста этой проблеме. Сейчас, в целом, задача качественно решена. Об этом и написана познавательная заметка Рахиль Менашевны. Однако до сих пор остается множество загадок, особенно в количественном исчислении параметров Солнечной системы. О части этих загадкок уже писалось у нас. Часть из них описывала Рахиль Менашевна. Например, почему на Земле много воды, и как эта вода к нам попала. Очень бы хотелось понять, как происходило образование нашего Солнца и Солнечной системы. Но эта проблема, возможно, до конца решена не будет никогда. Период обращения Солнца вокруг центра Галактики примерно 250 миллионов лет. За время жизни Солнца, а это примерно 4.5 миллиарда лет Солнце сделало 16-17 оборотов. За это время, по всей видимости, наше Солнце разошлось очень далеко со своими сестрами, которые родились вместе с ней. Поэтому для того, чтобы разобраться с начальными условиями, надо бы установить, какие звезды являются сестрами нашему Солнцу. Но, к сожалению, мы пока этого сделать не можем. А было бы здорово сказать — вон та звезда родилась из того же облака, что и Солнце, а вот эта была рядом с ним во время рождения. Вот к примеру, в радиусе 15 световых лет от Солнца имеются две системы с белым карликом. Это Сириус и Процион. Эти системы похожи друг на друга. Они родились вместе с Солнцем или нет? Ваш неожиданный вопрос меня тоже заинтересовал. Думаю, что предположение об образовании Сонца, Сириуса и Проциона из одного общего облака соответствует действительности. Еще я нашла в справочнике П.Г. Куликовского, что эти звезды имеют довольно маленькие относительные лучевые скорости: приближаются к Солнцу со скоростями 8 и 3 км/с соответственно, в то время как большинство лучевых скоростей звезд лежат в пределах 20 — 30 км/с. Возможно, эти звезды так и вращаются вместе вокруг центра Галактики. Цель моих коротких статей — объяснить суть рассматриваемых явлений. Я могла бы их дополнить многими подробностями, но стараюсь этого не делать, еще больше подробностей можно было бы взять из литературы, а еще бльше, как Вы справедливо заметили, науке неизвестны. Уважаемая RMR_stra ! Очень интересная информация! У меня достаточно давно крутится одна идея! Предположим, что Сириус или Процион были рождены с Солнцем из одного и того же облака. Возраст Солнца мы знаем. Это около 4.5 миллиардов лет. Это примерно половина срока жизни Солнца. Белые карлики не могут иметь массу, превышающую массу Солнца в два раза. Скорее где-то 1. 5 массы Солнца. Но звезды с массой в два-полтора раза больше солнечной и живут во столько же раз меньше, чем Солнце, примерно, конечно. Но это означает, что белые карлики в системах Сатурна и Проциона появились совсем недавно. Возможно, что сброс оболочки этих звезд видели наши предки в виде каких-то грандиозных небесных фейерверков. Есть так называемый диск из Небры . По оценке ему порядка 5000 лет. На нем есть какие-то дуги на звездном небе. Сброшенная оболочка должна была бы на небе Земли выглядеть такими сверкающими дугами. На диске дуги соседствуют, как считают, с семью звездами Плеяд. А они как раз располагаются практически в том же секторе неба, что и Сириус и Процион. Более того, можно даже предположить, что достижение сброшенной оболочкой Солнечной системы через несколько сотен лет после сброса, могло вызвать в атмосфере Земли усиленную конденсацию влаги (за счет увеличения потока заряженных частиц), т.е. дождь. Такой дождь мог длиться все время, за которое центральная чать оболочки проходит Землю. А это время должно исчисляться несколькими десятками дней. Земля имеет форму шара. Но если это так, то почему с ее поверхности не падают предметы, на ней находящиеся. Все происходит как раз наоборот. Подброшенный вверх камень возвращается назад, падают вниз снежинки и капли дождя, летит вниз опрокинутая со стола посуда. Всему виной земная гравитация, которая притягивает к земной поверхности все материальные тела. Получается, что между всеми телами, в том числе и космическими, возникают силы притяжения. Если следовать логике, то меньшее тело, коим, например, является та же Луна, должно обязательно упасть на Землю. Аналогичную версию можно выдвинуть и по поводу нашей Солнечной системы. По идее, все входящие в нее планеты, должны были бы давно упасть на Солнце. Однако этого не происходит. Возникает вполне логичный вопрос, а почему? Во- первых, все планеты Солнечной системы держаться около солнца, благодаря его огромной силы тяготения, и не падают на него только потому, что находятся в постоянном движении, которое происходит по эллиптической орбите. То же самое можно сказать и о Луне, которая также движется вокруг Земли, а поэтому на нее и не падает. Если бы не было сил тяготения, то не было бы и Солнечной системы. Земля свободно странствовала бы по космосу, оставаясь пустынной и безжизненной. Аналогичная участь постигла бы и ее спутник, Луну. Она бы не кружилась вокруг Земли по эллиптической орбите, а давно бы выбрала для себя самостоятельный маршрут. Но, попав в зону действия земной гравитации, она вынуждена менять прямолинейную траекторию движения, на эллиптическую. Если бы не постоянное движение Луны, она давно бы упала на Землю. Получается, что до тех пор, пока планеты движутся вокруг Солнца, они на него упасть не могут. А все потому, что на них постоянно действуют две силы, сила тяготения и сила инерции движения. В результате все планеты движутся не по прямой, а по эллиптической орбите. Собственно говоря, существующий порядок во Вселенной сохраняется только благодаря закону всемирного тяготения, который был открыт Исааком Ньютоном. Ему подчиняются все космические объекты, включая искусственные спутники Земли, запущенные человеком. Те же приливы и отливы, свидетелями которых мы являемся, также обусловлены действием взаимных сил тяготения Луны, Земли и Солнца. При этом действия Луны более выражены, так она находится намного ближе к Земле, нежели Солнце. И все же, почему Земля не падает на Солнце, ведь ее масса, по сравнению с небесным светилом, в сотни тысяч раз меньше, и по логике, она должна к нему моментально прилипнуть? Это обязательно произошло бы, но только в том случае, если бы наша планета остановилась. Но так как она движется вокруг Солнца со скоростью 30 километров в одну секунду, то этого и не происходит. Улететь от него она также не может, ввиду огромных сил солнечного притяжения. В результате, прямолинейное движение Земли постепенно искривляется, и переходит в эллиптическое. Аналогично движутся и другие планеты Солнечной системы. Столь высокие скорости вращения планет ученые связали с особенностью образования Солнечной системы. По их мнению, она возникла из быстро вращающегося космического облака, которое подверглось гравитационному сжатию к центру, из которого, впоследствии, и возникло Солнце. Само же облако имело как угловую, так и поступательную скорости. После сжатия, их значение увеличилось, и затем было передано образовавшимся планетам. Поступательно движутся не только планеты Солнечной системы, но и она сама, причем, со скоростью 20 км/час. Траектория этого движения направлена в сторону созвездия «Геркулес». Что явилось причиной вращения и поступательного движения самого пылевого облака? Ученые сходятся во мнении, что так ведет себя вся Галактика. При этом все объекты, расположенные ближе к ее центру, вращаются с большей скоростью, а те, что дальше- с меньшей. Возникшая разность сил разворачивает Галактику, чем и обусловлено сложное движение входящих в нее газовых комплексов. Кроме того, на траекторию их движения оказывают влияние галактические магнитные поля, взрывы звезд и звездный ветер. Действительно, странно: Солнце огромными силами тяготения удерживает около себя Землю и все другие планеты Солнечной системы, не дает им улететь в космическое пространство. Странно, казалось бы, то, что Земля около себя удерживает Луну. Между всеми телами действуют силы тяготения, но не падают планеты на Солнце потому, что находятся в движении, в этом-то и секрет. Все падает вниз, на Землю: и капли дождя, и снежинки, и сорвавшийся с горы камень, и опрокинутая со стола чашка. А Луна? Она вращается вокруг Земли. Если бы не силы тяготения, она улетела бы по касательной к орбите, а если бы она вдруг остановилась, то упала бы на Землю. Луна, вследствие притяжения Земли, отклоняется от прямолинейного пути, все время как бы “падая” на Землю. Движение Луны происходит по некоторой дуге, и пока действует гравитация, Луна на Землю не упадет. Так же и с Землей — если бы она остановилась, то упала бы на Солнце, но этого не произойдет по той же причине. Два вида движения — одно под действием силы тяготения, другое по инерции — складываются и в результате дают криволинейное движение. Закон всемирного тяготения, удерживающий в равновесии Вселенную, открыл английский ученый Исаак Ньютон. Когда он опубликовал свое открытие, люди говорили, что он сошел с ума. Закон тяготения определяет не только движение Луны, Земли, но и всех небесных тел в Солнечной системе, а также искусственных спутников, орбитальных станций, межпланетных космических кораблей. Солнце, Луна, большие планеты, их достаточно крупные спутники и подавляющее число далеких звезд имеют форму шара. Во всех случаях причина этого — гравитация. Силы тяготения действуют на все тела во Вселенной. Любая масса притягивает к себе другую массу тем сильнее, чем меньше расстояние между ними, причем никаким способом нельзя изменить (усилить или ослабить) это притяжение…. Мир камня разнообразен и удивителен. В пустынях, на горных хребтах, в пещерах, под водой и на равнинах камни, обработанные силами природы, напоминают готические храмы и диковинных животных, суровых воинов и фантастические пейзажи. Природа всюду и во всем проявляет свою бурную фантазию. Каменная летопись планеты писалась на протяжении миллиардов лет. Ее создавали потоки раскаленной лавы, барханы… По всей нашей планете среди полей и лугов, лесных массивов и горных хребтов разбросаны голубые пятна различного размера и формы. Это озера. Возникли озера по разным причинам. Выдул ветер углубление, вымыла вода котловину, выпахал ледник впадину или горный обвал запрудил долину реки – вот и образовался в таком понижении рельефа водоем. Всего в мире около… Испокон веков на Руси знали, что есть гиблые места, в которых нельзя селиться. В роли инспекторов-эыергоэкологов выступали “сведущие люди” — иноки, схимники, лозоходцы. Разумеется, они ничего не знали ни о геологических разломах, ни о подземных водостоках, зато у них были свои профессиональные приметы. Блага цивилизации постепенно отучили нас чутко реагировать на изменения в окружающей среде,… Обычай измерять время семидневной неделей пришел к нам из Древнего Вавилона и был связан с изменением фаз Луны. Число “семь” считалось исключительным, священным. В свое время древневавилонские астрономы обнаружили, что, кроме неподвижных звезд, на небе видны семь блуждающих светил, которые были названы планетами. Древневавилонские астрономы считали, что каждый час суток находится под покровительством определенной планеты…. Отсчет знаков зодиака по эклиптике начинается с точки весеннего равноденствия — 22 марта. Эклиптика и небесный экватор пересекаются в двух точках равноденствий: весеннего и осеннего. В эти дни на всем Земном шаре день по длительности равен ночи. Строго говоря, это не совсем правильно, так как из-за смещений земной оси (прецессии) созвездия и знаки зодиака не… Я умираю — ибо так хочу. Развей, палач, развей мой прах презренный! Привет Вселенной, Солнцу! Палачу Он мысль мою развеет по Вселенной! И. Бунин Эпоха Возрождения отмечена не только расцветом наук и искусства, но и появлением могучих творческих личностей. Один из них — ученый и философ, мастер логических доказательств, побеждавший в спорах профессоров Англии, Германии,… По определению метеорологов, погода — это состояние самых нижних слоев воздуха — тропосферы. Поэтому характер погоды зависит от температуры различных участков земной поверхности. Первопричиной погоды и климата является Солнце. Это его лучи приносят на Землю энергию, это они по-разному согревают земную поверхность в различных районах земного шара. До самого последнего времени количество солнечной энергии, поступающей… Одним из обвинений, предъявленных Великому Галилею “великой” инквизицией, было изучение им с помощью телескопа пятен на “чистейшем лике божественного светила”. Пятна на заходящем или на неярком Солнце, видимом сквозь облака, люди замечали еще задолго до изобретения телескопов. Но Галилей “посмел” о них громко заявить, доказать, что эти пятна не кажущиеся, а реальные образования, что они… Самая крупная планета носит имя верховного бога Олимпа. По объему Юпитер больше Земли в 1310 раз, а по массе — в 318 раз. По расстоянию от Солнца Юпитер на пятом месте, а по блеску он занимает на небе четвертое место после Солнца, Луны и Венеры. В телескоп видна сжатая у полюсов планета с заметным рядом… Гравитация — самая таинственная сила во Вселенной. Ученые до сих пор не знают ее природы. Но именно гравитация удерживает на орбитах планеты Солнечной системы. Не будь силы тяготения, планеты разлетелись бы от Солнца, как бильярдные шары от удара кием. Гравитация – сила тяготенияЕсли же смотреть глубже, то станет ясно, что не было бы гравитации, не было бы и самих планет. Сила тяготения — притяжение материи к материи — это та сила, которая собрала вещество в планеты и придала им круглую форму. Силы тяготения Солнца вполне хватает на то, что бы удерживать девять планет, десятки их спутников и тысячи астероидов и комет. Вся эта компания роем вращается вокруг Солнца, как мотыльки вокруг освещенного балкона. Если бы не было силы тяготения, эти планеты, спутники и кометы полетели бы каждый своим путем по прямой линии. Вместо этого они вращаются вокруг Солнца по своим орбитам, потому что Солнце силой своего притяжения постоянно искривляет их прямолинейную траекторию, притягивая к себе планеты, луны и кометы с астероидами. Планеты кружатся вокруг светила, подобно тому, как пони, катающие детей, ходят по кругу, привязанные к столбу в центре этого круга. Разница только в способе привязки. Космические тела привязаны к Солнцу невидимыми нитями гравитации. Правда, чем больше расстояние между объектами, тем меньше сила притяжения между ними. Солнце гораздо слабее притягивает планету Плутон, самую дальнюю в Солнечной системе, чем, скажем, Меркурий или Венеру. Сила гравитации уменьшается (или увеличивается) в зависимости от расстояния экспоненциально. |
Модель Солнечной системы — Oficiální stránky obce Hýsly
Солнечной системой называется система планет вращающихся вокруг звезды Солнца. Среди этих планет — и наша Земля. Солнечная Система состоит из солнца и небесных тел удерживаемых солнечным притяжением. Масса солнца примерно в 330 000 раз превышает земную массу и составляет 99.8% массы всей солнечной системы. Диаметр солнца — порядка 1 400 000 км, т. е. примерно 109 диаметров Земли. В солнечную систему кроме солнца также входят восемь планет, более 150 лун и множество малых тел — таких как астероиды, кометы и метеоры.
По порядку близости к Солнцу, восемь планет солнечной системы это Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун.
Для измерения расстояний в солнечной системе используется «астрономическая единица» (АЕ). Одна АЕ соответствует расстоянию от Земли до Солнца. Таким образом, расстояние в одну АЕ — это почти 150 миллионов километров. Например, Юпитер вращается на орбите 5.2 АЕ — то есть на расстоянии от Солнца в 5.2 раза большем чем Земля.
Планеты в солнечной системе иногда делят на две группы. В первую включают четыре планеты земного типа (внутренние планеты), а во вторую — четыре газовых гиганта (внешние планеты). Четыре внутренние планеты состоят из плотных, каменистых материалов. Газовые гиганты в основном состоят из водорода, гелия, воды, аммиака и метана и не имеют твердой поверхности.
Планеты земного типа
Меркурий — наименьшая по размеру из восьми планет, и также ближайшая к солнцу. Поверхность Меркурия в целом напоминает поверхность нашей Луны. Меркурий усеян кратерами и не имеет ни естественных спутников ни существенной атмосферы. Температура на его поверхности весьма различна в дневное и в ночное время. Орбита Меркурия составляет 0.387 АЕ, его диаметр — примерно треть от Земного (точнее, 0.38 земного), орбитальный период — 0.24 земного года.
Венера близка по размеру, силе притяжения и минералогическому составу к Земле. Однако условия на венерианской поверхности радикально отличаются от земных. Это самая горячая планета. Температура ее поверхности достигает 400 градусов по Цельсию, видимо из-за насыщенности углекислым газом. Венера вращается вокруг Солнца на среднем расстоянии около 0.72 АЕ; ее диаметр — 0.95 от земного. Венерианский год составляет 0.615 от земного года.
Земля — самая большая и плотная из четыре внутренних планет. Земля вращается вокруг Солнца на расстоянии 1АЕ = 150 млн. км. Диаметр Земли — около 12700км, а орбитальный период равен, естественно, одному земному году. У земли есть один естественный спутник — Луна, единственный большой спутник у планет земного типа в с. системе. Среднее расстояние от центра Земли к центру Луны равно 380 000км = 0.0026АЕ, то Луна примерно в 400 раз ближе к Земле чем Солнце. Это самый крупный спутник во всей с. системе относительно к размеру планеты вокруг которой он вращается. Диаметр Луны — 3476км, т.е. чуть больше четверти земного (0.273). Луна совершает полный круг вокруг Земли за 29.5 дней (примерно за месяц).
Марс — после Меркурия самая малая планета солнечной системы. У Марса есть две луны, Фобос (диаметр 22км) и Деймос (диаметр 12.6км) — маленькие и неправильной формы. Атмосфера Марса состоит в основном из углекислого газа со следами водяных паров. Среди всех планет, климатические сезоны на Марсе более всего напоминают земные. Большее удаление Марса от Солнца объясняет пониженные температуры на его поверхности. В среднем они колеблются около -30C, но днем могут подниматься до 15C. На Марсе, как и на Земле, есть полярные ледники, но там они состоят частично из воды, а частично из углекислого газа. Эти ледники можно наблюдать в телескоп, где они видны как белые пятна.
Газовые гиганты.
Юпитер это самая большая планета солнечной системы. Он состоит в основном из водорода и гелия. Юпитер состоит в основном из водорода с малой примесью гелия. Возможно, у него есть также каменистое ядро из более тяжелых элементов под большим давлением. Юпитер окружен неплотной системой планетарных колец. У Юпитера более 60 спутников, включая четыре большие Галлилеевы луны, открытые Галлилео Галлилеем в 1610 году. Ио обрашается на расстоянии 3643 км от Юпитера, Европа — 3122 км, Ганимед 5262 км и Каллисто — 4821 км. Среднее расстояние между Юпитером и Солнцем в 5.2 раза больше земного (5.2АЕ)и его орбитальный период составляет 11.86 земного года. Диаметр Юпитера в 11. 2 раза больше земного.
Сатурн — вторая по величине планета солнечной системы. Сатурн известен своей системой колец, которые превратили его в наиболее визуально примечательный объект солнечной системы. Кольца состоят в основном из частиц льда, а также осколков минералов и пыли. Диаметр кольца более 420000 км, но толщина его всего несколько сотен метров. У Сатурна множество спутников. Известно 60, но число это растет по мере совершенствования телескопов. Титан — наибольшая луна Сатурна, его диаметре 5150 км. Другие крупные луны — Мимас, Енцеладус, Тетис, Диона, Реа, Иапетус. Среднее расстояние между Сатурном и Солнцем — 9.53 АЕ; диаметр его в 9,45 раз больше земного и сатурнианский год в 29.65 раза больше земного.
Уран — третья по величине планета солнечной системы. Атмосфера Урана содержит в основном, подобно Юпитеру и Сатурну, водород (83%) и гелий (15%), но также и воду, аммиак и метан. Уран также имеет неплотную систему планетарных колец, состоящих из частиц и осколков размером до 10 метров. У Урана открыто 27 спутников. Пять основных это Миранда, Ариель, Умбриель, Оберон и Титаниа. Среднее расстояние от Урана до Солнца около 19,2 АЕ. Его диаметр в 4 раза больше земного, а период обращения вокруг Солнца равен 84.1 земному году.
Нептун — восьмая и наиболее удаленная от Солнца планета солнечной системы. Диаметр и химический состав Нептун весьма напоминают Уран. В отличие от Урана, атмосфера Нептуна характеризуется частыми мощными штормами. У Нептуна также есть неплотная и фрагментированная системе колец, что было подтверждено при пролете аппарата Вояджер 2. У Нептуна известно 13 спутников. Самый крупный из них, Тритон, является также самым холодным телом известным сегодня в солнечной системе. Температура его поверхности равна -228 C. Среднее расстояние от Нептуна до солнца — 30.0 АЕ, его диаметр в 4 раза больше земного и период обращения вокруг Солнца составляет 164.9 земных лет.
Солнце | Национальное географическое общество
Солнце — обычная звезда, одна из примерно 100 миллиардов в нашей галактике Млечный Путь. Солнце оказывает чрезвычайно важное влияние на нашу планету: оно управляет погодой, океанскими течениями, временами года и климатом, а также делает возможной жизнь растений благодаря фотосинтезу. Без солнечного тепла и света жизнь на Земле не существовала бы.
Около 4,5 миллиардов лет назад Солнце начало формироваться из молекулярного облака , которое в основном состояло из водорода и гелия. Близлежащая сверхновая испустила ударную волну, которая соприкоснулась с молекулярным облаком и активировала его. Молекулярное облако начало сжиматься, и некоторые области газа схлопнулись под действием собственного гравитационного притяжения. Когда одна из этих областей разрушилась, она также начала вращаться и нагреваться от увеличивающегося давления. Большая часть водорода и гелия осталась в центре этой горячей вращающейся массы. В конце концов, газы достаточно нагрелись, чтобы начать ядерный синтез, и превратились в солнце в нашей Солнечной системе.
Другие части молекулярного облака остыли в диск вокруг совершенно нового солнца и стали планетами, астероидами, кометами и другими телами в нашей Солнечной системе.
Солнце находится на расстоянии около 150 миллионов километров (93 миллиона миль) от Земли. Это расстояние, называемое астрономической единицей (а.е.), является стандартной мерой расстояния для астрономов и астрофизиков.
AU можно измерить со скоростью света или временем, которое требуется фотону света, чтобы добраться от Солнца до Земли. Свет на Солнце занимает около восьми минут и 19секунд, чтобы достичь Земли.
Радиус солнца, или расстояние от самого центра до внешних границ, составляет около 700 000 километров (432 000 миль). Это расстояние примерно в 109 раз больше радиуса Земли. Солнце не только имеет гораздо больший радиус, чем Земля, но и намного массивнее. Масса Солнца более чем в 333 000 раз больше массы Земли и содержит около 99,8% всей массы Солнечной системы!
Состав
Солнце состоит из пылающей комбинации газов. Эти газы фактически находятся в форме плазмы. Плазма – это состояние вещества, похожее на газ, но с большей частью ионизированных частиц. Это означает, что частицы имеют увеличенное или уменьшенное число электронов.
Около трех четвертей Солнца состоит из водорода, который постоянно сплавляется и образует гелий в процессе, называемом ядерным синтезом. Гелий составляет почти всю оставшуюся четверть. Очень небольшой процент (1,69 процента) солнечной массы составляют другие газы и металлы: железо, никель, кислород, кремний, сера, магний, углерод, неон, кальций и хром. Эти 1,69 процента могут показаться незначительными, но их масса по-прежнему в 5628 раз больше массы Земли.
Солнце не является твердой массой. У него нет легко определяемых границ, как у скалистых планет, таких как Земля. Вместо этого Солнце состоит из слоев, почти полностью состоящих из водорода и гелия. Эти газы выполняют разные функции в каждом слое, и слои Солнца измеряются их процентом от общего радиуса Солнца.
Солнце пронизано и частично контролируется магнитным полем. Магнитное поле определяется комбинацией трех сложных механизмов: круговой электрический ток, проходящий через солнце, слои солнца, вращающиеся с разной скоростью, и способность солнца проводить электричество. Вблизи экватора Солнца силовые линии магнитного поля образуют небольшие петли у поверхности. Линии магнитного поля, проходящие через полюса, простираются гораздо дальше, на тысячи километров, прежде чем вернуться к противоположному полюсу.
Солнце вращается вокруг своей оси, как и Земля. Солнце вращается против часовой стрелки, и ему требуется от 25 до 35 дней, чтобы совершить один оборот.
Солнце обращается по часовой стрелке вокруг центра Млечного Пути. Его орбита находится на расстоянии от 24 000 до 26 000 световых лет от галактического центра. Солнцу требуется от 225 до 250 миллионов лет, чтобы совершить один оборот вокруг галактического центра.
Электромагнитное излучение
Солнечная энергия распространяется на Землю со скоростью света в виде электромагнитного излучения (ЭМИ).
Электромагнитный спектр существует в виде волн различной частоты и длины волны.
Частота волны показывает, сколько раз волна повторяется за определенную единицу времени. Волны с очень короткими длинами волн повторяются несколько раз в данную единицу времени, поэтому они являются высокочастотными. Напротив, низкочастотные волны имеют гораздо большую длину волны.
Подавляющее большинство электромагнитных волн, исходящих от солнца, невидимы для нас. Наиболее высокочастотными волнами, излучаемыми солнцем, являются гамма-лучи, рентгеновские лучи и ультрафиолетовое излучение (УФ-лучи). Наиболее вредные ультрафиолетовые лучи почти полностью поглощаются атмосферой Земли. Менее мощные УФ-лучи проходят через атмосферу и могут вызывать солнечные ожоги.
Солнце также излучает инфракрасное излучение, волны которого имеют гораздо более низкую частоту. Большая часть солнечного тепла поступает в виде инфракрасной энергии.
Между инфракрасным и ультрафиолетовым диапазоном находится видимый спектр, который содержит все цвета, которые мы, люди, можем видеть. Красный цвет имеет самые длинные волны (наиболее близкие к инфракрасному), а фиолетовый (наиболее близкие к ультрафиолетовому) — самые короткие.
Само солнце белое, а это значит, что оно содержит все цвета видимого спектра. Солнце кажется оранжево-желтым, потому что испускаемый им синий свет имеет более короткую длину волны и рассеивается в атмосфере — тот же самый процесс делает небо голубым.
Астрономы, однако, называют Солнце «желтым карликом», потому что его цвета попадают в желто-зеленую часть электромагнитного спектра.
Эволюция Солнца
Солнце, хотя и поддерживает всю жизнь на нашей планете, не будет сиять вечно. Солнце существует уже около 4,5 миллиардов лет.
Процесс ядерного синтеза, который создает тепло и свет, которые делают возможной жизнь на нашей планете, также является процессом, который медленно изменяет состав Солнца. Благодаря ядерному синтезу Солнце постоянно расходует водород в своем ядре: каждую секунду Солнце превращает около 620 миллионов метрических тонн водорода в гелий.
На данном этапе жизни Солнца его ядро примерно на 74% состоит из водорода. В течение следующих пяти миллиардов лет Солнце сожжет большую часть своего водорода, и гелий станет его основным источником топлива.
За эти пять миллиардов лет Солнце превратится из «желтого карлика» в «красного гиганта». Когда почти весь водород в солнечном ядре будет израсходован, ядро сожмется и нагреется, увеличивая количество происходящего ядерного синтеза. Внешние слои солнца будут расширяться от этой дополнительной энергии.
Солнце расширится примерно в 200 раз по сравнению с текущим радиусом, поглотив Меркурий и Венеру.
Астрофизики спорят о том, расширится ли орбита Земли за пределы досягаемости Солнца или наша планета тоже будет поглощена Солнцем.
Когда солнце расширяется, оно распространяет свою энергию на большую площадь поверхности, что оказывает общее охлаждающее воздействие на звезду. Это охлаждение изменит видимый свет Солнца на красноватый цвет — красный гигант.
В конце концов, солнечное ядро достигает температуры около 100 миллионов по шкале Кельвина (почти 100 миллионов градусов по Цельсию или 180 миллионов градусов по Фаренгейту), общепринятой научной шкале для измерения температуры. Когда он достигнет этой температуры, гелий начнет плавиться, образуя углерод, гораздо более тяжелый элемент. Это вызовет интенсивный солнечный ветер и другую солнечную активность, которая в конечном итоге сбросит все внешние слои Солнца. Фаза красных гигантов закончится. Останется только углеродное ядро Солнца, и как «белый карлик» оно не будет создавать или излучать энергию.
Структура Солнца
Солнце состоит из шести слоев: ядра, радиационной зоны, конвективной зоны, фотосферы, хромосферы и короны.
Ядро
Солнечное ядро , более чем в тысячу раз превышающее размер Земли и более чем в 10 раз плотнее свинца, представляет собой огромную печь. Температура в ядре превышает 15,7 миллиона кельвинов (также 15,7 миллиона градусов по Цельсию или 28 миллионов градусов по Фаренгейту). Ядро простирается примерно на 25% радиуса Солнца.
Ядро — единственное место, где могут происходить реакции ядерного синтеза. Другие слои Солнца нагреваются от вырабатываемой там ядерной энергии. Протоны атомов водорода яростно сталкиваются и сливаются или соединяются вместе, образуя атом гелия.
Этот процесс, известный как цепная реакция PP (протон-протон), испускает огромное количество энергии. Энергия, выделяемая в течение одной секунды солнечного синтеза, намного больше, чем энергия, выделяемая при взрыве сотен тысяч водородных бомб.
Во время ядерного синтеза в ядре выделяются два вида энергии: фотоны и нейтрино. Эти частицы несут и излучают свет, тепло и энергию солнца. Фотоны — мельчайшие частицы света и других форм электромагнитного излучения. Нейтрино сложнее обнаружить, и на их долю приходится всего около двух процентов от общей энергии Солнца. Солнце постоянно излучает как фотоны, так и нейтрино во всех направлениях.
Зона излучения
Зона излучения Солнца начинается примерно с 25 процентов радиуса и простирается примерно до 70 процентов радиуса. В этой широкой зоне тепло от ядра резко остывает, с семи миллионов К до двух миллионов К.
В зоне излучения энергия передается в результате процесса, называемого тепловым излучением. Во время этого процесса фотоны, испущенные в ядре, проходят небольшое расстояние, поглощаются соседним ионом, высвобождаются этим ионом и снова поглощаются другим. Один фотон может продолжать этот процесс почти 200 000 лет!
Переходная зона: тахоклин
Между радиационной зоной и следующим слоем, конвективной зоной, находится переходная зона, называемая тахоклином. Эта область создана в результате дифференциального вращения Солнца.
Дифференциальное вращение происходит, когда разные части объекта вращаются с разной скоростью. Солнце состоит из газов, протекающих в разных слоях и на разных широтах по-разному. Например, экватор Солнца вращается намного быстрее, чем его полюса.
Скорость вращения солнца быстро меняется в тахоклине.
Конвективная зона
Примерно на 70% солнечного радиуса начинается конвективная зона. В этой зоне солнечная температура недостаточно высока для передачи энергии тепловым излучением. Вместо этого он передает тепло за счет тепловой конвекции через тепловые колонны.
Подобно воде, кипящей в горшке, или горячему воску в лавовой лампе, газы глубоко в конвективной зоне Солнца нагреваются и «кипятят» наружу, вдали от ядра Солнца, через тепловые столбы. Когда газы достигают внешних границ конвективной зоны, они остывают и погружаются обратно к основанию конвективной зоны, чтобы снова нагреться.
Фотосфера
Фотосфера – это ярко-желтая видимая «поверхность» Солнца. Толщина фотосферы составляет около 400 километров (250 миль), а температура достигает около 6000 К (5700 ° C, 10 300 ° F).
В фотосфере видны тепловые столбы конвекционной зоны, бурлящие, как кипящая овсянка. В мощные телескопы вершины колонн выглядят как гранулы, скопившиеся на солнце. Каждая гранула имеет яркий центр, представляющий собой горячий газ, поднимающийся по тепловому столбу. Темные края гранул — это холодный газ, спускающийся обратно по колонне на дно конвективной зоны.
Хотя вершины термальных столбов выглядят как маленькие гранулы, их диаметр обычно превышает 1000 километров (621 милю). Большинство тепловых столбцов существуют от восьми до 20 минут, прежде чем они растворяются и образуют новые столбцы. Существуют также «супергранулы», которые могут иметь диаметр до 30 000 километров (18 641 милю) и сохраняться до 24 часов.
Солнечные пятна, солнечные вспышки и солнечные протуберанцы формируются в фотосфере, хотя и являются результатом процессов и нарушений в других слоях Солнца.
Фотосфера: Солнечные пятна
Солнечное пятно — это именно то, на что это похоже, — темное пятно на солнце. Солнечное пятно образуется, когда интенсивная магнитная активность в конвективной зоне разрывает тепловой столб. В верхней части разорванной колонны (видимой в фотосфере) температура временно понижена, потому что до нее не доходят горячие газы.
Фотосфера: Солнечные вспышки
Процесс образования солнечных пятен открывает связь между короной (самым внешним слоем солнца) и его внутренней частью. Солнечная материя выбрасывается из этого отверстия в образованиях, называемых солнечными вспышками. Эти взрывы являются массовыми: в течение нескольких минут солнечные вспышки высвобождают эквивалент около 160 миллиардов мегатонн в тротиловом эквиваленте, или около шестой части всей энергии, выделяемой Солнцем за одну секунду.
Облака ионов, атомов и электронов вырываются из солнечных вспышек и достигают Земли примерно через два дня. Солнечные вспышки и солнечные протуберанцы способствуют космической погоде, которая может вызвать возмущения в атмосфере и магнитном поле Земли, а также нарушить работу спутниковых и телекоммуникационных систем.
Фотосфера: Корональные выбросы массы
Корональные выбросы массы (КВМ) — это еще один тип солнечной активности, вызванный постоянным движением и возмущениями в магнитном поле Солнца. CME обычно образуются вблизи активных областей солнечных пятен, корреляция между ними не доказана. Причина CME все еще изучается, и предполагается, что нарушения в фотосфере или короне приводят к этим сильным солнечным взрывам.
Фотосфера: солнечный протуберанец
Солнечные протуберанцы представляют собой яркие петли солнечного вещества. Они могут врываться далеко в корональный слой Солнца, расширяясь на сотни километров в секунду. Эти изогнутые и скрученные элементы могут достигать сотен тысяч километров в высоту и ширину и сохраняться от нескольких дней до нескольких месяцев.
Солнечные протуберанцы холоднее короны и выглядят как более темные нити на фоне солнца. По этой причине они также известны как нити.
Фотосфера: солнечный цикл
Солнце не постоянно испускает солнечные пятна и солнечные выбросы; он проходит через цикл около 11 лет. Во время этого солнечного цикла меняется частота солнечных вспышек. Во время солнечных максимумов может быть несколько вспышек в день. Во время солнечных минимумов их может быть меньше одного в неделю.
Солнечный цикл определяется магнитными полями Солнца, которые вращаются вокруг Солнца и соединяются на двух полюсах. Каждые 11 лет магнитные поля меняются местами, вызывая нарушение, которое приводит к солнечной активности и солнечным пятнам.
Солнечный цикл может влиять на климат Земли. Например, ультрафиолетовый свет Солнца расщепляет кислород в стратосфере и укрепляет защитный озоновый слой Земли. Во время солнечного минимума ультрафиолетовых лучей мало, а это означает, что озоновый слой Земли временно истончен. Это позволяет большему количеству ультрафиолетовых лучей проникать в атмосферу Земли и нагревать ее.
Солнечная атмосфера
Солнечная атмосфера — самая горячая область Солнца. Он состоит из хромосферы, короны и переходной зоны, называемой солнечной переходной областью, которая соединяет их.
Солнечная атмосфера затемнена ярким светом, излучаемым фотосферой, и ее редко можно увидеть без специальных инструментов. Только во время солнечных затмений, когда Луна движется между Землей и Солнцем и скрывает фотосферу, эти слои можно увидеть невооруженным глазом.
Хромосфера
Розовато-красная хромосфера имеет толщину около 2000 километров (1250 миль) и пронизана струями горячего газа.
В нижней части хромосферы, где она соприкасается с фотосферой, температура Солнца самая низкая, около 4400 К (4100°C, 7500°F). Эта низкая температура придает хромосфере розовый цвет. Температура в хромосфере увеличивается с высотой и достигает 25 000 К (25 000 ° C, 45 000 ° F) на внешней границе области.
Хромосфера испускает струи горящих газов, называемых спикулами, похожие на солнечные вспышки. Эти огненные струйки газа тянутся из хромосферы, как длинные пылающие пальцы; обычно они имеют диаметр около 500 километров (310 миль). Спикулы существуют всего около 15 минут, но могут достигать тысячи километров в высоту, прежде чем разрушиться и раствориться.
Область солнечного перехода
Область солнечного перехода (STR) отделяет хромосферу от короны.
Ниже STR слои солнца контролируются и остаются разделенными благодаря гравитации, давлению газа и различным процессам обмена энергией. Выше STR движение и форма слоев гораздо более динамичны. В них преобладают магнитные силы. Эти магнитные силы могут привести в действие солнечные явления, такие как корональные петли и солнечный ветер.
Состояние гелия в этих двух регионах также имеет отличия. Ниже STR гелий частично ионизирован. Это означает, что он потерял электрон, но еще остался. В районе СТО гелий поглощает немного больше тепла и теряет свой последний электрон. Его температура достигает почти одного миллиона К (один миллион ° C, 1,8 миллиона ° F).
Корона
Корона – это тонкий внешний слой солнечной атмосферы, который может простираться на миллионы километров в космос. Газы в короне сгорают при температуре около одного миллиона k (один миллион ° C, 1,8 миллиона ° F) и движутся со скоростью около 145 километров (90 миль) в секунду.
Некоторые частицы достигают убегающей скорости 400 километров в секунду (249 миль в секунду). Они избегают гравитационного притяжения Солнца и становятся солнечным ветром. Солнечный ветер дует от Солнца к краю Солнечной системы.
Другие частицы образуют корональные петли. Корональные петли — это всплески частиц, которые возвращаются к ближайшему солнечному пятну.
Вблизи полюсов Солнца находятся корональные дыры. Эти области холоднее и темнее, чем другие области Солнца, и пропускают некоторые из самых быстро движущихся частей солнечного ветра.
Солнечный ветер
Солнечный ветер – это поток чрезвычайно горячих заряженных частиц, выбрасываемых из верхних слоев атмосферы Солнца. Это означает, что каждые 150 миллионов лет Солнце теряет массу, равную массе Земли. Однако даже при такой скорости потери Солнце потеряло лишь около 0,01% своей общей массы из-за солнечного ветра.
Солнечный ветер дует во всех направлениях. Он продолжает двигаться с этой скоростью около 10 миллиардов километров (шесть миллиардов миль).
Некоторые частицы солнечного ветра скользят через магнитное поле Земли и попадают в ее верхние слои атмосферы около полюсов. Когда они сталкиваются с атмосферой нашей планеты, эти заряженные частицы заставляют атмосферу светиться цветом, создавая полярные сияния, красочные световые представления, известные как северное и южное сияние. Солнечные ветры также могут вызывать солнечные бури. Эти бури могут мешать работе спутников и выводить из строя электрические сети на Земле.
Солнечный ветер наполняет гелиосферу, массивный пузырь заряженных частиц, который окружает Солнечную систему.
Солнечный ветер в конце концов замедляется вблизи границы гелиосферы, на теоретической границе, называемой гелиопаузой. Эта граница отделяет вещество и энергию нашей Солнечной системы от вещества соседних звездных систем и межзвездной среды.
Межзвездная среда — пространство между звездными системами. Солнечный ветер, пройдя миллиарды километров, не может выйти за пределы межзвездной среды.
Изучение Солнца
Солнце не всегда было предметом научных открытий и исследований. На протяжении тысячелетий солнце было известно в культурах всего мира как бог, богиня и символ жизни.
Для древних ацтеков солнце было могущественным божеством, известным как Тонатиу, которому для путешествия по небу требовались человеческие жертвы. В балтийской мифологии солнце было богиней по имени Сауле, которая приносила плодородие и здоровье. Китайская мифология считала солнце единственным оставшимся из 10 богов солнца.
В 150 году нашей эры греческий ученый Клавдий Птолемей создал геоцентрическую модель Солнечной системы, в которой Луна, планеты и Солнце вращались вокруг Земли. Только в 16 веке польский астроном Николай Коперник использовал математические и научные рассуждения, чтобы доказать, что планеты вращаются вокруг Солнца. Этой гелиоцентрической моделью мы и пользуемся сегодня.
В 17 веке телескоп позволил людям детально рассмотреть солнце. Солнце слишком яркое, чтобы мы могли изучать его незащищенными глазами. С помощью телескопа впервые стало возможным спроецировать четкое изображение солнца на экран для изучения.
Английский ученый сэр Исаак Ньютон использовал телескоп и призму, чтобы рассеять солнечный свет, и доказал, что солнечный свет на самом деле состоит из спектра цветов.
В 1800 году было обнаружено, что инфракрасный и ультрафиолетовый свет существуют за пределами видимого спектра. Оптический прибор, называемый спектроскопом, позволил разделить видимый свет и другое электромагнитное излучение на различные длины волн. Спектроскопия также помогла ученым идентифицировать газы в солнечной атмосфере — каждый элемент имеет свою собственную структуру длины волны.
Однако способ, которым солнце генерировало свою энергию, оставался загадкой. Многие ученые выдвинули гипотезу, что Солнце сжимается и излучает тепло в результате этого процесса.
В 1868 году английский астроном Джозеф Норман Локьер изучал электромагнитный спектр Солнца. Он наблюдал яркие линии в фотосфере, длина волны которых не соответствовала ни одному известному элементу на Земле. Он догадался, что на Солнце есть элемент, изолированный от Солнца, и назвал его гелием в честь греческого бога солнца Гелиоса.
В течение следующих 30 лет астрономы пришли к выводу, что у Солнца есть горячее ядро под давлением, способное производить огромное количество энергии посредством ядерного синтеза.
Технологии продолжали совершенствоваться и позволили ученым открыть новые особенности Солнца. Инфракрасные телескопы были изобретены в 1960-х годах, и ученые наблюдали энергию за пределами видимого спектра. Астрономы двадцатого века использовали воздушные шары и ракеты, чтобы отправить специализированные телескопы высоко над Землей и исследовать Солнце без каких-либо помех со стороны земной атмосферы.
Solrad 1 был первым космическим кораблем, предназначенным для изучения Солнца, и был запущен Соединенными Штатами в 1960 году. В то десятилетие НАСА отправило пять спутников Pioneer на орбиту вокруг Солнца и собирает информацию о звезде.
В 1980 году НАСА запустило миссию во время солнечного максимума для сбора информации о высокочастотных гамма-лучах, ультрафиолетовых и рентгеновских лучах, испускаемых во время солнечных вспышек.
Солнечная и гелиосферная обсерватория ( SOHO ) был разработан в Европе и выведен на орбиту в 1996 году для сбора информации. SOHO успешно собирает данные и прогнозирует космическую погоду уже 12 лет.
«Вояджер-1» и 2 – это космические корабли, направляющиеся к краю гелиосферы, чтобы узнать, из чего состоит атмосфера там, где солнечный ветер встречается с межзвездной средой. «Вояджер-1» пересек эту границу в 2012 году, а «Вояджер-2» – в 2018 году. Предполагается, что турбулентность конвективной зоны способствует солнечным волнам, которые непрерывно переносят солнечный материал во внешние слои солнца. Изучая эти волны, ученые больше узнают о недрах Солнца и причинах солнечной активности.
Энергия Солнца
Фотосинтез
Солнечный свет обеспечивает необходимый свет и энергию растениям и другим производителям в пищевой сети. Эти производители поглощают солнечное излучение и преобразуют его в энергию посредством процесса, называемого фотосинтезом.
Продуценты в основном растения (на суше) и водоросли (в водной среде). Они являются основой пищевой сети, и их энергия и питательные вещества передаются всем остальным живым организмам.
Ископаемое топливо
Фотосинтез также отвечает за все ископаемое топливо на Земле. Ученые подсчитали, что около трех миллиардов лет назад первые производители появились в водной среде. Солнечный свет позволил растениям развиваться и адаптироваться. После гибели растения разлагались и перемещались вглубь земли, иногда на тысячи метров. Этот процесс продолжался миллионы лет.
Под сильным давлением и высокими температурами эти останки превратились в то, что мы знаем как ископаемое топливо. Эти микроорганизмы превратились в нефть, природный газ и уголь.
Люди разработали процессы извлечения этих ископаемых видов топлива и использования их для получения энергии. Однако ископаемое топливо является невозобновляемым ресурсом. На их формирование уходят миллионы лет.
Технология солнечной энергии
Технология солнечной энергии использует солнечное излучение и преобразует его в тепло, свет или электричество.
Солнечная энергия – это возобновляемый ресурс, и многие технологии могут собирать ее непосредственно для использования в домах, на предприятиях, в школах и больницах. Некоторые технологии солнечной энергетики включают солнечные элементы и панели, солнечные тепловые коллекторы, солнечное тепловое электричество и солнечную архитектуру.
Фотогальваника использует солнечную энергию для ускорения электронов в солнечных батареях и выработки электроэнергии. Эта форма технологии широко используется и может обеспечивать электроэнергией сельские районы, крупные электростанции, здания и небольшие устройства, такие как парковочные счетчики и прессы для мусора.
Солнечная энергия также может быть использована с помощью метода, называемого «концентрированной солнечной энергией», при котором солнечные лучи отражаются и усиливаются зеркалами и линзами. Усиленный луч солнечного света нагревает жидкость, которая создает пар и приводит в действие электрический генератор.
Солнечную энергию также можно собирать и распределять без использования машин или электроники. Например, крыши могут быть покрыты растительностью или окрашены в белый цвет, чтобы уменьшить количество тепла, поглощаемого зданием, тем самым уменьшая количество электроэнергии, необходимой для кондиционирования воздуха. Это солнечная архитектура.
Солнечного света в избытке: за один час атмосфера Земли получает достаточно солнечного света, чтобы удовлетворить потребности всех людей в электричестве в течение года. Однако солнечная технология стоит дорого, и ее эффективность зависит от солнечной и безоблачной местной погоды. Методы использования солнечной энергии все еще разрабатываются и совершенствуются.
Краткий факт
Подобно алмазу в небе
Белые карлики состоят из кристаллизованного углеродного алмаза. Типичный белый карлик весит около 10 миллиардов триллионов триллионов каратов. Примерно через 5 миллиардов лет, говорит Трэвис Меткалф из Гарвард-Смитсоновского центра астрофизики, «Наше Солнце превратится в алмаз, который действительно будет вечным».
Краткий факт
Солнечная постоянная
Солнечная постоянная — это среднее количество солнечной энергии, достигающей атмосферы Земли. Солнечная постоянная составляет около 1,37 киловатта электроэнергии на квадратный метр.
Краткий факт
Solarmax
2013 год принесет следующий солнечный максимум (solarmax), период, который, по словам астрономов, принесет больше солнечных вспышек, корональных выбросов массы, солнечных бурь и полярных сияний.
Краткий факт
Солнце — самое одинокое число
Солнце находится довольно изолированно, далеко на внутреннем крае Рукава Ориона Млечного Пути. Ближайший звездный сосед, красный карлик по имени Проксима Центавра, находится на расстоянии около 4,24 световых года.
Быстрый факт
Солнечные дни в космических агентствах
НАСА и другие космические агентства осуществляют более дюжины гелиофизических миссий, которые изучают солнце, гелиосферу и планетарную среду как единую взаимосвязанную систему. Вот некоторые из текущих миссий:
ACE: наблюдение за частицами солнечного, межпланетного, межзвездного и галактического происхождения
AIM: определение причин образования высотных облаков в атмосфере Земли
Hinode: изучение Солнца с самым высоким в мире разрешением солнечные телескопы
IBEX: картографирование всей границы Солнечной системы
RHESSI: исследование гамма-лучей и рентгеновских лучей, самой мощной энергии, излучаемой Солнцем
SOHO: понимание структуры и динамики Солнца
SDO: жемчужина в короне НАСА, направлен на развитие научного понимания, необходимого для рассмотрения тех аспектов Солнца и Солнечной системы, которые непосредственно влияют на жизнь и общество
СТЕРЕО: понимание корональных выбросов массы
Вояджер: изучение космоса на краю Солнечной системы
Ветер: понимание солнечного ветра
Статьи и профили
Новости National Geographic: Солнце — самый круглый известный природный объект National Geographic Science: Солнце — жизнь с бурной звездойNASA: Исследование Солнечной системы—SunNASA: Солнечная и гелиосферная обсерватория (SOHO)NASA : Гелиофизика
Изображения
National Geographic Science: Sun Photos
Визуализация гравитационного притяжения планет
Визуализация: Население Земли составляет 8 миллиардов
В какой-то момент в конце 2022 года в мире появится восьмимиллиардный человек, что станет новой вехой для человечества.
Всего за 48 лет население мира удвоилось, увеличившись с четырех до восьми миллиардов. Конечно, люди неравномерно распределены по планете, и страны принимают все формы и размеры. Визуализации в этой статье направлены на создание контекста того, как восемь миллиардов человек распределены по всему миру.
Для более подробного освещения этого момента и того, что он значит для мира, вы можете получить доступ к нашему полному отчету и вебинару, подписавшись до VC+ , наш премиальный информационный бюллетень.
Теперь посмотрим на население каждой страны по состоянию на сентябрь 2022 года:
Глобальный рейтинг | Страна/регион | Население (2022) |
---|---|---|
1 | 🇨🇳 Китай | 1 451 832 064 |
2 | 🇮🇳 Индия | 1 410 982 243 |
3 | 🇺🇸 США | 335 391 957 |
4 | 🇮🇩 Индонезия | 280 139 383 |
5 | 🇵🇰 Пакистан | 230 918 073 |
6 | 🇳🇬 Нигерия | 218 243 241 |
7 | 🇧🇷 Бразилия | 215 986 577 |
8 | 🇧🇩 Бангладеш | 168 436 792 |
9 | 🇷🇺 Россия | 146 074 130 |
10 | 🇲🇽 Мексика | 132 030 739 |
11 | Япония | 125 619 457 |
12 | Эфиопия | 121 709 461 |
13 | Филиппины | 112 939 493 |
14 | Египет | 106 839 825 |
15 | Вьетнам | 98 311 965 |
16 | Демократическая Республика Конго | 96 104 525 |
17 | Иран | 86 465 398 |
16 | Турция | 86 415 852 |
19 | Германия | 84 385 892 |
20 | Таиланд | 70 192 866 |
21 | Соединенное Королевство | 68 691 253 |
22 | Франция | 65 597 276 |
23 | Танзания | 63 802 882 |
24 | Южная Африка | 61 027 608 |
25 | Италия | 60 264 287 |
26 | Кения | 56 557 929 |
27 | Мьянма | 55 236 333 |
28 | Колумбия | 52 123 686 |
29 | Южная Корея | 51 367 770 |
30 | Уганда | 49 222 889 |
31 | Испания | 46 795 195 |
32 | Судан | 46 265 964 |
33 | Аргентина | 46 141 195 |
34 | Алжир | 45 695 757 |
35 | Украина | 43 156 242 |
36 | Ирак | 42 348 230 |
37 | Афганистан | 40 993 541 |
38 | Канада | 38 495 773 |
39 | Марокко | 37 914 397 |
40 | Польша | 37 754 428 |
41 | Саудовская Аравия | 36 069 266 |
42 | Ангола | 35 327 540 |
43 | Узбекистан | 34 589 376 |
44 | Перу | 34 031 086 |
45 | Мозамбик | 33 346 961 |
46 | Малайзия | 33 319 730 |
47 | Гана | 32 594 574 |
48 | Йемен | 31 371 445 |
49 | Непал | 30 357 476 |
50 | Мадагаскар | 29 381 411 |
51 | Венесуэла | 28 257 503 |
52 | Камерун | 28 111 718 |
53 | Кот-д’Ивуар | 27 925 649 |
54 | Нигер | 26 344 186 |
55 | Австралия | 26 178 342 |
56 | Северная Корея | 26 033 387 |
57 | Тайвань | 23 913 311 |
58 | Буркина-Фасо | 22 270 251 |
59 | Мали | 21 646 251 |
60 | Шри-Ланка | 21 615 470 |
61 | Малави | 20 304 147 |
62 | Чили | 19 489 734 |
63 | Замбия | 19 613 655 |
64 | Казахстан | 19 292 183 |
65 | Румыния | 18 956 053 |
66 | Гватемала | 18 688 479 |
67 | Сирия | 18 506 569 |
68 | Эквадор | 18 262 799 |
69 | Сенегал | 17 793 385 |
70 | Чад | 17 553 601 |
71 | Камбоджа | 17 252 457 |
72 | Нидерланды | 17 219 859 |
73 | Сомали | 16 951 984 |
74 | Зимбабве | 15 362 663 |
75 | Гвинея | 13 981 705 |
76 | Руанда | 13 712 855 |
77 | Бенин | 12 878 142 |
78 | Бурунди | 12 740 471 |
79 | Тунис | 12 101 418 |
80 | Боливия | 12 039 974 |
81 | Гаити | 11 721 737 |
82 | Бельгия | 11 703 272 |
83 | Южный Судан | 11 494 756 |
84 | Куба | 11 311 223 |
85 | Доминиканская Республика | 11 096 411 |
86 | Чехия | 10 753 478 |
87 | Иордания | 10 434 463 |
88 | Азербайджан | 10 347 430 |
89 | Греция | 10 310 847 |
90 | Гондурас | 10 269 662 |
91 | Швеция | 10 241 804 |
92 | Объединенные Арабские Эмираты | 10 164 747 |
93 | Португалия | 10 130 876 |
94 | Венгрия | 9 605 987 |
95 | Таджикистан | 10 042 202 |
96 | Беларусь | 9 442 398 |
97 | Папуа-Новая Гвинея | 9 342 727 |
98 | Австрия | 9 122 566 |
99 | Израиль | 8 969 013 |
100 | Швейцария | 8 798 256 |
101 | Того | 8 737 152 |
102 | Сербия | 8 659 648 |
103 | Сьерра-Леоне | 8 357 040 |
104 | САР Гонконг | 7 635 279 |
105 | Лаос | 7 519 384 |
106 | Парагвай | 7 333 782 |
107 | Ливия | 7 086 602 |
108 | Болгария | 6 833 885 |
109 | Никарагуа | 6 805 420 |
110 | Кыргызстан | 6 774 001 |
111 | Ливан | 6 758 016 |
112 | Сальвадор | 6 560 071 |
113 | Туркменистан | 6 236 038 |
114 | Сингапур | 5 954 898 |
115 | Конго | 5 839 721 |
116 | Дания | 5 838 070 |
117 | Финляндия | 5 559 984 |
118 | Норвегия | 5 517 561 |
119 | Словакия | 5 465 545 |
120 | Оман | 5 414 812 |
121 | Палестина | 5 381 277 |
122 | Либерия | 5 338 398 |
123 | Коста-Рика | 5 200 150 |
124 | Ирландия | 5 064 136 |
125 | Центральноафриканская Республика | 5 025 077 |
126 | Мавритания | 4 940 298 |
127 | Новая Зеландия | 4 911 293 |
128 | Панама | 4 472 108 |
129 | Кувейт | 4 416 533 |
130 | Хорватия | 4 049 640 |
131 | Молдова | 4 013 174 |
132 | Грузия | 3 972 171 |
133 | Эритрея | 3 659 593 |
134 | Уругвай | 3 500 798 |
135 | Монголия | 3 400 693 |
136 | Босния и Герцеговина | 3 235 985 |
137 | Армения | 2 975 648 |
138 | Катар | 2 994 073 |
139 | Ямайка | 2 990 290 |
140 | Албания | 2 870 809 |
141 | Пуэрто-Рико | 2 704 519 |
142 | Намибия | 2 648 122 |
143 | Литва | 2 640 339 |
144 | Гамбия | 2 578 866 |
145 | Ботсвана | 2 462 832 |
146 | Габон | 2 349 783 |
147 | Лесото | 2 180 846 |
148 | Северная Македония | 2 083 183 |
149 | Словения | 2 079 575 |
150 | Гвинея-Бисау | 2 077 878 |
151 | Бахрейн | 1 845 321 |
152 | Латвия | 1 840 901 |
153 | Экваториальная Гвинея | 1 514 454 |
154 | Тринидад и Тобаго | 1 409 672 |
155 | Тимор | 1 377 091 |
156 | Эстония | 1 328 527 |
157 | Маврикий | 1 276 493 |
158 | Кипр | 1 227 303 |
159 | Эсватини | 1 187 627 |
160 | Джибути | 1 021 185 |
161 | Коморские острова | 913 105 |
162 | Фиджи | 911 185 |
163 | Реюньон | 909 806 |
164 | Гайана | 795 114 |
165 | Бутан | 791 064 |
166 | Соломоновы Острова | 726 764 |
167 | САР Макао | 669 734 |
168 | Люксембург | 649 600 |
169 | Черногория | 628 243 |
170 | Западная Сахара | 632 115 |
171 | Суринам | 598 608 |
172 | Кабо-Верде | 569 810 |
173 | Микронезия (Федеральные Штаты) | 561 300 |
174 | Мальдивы | 561 291 |
175 | Бруней | 447 038 |
176 | Мальта | 444 182 |
177 | Белиз | 414 449 |
178 | Багамы | 401 818 |
179 | Гваделупа | 400 277 |
180 | Мартиника | 374 617 |
181 | Исландия | 346 259 |
182 | Вануату | 324 088 |
183 | Французская Гвиана | 317 076 |
184 | Новая Каледония | 291 762 |
185 | Майотта | 288 384 |
186 | Барбадос | 288 162 |
187 | Французская Полинезия | 284 580 |
188 | Сан-Томе и Принсипи | 228 652 |
189 | Самоа | 201 401 |
190 | Сент-Люсия | 185 519 |
191 | Нормандские острова | 177 517 |
192 | Гуам | 172 146 |
193 | Кюрасао | 165 604 |
194 | Кирибати | 123 690 |
195 | Гренада | 113 966 |
196 | Сент-Винсент и Гренадины | 111 732 |
197 | Тонга | 108 440 |
198 | Аруба | 107 787 |
199 | Виргинские острова США | 104 083 |
200 | Антигуа и Барбуда | 99 773 |
201 | Сейшельские острова | 99 725 |
202 | Остров Мэн | 86 049 |
203 | Андорра | 77 542 |
204 | Доминика | 72 387 |
205 | Каймановы острова | 67 492 |
206 | Бермуды | 61 769 |
207 | Маршалловы Острова | 60 095 |
208 | Северные Марианские острова | 58 336 |
209 | Гренландия | 56 991 |
210 | Американское Самоа | 54 920 |
211 | Сент-Китс и Невис | 54 052 |
212 | Фарерские острова | 49 281 |
213 | Синт-Мартен | 43 991 |
214 | Теркс и Кайкос | 39 924 |
215 | Монако | 39 873 |
216 | Сен-Мартен | 40 198 |
217 | Лихтенштейн | 38 374 |
218 | Сан-Марино | 34 091 |
219 | Гибралтар | 33 669 |
220 | Британские Виргинские острова | 30 687 |
221 | Карибские Нидерланды | 26 779 |
222 | Палау | 18 288 |
223 | Острова Кука | 17 600 |
224 | Ангилья | 15 308 |
225 | Тувалу | 12 126 |
226 | Науру | 10 978 |
227 | Уоллис и Футуна | 10 818 |
228 | Сен-Бартельми | 9 945 |
229 | Остров Святой Елены | 6 118 |
230 | Сен-Пьер и Микелон | 5 732 |
231 | Монтсеррат | 4 999 |
232 | Фолклендские острова | 3 723 |
233 | Ниуэ | 1 651 |
234 | Токелау | 1 396 |
235 | Святой Престол | 806 |
Ниже представлена разбивка населения по регионам.
Население Африки по странам
По состоянию на 2022 год общая численность населения Африки составляет 1,4 миллиарда человек. Многие из стран с самыми высокими темпами роста расположены в Африке, и к 2050 году ожидается, что население континента подскочит до 2,5 миллиардов человек.
Нигерия — самая густонаселенная страна Африки с крупнейшей экономикой. Судя по текущим темпам роста, крупнейший город Нигерии, Лагос, к концу столетия может даже стать крупнейшим мегаполисом мира.
В Африке самый низкий средний возраст среди всех других континентов.
Население Азии по странам
Азия с населением 4,7 миллиарда человек в 2022 году, безусловно, является самым густонаселенным регионом мира.
На континенте преобладают два огромных населенных пункта Китая и Индии. В 2023 году произойдет большой сдвиг: Индия превзойдет Китай и станет самой густонаселенной страной в мире. Китай веками занимал первое место, но несоответствие между темпами роста двух стран сделало достижение этой вехи лишь вопросом времени.
Азия — это контрастный регион, когда речь идет о приросте населения. С одной стороны находятся такие страны, как Сингапур и Япония, которые на самом деле сокращаются. С другой стороны, страны Ближнего Востока, такие как Оман и Катар, имеют высокие темпы роста населения на уровне 4-5%.
Вьетнам находится на пороге того, чтобы стать 15-й страной, население которой превысило отметку в 100 миллионов человек.
Население Европы по странам
Население Европы в 2022 году составляет 750 миллионов человек, что более чем в два раза превышает численность населения Соединенных Штатов.
Столетие назад население Европы составляло около 30% населения мира. Сегодня эта цифра составляет менее 10%. Отчасти это связано с ростом населения в других регионах мира.
Что еще более важно, население Европы сокращается в ряде мест, в частности в Восточной Европе. Многие из стран с самыми медленными темпами роста расположены на Балканах и в странах бывшего советского блока.
Россия остается крупнейшей страной Европы по численности населения. Хотя территория страны простирается через всю Азию, три четверти населения России проживает на европейской стороне страны.
Германия является второй по величине страной в Европе, за ней следуют Великобритания, Франция и Италия.
Украина является седьмым по величине населенным пунктом в Европе, но еще предстоит выяснить, как нынешний конфликт с Россией повлияет на долгосрочные перспективы населения страны.
Население Северной Америки по странам
Население Северной Америки составляет 602 миллиона человек по состоянию на 2022 год.
На континенте доминируют Соединенные Штаты, которые составляют более половины всего населения. Население Америки по-прежнему скромно растет (по мировым стандартам), но, возможно, более интересны модели внутренней миграции. В таких штатах, как Техас и Флорида, наблюдается приток населения из других штатов.
В Канаде один из самых высоких темпов прироста населения среди крупных развитых стран благодаря международной миграции.
Мексика в настоящее время является 10-й по численности населения страной, но в конечном итоге будет вытеснена из списка 10 самых быстрорастущих африканских стран.
Население Южной Америки по странам
Население Южной Америки в 2022 году составляет 439 миллионов человек. Бразилия составляет почти половину этого общего количества.
Где-то в этом десятилетии столица Колумбии Богота станет пятым мегаполисом региона (население которого составляет 10 миллионов человек и более). Сан-Паулу, Рио-де-Жанейро, Буэнос-Айрес и Лима — современные мегаполисы Южной Америки.
Население Океании по странам
Население региона Океании составляет 44 миллиона человек, что лишь немного превышает население Калифорнии.
Австралия, Новая Зеландия и Папуа-Новая Гвинея составляют львиную долю населения этого региона.
Интересно, что многие из самых маленьких стран по численности населения также можно найти в этом регионе.
Когда население Земли достигнет 9 миллиардов?
Следующая веха мирового населения — девять миллиардов — вероятно, будет достигнута где-то в 2030-х годах.
Ожидается, что население Земли будет продолжать расти, пока не достигнет своего пика в какой-то момент в 2080-х годах, возможно, превысив отметку в 10 миллиардов человек.
Откуда берутся эти данные?
Источник: Организация Объединенных Наций, Департамент по экономическим и социальным вопросам, Отдел народонаселения, через онлайн-трекер Worldometer (по состоянию на 27 сентября 2022 г.).
Контекст: ООН подсчитала, что 15 ноября 2022 года будет дата, когда население мира официально достигнет 8 миллиардов.
Итог нашей Солнечной системы
Сабина Стэнли, доктор философии, Университет Джонса Хопкинса
Солнце, безусловно, самый большой объект в Солнечной системе. Он настолько массивен, что можно сказать, что Солнце и есть наша солнечная система, а все остальное — просто пыль. Первичные силы Солнца, такие как гравитация и тепло, не только определяют нашу солнечную систему, но и делают ее тем, чем она является: живым, сверкающим чудом.
Солнце составляет 99,9% массы нашей Солнечной системы. (Изображение: Сергей Нивенс/Shutterstock)Солнце — безусловно, самый большой и самый массивный объект в Солнечной системе. Фактически, при 99,9% общей массы системы можно сказать, что Солнце — это Солнечная система. Представьте, что произошло бы, если бы кто-то волшебным образом удалил Солнце из Солнечной системы. Воцарится тьма, температура резко упадет, и все планеты будут разлетаться по прямым линиям, где бы они ни находились на своих орбитах.
Формирование планет
Но важность Солнца не ограничивается. Без Солнца планеты никогда бы не образовались. Процесс формирования планет основывался на том, что пыль и газ были ограничены диском, вращающимся вокруг прото-Солнца. Этот диск образовался из-за того, что материал схлопывался на прото-Солнце. К счастью, у некоторого материала было немного большее вращение, в результате чего он оказался на диске, вращающемся вокруг Солнца, а не на самом Солнце.
История наблюдений за Солнцем
Наблюдения за Солнцем и его движением по небу записывались древними астрономами из многих культур. Китайские астрономы даже наблюдали за солнечными пятнами во времена династии Хань более 2000 лет назад. Но только в 17 веке ученые начали серьезно относиться к идее, что Солнце — это звезда, как и все звезды, которые мы видим на ночном небе.
Люди предлагали это и раньше — Джордано Бруно даже был сожжен на костре в 1600 году Римско-католической церковью за то, что сказал это. Но позже, в 17 веке, ряд научных открытий подтвердил представление о том, что Солнце — это звезда. Телескоп Галилея привел его к выводу, что звезды должны быть очень далеко, поскольку в его телескоп они по-прежнему выглядят как точки света, а не как разрешенные планеты.
Это стенограмма из серии видео Полевой путеводитель по планетам . Смотри, Вондриум .
Современная история наблюдений за Солнцем
Законы движения планет Кеплера вслед за Коперником поместили Солнце в центр Солнечной системы и определили, что орбиты планет вокруг Солнца имеют эллиптическую, а не круговую форму. Затем теория гравитации Ньютона объяснила, почему планеты вращаются вокруг Солнца, и продемонстрировала, что гравитация, которую мы ощущаем на Земле, такая же, как и в других местах Солнечной системы.
Все планеты гравитационно связаны с Солнцем. (Изображение: Zonda/shutterstock)А потом люди начали вычислять расстояния до звезд. Христиан Гюйгенс рассчитал расстояние до звезды Сириус, предполагая, что она имеет ту же яркость, что и Солнце. И он обнаружил, что расстояние было чрезвычайно далеко. Гораздо позже, в 1838 году, Фридрих Бессель использовал новый метод, называемый параллаксом, чтобы определить, что расстояние до звезды 61 Лебедя составляет то, что мы сейчас назвали бы 10 световыми годами от Земли.
Это продемонстрировало, что звезды должны быть очень яркими, такими же яркими, как Солнце, чтобы мы могли видеть их так далеко. В конечном итоге это привело к пониманию того, что Солнце не является уникальным объектом во Вселенной. Там гораздо больше солнц или звезд. Но Солнце — звезда, которую мы можем изучать вблизи.
Узнайте больше о людях на Луне.
Гравитация Солнца
Будучи самым массивным телом Солнечной системы, Солнце имеет самый глубокий гравитационный колодец. Гравитационный колодец в конечном итоге определяется тем, сколько энергии требуется объекту, чтобы избежать гравитационного притяжения этого более крупного тела. Чем массивнее притягивающее тело, тем больше энергии потребуется, чтобы преодолеть силу притяжения, притягивающую его к телу.
Все планеты гравитационно связаны с Солнцем, в том смысле, что у них недостаточно энергии, чтобы избежать гравитации Солнца. Но это не значит, что они упадут прямо на Солнце. Вместо этого планеты вращаются вокруг Солнца. По сути, они находятся в постоянном свободном падении к Солнцу, но их скорость тангенциальна к их орбите, и это удерживает их от падения.
Относительная гравитация объектов
Система не означает, что все в Солнечной системе вращается вокруг Солнца. Сила гравитации зависит от расстояния. Луны, вращающиеся вокруг планет, например, оказываются достаточно близко к планете, так что гравитация планеты в этом месте доминирует над гравитацией Солнца.
Гравитационное влияние Солнца распространяется на большие расстояния, о чем свидетельствует облако Оорта на орбитальных расстояниях до 50 000 астрономических единиц. Но на расстоянии, называемом сферой Хилла, действует гравитационная сила ближайших звезд. Это около 100 000 астрономических единиц. Но гравитация — не единственный способ, которым Солнце формирует Солнечную систему. Солнце также является основным источником тепла и света для Солнечной системы.
Солнечное тепло
Людей с раннего возраста учат не смотреть прямо на Солнце из-за возможного повреждения глаз. К счастью, солнечные телескопы могут фотографировать Солнце через различные фильтры на разных длинах волн света. Когда кто-то выбирает определенную длину волны света для изучения Солнца, он смотрит на разные части поверхности Солнца и атмосферы.
Длина волны связана с температурой, связанной с определенными частями Солнца. Например, желтоватый свет, который мы видим в видимой части спектра, исходит от непрозрачной «поверхности» Солнца, где излучение имеет температуру около 5800 Кельвинов.
Ядерный синтез Солнца
Энергия Солнца исходит от ядерного синтеза. (Sahara Prince/Shutterstock)Людям пришлось бы ждать до начала 20-го века знаменитого уравнения Эйнштейна E = mc 9.2420 2 уравнение, чтобы убедиться, что материя может быть преобразована в энергию. Вот что происходит в центре Солнца. Давление и температура в центре Солнца настолько высоки, что атомы водорода сжимаются, сливаясь, образуя атомы гелия.
Вся энергия Солнца исходит от ядерного синтеза, происходящего в ядре Солнца. Это возможно, потому что четыре атома водорода немного массивнее образующегося атома гелия. Разница в массе между одним атомом гелия и четырьмя атомами водорода преобразуется в энергию; эта энергия равна разности масс, умноженной на квадрат скорости света. Внутренние 25% Солнца каждую секунду превращают более 600 миллионов метрических тонн водорода в гелий.
Температура должна достичь около 14 миллионов Кельвинов в солнечном ядре, чтобы термоядерный синтез загорелся, потому что атомы водорода должны иметь достаточную кинетическую энергию, чтобы преодолеть силы отталкивания между ними. Именно это слияние делает Солнце звездой, а не планетой.
Узнайте больше о машине времени Солнечной системы и метеоритах.
Определение состава Солнца
Тот факт, что Солнце состоит в основном из водорода и гелия, был впервые определен в 1925 Сесилии Пейн-Гапошкин. До этого господствовало убеждение, что состав Солнца очень похож на состав Земли.
Но Пейн-Гапошкин показал, что многие особенности солнечного спектра можно было бы лучше объяснить, если бы Солнце состояло преимущественно из водорода и гелия при очень высоких температурах. Это показало, что количество водорода и гелия на Солнце было намного больше, чем количество других элементов. Состав Солнца составляет около 75% водорода и 24% гелия. Оставшаяся часть, всего 1,3%, содержит все более тяжелые элементы.
Есть ли на планетах ядерный синтез?
Ни на одной из планет внутри не идет термоядерный синтез. Даже Юпитер, самая большая планета Солнечной системы, не имеет давления и температуры в центре, необходимых для начала синтеза водорода. В ядре Юпитера температура составляет десятки тысяч градусов, а давление — около 100 миллионов бар. Но на Солнце центральная температура колеблется около 14 миллионов кельвинов, а давление превышает 200 миллиардов бар.
У планет есть внутренние источники тепла. Например, недра Земли разогреваются как от радиоактивного распада нестабильных элементов в ее недрах, так и от тепла, погребенного в планете от всех столкновений, произошедших при ее формировании. Внутри планеты просто нет ядерного синтеза.
Общие вопросы о Солнце: суммирование нашей Солнечной системы
В: Как образовались планеты в нашей Солнечной системе?
Процесс формирования планет основывался на том, что пыль и газ удерживались на диске, вращающемся вокруг прото-Солнца. Этот диск образовался потому, что гравитация прото-Солнца притягивала к нему материю. Некоторый материал, к счастью, имел немного большее вращение, поэтому он оказался в диске, вращающемся вокруг Солнца.
В: Является ли Солнце планетой?
Нет, Солнце не планета. Это одинокая звезда нашей Солнечной системы.
Продолжайте читать
Великие Луны Солнечной системы
Внешняя область Солнечной системы
Меркурий: планета крайностей
Силы гравитации планет
Солнечная система. Они особенно беспокоятся, когда видят, что три или более планет выстраиваются в линию с Землей, и начинают размышлять о конце света. Так есть ли повод для беспокойства? Будет ли Земля разорвана на части, когда все планеты выровняются?
Итак, мы рассчитали максимальную и минимальную силы, действующие на Землю со стороны Солнца, каждой из планет и Луны в их ближайшей и самой дальней точках. Однако, многие ли из нас на самом деле понимают такие силы, как 3×10 22 ньютонов, и что они означают? Таким образом, мы также показали, как далеко сместится Земля, если ее притянет каждая Планета/Луна или Солнце в течение одного дня с места.
Таблица планетарных гравитационных сил на Земле
Объект | Максимальная сила на Земле (Ньютоны) | Минимальная сила на Земле (Ньютоны) | Максимальное расстояние, которое Земля проходит за сутки | Минимальное расстояние, которое Земля проходит за сутки |
Вс | 3.66E+22 | 3.43E+22 | 22 898 км | 21 417 км |
Луна | 2.21Е+20 | 1.76E+20 | 138 км | 110 км |
Юпитер | 2.18E+18 | 8.06E+17 | 1,36 км | 503 м |
Венера | 1.33E+18 | 2.85E+16 | 831 м | 17 м |
Сатурн | 1.57E+17 | 8.15E+16 | 98 м | 51 м |
Марс | 8.61E+16 | 1.59E+15 | 53 м | 0,9 м |
Меркурий | 2. 20Е+16 | 2.67E+15 | 13 м | 1,6 м |
Уран | 5.16Е+15 | 3.47E+15 | 3 м | 2,1 м |
Нептун | 2.21Е+15 | 1.84E+15 | 1,3 м | 1,1 м |
Гравитационные силы для всех планет Солнечной системы, выраженные в ньютонах и показывающие результирующее движение в течение 1 дня с места.
Как видите, Солнце оказывает наибольшее влияние на Землю и может разогнать Землю (с места) почти на 23 000 км за один день. На слабом втором месте Луна с тягой 138 км. Юпитер имеет сотую долю притяжения Луны, а Венера примерно вдвое меньше, чем Юпитер. Остальные планеты приходят с притяжением менее чем в тысячную от Луны.
Вы также можете видеть, что если бы все планеты были выровнены так, чтобы все их силы действовали вместе, их объединенные силы всегда были бы ничтожными по сравнению с огромным притяжением Солнца, а также Луны.
Если вы думаете: «Вау, вот как далеко Земля может быть притянута планетой! Интересно, как далеко она затянет меня одного», тогда ответ таков: если бы Земля исчезла, а вы остались плавая в пустом пространстве, то вас бы притянуло точно на такое же расстояние, как и Землю. Сила, действующая на ваше тело, была бы намного меньше, но эта сила должна была бы тянуть только меньшую массу, поэтому вы претерпели бы такое же ускорение и прошли бы то же расстояние, что и в нашей таблице.
Будет ли выравнивание всех планет вызывать землетрясения?
Некоторые люди считают, что землетрясения более вероятны, когда все планеты выровнены. Приведенная выше таблица дает некоторое представление об общей гравитационной силе планет на Земле. Однако это не говорит нам о напряжениях, которые гравитационное притяжение планет оказывает на материал самой Земли.
Напряжение — или то, насколько растянута Земля — происходит из-за дисбаланса гравитационной силы с одной стороны планеты на другую. Например, килограмм камня вблизи поверхности земли, ближайшей к Луне, будет испытывать силу, отличную от силы килограмма камня вблизи поверхности земли, наиболее удаленной от Луны. Это потому, что он будет дальше от Луны, на диаметр Земли, и гравитационная сила ослабевает с расстоянием.
Этот дисбаланс сил означает, что ближняя сторона Земли к Луне притягивается больше, чем дальняя сторона, в результате чего Земля растягивается.
В следующей таблице показана разница в силе каждой из планет с одной стороны Земли на другую, когда они находятся ближе всего к Земле. Поскольку для большинства из нас цифры мало что значат, мы показали, что такое сила по сравнению с силой Луны.
Таблица Планетарного Гравитационного Напряжения на Земле
Планетарные приливные силы, выраженные как часть приливной силы Луны | |
Луна | 1 |
Вс | 0,4 |
Венера | 0,00006 |
Юпитер | 0,000003 |
Меркурий | 0,0000004 |
Сатурн | 0,0000002 |
Марс | 0,00000005 |
Уран | 0,000000003 |
Нептун | 0,0000000008 |
Максимальная гравитационная приливная сила для всех планет Солнечной системы как доля приливной силы Луны.
Опять же очевидно, что гравитационные силы на Земле, которые могут привести к землетрясениям, исходят от Луны и Солнца. Силы растяжения от всех других планет, даже если их сложить, в 1000 раз меньше, чем у Луны и Солнца.
Поэтому неудивительно, что мы никогда не беспокоимся о приливах, когда Венера новая (и, следовательно, близкая к нам) в небе. Но мы беспокоимся о весенних и неапских приливах, когда Солнце и Луна выровнены.
Вкратце…
На Землю влияют все планеты Солнечной системы и даже вся материя во Вселенной. Однако Земля почти полностью контролируется Солнцем, потому что оно огромно, и Луной, потому что близко. Все остальные объекты Солнечной системы по сравнению с ними гравитационно незначительны. Даже если они выровняются в небе, их совокупная гравитационная мощь ничтожно мала из-за незначительных изменений орбиты Луны и Земли вокруг Солнца.
Итак, в следующий раз, когда кто-то скажет вам, что миру придет конец, когда планеты выровняются. .. может быть и так… но не из-за гравитации, какой мы ее знаем!
Гравитационное воздействие Солнца и Луны влияет на поведение животных и растений, как показывают исследования
Хосе Тадеу Арантес, FAPESP
Исследования были вызваны наблюдениями за колебаниями автолюминесценции, вызванными прорастанием семян в циклах, регулируемых гравитационными приливами. Фото: Кристиано де Мелло Галлеп/UNICAMPРитмы активности всех биологических организмов, как растений, так и животных, тесно связаны с гравитационными приливами, создаваемыми орбитальной механикой системы солнце-Земля-Луна. Научные исследования несколько игнорировали эту истину, но она была выдвинута на передний план в исследовании Кристиано де Мелло Галлепа из Университета Кампинас (UNICAMP) в штате Сан-Паулу, Бразилия, и Даниэля Роберта из Бристольского университета в Соединенном Королевстве. Статья об исследовании опубликована в Журнал экспериментальной ботаники .
«Все вещество на Земле, как живое, так и косное, испытывает воздействие гравитационных сил Солнца и Луны, выраженных в виде приливов. Периодические колебания имеют два суточных цикла и модулируются ежемесячно и ежегодно движениями этих два небесных тела. Все организмы на планете развивались в этом контексте. В статье мы стремились показать, что гравитационные приливы — это ощутимая и мощная сила, которая всегда формировала ритмическую деятельность этих организмов», — сказал Галлеп.
Исследование представляет собой как обширный обзор литературы, так и метаанализ данных трех ранее опубликованных случаев, в которых гравитационная причинность не была полностью изучена: плавательная активность изопод, мелких беспанцирных ракообразных, появление которых на Земле датируется по крайней мере 300 миллионов лет назад; репродуктивное усилие кораллов; и модуляция роста проростков подсолнечника по автолюминесценции. В последнем случае исследователи анализировали результаты собственных исследований, а также данные из литературы.
«Данные показывают, что в отсутствие других ритмических воздействий, таких как освещение или температура, локальных гравитационных приливов достаточно для организации циклического поведения этих организмов. Это свидетельство ставит под сомнение достоверность так называемых экспериментов в свободном режиме, в которых несколько факторов окружающей среды контролируются, но гравитационные колебания не принимаются во внимание. Эти колебания продолжают существовать и могут модулировать поведение живых организмов», — сказал Галлеп.
Многие из ритмических паттернов, демонстрируемых организмами, хорошо известны и широко изучены. Они включают циркадные ритмы, которые связаны с циклами день-ночь или свет-темнота. Однако некоторые ритмические циклы сохраняются даже при выделении фактора света в лабораторных условиях, а вклад других факторов внешней среды был исследован и продемонстрирован, хотя их влияние во многих случаях сравнительно слабо. В рассматриваемом исследовании рассматривалось, среди прочего, сохранение приливных циклов в моделях поведения прибрежных организмов, таких как ракообразные, когда они удаляются из их естественной среды обитания.
«Эти животные модулируют свое поведение в соответствии с приливами и отливами в цикле примерно 12,4 часа, который определяется лунно-солнечной динамикой, даже когда их перемещают в лабораторию со стабильными и контролируемыми водными условиями», Галлеп сказал. «Схема сохраняется в течение нескольких дней, совпадая с временем лунно-солнечных приливов в том месте, где организмы были собраны в природе».
Хотя суммарное гравитационное воздействие Солнца и Луны соответствует лишь одной миллионной земной гравитации, этого достаточно, чтобы не только вызвать масштабные приливные колебания в океанах, реках и озерах, но и сдвинуть тектонические плиты. Большой адронный коллайдер (БАК), управляемый Европейской организацией ядерных исследований (ЦЕРН), с окружностью 27 километров смещается по вертикали на 1 миллиметр из-за этой гравитационной флуктуации, и его ученые должны соответствующим образом скорректировать свои экспериментальные расчеты.
Галлеп впервые заметил эти периодичности в экспериментах, связанных с автолюминесценцией, связанной с прорастанием семян, проведенных в Лимейре (штат Сан-Паулу). «Я заметил, что изменения в собранном сигнале появлялись каждые 12 или 24 часа, но различались в каждом тесте на всхожесть. Когда я искал подтверждение в литературе, я нашел исследования, указывающие на возможную корреляцию с гравитационными приливами. Мы исследовали это явление в последующих исследованиях. тесты на различных типах семян, а также добавлены результаты, полученные в лаборатории сотрудников в Праге, Чешская Республика, в Лейдене, Нидерланды, и в Хамамацу, Япония», — сказал он.
Гравитационные циклы влияют не только на простейшие организмы. Научные исследования показали, что люди, находящиеся в темноте, склонны устанавливать циклические колебания продолжительностью 24,4–24,8 часа, что соответствует лунному циклу. Эта тенденция также была отмечена у людей, которые проводят длительное время в пещерах. Он обусловливает чередование сна и бодрствования, времени приема пищи и других метаболических функций.
Узнать больше
У этого суперлуния есть своя изюминка — ожидается наводнение, но лунный цикл маскирует последствия повышения уровня моря
Дополнительная информация: Кристиано де Мелло Галлеп и др., Управляется ли циклическое поведение растений и животных гравиметрическими механическими силами?, Journal of Experimental Botany (2021). DOI: 10.1093/jxb/erab462
Предоставлено ФАПЕСП
Цитата : Исследование показывает, что гравитационное воздействие Солнца и Луны влияет на поведение животных и растений (4 января 2022 г.) получено 28 сентября 2022 г. с https://phys.org/news/2022-01-gravitational-action-sun-moon-behavior.html
Этот документ защищен авторским правом. Помимо любой добросовестной сделки с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в ознакомительных целях.
Лекция 3: Внутри Солнца
Лекция 3: Внутри СолнцаАстрономия 162: профессор Барбара Райден
Среда, 8 января
«С таким же успехом вы можете превратить Солнце в лед с обмахиванием лица павлиньим пером».
— Уильям Шекспир, Генрих V, акт 4, сцена 1
Ключевые понятия
- Внутренняя часть Солнца находится в гидростатическом равновесии.
- Энергия уносится от ядра Солнца радиационная диффузия и конвекция.
- Внутренности Солнца можно исследовать с помощью гелиосейсмологии.
(1) Внутренняя часть Солнца находится в гидростатическом равновесии.
Солнце довольно стабильно; мы не видим, как он колеблется дико то появляется, то исчезает, и мы не видим, как он мерцает, как свеча вот-вот погаснет. Более того, Солнце было достаточно стабильной в течение миллиардов лет, что позволяет непрерывное существование жизни на Земле.Гравитация оказывает дестабилизирующее воздействие. Тенденция гравитация сжимает Солнце. Если бы Солнце было рухнуть внутрь под действием собственной силы тяжести, схлопнуться в черную дыру в течение нескольких часы. Очевидно, что такой катастрофы не произошло. Что удержало Солнце от коллапса?
Как оказалось, Солнце держится стабильно благодаря своему внутреннему давление. Так же, как давление увеличивается, когда вы погружаетесь глубже и глубже в океаны Земли, поэтому давление увеличивается когда вы погружаетесь все глубже и глубже в Солнце. К тому времени вы достигаете центра Солнца, давление достигает значение, равное 340 миллиардам атмосферного давления на уровень моря здесь, на Земле. Это общее правило, что газ перетекает из областей высокого давления в области низкого давление. (Разница давлений делает воздух течь из проколотой шины.) Таким образом, внутри Солнца давление создает наружу сила, от ядро высокого давления к поверхности низкого давления. Это в отличие от гравитации, которая создает внутрь сила.
Когда сила давления точно уравновешивается сила тяжести, система в гидростатическая равновесие . Гидростатическое равновесие Солнца стабильна и саморегулируема; если ты немного подкинул дополнительная материя на Солнце, внутренняя сила гравитации увеличится. Однако результирующее сжатие увеличивают давление внутри Солнца, что приводит к увеличение силы давления, достаточное только для балансировки повышенная гравитационная сила.
(2) Энергия уносится от ядра Солнца радиационная диффузия и конвекция.
Энергия вырабатывается ядерным синтезом в горячем солнечном, плотное ядро высокого давления. Однако энергия, выработанная в конечном итоге излучается от поверхности Солнца, почти 700 000 километров (расстояние, равное 17-кратному окружность Земли). Как энергия переносится из ядро на поверхность?Существует три основных способа транспортировки энергии из жарких регионов в более прохладные регионы:
- Проводимость: энергия переносится мелкомасштабные случайные движения атомов или молекул. Один атом толкает соседний атом, который, в свою очередь, толкает следующий атом, который, в свою очередь, толкает следующий атом…
- Конвекция: энергия переносится крупномасштабные круговые «конвекционные потоки», как горячая жидкость поднимается, а холодная жидкость опускается.
- Радиационная диффузия: энергия переносится фотонами, текущими из теплых, ярких областей в холодные, темные регионы.
Внутри Солнца проводимость неэффективна (Солнце не твердое). Энергия переносится конвекцией во внешние области. Солнца (внешние 30 процентов или около того). Энергия транспортируется за счет лучистой диффузии во внутренних областях Солнца (внутренние 70 процентов).
(3) Внутреннее пространство Солнца можно исследовать с помощью гелиосейсмологии.
«Радиационная зона» Солнца (внутренние 70 процентов, где энергия переносится фотонами) отнюдь не идеально прозрачный. В среднем фотоны в зоне излучения перемещаются всего два сантиметра (около дюйма), прежде чем рассеяться в случайном направлении при столкновении с электроном. фотоны шатаются в случайном блуждании, или «пьяном блуждании» что поразительно неэффективно для того, чтобы довести их до конвективная зона. Обычно на это уходит около 170 000 лет. энергия, генерируемая термоядерным синтезом в ядре Солнца, чтобы ошеломить его путь к поверхности Солнца. (Напротив, если бы Солнце было полностью прозрачным, энергия будет переноситься фотонами прямо на поверхность Солнца, заняв всего 2,3 секунды!)Если Солнце не прозрачно (а это не так), как мы можем быть уверенным, что наши модели солнечного интерьера верны? К счастью, теоретические модели внутренней части Солнца могут быть протестированы с использованием гелиосейсмологии , изучение колебаний Солнца. Глядя на допплер сдвиг света, исходящего от поверхности Солнца, мы можем увидеть, как Солнце вибрирует туда-сюда (немного похоже на поверхность барабана). Так же, как исследования сейсмических волн рассказать нам что-нибудь о недрах Земли, исследованиях Вибрация Солнца говорит нам кое-что о внутренней части Солнца.
Подобно битому барабану или звону колокола, Солнце вибрирует в много частот одновременно. (Музыкант сказал бы, Солнце имеет много «обертонов».) Частоты, на которых Вибрации Солнца зависят от скорости звука внутри Солнца, которая в свою очередь зависит от давления, плотности и химического состава внутри Солнца. Таким образом, если мы хотим проверить модель Солнца, мы можем увидеть, соответствуют ли его предсказанные частоты колебаний соответствуют наблюдаемым частотам колебаний Солнца.
В настоящее время ведущими гелиосейсмологами мира являются объединились в Глобальное колебание Сетевая группа, или сокращенно «GONG»; у них есть обсерваторий по всему миру, чтобы они могли наблюдать Солнце 24 часа в сутки.