Site Loader

Содержание

Шаговый двигатель — принцип работы, применение, виды, характеристики, особенности, конструкции

Главная / Реестр / Что такое шаговый двигатель, конструкция, где применяется?

Шаговый двигатель представляет собой устройство, преобразующее электрическую энергию в механическую. По конструкции это бесколлекторный синхронный мотор с ротором, совершающим дискретные перемещения с фиксацией положения после каждого смещения. Величина шага строго определена, что позволяет вычислять абсолютную позицию ротора, подсчитав количество шагов.

Принципы действия биполярных и униполярных шаговых двигателей

Биполярный

Основные элементы шагового двигателя – ротор и статор. Первый представляет собой постоянный двухполюсный магнит. Он располагается на валу устройства. Статор – это замкнутый магнитопровод в виде кольца, он состоит из двух обмоток, половинки которых находятся на противоположных полюсах. На обмотке АВ – вертикально размещенные, на СD – горизонтально расположенные.

  1. При подаче напряжения на АВ появляется магнитное поле статора. Сверху полюс N, внизу S. Так как разноименные полюса притягиваются, ротор двигателя займет положение, при котором ось его магнитного поля совпадет с осью работающих АВ. Такое расположение ротора двигателя является очень устойчивым, если попытаться его сдвинуть, возникнет сила, которая будет его возвращать назад.
  2. Напряжение с обмотки АВ снимается и подается на обмотку CD, в результате чего возникает магнитное поле, в котором полюса расположены горизонтально – справа N, а слева S. Соответственно, постоянный магнит ротора расположится по горизонтальной оси, проделав минимальный путь – повернувшись на четверть оборота. Это будет шагом двигателя.
  3. Каждая последующая коммутация (со сменой полярности при подключении обмотки) заставит ротор поворачиваться на одну четвертую окружности. На полный оборот потребуется четыре шага. Частота вращения пропорциональна частоте переключения фазных обмоток. Если подключать фазы, меняя полярность в противоположной последовательности, ротор шагового двигателя будет вращаться в обратную сторону.

Униполярный

Выше был описан принцип работы биполярного шагового двигателя – у него для каждой фазы предусмотрено две обмотки. Чтобы менять магнитное поле, необходимо каждую обмотку:

  • отключить от источника электротока,
  • подключить в прямой полярности,
  • подключить в обратной полярности.

Осуществить коммутацию позволяет мостовой драйвер, который представляет собой сложную микросхему. Такой вариант подходит, если ток коммутации не превышает 2 А. Решить вопрос с управлением биполярным двигателем значительно сложнее при потребности в больших коммутационных токах. Значительно проще менять магнитное поле в статоре шагового двигателя, если использовать устройство с униполярными обмотками. В этом случае один вывод у всех четырех обмоток подсоединен к плюсовому выводу, а А, В, С и D последовательно подсоединяются к минусовому сигналу. В результате при каждой коммутации создается магнитное поле, заставляющее ротор двигателя повернуться. Коммутация по такому принципу обеспечивается четырьмя ключами, которые замыкают обмотки на землю. Управление ключами обычно осуществляется с выводов микроконтроллера.

При выборе шагового двигателя следует учитывать, что биполярный, при тех же габаритах, что и униполярный, обеспечивает больший крутящий момент. Выигрыш достигает 40 %. Это связано с тем, что в шаговом униполярном двигателе задействуется одна обмотка, а в биполярном две. Преимуществом устройства с одной обмоткой является простое управление.

Виды шаговых двигателей

Существует несколько разновидностей. К наиболее востребованным относятся модели с переменным магнитным сопротивлением, с постоянным магнитом и гибридные.

Устройства с переменным магнитным сопротивлением

Такие шаговые двигатели не имеют постоянных магнитов в роторе. Для изготовления ротора зубчатой формы используется магнитомягкий материал. Его вращение обеспечивается за счет замыкания магнитного поля статора через зубцы, располагающиеся вблизи полюсов. Зубцы к полюсам притягиваются и ротор поворачивается. Шаговые двигатели с переменным магнитным сопротивлением имеют небольшой крутящий момент в сравнении с моделями других типов при тех же габаритах. Это ограничивает сферу их применения.

Устройства с постоянными магнитами

На примере такого устройства выше разъяснялся принцип работы шаговых двигателей. В реальности роторы таких двигателей имеют несколько постоянных магнитов. От их количества зависит число шагов, за которое ротор выполняет полный оборот. Максимальное значение – 48, угол шага при этом составляет 7,5 градусов.

Гибридные устройства

В конструкции шаговых гибридных двигателей присутствует и зубчатый ротор, и постоянные магниты. Функционирует устройство по тому же принципу, что и двигатель с постоянными магнитами, но гибридный вариант отличается большим числом полюсов. За счет такого количества полюсов у гибридных шаговых двигателей больший момент, выше скорость и меньше величина шага. Максимальное число на один оборот может доходить до 400, при этом угол шага составляет 0,9 градусов. Гибридные устройства сложнее в изготовлении и дороже шаговых устройств других типов, но благодаря высокой функциональности пользуются спросом.

Особенности управления

Для управления двигателем с дискретным движением ротора используются следующие режимы: полношаговый, полушаговый и микрошаговый.

Полношаговый режим

При таком способе двигателем производится попеременная коммутация фаз. При этом к источнику напряжения фазы подключаются попеременно без перекрытия. Точки равновесия ротора при таком управлении совпадают с полюсами статора. К недостаткам полношагового режима относят то, что в каждый момент времени у биполярного двигателя используется половина обмоток, а у униполярного лишь четверть. Если подключить две фазы на полный шаг, то ротор будет зафиксирован между полюсами статора благодаря подаче питания на все обмотки. При этом увеличивается крутящий момент шагового двигателя, а положение ротора в состоянии равновесия смещается на полшага. Угол шага при этом остается неизменным.

Полушаговый режим

Если каждый второй шаг включать одну фазу, а между этим включать сразу две, можно увеличить количество перемещений на один оборот в два раза. Такая коммутация, соответственно, в два раза уменьшает угол шага. При этом достичь полного момента в полушаговом режиме невозможно. Режим активно используется, так как позволяет простым способом вдвое увеличить число шагов двигателя. Важно учитывать, что при снятии напряжения со всех фаз в полношаговом и полушаговом режиме ротор остается в свободном состоянии и может произойти его смещение при механических воздействиях. Для фиксации ротора требуется в обмотках двигателя формировать ток удержания. Обычно его значение намного меньше номинального. Благодаря способности шагового двигателя фиксировать положение ротора при остановке отсутствует необходимость использовать тормозную систему, фиксаторы и иные приспособления.

Микрошаговый режим

Чтобы максимально увеличить число шагов двигателя, используется микрошаговый режим. Для этого требуется включить две фазы и распределить ток обмоток неравномерно. При смещении магнитного поля статора относительно полюсов смещается и сам ротор. У диспропорции токов между рабочими фазами двигателя обычно наблюдается дискретность, которая определяет величину микрошага. Количество микрошагов на один оборот ротора шагового двигателя может составлять более 1 000. Устройство, работающее в таком режиме, можно максимально точно позиционировать. Однако данный способ управления является достаточно сложным.

Основные достоинства

К достоинствам шаговых двигателей относят:

  • точное позиционирование, которое не требует обратной связи. Угол поворота определяется числом электрических импульсов;
  • полный крутящий момент, который двигатель обеспечивает при снижении скорости вращении и до полной остановки;
  • фиксацию положения шагового двигателя при помощи тока удержания;
  • высокую точность регулировки скорости вращения без необходимости использования обратной связи;
  • быстрый старт и остановку двигателя, реверс;
  • высокую надежность. Устройства долговечны благодаря отсутствию коллекторных щеток.

Основные недостатки

К недостаткам шаговых двигателей можно отнести:

  • относительно невысокие скорости вращения;
  • сложную систему управления;
  • риск эффекта резонанса;
  • риск потери позиционирования ротора шагового двигателя под воздействием механических перегрузок;
  • низкую удельную мощность.

Характеристики

Двигатель шагового типа является сложным механическим и электротехническим устройством. Список основных характеристик, которые следует учитывать при выборе устройства, включает:

  • сопротивление обмотки фазы. Показатель сопротивления обмотки при работе на постоянном токе;
  • число полных шагов за один оборот ротора. Это основной параметр шагового двигателя, который определяет точность позиционирования, плавность движения, разрешающую способность;
  • угол полного шага. Это величина угла, на который поворачивается ротор за одно перемещение. Для расчета можно разделить 360° на количество шагов;
  • номинальный ток. Наибольшее значение тока, при котором двигатель может работать неограниченно долгое время;
  • номинальное напряжение. Максимально допустимое постоянное напряжение на обмотке при статическом режиме шагового двигателя;
  • сопротивление изоляции. Величина сопротивления между корпусом и обмотками;
  • момент инерции ротора. Чем меньше инерционность ротора, тем он быстрее разгоняется;
  • крутящий момент. Для шагового двигателя это ключевой механический параметр. Указывается максимальное значение для конкретной модели двигателя;
  • пробивное напряжение. Показатель минимального напряжения, при котором возникает пробой изоляции между корпусом и обмотками;
  • индуктивность фазы. Данный параметр принимают во внимание, если от двигателя требуется высокая скорость вращения. От него зависит скорость увеличения тока в обмотке. Если фазы следует переключать с высокой частотой, необходимо увеличивать напряжение для быстрого нарастания тока;
  • удерживающий момент. Это показатель крутящего момента при остановленном шаговом двигателе и при двух фазах, запитанных номинальным током.

Сфера применения

Шаговые двигатели рассчитаны на использование в составе устройств с дискретным управлением, где необходимо точно позиционировать исполнительные механизмы. Также они применяются в промышленном оборудовании с программным управлением, где требуется обеспечить непрерывное движение по заданной траектории и импульсное влияние исполнительными механизмами. Ротор шагового двигателя способен поворачиваться на заданный угол и на определенное количество оборотов вокруг своей оси. Благодаря этому шаговые устройства позволяют позиционировать считывающие головки проигрывателей оптических дисков, дисковых накопителей, печатающих головок сканеров, принтеров и иных устройств. Такие двигатели широко используются не только на производстве и в составе бытовой техники. Эти устройства востребованы радиотехниками, робототехниками, мастерами-любителями, изготавливающими самодельные станки с ЧПУ, движущиеся устройства и т. д. Для управления применяются специально разработанные контроллеры либо сложные электронные схемы. Управлять импульсными сигналами, заставляющими двигатель работать в заданном режиме, также можно через порт компьютера.


Твитнуть

Поделиться

Поделиться

Плюсануть

Класснуть

Применение шаговых двигателей

В данной статье мы рассмотрим шаговый двигатель постоянного тока, подробно разберем принцип работы, конструкцию и управление, а так же разберем один из чипов управления.

Блок: 1/4 | Кол-во символов: 169
Источник: https://meanders.ru/shagovyj-dvigatel-postojannogo-toka.shtml

Использование шаговых двигателей в производстве

Шаговые электродвигателя представляют собой бесколлекторные синхронные импульсные двигатели. Поворот ротора на определенный угол и установка его в заданном положении осуществляется за счет поступающих в возбуждающую обмотку статора управляющих импульсов. В результате протекания импульсного потока через обмотку меняется ориентация магнитного поля между полюсами статора и создается механическое поворотное усилие. Необходимые угловые перемещения или шаги ротора производятся последовательной активацией обмоток статора. У шаговых двигателей купить отсутствует пусковая обмотка, т.к. используется частотный пуск, и для осуществления установки ротора в нужную позицию нет необходимости в датчике положения. Отсутствие коллектора повышает надежность и долговечность устройства.Приборы такого типа применяются в промышленности в качестве исполнительных устройств.

Блок: 2/5 | Кол-во символов: 911
Источник: https://cnc-tehnologi.ru/stati/10-primenenie-shagovykh-dvigatelej

Устройство шагового электродвигателя

Шаговый двигатель, работающий от постоянного тока, умеет делить один полный оборот на большое количество шагов. Устройство состоит из следующих деталей:

  • Контроллер специального назначения для шагового привода.
  • Клеммы.
  • Обмотки.
  • Блок управления или приборная модель.
  • Магнитная часть.
  • Сигнализаторы.
  • Передатчики.

Блок: 2/5 | Кол-во символов: 347
Источник: https://bravedefender.ru/shagovyy-dvigatel-princip-raboty-i-harakteristiki/

Принцип работы шагового электродвигателя

Принцип работы электродвигателя состоит в следующем. На клеммы прибора подается напряжение, после чего щетки двигателя приводятся в постоянное движение. Двигатель на холостом ходу начинает преобразование входящих импульсов прямоугольного направления в положение приложенного вала, имеющего определенную направленность, и перемещает его под некоторым углом.

Максимальная эффективность такого электродвигателя достигается наличием нескольких зубчатых магнитов, сосредоточенных вокруг железного колеса зубчатой формы. Когда к определенному электромагниту прилагается энергия, он начинает притягивать зубья колеса. После их выравнивания по отношению к этому электромагниту, они становятся смещены относительно следующей магнитной части электродвигателя.

Первый магнит отключается, включается второй электромагнит, происходит вращение шестеренки, которая выравнивается с предыдущим колесом. Это циклическое действие происходит необходимое количество раз. Одно выполненное вращение называют шагом электродвигателя.

Блок: 3/5 | Кол-во символов: 1050
Источник: https://bravedefender.ru/shagovyy-dvigatel-princip-raboty-i-harakteristiki/

Принцип работы шаговых двигателей

Представьте себе двухполюсный постоянный магнит на валу двигателя – это ротор, окруженный замкнутым магнитопроводом с четырьмя обмотками — статор. Вернее это две обмотки AB и CD с половинками, расположенными на противоположных полюсах статора.

Подключили к источнику напряжения обмотку AB (полярность + -) как показано на рисунке. Ток в этой обмотке вызовет появление магнитного поля статора с полюсами сверху N, снизу S. Как известно разноименные полюса магнитов притягиваются. В результате ротор (постоянный магнит) займет положение, в котором оси магнитных полей ротора и работающих полюсов статора совпадают. Механическое положение будет устойчивым. При попытке сдвинуть ротор, возникнет сила, возвращающая его назад.

Теперь снимем напряжение с обмотки AB и подадим на обмотку CD (полярностью + -). Ток в обмотке CD вызовет магнитное поле с горизонтальными полюсами, слева S, справа N. Магнитное поле делает все, чтобы магнитный поток замкнулся по минимальному пути. Ротор повернется в положение указанное на рисунке. Механическое положение ротора опять устойчивое. Это был первый шаг двигателя. В нашем случае он равен одной четвертой оборота.

Отключаем обмотку CD и подаем напряжение опять на обмотку AB, но уже в другой полярности (- +). Опять магнитное поле статора повернется на 90°, а за ним и ротор.

Еще одна коммутация AB — отключаем, CD — подключаем (полярность — +) и ротор совершает еще один шаг на одну четвертую окружности. Следующая коммутация (с которой мы начали) вернет ротор в исходное положение. Мы сделали полный поворот за 4 шага. Если продолжить переключение фаз, ротор будет вращаться с частотой, пропорциональной частоте переключения фазных обмоток. Если коммутировать фазы в противоположной последовательности – крутиться в обратном направлении, прекратить коммутацию — остановится.

Биполярные и униполярные шаговые двигатели

Это был биполярный шаговый двигатель. Биполярный двигатель имеет по одной обмотке для каждой фазы. На предыдущих рисунках это обмотки AB и CD. Для изменения магнитного поля должна обеспечиваться сложная коммутация обмоток. Каждая обмотка: • отключается от источника напряжения, • подключается в прямой полярности • подключается с противоположной полярностью.

Для такой коммутации требуется сложный мостовой драйвер. Примером такого устройства является микросхема L298N. Микросхема обеспечивает ток коммутации до 2 А. Если нужны большие токи, то задача управления биполярным двигателем еще усложняется.

Существует другой способ изменения магнитного поля в статоре с гораздо более простой схемой коммутации. Это применение двигателя с униполярными обмотками. Схема двух фазного шагового двигателя с униполярными обмотками и последовательность коммутаций обмоток выглядит так.

У всех четырех обмоток один вывод подключен к плюсовому выводу источника питания. А другие выводы A,B,C,D последовательно коммутируются к минусовому сигналу. Соответствующие обмотки создают магнитное поле, и ротор поворачивается вслед за ним.

Для коммутации обмоток таким способом достаточно четырех ключей, замыкающих обмотки на землю. Ключи часто управляются непосредственно с выводов микроконтроллеров. Иногда средние выводы обмоток конструктивно объединены внутри двигателя, иногда выводятся все выводы отдельно. Кстати, это не повод называть двигатель четырехфазным. Все равно он будет двухфазным.

Биполярный двигатель обеспечивает, при тех же размерах, больший крутящий момент, по сравнению с униполярным. Оно и понятно. Одновременно в униполярном двигателе работает только одна обмотка, вместо двух. Выигрыш в моменте у биполярного составляет около 40%. Зато, если нет необходимости использовать двигатель на полную мощность, униполярным двигателем гораздо проще управлять.

Блок: 2/6 | Кол-во символов: 3823
Источник: https://24techno-guide.ru/shagovii-dvigatel—princip-raboti.php

Что такое шаговый двигатель?

Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.

В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.

Преимущества и недостатки шагового электродвигателя

К преимуществам эксплуатации шагового двигателя можно отнести:

  • В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
  • Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
  • Обеспечивает высокую скорость старта, реверса, остановки;
  • Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
  • Для позиционирования шаговому двигателю не требуется обратной связи;
  • Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
  • Сравнительно меньшая стоимость относительно тех же сервоприводов;
  • Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.

К недостаткам применения шагового двигателя относятся:

  • Может возникать резонансный эффект и проскальзывание шагового агрегата;
  • Существует вероятность утраты контроля из-за отсутствия обратной связи;
  • Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
  • Сложности управления из-за особенности схемы

Блок: 2/8 | Кол-во символов: 2153
Источник: https://www.asutpp.ru/shagovyy-dvigatel.html

Чип управления шаговым двигателем SAA1027

В этом уроке о вращательных приводах, мы рассмотрели шаговый двигатель в качестве электромеханического привода, который может быть использован в качестве устройства вывода для позиционной или скорости управления.

В следующем уроке об устройствах ввода / вывода мы продолжим наш взгляд на устройства вывода, называемые исполнительными механизмами, и в частности те, которые снова преобразуют электрический сигнал в звуковые волны с помощью электромагнетизма.

Блок: 4/4 | Кол-во символов: 497
Источник: https://meanders.ru/shagovyj-dvigatel-postojannogo-toka.shtml

Преимущества и недостатки

К основным преимуществам шаговых электродвигателей относят их точность. То есть, при попадании напряжения на обмотку, прибор поворачивается на строго определенную величину угла. Еще одним несомненным достоинством можно назвать стоимость агрегата. Ведь если сравнивать их цену с, например, сервоприводами, то они стоят в 2 раза дешевле.

Основной недостаток шагового электропривода — возможное проскальзывание ротора. Причин может быть несколько:

  • Слишком высокая нагрузка на валу.
  • Неправильные настройки программы управления.
  • Скорость вращения приближается к резонансным показателям.

Решение этих проблем возможно, если использовать датчики поворота. Но автоматически эта проблема решается не всегда. В некоторых случаях задача выполнима только после остановки производственной программы. Проблема проскальзывания электродвигателя решается также путем увеличения его мощности.

Блок: 4/5 | Кол-во символов: 901
Источник: https://bravedefender.ru/shagovyy-dvigatel-princip-raboty-i-harakteristiki/

Реактивный шаговый двигатель

Реактивный шаговый двигатель — синхронный реактивный двигатель. Статор реактивного шагового двигателя обычно имеет шесть явновыраженных полюсов и три фазы (по два полюса на фазу), ротор — четыре явно выраженных полюса, при такой конструкции двигателя шаг равен 30 градусам. В отличии от других шаговых двигателей выключенный реактивный шаговый двигатель не имеет фиксирующего (тормозящего) момента при вращении вала.

Трехфазный реактивный шаговый двигатель
(шаг 30°)

Четырехфазный реактивный шаговый двигатель
(шаг 15°)

Ниже представлены осциллограммы управления для трехфазного шагового двигателя.

Униполярное волновое управление

Биполярное полношаговое управление

Биполярное 6-шаговое управление

Осциллограммы управления для четырехфазного шагового двигателя показаны на рисунке ниже. Последовательное включение фаз статора создает вращающееся магнитное поле за которым следует ротор. Однако из-за того, что ротор имеет меньшее количества полюсов, чем статор, ротор поворачивается за один шаг на угол меньше чем угол статора. Для реактивного двигателя угол шага равен:

,

  • где NR — количество полюсов ротора;
  • NS – количество полюсов статора.

Осциллограммы управления 4-х фазным реактивным шаговым двигателем

Чтобы изменить направление вращения ротора (реверс) реактивного шагового двигателя, необходимо поменять схему коммутации обмоток статора, так как изменение полярности импульса не изменяет направления сил, действующих на невозбужденный ротор .

Реактивные шаговые двигатели применяются только тогда, когда требуется не очень большой момент и достаточно большого шага угла поворота. Такие двигатели сейчас редко применяются.

    Отличительные черты:
  • ротор из магнитомягкого материала с явно выраженными полюсами;
  • наименее сложный и самый дешевый шаговый двигатель;
  • отсутствует фиксирующий момент в обесточенном состоянии;
  • большой угол шага.

Блок: 5/7 | Кол-во символов: 2045
Источник: https://engineering-solutions.ru/motorcontrol/stepper/

Подключение шагового двигателя

Чтобы запитать обмотки, потребуется устройство способное выдать управляющий импульс  или серию импульсов в определенной последовательности.  В качестве таких блоков выступают полупроводниковые приборы для подключения шагового двигателя, микропроцессорные драйвера. В которых имеется набор выходных клемм, каждая из них определяет способ питания и режим работы.

В зависимости от схемы подключения должны применяться те или другие выводы шагового агрегата.  При различных вариантах подведения тех или иных клемм к выходному сигналу постоянного тока получается определенная скорость вращения, шаг или микрошаг линейного перемещения в плоскости. Так как для одних задач нужна низкая частота, а для других высокая, один и тот же двигатель может задавать параметр за счет драйвера.

Типичные схемы подключения ШД

В зависимости того, какое количество выводов представлено на конкретном шаговом двигателе: 4, 6 или 8 выводов, будет отличаться и возможность использования той или иной схемы их подключения Посмотрите на рисунки, здесь показаны типичные варианты подключения шагового механизма:

Схемы подключения различных типов шаговых двигателей

При условии запитки основных полюсов шаговой машины от одного и того же драйвера, по данным схемам можно отметить следующие отличительные особенности работы:

  • Выводы однозначно подводятся к соответствующим клеммам устройства. При последовательном соединении обмоток увеличивает индуктивность обмоток, но понижает ток.
  • Обеспечивает паспортное значение электрических характеристик. При параллельной схеме увеличивается ток и снижается индуктивность.
  • При подключении по одной фазе на обмотку снижется момент на низких оборотах и уменьшает величину токов.
  • При подключении осуществляет все электрические и динамические характеристики согласно паспорта, номинальный токи. Значительно упрощается схема управления.
  • Выдает куда больший момент и применяется для больших частот вращения;
  • Как и предыдущая предназначена для увеличения момента, но применяется для низких частот вращения.

Блок: 5/8 | Кол-во символов: 2041
Источник: https://www.asutpp.ru/shagovyy-dvigatel.html

Область применения шагового электродвигателя

Область применения шагового электродвигателя достаточно обширна. Например, гибридные шаговые электродвигатели активно используют при создании станков с числовым программным управлением, которые работают по дереву, выполняют плазменную резку металлов или фрезерные операции. Шаговые приборы отлично подходят для управления чертежной головкой в копировальных станках с цифровым программным управлением.

Передача факсов на расстояние при помощи телефонной связи также не обходится без использования таких приборов. В космических летательных аппаратах для изучения космоса шаговые двигатели использовались, например, в ЛА Mariner как устройство для наведения телевизионных камер и спектрометров на нужные цели.

Блок: 5/5 | Кол-во символов: 752
Источник: https://bravedefender.ru/shagovyy-dvigatel-princip-raboty-i-harakteristiki/

Управление шаговым двигателем

Выполнение операций шаговым агрегатом может осуществляться несколькими методами. Каждый из которых отличается способом подачи сигналов на пары полюсов. Всего выделяют тир метода активации обмоток.

Волновой – в таком режиме происходит возбуждение только одной обмотке, к которой и притягиваются роторные полюса. При этом шаговый двигатель не способен вытягивать большую нагрузки, так как выдает лишь половину момента.

Волновое управление

Полношаговый  — в таком режиме происходит одновременная коммутация фаз, то есть, возбуждаются сразу обе. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток.

Полношаговое управление

Полушаговый – представляет собой комбинацию двух предыдущих методов коммутации обмоток. Во время реализации которого в шаговом двигателе происходит поочередная подача напряжения сначала в одну катушку, а затем сразу в две. Благодаря чему обеспечивается лучшая фиксация на максимальных скоростях и большее количество шагов.

Полушаговое управление

Для более мягкого управления и преодоления инерции ротора используется микрошаговое управление, когда синусоида сигнала осуществляется микроступенчатыми импульсами. За счет чего силы взаимодействия магнитных цепей в шаговом двигателе получают более плавное изменение и, как следствие, перемещение ротора между полюсами. Позволяет в значительной степени снизить рывки шагового двигателя.

Без контроллера

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.

Схема Н-моста

Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора. Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.

Подключение через контроллер однополярного шагового двигателя

Популярные схемы управления ШД

Схема управления от контроллера с дифференциальным выходом

Является одним из наиболее помехозащищенных способов работы. При этом прямой и инверсный сигнал напрямую подключается к соответствующим полюсам. В такой схемы должно применяться экранирование сигнального проводника. Прекрасно подходит для нагрузки с низкой мощностью.

Схема управления от контроллера с выходом типа «открытый коллектор»

В данной схеме происходит объединение положительных вводов контроллера, которые подключаются к положительному полюсу. В случае питания выше 9В требуется включение в схему специального резистора для ограничения тока. Позволяет задавать необходимое количество шагов со строго установленной скоростью, определить ускорение и т.д.

Блок: 6/8 | Кол-во символов: 3263
Источник: https://www.asutpp.ru/shagovyy-dvigatel.html

Простейший драйвер шагового двигателя своими руками

Чтобы собрать схему драйвера в домашних условиях могут пригодиться некоторые элементы от старых принтеров, компьютеров и другой техники. Вам понадобятся транзисторы, диоды, резисторы (R) и микросхема (RG).

Схема простейшего драйвера

Для построения программы руководствуйтесь следующим принципом: при подаче на один из выводов D логической единицы (остальные сигнализируют ноль)  происходит открытие транзистора и сигнал проходит к катушке двигателя. Таким образом, выполняется один шаг.

На основе схемы составляется печатная плата, которую можно попытаться изготовить самостоятельно или сделать под заказ. После чего на плате впаиваются соответствующие детали. Устройство способно управлять шаговым устройством от домашнего компьютера за счет подключения к обычному  USB порту.

Блок: 7/8 | Кол-во символов: 829
Источник: https://www.asutpp.ru/shagovyy-dvigatel.html

Кол-во блоков: 17 | Общее кол-во символов: 20606
Количество использованных доноров: 7
Информация по каждому донору:
  1. https://www.asutpp.ru/shagovyy-dvigatel.html: использовано 4 блоков из 8, кол-во символов 8286 (40%)
  2. https://24techno-guide.ru/shagovii-dvigatel—princip-raboti.php: использовано 1 блоков из 6, кол-во символов 3823 (19%)
  3. https://engineering-solutions.ru/motorcontrol/stepper/: использовано 1 блоков из 7, кол-во символов 2045 (10%)
  4. https://zaxis.ru/statyi/shagovyj-dvigatel-rabota-ustrojstvo.html: использовано 1 блоков из 8, кол-во символов 300 (1%)
  5. https://cnc-tehnologi.ru/stati/10-primenenie-shagovykh-dvigatelej: использовано 2 блоков из 5, кол-во символов 2436 (12%)
  6. https://meanders.ru/shagovyj-dvigatel-postojannogo-toka.shtml: использовано 2 блоков из 4, кол-во символов 666 (3%)
  7. https://bravedefender.ru/shagovyy-dvigatel-princip-raboty-i-harakteristiki/: использовано 4 блоков из 5, кол-во символов 3050 (15%)

Устройство, принцип работы и применение шаговых электродвигателей | Полезные статьи

Шаговый тип электродвигателей представляет собой синхронное бесщеточное устройство с парой обмоток, через которые, собственно, и подается ток. Принцип действия электродвигателя подобного типа заключается в том, что ток, передаваемый на одну из обмоток статора, провоцирует фиксацию ротора. Как следствие, попеременная активация обмоток устройства вызывает шаги ротора, иначе говоря, его дискретные угловые перемещения.

Устройство шагового электродвигателя состоит из основы: статора, на котором размещены обмотки, и ротора. Для создания ротора в большинстве случаев используются твердые или мягкие магнитные материалы. При производстве ротора выгоднее использовать магнитный материал, потому как именно шаговый электродвигатель, принцип работы которого основан на магнитном роторе, способен обеспечить больший крутящий момент. К тому же устройство из магнитного материала позволяет добиваться наилучшей фиксации ротора даже при обесточенных обмотках.

 

Особого внимания заслуживает гибридный вариант шаговых двигателей, который вобрал в себя все лучшие качества электродвигателей с постоянным и переменным магнитным сопротивлением. Ниже мы рассмотрим устройство, принцип работы и применение шаговых электродвигателей-гибридов.

Принцип действия электродвигателя-гибрида основан на использовании основных полюсов, на которых закреплены обмотки. Кстати, благодаря тому что роторные зубцы у смешанной модели расположены в осевом направлении, они способны обеспечивать не только большее количество эквивалентных полюсов, но и оказывают заметно меньшее сопротивление магнитной цепи, что, в свою очередь, улучшает динамический и статический момент. К тому же ротор гибридного электродвигателя имеет постоянный магнит, расположенный между двумя его частями. Таким образом, зубцы верхней роторной части исполняют роль северных полюсов, а зубцы нижней части, соответственно, южных. Количество роторных полюсных пар всегда соответствует количеству зубцов на одной из его частей. Кроме того, зубчатые полюсные наконечники ротора, также как и статора, набираются только из отдельных пластин. Подобное устройство шагового электродвигателя помогает снизить потери, возникающие из-за вихревых токов.

Шаговый электродвигатель, принцип работы которого основан на гибридном использовании постоянного и переменного тока, широко применяется в машиностроении.

Точность определения шага зависит от качества механической обработки ротора и статора электродвигателя. Большинство производителей современных шаговых двигателей готовы гарантировать точность выставления шага до 5 процентов от величины шага.

 

Однако в приводах большинства механизмов, работающих в старт-стопном режиме, чаще применяется другой тип — шаговый электродвигатель, управление которого связано с интегрированным контроллером. Они способны создавать высокий крутящий момент даже при весьма низких скоростях вращения. Этот тип широко используется в устройствах компьютерной памяти (НГМД, НЖМД и прочие).

Основным преимуществом всех современных шаговых электродвигателей является их точность. Более того, подобные устройства располагают к себе отличным соотношением цены и качества. В частности, шаговые приводы практически в два раза дешевле аналогичных сервоприводов. Шаговые электродвигатели также прекрасно справляются с автоматизацией отдельных систем и узлов, которые не нуждаются в высокой динамике.

Тем не менее у данного типа двигателей имеются и определенные недостатки. В частности, в шаговом двигателе существует довольно высокая вероятность так называемого проскальзывания ротора. Обычно этот недостаток проявляется при чрезмерной нагрузке на вал или при неверной настройке управляющей программы. Поскольку электрически это никоим образом не может быть зафиксировано, то во избежание ошибок при ответственных применениях обычно устанавливают специальные датчики для обратной связи, задачей которых является тщательный контроль над перемещениями и вращениями. К сожалению, подобные датчики имеют достаточно высокую стоимость.

Устройство шагового двигателя

Шаговый электродвигатель относится к виду электрических машин постоянного тока. Принцип действия шагового электродвигателя основан на способе преобразования импульсной электрической энергии в механическое дискретное перемещение.

Шаговые электродвигатели классифицируются как бесколлекторные двигатели с высокой степенью надежности и большим сроком службы. Особенности этого типа электродвигателей делают их пригодными к эксплуатации даже в самых сложных производственных условиях.

Отличительной особенностью шаговых двигателей является большое значение крутящего момента на низких скоростях, в то время как в коллекторных двигателях значение крутящего момента возрастает только при увеличении скорости.

Конструкция шагового электродвигателя предполагает наличие более сложной схемы управления, обеспечивающей коммутацию обмоток, в сравнении с другими электродвигателями постоянного тока.

Шаговые электродвигатели подразделяются на три вида: с постоянными магнитами; с переменным магнитным сопротивлением; гибридные.

Двигатели с постоянными магнитами

Электродвигатели с постоянными магнитами включают в себя статор с обмотками и ротор, в конструкцию которого входят постоянные магниты.

Статор в таком электродвигателе имеет два противоположных полюса, на каждом из которых имеется независимая обмотка. При подаче электропитания в одну из обмоток ротор перемещается в положение, при котором его полюса располагаются напротив разноименных полюсов статора. Непрерывное вращение ротора достигается попеременным включением фаз.

Шаговые электродвигатели с постоянными магнитами, в силу конструктивных особенностей, подвержены влиянию обратной ЭДС, которая наводится в роторе и ограничивает скорость его вращения.

Высокая скорость вращения ротора возможна в электродвигателях, с переменным магнитным сопротивлением.

Двигатели с переменным магнитным сопротивлением

Статор шагового электродвигателя с переменным магнитным сопротивлением содержит несколько пар полюсов. Полюса каждой пары расположены напротив друг друга и имеют независимые одноименные обмотки. Ротор оборудован зубцами, сделанными из мягкого магнитного материала.

При подаче электропитания в одну из пар обмоток ротор перемещается в положение, при котором его зубцы располагаются напротив запитанных обмоток статора. При подаче электропитания на другую пару обмоток ротор перемещается в положение, при котором его зубцы располагаются напротив запитанной пары, и вновь замыкают магнитный поток. Непрерывное вращение ротора достигается попеременным включением фаз.

Гибридные шаговые двигатели

Гибридные шаговые электродвигатели имеют конструкцию, сочетающую в себе преимущества двух предыдущих типов электродвигателей. Гибридные электродвигатели являются более скоростными и обеспечивают шаг малой величины. Однако стоимость этих электродвигателей выше.

Ротор гибридного электродвигателя состоит из двух частей зубчатой формы, разделенных между собой цилиндрическим постоянным магнитом. Зубцы каждой составной части ротора являются одноименными полюсами: северными или южными. Угол поворота составных частей ротора относительно друг друга равен половине шагового угла зубцов.

Все зубчатые полюса ротора выполнены в виде пакетов пластин. Такая конструкция способствует снижению потерь, связанных с вихревыми токами.

Конструкция статора также содержит зубчатые полюсные наконечники для обеспечения нужного количества полюсов, эквивалентных роторным, при этом обмотками оборудованы только основные полюса.

Биполярные и униполярные шаговые двигатели

В зависимости от конфигурации обмоток шаговые электродвигатели могут быть биполярными и униполярными.

Биполярным называется электродвигатель, у которого каждая фаза оборудована только одной обмоткой, а переключение обмоток изменяет направление магнитного поля.

Униполярным называется электродвигатель, у которого каждая фаза также оборудована только одной обмоткой, но выводы сделаны от середины каждой обмотки. Переключение половинок обмотки изменяет направление магнитного поля.

Шаговыми электродвигатели оборудуются многие устройства: офисная техника (принтеры, факсы, сканеры и т.д), специальное промышленное оборудование, различные периферийные технические устройства.

Шаговый двигатель, виды, принцип работы, плюсы и минусы

Шаговый двигатель, виды, принцип работы, плюсы и минусы
  • Фрезерно-гравировальныe станки
  • Лазерные станки с ЧПУ
  • Станок плазменной резки
  • Станки для школ
  • 3D Принтеры
  • Покрасочный станок
  • Комплектующие к ЧПУ
  • Комплектующие для лазерных станков
  • Комплектующие для волоконных лазеров
  • Готовые модули
  • Режущий инструмент
  • Фрезы ARDEN для ручных и ЧПУ фрезеров
    • Фрезы пазовые прямые
    • Фрезы для выравнивания поверхности
    • Фрезы V-образные
    • Фрезы кромочные прямые
    • Фрезы для врезания петель и замков
    • Фрезы пазовые галтельные
    • Фрезы радиусные полукруглые
    • Фрезы «Ласточкин хвост»
    • Фрезы пазовые
    • Фрезы четвертные
    • Фрезы профильные
      • Фреза «Гусёк» (псевдофилёнка), 222 серия
      • Фрезы «Гусёк» 210 серия
      • Фрезы «Тройной внешний радиус», 323 серия
      • Фрезы «Декоративный гусёк» 212 серия
      • Фрезы «Классический узор», 211 серия
      • Фрезы «Тройной внутренний радиус», 324 серия
      • Фрезы «Шар» 208 серия
      • Фрезы Бычий нос «Катушка», 330 серия
      • Фрезы внешнее и внутреннее скругление 2 в 1
      • Фрезы для скругления удлиненные
      • Фрезы мультипрофильные (Карниз), 351 серия
      • Фрезы овальное скругление (Жалюзи)
      • Фрезы превсофиленка «Волна-1»
      • Фрезы профильные «Ручка» 502 серии
      • Фрезы профильные «Углубленный шар», 329 серия
      • Фрезы профильные «Французская классика», 352 серия
      • Фрезы профильные для плинтусов, 403 серия
      • Фрезы фигурные «Классический гусёк», 311 серия
      • Фрезы филёночные, 416 серия
    • Фрезы для сращивания и мебельной обвязки
    • Комплектующие к фрезам ARDEN
    • Набор радиальных и фасочных фрез
  • Комплектующие для плазменной резки
  • Пневматическое оборудование
  • Дисковые пилы
  • Оборудование для покраски
  • Ручной инструмент

Сравнение сервоприводов и шаговых двигателей

Рисунок 1 — Сервопривод

1. Физика процесса

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту. Электрические машины преобразуют механическую энергию в электрическую и наоборот, электрическую энергию в механическую. Машина, преобразующая механическую энергию в электрическую, называется генератором. Преобразование электрической энергии в механическую осуществляется двигателями.Принцип действия электрических машин основан на использовании законов электромагнитной индукции и электромагнитных сил. Если в магнитном поле полюсов постоянных магнитов или электромагнитов поместить проводник и под действием какой-либо силы F1 перемещать его, то в нем возникает Э.Д.С. равная:

E=B×I×vE= B times I times v

где В — магнитная индукция в месте, где находится проводник,
l — активная длина проводника (та его часть, которая находится в магнитном поле),
v — скорость перемещения проводника в магнитном поле.

Если этот проводник замкнуть на какой-либо приемник энергии, то в замкнутой цепи под действием Э.Д.С. будет протекать ток, совпадающий по направлению с Э.Д.С. в проводнике. В результате взаимодействия тока I в проводнике с магнитным полем полюсов создается электромагнитная сила Fэ, направление которой определяется по правилу левой руки; эта сила будет направлена навстречу силе, перемещающей проводник в магнитном поле. При равенстве сил F1 = Fэ проводник будет перемещаться с постоянной скоростью. Следовательно, в такой простейшей электрической машине механическая энергия, затрачиваемая на перемещение проводника, преобразуется в энергию электрическую, отдаваемую сопротивлению внешнего приемника энергии, т. е. машина работает генератором. Та же простейшая электрическая машина может работать двигателем. Если от постороннего источника электрической энергии через проводник пропустить ток, то в результате взаимодействия тока в проводнике с магнитным полем полюсов создается электромагнитная сила Рэ, под действием которой проводник начнет перемещаться в магнитном поле, преодолевая силу торможения какого-либо механического приемника энергии.

Рисунок 2 — Физика процесса

Таким образом, рассмотренная машина так же, как и любая электрическая машина, обратима, т. е. может работать как генератором, так и двигателем. Для увеличения Э.Д.С. и электромеханических сил электрические машины снабжаются обмотками, состоящими из большого числа проводов, которые соединяются между собой так, чтобы Э.Д.С. в них имели одинаковое направление и складывались. Э.Д.С. в проводнике будет индуктирована также и в том случае, когда проводник неподвижен, а перемещается магнитное поле полюсов.

2. Асинхронные двигатели

Наиболее распространенные электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.Асинхронный двигатель имеет статор (неподвижная часть) и ротор (подвижная часть), разделенные воздушным зазором, ротор крепится на подшипниках. Активными частями являются обмотки; все остальные части — конструктивные, обеспечивающие необходимую прочность, жесткость, охлаждение, возможность вращения и т. п. По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным. Фазный ротор используют когда необходимо создать большой пусковой момент. К ротору подводят ток и в результате уже возникает магнитный поток необходимый для создания момента.

На обмотку статора подается напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на стержни ротора и по закону магнитной индукции возникает электрический ток т. к. изменяется магнитный поток, проходящий через замкнутый контур ротора. Токи в стержнях ротора создают собственное магнитное поле стержней, которые вступают во взаимодействие с вращающимся магнитным полем статора. В результате на каждый стержень действует сила, которая складываясь по окружности создает вращающийся электромагнитный момент ротора из-за того, что индукционный ток, возникающий в замкнутом контуре ротора, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. Следовательно и возникает вращение.Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора Э.Д.С. и, в свою очередь, создавать крутящий момент.

Рисунок 3 — Вид асинхронной машины с короткозамкнутым ротором в разрезе

На рисунке приведен вид асинхронной машины с короткозамкнутым ротором в разрезе:

1 — станина,

2 — сердечник статора,

3 — обмотка статора,

4 — сердечник ротора с короткозамкнутой обмоткой,

5 — вал.

3. Синхронные двигатели

Синхронный двигатель не имеет принципиальных конструктивных отличий от асинхронных. На статоре синхронного двигателя помещается трехфазная обмотка, при включении которой в сеть трехфазного переменного тока будет создано вращающееся магнитное поле, число оборотов в минуту которого n = 60f/p, где f — частота напряжения питания привода. На роторе двигателя помещена обмотка возбуждения, включаемая в сеть источника постоянного тока. Либо ротор выполнен из постоянного магнита. Ток возбуждения создает магнитный поток полюсов или в случае с постоянным магнитом, магнитный поток уже создан. Вращающееся магнитное поле, полученное токами обмотки статора, увлекает за собой полюса ротора. При этом ротор может вращаться только с синхронной скоростью, т. е. со скоростью, равной скорости вращения поля статора. Таким образом, скорость синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.

Достоинством синхронных двигателей является меньшая, чем у асинхронных, чувствительность к изменению напряжения питающей сети. У синхронных двигателей вращающий момент пропорционален напряжению сети в первой степени, тогда как у асинхронных — квадрату напряжения. Вращающий момент синхронного двигателя создается в результате взаимодействия магнитного поля статора с магнитным полем полюсов. От напряжения питающей сети зависит только магнитный поток поля статора.

4. Шаговые двигатели

Шаговые двигатели — это электромеханические устройства, преобразующие сигнал управления в угловое (или линейное) перемещение ротора с фиксацией его в заданном положении без устройств обратной связи. По сути шаговый двигатель является синхронным, но отличается подходом управления. Рассмотрим самые распространенные.

5. Двигатели с постоянными магнитами

Рисунок 4 — Ротор

Двигатели с постоянными магнитами состоят из статора, который имеет обмотки, и ротора, содержащего постоянные магниты. Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя. Благодаря намагниченности ротора в таких двигателях обеспечивается больший магнитный поток и, как следствие, больший момент, чем у двигателей с переменным магнитным сопротивлением. Такой двигатель имеет величину шага 30°. При включении тока в одной из катушек, ротор стремится занять такое положение, когда разноименные полюса ротора и статора находятся друг напротив друга. Для осуществления непрерывного вращения нужно включать фазы попеременно. На практике двигатели с постоянными магнитами обычно имеют 48—24 шага на оборот (угол шага 7,5—15°). Двигатели с постоянными магнитами подвержены влиянию обратной Э.Д.С. со стороны ротора, котрая ограничивает максимальную скорость.

6. Гибридные двигатели

Рисунок 5 — Устройство гибридных двигателей

Являются более дорогими, чем двигатели с постоянными магнитами, зато они обеспечивают меньшую величину шага, больший момент и большую скорость. Типичное число шагов на оборот для гибридных двигателей составляет от 100 до 400 (угол шага 3,6…0,9°). Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении. Ротор разделен на две части, между которыми расположен цилиндрический постоянным магнит. Таким образом, зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки — южными. Кроме того, верхняя и нижняя половинки ротора повернуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи. Статор гибридного двигателя также имеет зубцы, обеспечивая большое количество эквивалентных полюсов, в отличие от основных полюсов, на которых расположены обмотки. Обычно используются 4 основных полюса для 3,6° двигателей и 8 основных полюсов для 1,8…0,9° двигателей. Зубцы ротора обеспечивают меньшее сопротивление магнитной цепи в определенных положениях ротора, что улучшает статический и динамический момент. Это обеспечивается соответствующим расположением зубцов, когда часть зубцов ротора находится строго напротив зубцов статора, а часть между ними. Зависимость между числом полюсов ротора, числом эквивалентных полюсов статора и числом фаз определяет угол шага S двигателя:

S=360/(Nph×Ph)=360/NS= 360 / ( Nph times Ph ) = 360 / N

где Nph — число эквивалентных полюсов на фазу, равное числу полюсов ротора,
Ph — число фаз,
N — полное количество полюсов для всех фаз вместе.

7. Сервопривод

Рисунок 6 — График зависимости момента от скорости вращения двигателя

Сервопривод — общее название привода, синхронного, асинхронного либо любого другого, с отрицательной обратной связью по положению, моменту и др. параметрам, позволяющего точно управлять параметрами движения. Сервопривод – это комплекс технических средств. Состав сервопривода: привод – например, электромотор, датчик обратной связи – например, датчик угла поворота выходного вала редуктора (энкодер), блок питания и управления (он же преобразователь частоты \ сервоусилитель \ инвертор \ servodrive). Мощность двигателей: 0,05…15 кВт. Существует понятие «вентильный двигатель». Это всего лишь названия для двигателя, управление которым осуществляется через «вентили» – ключи, переключатели и т. п. коммутационные элементы. Современными «вентилями» являются IGBT-транзисторы использующиеся в блоках управления приводами. Никакого конструктивного отличия нет. Основным достоинством сервоприводов является наличие обратной связи, благодаря которой такая система может поддерживать точность позиционирования на высоких скоростях и высоких моментах. Также систему отличает низкоинерционность и высокие динамические характеристики, например время переключения от скорости –3 000 об/мин до достижения 3 000 об/мин составляет всего 0,1 с. Современные блоки управления являются высокотехнологическими изделиями со сложной системой управления и могут обеспечить выполнение практически любой задачи.

Характеристики системы сервопривода рассмотрим основываясь на сервоприводах фирмы Delta elc. Серии блока управления ASDA-A и двигателем 400 Вт. Как видно поддержание момента линейное на всем диапазоне скоростей. Это достигается благодаря использованию синхронного двигателя в высококачественном исполнении. Величина шага перемещения определяется разрешающей способностью датчика обратной связи, энкодера, а так же блоком управления. Стандартные сервоприводы могут обеспечить шаг в 0,036° т. е. 1/10 000 от оборота, и это на скоростях до 5 000 об/мин.

Самые современные сервоприводы отрабатывают шаг в 1/2 500 000.

Рисунок 7 — Шаговый двигательРисунок 8 — Серводвигатель
Шаговый двигатель Серводвигатель
Надежность
Шаговые двигатели обладают высокой надежностью, так как в их конструкции отсутствуют изнашивающиеся детали. Рабочий ресурс двигателя зависит только от ресурса примененных в нем подшипников. Большинство современных бесколлекторных сервоприводов от известных производителей (Mitsubishi, Siemens, Omron, Delta) отличаются высокой надежностью, порой сравнимой с надежностью шаговых двигателей, даже несмотря на значительно более сложное устройство сервопривода.
Эффект потери шагов
Всем шаговым двигателям присуще свойство потери шагов. Данный эффект проявляется в некотором неконтролируемом смещении траектории перемещения инструмента, от необходимой траектории. При изготовлении простых деталей, имеющих малую длину траектории перемещения инструмента и при невысоких требованиях к изделию, в большинстве случаем данным эффектом можно пренебречь. Но при обработке сложных изделий (пресс-формы, резьба и т. п.), где длина траектории может достигать километров!, данный эффект в большинстве случаев будет приводить к неисправимому браку. Данный эффект проявляется при выходе за допустимые характеристики двигателя, при неправильном управлении двигателем, а также при «проблемах» с механикой. Применение современных технологий управления шаговыми двигателями, с применением современной электроники, позволяет полностью устранить данный эффект, но стоимость возрастает. Эффект потери шагов у сервоприводов полностью отсутствует. Потому, что в каждом сервоприводе имеется датчик положения (энкодер), который постоянно отслеживает положение ротора двигателя и при необходимости выдает команды коррекции положения, на основании которых управляющая электроника, проанализировав данные, полученные с энкодера, вырабатывает необходимые сигналы управления на двигатель. Данный механизм называется обратной связью.
Скорость перемещения
При использовании шаговых двигателей в приводах подач в станках с ЧПУ можно добиться скорости 150…300 мм/сек (бывает и больше, но это уже «экзотика»). При максимальных скоростях и при превышении допустимой нагрузки возможно проявление эффекта потери шагов. Приводы подач станков с ЧПУ на основе серводвигателей позволяют достигать высоких скоростей. Скорость холостого перемещения 0,5…1 м/c является нормальным явлением для сервоприводов.
Динамическая точность*
Динамическая точность является определяющей характеристикой при обработке сложноконтурных изделий (пресс-формы, резьба и т. п.). Шаговые двигатели отличаются высокой динамической точностью, которая является следствием принципов работы шагового двигателя. Обычно, на хорошей механике, рассогласование не превышает 20 мкм (1 мкм = 0,001 мм). Высококачественные сервоприводы имеют высокую динамическую точность до 1…2 мкм и выше! (1 мкм = 0,001 мм). Для получения высокой динамической точности необходимо применять сервоприводы, предназначенные для контурного управления, которые точно отрабатывают заданную траекторию.
Стоимость
В шаговых двигателях применяются дорогостоящие редкоземельные магниты, а также ротор и статор изготавливаются с прецизионной точностью, и поэтому по сравнению с общепромышленными электродвигателями шаговые двигатели имеют более высокую стоимость. Применение дорогостоящего датчика положения ротора, а также применение достаточно сложного блока управления обуславливает значительно более высокую стоимость, чем у шагового двигателя.
Стоимость систем для создания момента в 2 Нм
Гибридный шаговый двигатель с шагом 1,8° – 12 000 р.
Блок управления – 9 600 р.
Привод с энкодером обеспечивающий шаг в 0,036°, максимальную скорость 3 000 об/мин — 12 704 р.
Блок управления – 13 000 р.
Ремонтопригодность
шагового двигателя может выйти из строя только обмотка статора, а ее замену может произвести только производитель двигателя, так как если двигатель даже только разобрать и снова собрать, он уже не будет работать! Потому, что при разборке двигателя происходит разрыв магнитных цепей внутри двигателя и происходит размагничивание магнитов. Поэтому после сборки двигателя требуется намагничивание внутренних магнитов на специальной установке. Поврежденный серводвигатель в большинстве случаев проще заменить, чем ремонтировать. Ремонту в основном подвергают только мощные двигатели, имеющие весьма высокую стоимость.
Столкновение с препятствием
Столкновение подвижных узлов станка с препятствием, в результате которого происходит остановка шагового двигателя, не взывает у него каких-либо повреждений. В станке на базе сервоприводов, при столкновении подвижных узлов с препятствием, управляющая электроника определяет, что произошло повышение нагрузки и для компенсации повышенной нагрузки повышает уровень тока, подаваемый на двигатель. При полной принудительной остановке на серводвигатель подается максимальный ток. Поэтому, если управляющая электроника не отслеживает подобную ситуацию, то возможно сгорание двигателя.
Преимущества
  • Высокая надежность
  • Относительно низкая цена
  • Высокие динамические характеристики
  • Отсутствие эффекта потери шагов
  • Высокая перегрузочная способность
Недостатки
  • Падение крутящего момента на высокой скорости
  • Низкая ремонтопригодность
  • Возможность эффекта потери шагов
  • Высокая цена, следствие использования сложной системы управления
  • Низкая ремонтопригодность
  • Требуется более бережное отношение к двигателю

* — Динамическая точность — максимальное отклонение реальной траектории перемещения инструмента от запрограммированной

8. Вывод

Сервопривод и шаговый двигатель не являются конкурентами, а каждый занимает свою определенную нишу. Сравним их на основе рынка станков с ЧПУ. Применение шаговых двигателей полностью оправданно для применения в недорогих станках с ЧПУ (в ценовой категории до 10—12 тыс. USD), предназначенных для обработки дерева, пластиков, ДСП, МДФ, легких металлов и других материалов средней скорости.Применение высококачественных сервоприводов необходимо в высокопроизводительном оборудовании, где главным критерием является производительность. Единственный «недостаток» хорошего сервопривода – это его высокая стоимость. К примеру, станок ATS-760 на шаговых приводах стоит 11 000 $, а эта же модель, но на сервоприводах стоит 17 500 $. Однако возможности получения высокостабильного или точного управления, широкий диапазон регулирования скорости, высокая помехоустойчивость, малые габариты и вес часто являются решающими факторами их применения. Добившись одинаковых качеств от сервопривода и шагового их стоимости станут соизмеримыми при однозначном лидерстве сервопривода.

Что такое драйвер шагового двигателя, принцип работы


Системы позиционирования обычно используют один из двух способов: системы с замкнутым и разомкнутым контуром. Так в чем же разница между этими двумя подходами к позиционированию?

В системах с замкнутым контуром обычно используются серводвигатели для управления скоростью и положением движущейся оси. Серводвигатели работают так же, как и любой обычный двигатель, когда на них подается питание, они вращаются. Это вращение принимает непрерывное плавное движение. Задача серводвигателя — не только приводить двигатель в действие, но и точно контролировать скорость. Наряду со скоростью в замкнутой системе также требуется обратная связь по положению. Обычно это обеспечивается энкодером или линейной шкалой. Позиционная обратная связь с контроллером машины позволяет ему быстро двигаться к заданному месту, а затем плавно замедляться, чтобы остановиться на цели.

В системах с разомкнутым контуром нет устройства обратной связи для контроля скорости или положения. Вместо этого расстояние, которое необходимо преодолеть от текущего местоположения, делится системой управления машиной на несколько точных шагов определенного размера. Система управления также определяет оптимальную кривую скорости системы на основе предварительно определенных параметров. Затем команды поступают на шаговый двигатель в виде импульсов. Работа драйвера шагового двигателя заключается в преобразовании командных импульсов в фактические шаги привода двигателя далее шаговые двигатели продвигаются по этим шагам, достигая желаемого результата.

Работа шагового двигателя

Шаговый электродвигатель — это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает угловые перемещения (шаги) ротора.

Шаговые двигатели, имеют достаточно высокую надежность и большой срок службы. При увеличении скорости двигателя, уменьшается вращающийся момент. Шаговые двигатели дают больше вибрации наряду с другими типами двигателей, поскольку дискретный шаг имеет тенденцию хватать ротор от одного положения к другому. Из-за этого шаговый двигатель более шумный. Вибрация может быть сильная, что может привести двигатель к потери момента потому, что вал находится в магнитном поле и ведет себя как пружина. Шаговые двигатели работают без обратной связи, то есть не используют Энкодеры или резольверы для определения положения.

Существует четыре главных типа шаговых двигателей:

  • Шаговые двигателя с постоянным магнитом
  • Гибридный шаговые двигателя
  • Двигатели с переменным магнитным сопротивлением
  • Биполярные и униполярные шаговые двигатели

Шаговые электродвигатели состоят из статора с обмотками возбуждения и ротора из магнитомягкого или из магнитотвёрдого материала. Шаговые двигатели с магнитным ротором позволяют получать больший крутящий момент и обеспечивают фиксацию ротора при обесточенных обмотках. В зависимоти от конструкции ротора выделяют следующие разновидности шаговых двигателей: с постоянными магнитами (ротор из магнитотвёрдого материала), реактивный (ротор из магнитомягкого материала), гибридный. Гибридные двигатели сочетают в себе лучшие черты двигателей с переменным магнитным сопротивлением и двигателей с постоянными магнитами.

В машиностроении более распространены высокомоментные двухфазные гибридные шаговые электродвигатели с угловым перемещением 1,8°/шаг (200 шагов/оборот) или 0,9°/шаг (400 шаг/об). Точность выставления шага определяется качеством механической обработки ротора и статора электродвигателя. Шаговые электродвигатели применяются в приводах машин и механизмов, работающих в старт-стопном режиме или в приводах непрерывного движения, где управляющее воздействие задаётся последовательностью электрических импульсов. В отличие от сервоприводов, шаговые приводы позволяют получать точное позиционирование без использования обратной связи от датчиков углового положения. Шаговые двигатели с постоянными магнитами могут использоваться в качестве датчиков угла поворота благодаря возникновению ЭДС на обмотках при вращении ротора.

Типы электродвигателей, способы управления и возникающие сложности

Впервые созданный в 1834 году русским ученым Якоби преобразователь электрической энергии во вращательное движение получил название электродвигатель. С тех пор он был серьезно усовершенствован – появилось множество новых вариантов, но использованные при его создании принципы электромагнетизма по-прежнему являются основой всех модификаций современных электродвигателей.

Проводник с проходящим по нему током (рисунок 1) создает вокруг себя магнитное поле, интенсивность (магнитная индукция) которого пропорциональна количеству витков, в случае использования катушки (N), и величине проходящего по ней тока (I), где, В – вектор магнитной индукции, К – магнитная постоянная, N – число витков, I – сила тока.

Рис. 1. Электромагнетизм в основе работы электродвигателя

Изменение направления тока влияет и на направление магнитного поля проводника.

При этом на помещенный во внешнее магнитное поле проводник с током действует сила Лоренца, вызывающая его вращательное перемещение. Направление вращения легко определяется с помощью известного правила правой руки для проводника с током в магнитном поле (рисунок 2). Сила (F), действующая на проводник в магнитном поле, равна произведению силы тока (I) в проводнике на вектор магнитной индукции поля (B) и длину проводника (L). F = LIB.

Рис. 2. Перемещение проводника с током в магнитном поле (Сила Лоренца)

Преимущества Шагового двигателя:

  • Устойчив в работе
  • Работает в широком диапазоне фрикционных и инерционных нагрузок и скоростей, скорость пропорциональна частоте входных импульсов.
  • Нет необходимости в обратной связи
  • Намного дешевле других типов двигателей
  • Подшипники — единственный механизм износа, за счет этого долгий срок эксплуатации.
  • Превосходный крутящий момент при низких скоростях или нулевых скоростях
  • Может работать с большой нагрузкой без использования редукторов
  • Двигатель не может быть поврежден механической перегрузкой
  • Возможность быстрого старта, остановки, реверсирования

Главным преимуществом шаговых приводов является точность. При подаче потенциалов на обмотки, шаговый двигатель повернется строго на определенный угол. Шаговый привод, можно приравнять к недорогой альтернативе сервоприводу, он наилучшим образом подходит для автоматизации отдельных узлов и систем, где не требуется высокая динамика.

Преимущества Главное преимущество шаговых приводов — точность. При подаче потенциалов на обмотки шаговый двигатель повернётся строго на определённый угол. К приятным моментам можно отнести стоимость шаговых приводов, в среднем в 1,5-2 раза дешевле сервоприводов. Шаговый привод, как недорогая альтернатива сервоприводу, наилучшим образом подходит для автоматизации отдельных узлов и систем, где не требуется высокая динамика. Недостатки Возможность «проскальзывания» ротора — наиболее известная проблема этих двигателей. Это может произойти при превышении нагрузки на валу, при неверной настройке управляющей программы (например, ускорение старта или торможения не адекватно перемещаемой массе), при приближении скорости вращения к резонансной. Наличие датчика позволяет обнаружить проблему, но автоматически скомпенсировать её без остановки производственной программы возможно только в очень редких случаях. Чтобы избежать проскальзывания ротора, как один из способов, можно увеличить мощность двигателя.

Традиционные решения для управления электродвигателями

Современная прецизионная система управления электродвигателем постоянного тока включает в себя микроконтроллер для обработки данных и блок управления питанием обмоток двигателя, часто называемый драйвером. В состав драйвера входит логическая схема для преобразования кодированных посылок в цифровые управляющие сигналы, из которых в блоке Gate Driver формируются аналоговые сигналы для управления силовыми ключами на основе полевых транзисторов (FET). FET могут входить в состав драйвера или размещаться в отдельном блоке. Кроме того, в состав драйвера входят схемы защиты силовых цепей и цепи обратной связи для контроля работы двигателя.

На рисунке 11 представлены варианты блок-схем для интегрированного и предварительного драйверов. Каждое из решений имеет свои преимущества и особенности. Предварительный драйвер (Pre-Driver) имеет значительно облеченный температурный режим, позволяет выбирать внешние силовые ключи в соответствии с мощностью подключаемого двигателя. Полнофункциональный интегрированный драйвер позволяет создавать более компактные системы управления, минимизирует внешние соединения, но значительно усложняет обеспечение необходимого температурного режима.

Рис. 11. Блок-схемы систем управления двигателем

Так, у интегрированного драйвера TI DRV8312 максимальная рабочая температура отдельных элементов на плате может достигать 193°С, а у предварительного драйвера DRV8301 этот показатель не превышает 37°С.

Рис. 12. Смена направления вращения коллекторного двигателя

Одной из наиболее распространенных схем для коммутации обмоток двигателей является мост типа “H”. Название схемы связано с конфигурацией подключения, которая похожа на букву “H”. Эта электронная схема позволяет легко изменять направление тока в нагрузке и, соответственно, направление вращения ротора. Напряжение, прикладываемое к обмоткам через транзисторы моста, может быть как постоянным, так и модулированным с помощью ШИМ. H-мост предназначен, в первую очередь, для смены полярности питания двигателя – реверса (рисунок 12), но также позволяет тормозить вращение, коротко замыкая выводы обмоток (рисунок 13).

Рис. 13. Режимы вращения, быстрого и медленного торможенияс

Важнейшей характеристикой силовых элементов моста, в качестве которых сегодня часто используют полевые транзисторы с изолированным затвором, является величина сопротивления открытого канала между истоком и стоком транзистора – RDSON. Значение RDSON во многом определяет тепловые характеристики блока и энергетические потери. С увеличением температуры RDSON также растет, а ток и напряжение на обмотках уменьшаются.

Использование управляющих сигналов с ШИМ позволяет уменьшить пульсации крутящего момента и обеспечить более плавное вращение ротора двигателя. В идеале частота ШИМ должна быть выше 20 кГц, чтобы избежать акустического шума. Но с увеличением частоты растут потери на транзисторах моста в процессе коммутации.

Из-за индуктивных свойств нагрузки в виде обмоток форма тока в ней не соответствует форме подаваемого напряжения ШИМ. После подачи импульса напряжения ток нарастает постепенно,а в паузах ток плавно затухает из-за возникновения в обмотках противо-ЭДС. Наклон кривой на графике тока, амплитуда и частота пульсаций влияют на рабочие характеристики двигателя (пульсации крутящего момента, шум, мощность и так далее).

Для ускоренного затухания в обмотках электродвигателей возбуждаемого эффектом противо-ЭДС тока используют диоды в обратном включении, шунтирующие переходы «сток-исток» транзисторов, либо закорачивают обмотки через переходы «сток-исток» двух транзисторов, одновременно включенных в разных плечах моста. На рисунке 13 представлены три состояния моста: рабочее, быстрого торможения (Fast Decay) и медленного торможения (Slow Decay).

А наиболее эффективным считается комбинированный режим (Mixed Decay), при котором в паузе между рабочими импульсами сначала работают диоды, шунтирующие сток-исток транзисторов, а затем включаются транзисторы в нижних плечах моста.

Принцип работы шагового двигателя

На примере шагового двигателя с переменным сопротивлением выше, двигатель состоит из центрального ротора и окружен четырьмя электромагнитными катушками, помеченных A, B, C и D. Все катушки с одной и той же буквой соединены вместе, так что при подаче питания, скажем, катушек, помеченных буквой A, магнитный ротор выравнивается с этим набором катушек.

Подавая мощность на каждый набор катушек, в свою очередь, можно заставить ротор вращаться или «переходить» из одного положения в другое на угол, определяемый конструкцией угла его шага, и при последовательном возбуждении катушек ротор будет производить вращение (движение).

Драйвер шагового двигателя управляет как углом шага, так и скоростью двигателя, запитывая полевые катушки в установленной последовательности, например,» ADCB, ADCB, ADCB, A…» и т.д., ротор будет вращаться в одном направлении (вперед) и посредством при изменении последовательности импульсов на» ABCD, ABCD, ABCD, A…» и т. д. ротор будет вращаться в противоположном направлении (назад).

Таким образом, в нашем простом примере, приведенном выше, шаговый двигатель имеет четыре катушки, что делает его 4-фазным двигателем с числом полюсов на статоре восемь (2 x 4), которые расположены с интервалом 45°. Число зубьев на роторе составляет шесть, которые расположены на расстоянии 60°друг от друга.

Тогда есть 24 (6 зубьев х 4 катушек) возможных положений или «ступеней», чтобы ротор совершил один полный оборот. Следовательно, вышеуказанный угол шага равен: 360° / 24 = 15°.

Очевидно, что чем больше зубьев ротора и / или катушек статора, тем лучше контроль и меньший угол шага. Кроме того, при подключении электрических катушек двигателя в различных конфигурациях возможны полные, половинные и микрошаговые углы. Однако для достижения микроперехода шаговый двигатель должен приводиться в действие (квази) синусоидальным током, который дорог в реализации.

Также возможно контролировать скорость вращения шагового двигателя, изменяя временную задержку между цифровыми импульсами, подаваемыми на катушки (частоту), чем больше задержка, тем медленнее скорость для одного полного оборота. Подавая на двигатель фиксированное количество импульсов, вал двигателя вращается на заданный угол.

Преимущество использования импульса с задержкой по времени заключается в том, что не требуется никакой дополнительной обратной связи, поскольку путем подсчета количества импульсов, подаваемых на двигатель, конечное положение ротора будет точно известно. Эта реакция на заданное количество цифровых входных импульсов позволяет шаговому двигателю работать в «системе с разомкнутым контуром», что делает его более простым и дешевым в управлении.

Например, предположим, что наш шаговый двигатель имеет угол наклона 3,6°на шаг. Чтобы повернуть двигатель на угол, скажем, 216°, а затем снова остановиться в требуемом положении, потребуется всего: 216°/ (3,6°/ шаг) = 80 импульсов, приложенных к катушкам статора.

Имеется много интегральных схем контроллера шагового двигателя, которые могут контролировать скорость шага, скорость вращения и направление двигателя. Одним из таких контроллеров является SAA1027, который имеет все необходимые встроенные счетчики и преобразователи кода и может автоматически подключать 4 полностью контролируемых мостовых выхода к двигателю в правильной последовательности.

Направление вращения также может быть выбрано вместе с одношаговым режимом или непрерывным (бесступенчатым) вращением в выбранном направлении, но это накладывает некоторую нагрузку на контроллер. При использовании 8-битного цифрового контроллера возможны также 256 микрошагов за шаг.

Принцип работы шагового двигателя 3D принтера

Угол шага двигателя может достигать 90 градусов, что означает, что двигатель будет вращаться на 360 градусов за четыре шага. Однако более типичный угол шага для двигателей 3D принтера составляет 1,8 градуса, что означает, что для полного поворота требуется 200 шагов (360 / 1,8).

Угол шага определяется размещением катушек двигателя и конструкцией магнитных полюсов в роторе.

Если известно, что для поворота двигателя на 360 градусов требуется 200 шагов и двигатель подключен к ходовому винту с шагом 1 мм (1 мм хода на каждое вращение), то каждый шаг двигателя продвигает ось вперед на 0,005 мм. Таким образом, количество шагов, необходимых для достижения точного местоположения, можно легко рассчитать.

Расчет количества необходимых шагов управляется контроллером (драйвером шагового двигателя.

Замкнутые и разомкнутые системы

Системы позиционирования оси позволяют интеллектуальным контроллерам позиционировать оборудование с исключительной точностью. Выдается команда на перемещение в желаемую точку в трехмерном пространстве и машина реагирует очень быстро и точно.

Системы позиционирования обычно используют один из двух способов: системы с замкнутым и разомкнутым контуром. Так в чем же разница между этими двумя подходами к позиционированию?

В системах с замкнутым контуром обычно используются серводвигатели для управления скоростью и положением движущейся оси. Серводвигатели работают так же, как и любой обычный двигатель, когда на них подается питание, они вращаются. Это вращение принимает непрерывное плавное движение. Задача серводвигателя — не только приводить двигатель в действие, но и точно контролировать скорость.

Наряду со скоростью в замкнутой системе также требуется обратная связь по положению. Обычно это обеспечивается энкодером или линейной шкалой. Позиционная обратная связь с контроллером машины позволяет ему быстро двигаться к заданному месту, а затем плавно замедляться, чтобы остановиться на цели.

В системах с разомкнутым контуром нет устройства обратной связи для контроля скорости или положения. Вместо этого расстояние, которое необходимо преодолеть от текущего местоположения, делится системой управления машиной на несколько точных шагов определенного размера. Система управления также определяет оптимальную кривую скорости системы на основе предварительно определенных параметров. Затем команды поступают на шаговый двигатель в виде импульсов. Работа драйвера шагового двигателя заключается в преобразовании командных импульсов в фактические шаги привода двигателя далее шаговые двигатели продвигаются по этим шагам, достигая желаемого результата.

Драйвер шагового двигателя

драйвер шагового двигателя это электронное силовое устройство, которое на основании цифровых сигналов управления управляет сильноточными/высоковольтными обмотками шагового двигателя и позволяет шаговому двигателю делать шаги (вращаться). Стандартом управления являются сигналы STEP/DIR/ENABLE. STEP это сигнал шага, DIR это сигнал направления вращения, ENABLE это сигнал включения драйвера.

Управлять шаговым двигателем сложнее, чем обычным коллекторным двигателем, нужно в определенной последовательности переключать напряжения в обмотках с одновременным контролем тока. Поэтому для управления шаговыми двигателями были разработаны специальные устройства называемые драйверами. Они позволяет управлять вращением ротора в соответствии с сигналами управления и определенным образом делить физический шаг на более мелкие дискреты.

К драйверу подключается источник питания, шаговый двигатель и сигналы управления с платы контроллера. Стандартом по сигналам управления является управление сигналами STEP/DIR или CW/CCW и сигнал ENABLE.

Протокол STEP/DIR:

Сигнал STEP — Тактирующий сигнал, сигнал шага. Один импульс приводит к повороту ротора ШД на один шаг (не физический шаг ШД, а шаг выставленный на драйвере — 1:1, 1:8, 1:16 и т.д.). Обычно драйвер отрабатывает шаг по переднему или заднему фронту импульса.

Сигнал DIR — Потенциальный сигнал, сигнал направления. Логическая единица — ШД вращается по часовой стрелке, ноль — ШД вращается против часовой стрелки, или наоборот. Инвертировать сигнал DIR обычно можно либо из программы управления или поменять местами подключение фаз ШД в разъеме подключения в драйвере.

Протокол CW/CCW:

Сигнал CW — Тактирующий сигнал, сигнал шага. Один импульс приводит к повороту ротора ШД на один шаг (не физический шаг ШД, а шаг выставленный на драйвере — 1:1, 1:8, 1:16 и т. д.) по часовой стрелке. Обычно драйвер отрабатывает шаг по переднему или заднему фронту импульса.

Сигнал CW — Тактирующий сигнал, сигнал шага. Один импульс приводит к повороту ротора ШД на один шаг (не физический шаг ШД, а шаг выставленный на драйвере — 1:1, 1:8, 1:16 и т. д.) против часовой стрелки. Обычно драйвер отрабатывает шаг по переднему или заднему фронту импульса.

Сигнал ENABLE — Потенциальный сигнал, сигнал включения/выключения драйвера. Обычно логика работы такая: логическая единица (подано 5В на вход) — драйвер ШД выключен и обмотки ШД обесточены, ноль (ничего не подано или 0В на вход) — драйвер ШД включен и обмотки ШД запитаны.

Драйверы шагового двигателя могут иметь дополнительные функции:

  • Контроль перегрузок по току.
  • Контроль превышения напряжения питания, защита от эффекта обратной ЭДС от ШД. При замедлении вращения, ШД вырабатывает напряжение, которое складывается с напряжением питания и кратковременно увеличивает его. При более быстром замедлении, напряжение обратной ЭДС больше и больше скачок напряжения питания. Этот скачок напряжения питания может привести к выходу из строя драйвера, поэтому драйвер имеет защиту от скачков питающего напряжения. При превышении порогового значения напряжения питания драйвер отключается.
  • Контроль переполюсовки при подключении сигналов управления и питающих напряжений.
  • Режим автоматического снижения тока обмотки при простое (отсутствии сигнала STEP) для снижения нагрева ШД и потребляемого тока (режим AUTO-SLEEP).
  • Автоматический компенсатор среднечастотного резонанса ШД. Резонанс обычно проявляется в диапазоне 6-12 об/сек, ШД начинает гудеть и ротор останавливается. Начало и сила резонанса сильно зависит от параметров ШД и его механической нагрузки. Автоматический компенсатор среднечастотного резонанса позволяет полностью исключить резонирование ШД и сделать его вращение равномерным и устойчивым во всем диапазоне частот.
  • Схему изменения формы фазовых токов с увеличением частоты (морфинг, переход из режима микрошага в режим шага при увеличении частоты). ШД способен отдать заявленный в ТХ момент только в режиме полного шага, поэтому в обычном драйвере ШД без морфинга при использовании микрошага ШД работает на 70% от максимальной мощности. Драйвер ШД с морфингом позволяет получить от ШД максимальную отдачу по моменту во всем диапазоне частот.
  • Встроенный генератор частоты STEP – удобная функция для пробного запуска драйвера без подключения к ПК или другому внешнему генератору частоты STEP. Также генератор будет полезен для построения простых систем перемещения без применения ПК.

Драйверы шаговых двигателей различаются по сложности. Современные драйверы можно комбинировать с множеством различных типов шаговых двигателей. Настройки для конкретного двигателя обычно настраивается пользователем во время установки. Но в целом драйверы шаговых двигателей — относительно простые устройства.

На иллюстрации выше изображен драйвер A4988. Задача компонентов, состоит в том, чтобы реагировать импульсные команды шага, поступающие от контроллера машины и преобразовывать их в правильную схему включения-выключения, необходимую для привода шагового двигателя. Эта схема активирует фазы в правильном порядке, чтобы двигать двигатель шаг за шагом в том или ином направлении.

Здесь необходимо отметить важный момент: в драйвере шагового двигателя очень мало интеллекта. Эта функция предоставляется контроллеру 3D принтера. Фактически, драйвер выполняет только две основные функции: упорядочивание фаз и управление фазным током.

Драйвера могут поставляться как отдельный компонент, так и вместе с платы контроллеров для 3D принтеров, например таких как Creality 4.2.7.

Контроллеры ШД

Контроллеры – платы коммутации, используемые для преобразования управляющих команд, поступающих с ПК, в последовательность импульсов для драйверов. Плата может иметь дополнительный функционал – разъемы для подключения концевых ограничителей, силовые реле, разъемы для управления шпинделем. Подключается к компьютеру через LPT или USB интерфейс.

Многоканальные драйверы ШД –устройство объединяющее в себе драйвера ШД и плату коммутации. Подключаются к ПК непосредственно управляют ШД. Также в состав контроллера входят такие функциональные возможности как таймер СОЖ, конвертор ШИМ для инвертора, силовые реле, разъемы для подключения датчиков ограничения линейных перемещений. Драйвера могут исполняться на различное количество ШД.

Какие драйвера для шаговых двигателей 3D принтера можно купить?

1. TMC2208, TMC2130, TMC2100. Выходной ток на обмотку с дополнительным охлаждением – до 2 А, пиковый выходной ток 2,5А. Напряжения питания силовой части: 4.75 — 36 В. Дробление шага: 1/2, 1/4, ⅛ и 1/16 с возможностью интерполяции до 1/256. Он используется для снижения уровня шума при работе с 8-битными микроконтроллерами. Может применяться в устройствах с маломощными режимами работы, а так же в оборудовании, где востребована высокая энергетическая эффективность моторов. TMC2208 построен на микросхеме от Trinamic и способен выдавать до 2.5 А на обмотку, чего достаточно для использования в 3D принтерах и ЧПУ. При этом решается проблема шумности работы шаговых двигателей за счёт эффективных алгоритмов формирования управляющих импульсов (StealthChop2™) и управления током.

Тихие драйверы, рекомендуем ставить именно их. Стоит дороже остальных около 15 $.

2. A4988 Допустимый выходной ток на обмотку с дополнительным охлаждением – до 2 А, без охлаждения – до 1 А. Напряжения питания силовой части: 8-35 В. Преимущества драйвера А4988 – наличие защиты от перегрузок и перегрева, возможность регулировки тока и несколько вариантов микрошага. Дробление шага: 1, 1/2, 1/4, 1/8, 1/16. На 9В значительно тише, чем на 12В, без потери крутящего момента. Резкое усиление звука происходит с 11В до 12В. Стоимость около 6 $.

4. DRV8825 Допустимый выходной ток на обмотку с дополнительным охлаждением – до 2 А. Напряжения питания силовой части: 8-45 В. Электрическая и механическая совместимость с драйвером A4988. Дробление шага: 1, 1/2, 1/4, 1/8, 1/16, 1/32. По отзывам имеют конструктивный недостаток, что выражения в появлении дефектов на поверхности отпечатка в виде вертикальных полос (полосы зебры). Недостаток можно устранить установив TL-Smoother, но гораздо рентабельнее будет купить вместо них TMC2208. Стоимость около 6 $.

Решения для управления электродвигателями от TI

Среди полупроводниковых компонентов, выпускаемых компанией TI, представлен обширный ассортимент различных драйверов для управления электродвигателями постоянного тока. Все они требуют минимума внешних компонентов, позволяют создавать компактные решения для управления двигателями с рабочим напряжением до 60 В, отличаются повышенной надежностью, обеспечивают быстрое и простое проектирование систем привода электродвигателями.

Встроенные в драйверы интеллектуальные функции требуют минимальной поддержки внешнего управляющего микроконтроллера (MCU), обеспечивают расширенные коммутационные возможности для обмоток, поддерживают внешние датчики и цифровые контуры управления. Комплекс защитных функций включает ограничение напряжения питания, защиту от превышения тока и короткого замыкания, понижения напряжения и повышения рабочей температуры.

Весь модельный ряд драйверов TI разбит на три раздела: шаговые, коллекторные и бесколлекторные двигателей постоянного тока. В каждом из них на сайте компании действует удобная система подбора по целому ряду параметров. Есть отдельные драйверы, предназначенные для использования с двигателями разных типов.

Сглаживающее устройство TL-Smoother

Плата, которая соединяет шаговый драйвер и шаговый двигатель, уменьшая шум и вибрации на вашем 3D-принтере, снижая риск образования дефекта «полоса зебры».

Эта небольшая плата имеет восемь выпрямительных диодов, которые улучшают форму волны шагового двигателя, в частности, для более старых более дешевых шаговых драйверов, например DRV8825 и A4988. Улучшение формы волны снижает шум двигателя за счет уменьшения вибрации. Поскольку вибрации уменьшаются, качество печати также улучшается. Просто установите плату между драйвером и шаговым двигателем, ориентация не имеет значения. Для удобства в комплект входит небольшой 4-проводной разъем длиной 20 см, чтобы подключить плату к электронике. Стоимость около 7 $

Дефект полосы зебры или муар

Как работает TL-Smoother

схема TL-Smoother

Происхождение технологии плавного сглаживания TL до 2015 года, когда пользователь Schrodinger Z написал в блоге о резких движениях шагового двигателя и исследовал, что происходит. Как оказалось, шаговые драйверы DRV8825, которые он использовал, не генерировали гладкие синусоидальные сигналы для двигателей. При дополнительном осмотре было обнаружено, что драйверы не могут должным образом выводить сигналы при малых токах, так как они находятся в так называемой «мертвой зоне».

TL были созданы для устранения конкретного недостатка конструкции в драйверах DRV8825.

Важные характеристики

  • С точки зрения электротехники, пошаговый привод – это достаточно сложное устройство, обладающее целым рядом параметров. Вот основные из них:
  • Число полных шагов в течение одного цикла – от него зависит точность, плавность хода, разрешающая способность; у современных моделей должно быть на уровне 200-400.
  • Угол дискретного перемещения (поворота вала) – рассчитывается как 360 0/количество отдельных передвижений за оборот; аналогичный предыдущему показатель, просто представленный в другом виде; его актуальные значения – 1,8-0,9 градусов.
  • Пробивное напряжение – максимальное, по достижении которого нарушается изоляция, определяет безопасность использования.
  • Допустимое постоянное напряжение – измеряется в статическом режиме на витках; в ряде случаев не приводится, но и тогда его можно рассчитать по закону Ома.
  • Номинальный ток – наибольший из возможных для безопасного и бесперебойного функционирования силового агрегата.
  • Сопротивление обмотки – оно, вместе с предыдущей характеристикой, говорит о том, какое количество Вольт можно подавать на пошаговые электродвигатели.
  • Индуктивность фазы – определяет скорость нарастания тока; приобретает особенно важную роль при быстром вращении вала.
  • Сопротивление изоляции – между обмотками и корпусом.

Отдельным семейством параметров являются моменты:

  • крутящий – зависит от частоты вращения; указывается максимальный для данного силового агрегата;
  • инерции – чем он меньше, тем быстрее разгон;
  • стопорный – нужен для прокручивания вала в случае отсутствия питания;
  • удерживающий – активен при полной остановке и запитывании номинальным током двух фаз.

Теория шагового двигателя

При правильном применении линейные приводы марки Haydon ™ обеспечивают до 20 миллионов циклов, а роторные двигатели Haydon обеспечивают до 25 000 часов работы. В конечном итоге усталость двигателя и итоговый срок службы определяются индивидуальным применением каждого клиента. Следующие ниже определения важны для понимания моторной жизни и усталости.

Непрерывный режим: Запуск двигателя при номинальном напряжении.

25% рабочий цикл: Запуск двигателя при удвоенном номинальном напряжении на левом / правом приводе. Двигатель работает примерно 25% времени. Мощность двигателя примерно на 60% больше, чем при номинальном напряжении. Обратите внимание, рабочий цикл не связан с нагрузкой на двигатель.

Срок службы: Срок службы линейного привода — это количество циклов, в течение которых двигатель может перемещаться при заданной нагрузке и сохранять точность шага. Срок службы роторного двигателя — это количество часов работы.

Один цикл: Цикл линейного привода состоит из выдвижения и возврата в исходное положение.

Есть несколько общих рекомендаций, которые можно использовать для выбора подходящего двигателя и обеспечения максимального срока службы. В конечном счете, для определения характеристик шагового двигателя в данной системе лучше всего провести испытания окончательной сборки в «полевых условиях» или в условиях, которые очень близки к этим условиям.

Поскольку у шагового двигателя нет щеток, которые изнашиваются, его срок службы обычно намного превышает срок службы других механических компонентов системы.Если шаговый двигатель действительно выходит из строя, вероятно, будут задействованы определенные компоненты. Подшипники и интерфейс ходовой винт / гайка (в линейных приводах) обычно являются первыми компонентами, которые испытывают усталость. Требуемый крутящий момент или тяга, а также условия эксплуатации являются факторами, влияющими на эти компоненты двигателя.

Если двигатель работает с номинальным крутящим моментом или тягой или близкими к нему, это может сказаться на сроке службы. Тестирование Haydon Kerk Motion Solutions показало, что срок службы двигателя экспоненциально увеличивается при уменьшении рабочих нагрузок.В общем, двигатели должны быть спроектированы таким образом, чтобы они работали с нагрузкой от 40% до 60% от их максимальной допустимой нагрузки. Факторы окружающей среды, такие как высокая влажность, воздействие агрессивных химикатов, чрезмерное количество грязи / мусора и тепло, влияют на срок службы двигателя. Механические факторы в сборке, такие как боковая нагрузка на вал для линейных приводов или неуравновешенная нагрузка во вращающихся приложениях, также отрицательно влияют на срок службы.

Если двигатель используется с сокращенным рабочим циклом и на двигатель подается избыточное напряжение, время включения должно быть таким, чтобы не превышалось максимальное повышение температуры двигателя.Если у двигателя недостаточно времени «выключено», будет выделяться слишком много тепла, что приведет к перегреву обмоток и, в конечном итоге, к выходу из строя.

Правильное проектирование системы, сводящее к минимуму эти факторы, обеспечит максимальный срок службы двигателя. Первым шагом к увеличению срока службы является выбор двигателя с коэффициентом безопасности два или больше. Второй шаг — обеспечение механической прочности системы за счет минимизации боковых нагрузок, несбалансированных нагрузок и ударных нагрузок. Система также должна рассеивать тепло.Поток воздуха вокруг двигателя или крепления, обеспечивающий некоторый отвод тепла, является типичным средством отвода тепла. Если в системе присутствуют агрессивные химические вещества, двигатель и все другие компоненты необходимо защитить. Наконец, тестирование двигателя и сборки в «полевых условиях» позволит убедиться в пригодности к применению.

Если следовать этим простым рекомендациям, прямоходные приводы Haydon ™ обеспечивают надежную работу в широком диапазоне приложений. Если вам нужна помощь в проектировании, инженеры Haydon Kerk могут помочь вам добиться максимального срока службы и производительности наших двигателей.

Принцип работы шагового двигателя

— ваше руководство по электрике

Привет друзья,

В этой статье я обсуждаю принцип работы шагового двигателя , его основы и приложения. Вы найдете это информативным и интересным. Так что продолжайте читать.

Как следует из названия, шаговый двигатель в пределах своего рабочего диапазона и возможностей запускается, останавливается, реверсирует и перемещается под заданным углом шага по командам от электронного логического контроллера.Другими словами, шаговый двигатель — это устройство, которое преобразует цифровые импульсы в точное угловое движение.


Шаговый двигатель — это двигатель постоянного тока с полем, размещенным на роторе в виде постоянных магнитов с двумя, тремя или четырьмя наборами катушек, называемых фазами, размещенными в статоре вокруг ротора. Обмотки подключены к внешнему логическому драйверу, который последовательно подает импульсы напряжения на обмотки. Двигатель реагирует на эти импульсы и по команде выполняет операции пуска, останова и реверса.

И ротор, и статор имеют определенное количество зубцов для соответствия расчетному углу шага. Угол шага определяется как угловое смещение ротора в ответ на каждый импульс.

Положение ротора зависит от угла шага и количества импульсов. Скорость вращения зависит от частоты импульсов (а не от напряжения питания), которые точно контролируются; Таким образом, шаговый двигатель является идеальным приводом для операций, связанных с точным позиционированием. В отличие от управляющих и серводвигателей, управляющая обмотка с обратной связью не требуется для замыкания контура и контроля положения и скорости ротора.

Принцип работы шагового двигателя поясняется на рисунке. Ротор занимает положение по возбуждению обмотки:

  • В положении (а) запитана только обмотка А .
  • В положении (b) обе обмотки, A и B находятся под напряжением.
  • В положении (c) обмотка B находится под напряжением и так далее.

Из приведенного выше рисунка вы легко можете понять, что мы можем пошагово вращать ротор, подавая ток на катушки статора в определенной последовательности.Это то, что мы делаем с шаговыми двигателями. Подробную информацию о работе шагового двигателя вы можете найти в моей следующей статье.

Система шагового двигателя должна ускоряться и замедляться со скоростью, которая позволяет двигателю преодолевать инерцию системы. По этой причине роторы имеют меньший диаметр и большую длину. Если шаговый двигатель динамически перегружен, он будет скользить по фазе. Эти двигатели лучше всего подходят для применений, где нагрузки находятся в пределах мощности двигателя.

Удерживающий момент — это максимальный момент нагрузки, который может быть преодолен двигателем, не вызывая выскальзывания ротора из его устойчивого положения равновесия.

Шаговый двигатель работает точно и точно в широком диапазоне скоростей. Допуск точности — это максимальное отклонение от номинальных значений каждого смещения ротора в ответ на входной импульс в условиях холостого хода. Допуск точности обычно находится в диапазоне от 3 до 5%, и эта ошибка не суммируется.

Диапазон отклика шагового двигателя


Если частота переключения постепенно увеличивается, достигается точка, в которой любое дальнейшее увеличение частоты переключения не может разогнать двигатель от состояния покоя до синхронной скорости. Сообщается, что двигатель достиг скорости «втягивания». Двигатель может функционировать как шаговый двигатель, реагируя на команды пуска-останова только в пределах этой скорости переключения, также называемой «диапазоном реакции».

Если скорость переключения еще больше увеличивается, двигатель работает в диапазоне поворота, где он не реагирует на команды пуска и останова, но развивают достаточный крутящий момент для преодоления момента нагрузки.Дальнейшее увеличение частоты переключения приводит к сбиванию двигателя с толку.

Контроллер шагового двигателя


Блок-схема типичного контроллера шагового двигателя показана на рисунке. Обмотки запитываются в определенной последовательности с заданной скоростью. Поскольку выходные сигналы логических последовательностей слишком слабы для подачи питания на обмотки двигателя, они используются для управления тиристорами, которые, в свою очередь, подают питание на обмотки.

Резонанс в шаговом двигателе


Ротор колеблется из-за инерционного эффекта при каждом новом положении, и этот эффект более заметен на малых скоростях.Если частота шага соответствует одному из обратных пиков этих колебаний, двигатель может иногда возвращаться назад по фазе вместо шага вперед. Этот эффект известен как резонанс в шаговом двигателе и может нарушить работу. Самое простое решение — не работать вблизи зоны резонанса. Другие меры по преодолению проблемы:

  • Работа в полушаговом режиме.
  • Улучшенное демпфирование.
  • Использование демпфирующих резисторов между фазами.

Применение шаговых двигателей


Чаще всего шаговые двигатели применяются в кварцевых аналоговых часах. Благодаря простоте логического управления, точности и надежности, шаговые двигатели широко используются в периферийных устройствах компьютеров, в станках с ЧПУ, пультах дистанционного управления, контрольно-измерительных приборах и т. Д. Рентгеновские плоттеры, матричные принтеры, считывающие / записывающие головки гибких дисков и винчестерские диски используют шаговые двигатели в качестве приводов позиционирования.Двухфазные двигатели используются для приложений с очень низким крутящим моментом. В основном шаговые двигатели большей мощности бывают трех- или четырехфазными.

Также читайте: Как работает шаговый двигатель?

Спасибо, что прочитали о «принципе работы шагового двигателя».

Шаговый двигатель

: основы, типы и работа

Что такое шаговый двигатель?

Шаговый двигатель или шаговый двигатель — это бесщеточный синхронный двигатель, который делит полный оборот на несколько шагов.В отличие от бесщеточного двигателя постоянного тока, который непрерывно вращается при приложении к нему фиксированного напряжения постоянного тока, шаговый двигатель вращается с дискретными ступенчатыми углами. Таким образом, шаговые двигатели производятся с шагом на оборот 12, 24, 72, 144, 180 и 200, что дает углы шага 30, 15, 5, 2,5, 2 и 1,8 градуса на шаг. Шаговым двигателем можно управлять с обратной связью или без нее.

Рис.1: Изображение обычно используемого бесщеточного шагового двигателя постоянного тока

Как работает шаговый двигатель?

Шаговые двигатели работают по принципу электромагнетизма.Вал ротора из мягкого железа или магнитного поля окружен электромагнитными статорами. У ротора и статора есть полюса, которые могут быть зубчатыми или нет, в зависимости от типа шагового двигателя. Когда статоры находятся под напряжением, ротор перемещается, чтобы выровнять себя вместе со статором (в случае шагового двигателя с постоянным магнитом) или перемещается, чтобы иметь минимальный зазор со статором (в случае шагового двигателя с переменным сопротивлением). Таким образом, статоры получают питание в последовательности, чтобы вращать шаговый двигатель. Получите больше информации о работе шаговых двигателей с помощью интересных изображений на сайте Insight по шаговым двигателям.

Рис. 2: Общий обзор внутренней структуры и работы типичного шагового двигателя

Типы шаговых двигателей

По конструкции шаговые двигатели делятся на три основных класса:

1. Шаговый двигатель с постоянным магнитом

2. Шаговый двигатель с регулируемым сопротивлением

3. Гибридный шаговый двигатель

Эти три типа подробно описаны в следующих разделах.

Type1: постоянный магнит

1. Шаговый двигатель с постоянным магнитом :

Полюса ротора и статора шагового двигателя с постоянным магнитом не имеют зубцов. Вместо этого ротор имеет альтернативные северный и южный полюса, параллельные оси вала ротора.

Рис. 3: Схема двухфазного постоянного шагового двигателя в разрезе

Когда статор находится под напряжением, он развивает электромагнитные полюса.Магнитный ротор выравнивается по магнитному полю статора. Затем другой статор активируется в последовательности, так что ротор перемещается и выравнивается с новым магнитным полем. Таким образом, при подаче питания на статоры в фиксированной последовательности шаговый двигатель вращается на фиксированные углы.

Рис. 4: Схема, поясняющая работу шагового двигателя с постоянным магнитом

Разрешающая способность шагового двигателя с постоянным магнитом может быть увеличена путем увеличения числа полюсов в роторе или увеличения числа фаз.

Рис. 5: Рисунок, показывающий способы увеличения разрешения шагового двигателя с постоянным магнитом

Type2: переменное сопротивление

2. Шаговый двигатель с переменным сопротивлением :

Шаговый двигатель с регулируемым сопротивлением имеет зубчатый ротор из немагнитного мягкого железа. Когда катушка статора находится под напряжением, ротор перемещается, чтобы иметь минимальный зазор между статором и его зубьями.

Фиг.6: Принципиальная схема двухфазного шагового двигателя с переменным сопротивлением

Зубья ротора сконструированы таким образом, что, когда они совмещены с одним статором, они смещаются со следующим статором. Теперь, когда следующий статор находится под напряжением, ротор перемещается, чтобы выровнять свои зубья со следующим статором. Таким образом, включение статоров в фиксированной последовательности завершает вращение шагового двигателя.

Рис.7: Схема, поясняющая работу шагового двигателя с переменным сопротивлением

Разрешение шагового двигателя с переменным сопротивлением можно увеличить, увеличив количество зубцов в роторе и увеличив количество фаз.

Рис. 8: Рисунок, показывающий способы увеличения разрешения шагового двигателя с переменным сопротивлением

Type3: Гибрид

3. Гибридный шаговый двигатель :

Гибридный шаговый двигатель представляет собой комбинацию постоянного магнита и переменного магнитного сопротивления. Он имеет ротор с магнитными зубьями, который лучше направляет магнитный поток в предпочтительное место в воздушном зазоре.

Фиг.9: Конструкция двухфазного гибридного двигателя

Магнитный ротор имеет две чашки. Один для северных полюсов, второй для южных полюсов. Чашки ротора сконструированы таким образом, что северный и южный полюса располагаются поочередно. Оцените преимущества гибридного шагового двигателя.

Рис. 10: Схема, показывающая внутреннюю структуру магнитного ротора гибридного двигателя

Гибридный двигатель вращается по тому же принципу, последовательно запитывая катушки статора.

Рис. 11: Схема, поясняющая работу гибридного шагового двигателя

Типы электропроводки

Типы обмоток и выводов

Шаговые двигатели в основном двухфазные. Они могут быть однополярными или биполярными. В униполярном шаговом двигателе по две обмотки на фазу. Две обмотки на полюс могут иметь один общий вывод, то есть с отводом по центру. У униполярного двигателя пять, шесть или восемь выводов.В конструкциях, где два общих полюса разделены, но имеют отводы по центру, двигатель имеет шесть выводов. Если центральные отводы двух полюсов внутри короткие, у двигателя пять выводов. Униполярный восьмиполюсный двигатель обеспечивает последовательное и параллельное соединение, тогда как пяти- и шестиполюсные двигатели имеют последовательное соединение обмоток статора. Униполярный двигатель упрощает работу, поскольку при работе с ними нет необходимости реверсировать ток в цепи управления. Их также называют бифилярными двигателями.

Рис.12: Схема подключения униполярного шагового двигателя с разными выводами

В биполярном шаговом двигателе одна обмотка на полюс. Направление тока должно быть изменено схемой управления, чтобы схема управления биполярным шаговым двигателем стала сложной. Их еще называют унифилярными двигателями.

Рис.13: Схема подключения биполярного шагового двигателя с выводами

Шаговые режимы

Существует три тактовых режима шагового двигателя.Шаговый режим относится к последовательности, в которой катушки статора находятся под напряжением.

1. Волновой привод (одна фаза включена одновременно)

2. Полный привод (одновременное включение двух фаз)

3. Полупривод (одновременное включение одной и двух фаз)

1. Волновой привод :

В пошаговом режиме волнового привода одновременно запитывается только одна фаза.

Рис.14: Схема пошагового режима волнового привода в шаговом двигателе

2. Полный привод :

При полном приводе одновременно запитаны две фазы.

Рис.15: Схема шагового режима полного привода в шаговом двигателе

3. Полупривод :

В полуприводе поочередно запитываются одна и две фазы. Это увеличивает разрешающую способность двигателя.

Рис.16: Схема тактового режима половинного привода в шаговом двигателе

]]>

]]>
В рубрике: Последние статьи
С тегами: гибрид, двигатель, постоянный магнит, шаговый двигатель, переменное сопротивление

Шаговый двигатель: работа, конструкция, типы, преимущества и недостатки

Сегодня мы обсудим шаговый двигатель, его работа, виды, преимущества, недостатки с его функциональной областью.Проще говоря, это комбинация двигателя постоянного тока с электроникой, которая позволяет двигателю вращаться и останавливаться под заданным углом. Он в основном используется в робототехнике, где перемещают руку робота под заданным углом и удерживают ее в течение некоторого времени, а затем возвращаются обратно.

Это бесщеточное электромеханическое устройство, которое используется для преобразования серии электрических импульсов, подаваемых на их обмотку возбуждения, в точно определенное пошаговое вращение механического вала. Другими словами, шаговый двигатель — это электромеханическое устройство, преобразующее электрическую энергию в механическую.

Это особый тип двигателя постоянного тока, который не вращается непрерывно, но полный оборот делится на количество равных шагов. Он работает по принципу работы магнитов, заставляющих вал поворачиваться на точное расстояние при подаче электрического импульса.

В шаговом двигателе количество входных импульсов, подаваемых на двигатель, определяет угол шага, и, следовательно, положение вала регулируется путем управления количеством импульсов. Эти уникальные особенности, которые отличаются от серводвигателя, делают шаговый двигатель хорошо подходящим для системы управления без обратной связи, в которой точное положение вала поддерживается с помощью точного количества импульсов без использования датчика обратной связи.

Если угол шага меньше, то тем больше будет количество шагов на оборот и выше будет точность полученного положения. Угол шага может составлять от 90 градусов до 0,72 градуса, однако обычно используемые углы шага составляют 1,8, 2,5, 7,5 и 15 градусов.

Конструкция:

Шаговый двигатель состоит из статора и ротора. Ротор — подвижная часть, не имеющая обмотки, щеток и коллектора.Статор состоит из многополюсной и многофазной обмотки, обычно из трех или четырех фаз обмотки, намотанной на необходимое количество полюсов, определяемое желаемым угловым смещением на входные импульсы.

Рабочий:

Шаговый двигатель работает по принципу электромагнетизма. Вал магнитного ротора окружен статорами электромагнетизма. Ротор и статор имеют полюса, которые могут иметь или не иметь зубчатые зацепления в зависимости от типа статора. Когда статоры возбуждают ротор, он перемещается, чтобы выровняться со статором.Таким образом, статоры получают питание в последовательности на разных полюсах, чтобы вращать шаговый двигатель. Благодаря очень хорошему контролю скорости, вращения, направления и углового положения, они представляют особый интерес для систем управления промышленными процессами, станков с ЧПУ, робототехники, систем автоматизации производства и контрольно-измерительных приборов.

Типы шаговых двигателей:
  1. Шаговые двигатели с регулируемым сопротивлением.
  2. Шаговый двигатель с постоянным магнитом.
  3. Гибридный шаговый двигатель.

1. Шаговый двигатель с регулируемым сопротивлением:

Шаговый двигатель с регулируемым сопротивлением имеет простую конструкцию с мягким железом, немагнитным зубчатым ротором и электромагнитными статорами с обмоткой. Нет притяжения между ротором и обмоткой статора, когда обмотка находится под напряжением, поскольку ротор не намагничен. Когда к противоположной паре обмоток подключается ток, создается магнитное поле с силовыми линиями, которые проходят от полюсов статора через ближайший набор полюсов на роторе.Это дает угол ступеней 7,5 или 15 градусов.

2. Шаговый двигатель с постоянным магнитом:

Шаговый двигатель с постоянным магнитом имеет ротор с постоянным магнитом, намагниченный в осевом направлении. Это означает, что он имеет чередующиеся северный и южный полюса, параллельные валу ротора. Каждый полюс намотан с обмоткой возбуждения, катушки на противоположной паре полюсов включены последовательно. Ток подается от источника постоянного тока к обмотке через переключатели. Ротор представляет собой постоянный магнит, и, таким образом, когда на пару полюсов статора подается ток, ротор перемещается, чтобы выровняться с ним.Угол шага этого мотора составляет 1,8, 7,5,15,30,34 и 90 градусов.

3. Гибридный шаговый двигатель:

Гибридный шаговый двигатель представляет собой комбинацию электродвигателя с постоянным и переменным сопротивлением. Он имеет постоянный магнит, зубчатый ротор, состоящий из двух противоположных по полярности секций или чашек, зубья которых смещены друг относительно друга. Ротор устанавливается в положение с минимальным сопротивлением в ответ на то, что пара катушек статора находится под напряжением. Угол шага этого двигателя равен 0.9 или 1,8 градуса.

Вы также можете посмотреть это видео, чтобы узнать о различных типах и принципах работы шагового двигателя.

Преимущества:
  1. Угол поворота пропорционален входным импульсам.
  2. Полный крутящий момент в состоянии покоя.
  3. Возможно синхронное вращение на очень низкой скорости.
  4. Щеток нет, значит надежно.
  5. Скорость прямо пропорциональна частоте входного сигнала в виде импульсов; следовательно, может быть реализован широкий диапазон скорости вращения.
  6. Низкая скорость с высокой точностью.

Недостатки:
  1. Нет системы обратной связи.
  2. Низкий КПД.
  3. Может производить больше шума.
  4. Трудно работать на очень высокой скорости.
  5. Для плавного хода требуется микрошаг.

Приложения:
  1. Автоматизация производства.
  2. Упаковка.
  3. Погрузочно-разгрузочные работы.
  4. Аэрокосмическая промышленность, особенно в авионике.
  5. Система получения 3D изображений.
  6. Лазерные измерения.
  7. Робототехника.

Речь идет о работе шаговых двигателей, типах и т. Д. Если у вас есть какие-либо вопросы по пересмотру этой статьи, задавайте их, комментируя. Если вам понравилась эта статья, не забудьте поделиться ею в социальных сетях. Подпишитесь на наш сайт для получения более информативных статей. Спасибо, что прочитали.


Что такое шаговый двигатель? Типы, конструкция, работа и применение

Типы шаговых двигателей — их конструкция, работа и применение

Изобретение специальных карт драйверов шаговых двигателей и других технологий цифрового управления для сопряжения шагового двигателя с системами на базе ПК являются причиной широкого распространения шаговых двигателей в последнее время.Шаговые двигатели становятся идеальным выбором для систем автоматизации, требующих точного управления скоростью или точного позиционирования, либо того и другого.

Поскольку мы знаем, что многие промышленные электродвигатели используются с управлением с обратной связью с обратной связью для достижения точного позиционирования или точного управления скоростью, с другой стороны, шаговый двигатель может работать с контроллером без обратной связи. Это, в свою очередь, снижает общую стоимость системы и упрощает конструкцию машины по сравнению с сервосистемой управления. Кратко остановимся на шаговом двигателе и его типах .

Что такое шаговый двигатель?

Шаговый двигатель — это бесщеточное электромеханическое устройство, которое преобразует последовательность электрических импульсов, приложенных к их обмоткам возбуждения, в точно определенное пошаговое механическое вращение вала. Вал двигателя вращается на фиксированный угол для каждого дискретного импульса. Это вращение может быть линейным или угловым, при вводе одиночного импульса происходит одно шаговое движение.

Когда применяется последовательность импульсов, она поворачивается на определенный угол.Угол поворота вала шагового двигателя для каждого импульса называется углом шага, который обычно выражается в градусах.

Количество входных импульсов, подаваемых на двигатель, определяет угол шага, и, следовательно, положение вала двигателя регулируется путем управления количеством импульсов. Эта уникальная особенность делает шаговый двигатель подходящим для системы управления без обратной связи, в которой точное положение вала поддерживается с помощью точного количества импульсов без использования датчика обратной связи.

Если угол шага меньше, тем больше будет количество шагов на оборот и выше будет точность полученного положения. Углы шага могут составлять от 90 градусов до 0,72 градуса, однако обычно используемые углы шага составляют 1,8 градуса, 2,5 градуса, 7,5 градуса и 15 градусов.

Направление вращения вала зависит от последовательности импульсов, подаваемых на статор. Скорость вала или средняя скорость двигателя прямо пропорциональна частоте (частоте входных импульсов) входных импульсов, подаваемых на обмотки возбуждения.Следовательно, если частота низкая, шаговый двигатель вращается ступенчато, а при высокой частоте он постоянно вращается, как двигатель постоянного тока, из-за инерции.

Как и все электродвигатели, он имеет статор и ротор. Ротор — подвижная часть, не имеющая обмоток, щеток и коллектора. Обычно роторы либо с переменным магнитным сопротивлением, либо с постоянными магнитами. Статор часто состоит из многополюсных и многофазных обмоток, обычно из трех или четырех фазных обмоток, намотанных на необходимое количество полюсов, определяемое желаемым угловым смещением на входной импульс.

В отличие от других двигателей, он работает с запрограммированными дискретными импульсами управления, которые подаются на обмотки статора через электронный привод. Вращение происходит за счет магнитного взаимодействия между полюсами последовательно включенной обмотки статора и полюсами ротора.

Конструкция шагового двигателя

На сегодняшнем рынке доступно несколько типов шаговых двигателей с широким диапазоном размеров, количества шагов, конструкций, проводки, передачи и других электрических характеристик.Поскольку эти двигатели могут работать в дискретном режиме, они хорошо подходят для взаимодействия с устройствами цифрового управления, такими как компьютеры.

Благодаря точному контролю скорости, вращения, направления и углового положения, они представляют особый интерес в системах управления производственными процессами, станках с ЧПУ, робототехнике, системах автоматизации производства и контрольно-измерительных приборах.

Типы шаговых двигателей

Существует три основных категории шаговых двигателей , а именно:

  • Шаговый двигатель с постоянным магнитом
  • Шаговый двигатель с переменным сопротивлением
  • Гибридный шаговый двигатель Во всех этих двигателях в статоре используются обмотки возбуждения, где количество обмоток относится к количеству фаз.

    Напряжение постоянного тока подается в качестве возбуждения на катушки обмоток, и каждый вывод обмотки подключается к источнику через твердотельный переключатель. Конструкция его ротора зависит от типа шагового двигателя: ротор из мягкой стали с выступающими полюсами, цилиндрический ротор с постоянными магнитами и постоянный магнит с зубьями из мягкой стали. Обсудим эти типы подробнее.

    Шаговый двигатель с переменным сопротивлением

    Это базовый тип шагового двигателя , который существует уже долгое время и обеспечивает самый простой способ понять принцип работы с точки зрения конструкции.Как следует из названия, угловое положение ротора зависит от сопротивления магнитной цепи, образованной между полюсами (зубьями) статора и зубьями ротора.

    Шаговый двигатель с регулируемым сопротивлением
    Конструкция шагового двигателя с регулируемым сопротивлением

    Он состоит из статора с обмоткой и многозубого ротора из мягкого железа. Статор состоит из листов кремнистой стали, на которые намотаны обмотки статора. Обычно он наматывается по трем фазам, которые распределяются между парами полюсов.

    Количество полюсов на статоре, сформированное таким образом, равно кратному количеству фаз, для которых обмотки намотаны на статоре. На рисунке ниже статор имеет 12 равноотстоящих полюсов, каждый из которых намотан возбуждающей катушкой. Эти три фазы запитываются от источника постоянного тока с помощью твердотельных переключателей.

    Ротор не имеет обмоток и является явнополюсным, полностью изготовленным из стальных пластин с прорезями. Выступающие зубья полюса ротора имеют такую ​​же ширину, как и зубцы статора.Число полюсов статора отличается от числа полюсов ротора, что обеспечивает возможность самозапуска и двунаправленного вращения двигателя.

    Отношение полюсов ротора к полюсам статора для трехфазного шагового двигателя определяется как Nr = Ns ± (Ns / q). Здесь Ns = 12 и q = 3, и, следовательно, Nr = 12 ± (12/3) = 16 или 8. Ниже показан 8-полюсный ротор без возбуждения.

    Конструкция шагового двигателя с переменным сопротивлением
    Работа шагового двигателя с переменным сопротивлением

    Шаговый двигатель работает по принципу , согласно которому ротор совмещается в определенном положении с зубцами полюса возбуждения в магнитной цепи с минимальным сопротивлением. путь существует.Всякий раз, когда к двигателю подается питание и возбуждая определенную обмотку, он создает свое магнитное поле и развивает свои собственные магнитные полюса.

    Из-за остаточного магнетизма в полюсах магнита ротора это заставит ротор перемещаться в такое положение, чтобы достичь положения минимального сопротивления, и, следовательно, один набор полюсов ротора выровнен с набором полюсов статора под напряжением. В этом положении ось магнитного поля статора совпадает с осью, проходящей через любые два магнитных полюса ротора.

    Когда ротор совмещен с полюсами статора, он обладает достаточной магнитной силой, чтобы удерживать вал от перемещения в следующее положение по часовой стрелке или против часовой стрелки.

    Рассмотрим принципиальную схему трехфазного, 6 полюсов статора и 4 зубьев ротора, показанную на рисунке ниже. Когда фаза A-A ’снабжается источником постоянного тока путем замыкания переключателя -1, обмотка становится магнитом, в результате чего один зуб становится северным, а другой — южным. Таким образом, магнитная ось статора лежит вдоль этих полюсов.

    За счет силы притяжения, северный полюс обмотки статора притягивает ближайший зуб ротора противоположной полярности, то есть южный и южный полюс притягивают ближайший зубец ротора противоположной полярности, то есть север. Затем ротор настраивается в положение с минимальным сопротивлением, при котором магнитная ось ротора точно совпадает с магнитной осью статора.

    Работа шагового двигателя с переменным сопротивлением

    Когда на фазу B-B ‘подается питание путем замыкания переключателя -2, сохраняя фазу A-A’ обесточенной путем размыкания переключателя-1, обмотка B-B ‘будет создавать магнитный поток и, следовательно, магнитная ось статора смещается вдоль образованных им полюсов.Следовательно, ротор смещается в сторону наименьшего сопротивления с намагниченными зубьями статора и вращается на угол 30 градусов по часовой стрелке.

    Когда переключатель-3 находится под напряжением после размыкания переключателя-2, включается фаза C-C ’, зубья ротора выравниваются в новом положении, перемещаясь на дополнительный угол 30 градусов. Таким образом, ротор движется по часовой стрелке или против часовой стрелки, последовательно возбуждая обмотки статора в определенной последовательности. Угол шага этого 3-фазного 4-полюсного шагового двигателя с зубьями ротора выражается как 360 / (4 × 3) = 30 градусов (как угол шага = 360 / Nr × q).

    Угол шага можно еще больше уменьшить, увеличив количество полюсов на статоре и роторе, в этом случае двигатели часто имеют дополнительные фазные обмотки. Это также может быть достигнуто за счет принятия другой конструкции шаговых двигателей , такой как многостаковый механизм и редукторный механизм.

    Шаговый двигатель с постоянным магнитом

    Двигатель с постоянным магнитом, пожалуй, самый распространенный среди нескольких типов шаговых двигателей.Как следует из названия, он добавляет постоянные магниты в конструкцию двигателя. Этот тип шаговых двигателей также обозначается как двигатель для жестяных банок или двигатель для жестяных банок . Главное достоинство этого мотора — невысокая стоимость изготовления. Этот тип двигателя имеет 48-24 шага на оборот.

    Шаговый двигатель с постоянным магнитом
    Конструкция Шаговый двигатель с постоянным магнитом

    В этом двигателе статор является многополюсным, и его конструкция аналогична конструкции шагового двигателя с переменным сопротивлением, как описано выше.Он состоит из периферии с прорезями, на которые намотаны катушки статора. Он имеет выступающие полюса на щелевой конструкции, где намотанные обмотки могут быть двух-, трех- или четырехфазными.

    Концевые выводы всех этих обмоток выкуплены и подключены к возбуждению постоянного тока через твердотельные переключатели в цепи управления.

    Конструкция Шаговый двигатель с постоянным магнитом

    Ротор изготовлен из материала постоянного магнита, такого как феррит, который может иметь форму цилиндрического или выступающего полюса, но обычно это гладкий цилиндрический тип.Ротор спроектирован так, чтобы иметь четное количество полюсов постоянного магнита с чередованием северной и южной полярностей.

    Работа шагового двигателя с постоянным магнитом

    Принцип действия этого двигателя основан на том, что разные полюса притягиваются друг к другу, а подобные полюса отталкиваются. Когда обмотки статора возбуждаются источником постоянного тока, он создает магнитный поток и устанавливает северный и южный полюса. Из-за силы притяжения и отталкивания между полюсами ротора постоянного магнита и полюсами статора, ротор начинает двигаться вверх до положения, для которого на статор подаются импульсы.

    Рассмотрим двухфазный шаговый двигатель с двумя полюсами ротора с постоянными магнитами, как показано на рисунке ниже.

    Работа шагового двигателя с постоянным магнитом:

    Когда фаза A запитана плюсом по отношению к A ’, обмотки устанавливают северный и южный полюса. Из-за силы притяжения полюса ротора совпадают с полюсами статора, так что ось магнитного полюса ротора согласовывается с осью статора, как показано на рисунке.

    Когда возбуждение переключается на фазу B и отключается фаза A, ротор дополнительно настраивается на магнитную ось фазы B и, таким образом, поворачивается на 90 градусов по часовой стрелке.

    Затем, если фаза A питается отрицательным током по отношению к A ’, образование полюсов статора заставляет ротор перемещаться еще на 90 градусов по часовой стрелке.

    Таким же образом, если фаза B возбуждается отрицательным током путем замыкания переключателя фазы A, ротор поворачивается еще на 90 градусов в том же направлении. Затем, если фаза A возбуждается положительным током, ротор возвращается в исходное положение, совершая полный оборот на 360 градусов.Это означает, что всякий раз, когда статор возбужден, ротор стремится повернуться на 90 градусов по часовой стрелке.

    Угол шага этого 2-фазного 2-полюсного роторного двигателя с постоянными магнитами выражается как 360 / (2 × 2) = 90 градусов. Размер шага может быть уменьшен за счет одновременного включения двух фаз или последовательности режимов однофазного включения и двухфазного включения с правильной полярностью.

    Гибридный шаговый двигатель

    Это самый популярный тип шагового двигателя , поскольку он обеспечивает лучшую производительность, чем ротор с постоянными магнитами, с точки зрения шагового разрешения, удерживающего момента и скорости.Однако эти двигатели дороже шаговых двигателей с постоянными магнитами. Он сочетает в себе лучшие характеристики шаговых двигателей с переменным сопротивлением и шаговых двигателей с постоянными магнитами. Эти двигатели используются в приложениях, где требуется очень маленький шаговый угол, например 1,5, 1,8 и 2,5 градуса.

    Гибридный шаговый двигатель
    Конструкция гибридного шагового двигателя

    Статор этого двигателя такой же, как у его аналога с постоянным магнитом или реактивного типа. Катушки статора намотаны на чередующиеся полюсы.При этом катушки разных фаз намотаны на каждый полюс, обычно две катушки на полюсе, что называется бифилярным соединением.

    Ротор состоит из постоянного магнита, намагниченного в осевом направлении для создания пары магнитных полюсов (полюсов N и S). Каждый полюс покрыт равномерно расположенными зубцами. Зубья состоят из мягкой стали и двух секций, на каждом полюсе которых смещены друг к другу с шагом в половину зуба.

    Работа гибридного шагового двигателя

    Этот двигатель работает так же, как и шаговый двигатель с постоянными магнитами.На рисунке выше показан двухфазный, 4-полюсный гибридный шаговый двигатель с 6 зубьями. Когда фаза A-A ’возбуждается источником постоянного тока, сохраняя невозбужденный B-B’, ротор выравнивается так, что южный полюс ротора обращен к северному полюсу статора, а северный полюс ротора обращен к южному полюсу статора.

    Работа гибридного шагового двигателя

    Теперь, если фаза B-B ‘возбуждена, удерживая A-A’ выключенным таким образом, что верхний полюс становится северным, а нижний — южным, тогда ротор будет выровнен в новое положение на движение против часовой стрелки.Если фаза B-B ’возбуждается противоположно, так что верхний полюс становится южным, а нижний — северным, то ротор будет вращаться по часовой стрелке.

    При правильной последовательности импульсов на статор двигатель будет вращаться в желаемом направлении. При каждом возбуждении ротор блокируется в новом положении, и даже если возбуждение снимается, двигатель все еще сохраняет заблокированное состояние из-за возбуждения постоянным магнитом. Угол шага этого 2-фазного, 4-полюсного, 6-зубчатого роторного двигателя составляет 360 / (2 × 6) = 30 градусов.На практике гибридные двигатели конструируются с большим количеством полюсов ротора, чтобы получить высокое угловое разрешение.

    Униполярные и биполярные шаговые двигатели

    Рассмотренные выше двигатели могут быть униполярными или биполярными в зависимости от расположения обмоток катушки. Используется униполярный двигатель с двумя обмотками на фазу, и, следовательно, направление тока через эти обмотки изменяет вращение двигателя. В этой конфигурации ток проходит в одном направлении в одной катушке и в противоположном направлении в другой катушке.

    На рисунке ниже показан двухфазный униполярный шаговый двигатель, в котором катушки A и C предназначены для одной фазы, а B и D — для другой фазы. В каждой фазе каждая катушка передает ток в направлении, противоположном направлению тока другой катушки. Только одна катушка будет пропускать ток в каждой фазе для достижения определенного направления вращения. Таким образом, просто переключая клеммы на каждую катушку, можно управлять направлением вращения.

    Работа двухфазного униполярного шагового двигателя

    В случае биполярного шагового двигателя каждая фаза состоит из одной обмотки, а не из двух в случае униполярной.В этом случае направление вращения регулируется путем изменения направления тока через обмотки. Следовательно, для реверсирования тока требуется сложная схема возбуждения.

    2-фазный биполярный шаговый двигатель

    Тактовые режимы шагового двигателя

    Типичное шаговое действие заставляет двигатель шагать через последовательность положений равновесия в ответ на заданные ему импульсы тока. Шаговое действие можно изменять по-разному, просто изменяя последовательность подачи питания на обмотки статора.Ниже приведены наиболее распространенные режимы работы или движения шаговых двигателей.

    1. Шаг волны
    2. Полный шаг
    3. Полушаг
    4. Микрошаг
    Шаг волны

    Режим шага волны самый простой из всех других режимов, в которых только одна обмотка находится под напряжением в любой момент времени. Каждая катушка фазы поочередно подключается к источнику питания. В таблице ниже показан порядок включения катушек в 4-фазном шаговом двигателе.

    В этом режиме двигатель дает максимальный угол шага по сравнению со всеми другими режимами. Это самый простой и наиболее часто используемый режим для пошагового выполнения; однако создаваемый крутящий момент меньше, поскольку в данный момент используется некоторая часть всей обмотки.

    Режим полного шага

    В этом приводе или режиме две фазы статора запитываются одновременно в любой момент времени. Когда две фазы запитаны вместе, ротор будет испытывать крутящий момент от обеих фаз и придет в положение равновесия, которое будет чередоваться между двумя соседними положениями ступенек волны или однофазным возбуждением.Таким образом, этот шаг обеспечивает лучший удерживающий момент, чем волновой шаг. В таблице ниже показан полный шаговый привод для 4-фазного шагового двигателя.

    Полушаговый режим

    Это комбинация волнового и полушагового режимов. При этом однофазное и двухфазное возбуждение выполняются поочередно, то есть однофазное включение, двухфазное включение и так далее. Угол шага в этом режиме становится половиной полного угла шага. Этот режим привода имеет самый высокий крутящий момент и стабильность по сравнению со всеми другими режимами.Таблица, содержащая последовательность импульсов фазы для 4-фазного двигателя с полушагом, приведена ниже.

    Режим микрошага

    В этом режиме каждый шаг двигателя разделен на несколько небольших шагов, даже на сотни фиксированных положений, поэтому достигается большее разрешение позиционирования. При этом токи через обмотки постоянно меняются, чтобы получить очень маленькие шаги. При этом одновременно возбуждаются две фазы, но с разными токами в каждой фазе.

    Например, ток через фазу -1 поддерживается постоянным, в то время как ток через фазу 2 увеличивается пошагово до максимального значения тока, будь то отрицательное или положительное. Затем ток в фазе 1 постепенно уменьшается или увеличивается до нуля. Таким образом, двигатель будет производить шаг небольшого размера.

    Все эти пошаговые режимы могут быть получены с помощью каждого типа шагового двигателя, описанного выше. Однако направление тока в каждой обмотке во время этих этапов может быть изменено в зависимости от типа двигателя, будь то однополярный или биполярный.

    Преимущества шагового двигателя
    • В состоянии покоя двигатель развивает полный крутящий момент. Неважно, нет ли момента или смены позиции.
    • Обладает хорошей реакцией на пуск, остановку и движение задним ходом.
    • Поскольку в шаговом двигателе нет контактных щеток, он надежен, а срок службы зависит от подшипников двигателя.
    • Угол поворота двигателя прямо пропорционален входным сигналам.
    • Это просто и менее затратно в управлении, поскольку двигатель обеспечивает управление без обратной связи при ответе на цифровые входные сигналы.
    • Скорость двигателя прямо пропорциональна частоте входных импульсов, таким образом можно достичь широкого диапазона скорости вращения.
    • Когда нагрузка приложена к валу, все еще возможно реализовать синхронное вращение с низкой скоростью.
    • Точное позиционирование и повторяемость движения хорошие, так как точность шага составляет 3-5%, при этом ошибка не суммируется от шага к шагу.
    • Шаговые двигатели более безопасны и дешевы (по сравнению с серводвигателями), имеют высокий крутящий момент на низких скоростях, высокую надежность и простую конструкцию, которые работают в любых условиях.
    Недостатки шаговых двигателей
    • Шаговые двигатели с низким КПД.
    • Имеет низкую точность.
    • Его крутящий момент очень быстро снижается со скоростью.
    • Поскольку шаговый двигатель работает в режиме управления без обратной связи, нет обратной связи, указывающей на возможные пропущенные шаги.
    • У него низкое отношение крутящего момента к моменту инерции, что означает, что он не может очень быстро разгонять груз.
    • Они шумные.

    Области применения шаговых двигателей
    • Шаговые двигатели используются в автоматизированном производственном оборудовании, автомобильных датчиках и промышленных машинах, таких как упаковка, маркировка, наполнение и резка и т. Д.
    • Он широко используется в устройствах безопасности, таких как камеры безопасности и наблюдения.
    • В медицинской промышленности шаговые двигатели широко используются в образцах, цифровой стоматологической фотографии, респираторах, жидкостных насосах, оборудовании для анализа крови, медицинских сканерах и т. Д.
    • Они используются в бытовой электронике в сканерах изображений, копировальных аппаратах и ​​печатных машинах, а также в цифровая камера для автоматического увеличения и фокусировки с функциями и положениями.
    • Шаговые двигатели также используются в лифтах, конвейерных лентах и ​​переключателях полосы движения.

    Вы также можете прочитать:

    Учебное пособие: Основы шаговых двигателей

    Прочтите часть II этой статьи

    Экономичные, простые в интеграции и способные обеспечивать высокий крутящий момент на низких скоростях, шаговые двигатели представляют собой хорошее решение для целого ряда приложений.

    Хотя серводвигатели удовлетворяют широкому спектру требований к точному перемещению, для некоторых применений шаговый двигатель является полезной альтернативой. Шаговый двигатель — это синхронный бесщеточный двигатель с цифровой функцией.В отличие от щеточных двигателей постоянного тока, которые вращаются постоянно, пока катушки статора находятся под напряжением, шаговый двигатель работает на импульсном токе и с каждым импульсом совершает некоторую долю полного оборота. В результате они могут эффективно работать без обратной связи с обратной связью. Система движения может позиционировать нагрузку с помощью шагового двигателя, просто задав заданное количество шагов. Шаговые двигатели особенно хорошо подходят для цифровых приводов и приложений. Прочные, экономичные и точные, они играют важную роль во всем: от жестких дисков с вращающимися дисками до принтеров, робототехники и станков с ЧПУ.

    Шаговые двигатели 101
    Шаговый двигатель состоит из центрального ротора, окруженного статором с некоторым количеством обмоток (см. Рисунок 1). Когда одна обмотка или группа обмоток находится под напряжением, она становится электромагнитом с полярностью, определяемой направлением тока. На рисунке A, например, подача тока на обмотку A создает северный полюс, обращенный к ротору. Магнитное притяжение прикладывает силу к полюсу ротора, заставляя ротор поворачивать некоторую долю оборота, пока его южный полюс не окажется рядом с северным полюсом обмотки, доводя крутящий момент до нуля.Это составляет шаг.

    Для продолжения движения первый набор обмоток должен быть отключен от питания, а другой набор — под напряжением. В результате полюс ротора снова смещается от полюса статора. Обмотка под напряжением прикладывает силу к ротору, заставляя его повернуться еще на один шаг.

    Мы можем выразить статический крутящий момент как функцию углового положения для идеального шагового двигателя с постоянными магнитами (PM) как

    , где — удерживающий момент, который представляет собой максимальный крутящий момент, который двигатель может проявить, чтобы предотвратить перемещение нагрузки, и S — угол ступени в радианах, а θ — угол вала в радианах. 1 В частности, выражение представляет угол электрического вала.

    Типы шаговых двигателей
    Чтобы понять процесс более подробно, давайте рассмотрим простейший тип шагового двигателя, двухфазный двигатель с постоянными магнитами (PM). В шаговом двигателе с постоянными магнитами ротор состоит из цилиндрического постоянного магнита с магнитными полюсами, разделенными по бокам (см. Рисунок 3). Для двухфазного двигателя у нас есть четыре обмотки, обозначенные A, A ’, B и B’. Если мы активируем катушку A так, чтобы часть, ближайшая к ротору, стала северным полюсом, южный полюс ротора будет притягиваться к ней, поворачиваясь, пока они не выровняются, доводя крутящий момент до нуля.Это представляет собой ступеньку с углом ступени 90 °.

    Как описано выше, мы обесточиваем катушку A и включаем катушку B, заставляя двигатель двигаться вперед еще на один шаг. Последовательное включение катушек заставляет ротор вращаться в несколько дискретных шагов. Шаговые двигатели

    PM могут обеспечить экономичное решение, но их способность создавать крутящий момент ограничена, особенно на высоких скоростях — повышенная индуктивность не позволяет току стать достаточно большим, чтобы полностью реализовать крутящий момент. Конструкции PM ограничиваются углами грубого шага, как правило, 45 или 90 °.Такие большие успехи вызывают вибрацию, особенно на низких скоростях.

    Шаговый двигатель с регулируемым сопротивлением обеспечивает альтернативу с более высоким разрешением. Шаговый двигатель с регулируемым сопротивлением не имеет постоянного магнита. Вместо этого ротор состоит из чугунного или стального цилиндра с зубьями, так что воздушный зазор между ротором и катушками изменяется. Это позволяет устройству использовать явление, называемое выступом, при котором изменения ширины воздушного зазора между ротором и статором вызывают изменение индуктивности.Это создает силу, называемую реактивным моментом, которая действует на ротор.

    Магнитный поток, в данном случае от катушек статора, всегда ищет путь с минимальным сопротивлением. Когда зубья ротора смещены относительно находящихся под напряжением катушек статора, магнитный поток прикладывает силу, чтобы расположить зубья таким образом, чтобы минимизировать ширину воздушного зазора, как показано ниже:

    Чтобы довести крутящий момент до нуля, ротор поворачивается, чтобы полностью выровнять зуб или подмножество зубцов с катушкой под напряжением, эффективно делая шаг.

    Чтобы двигатель продолжал вращаться, мы должны обесточить катушку A и включить катушку B. Это работает только в том случае, если количество зубцов на роторе отличается от количества катушек статора, чтобы гарантировать, что когда один набор зубцов выровнен с возбужденным катушки, все остальные зубцы смещены относительно их ближайшей (обесточенной) катушки. В результате, когда мы обесточиваем катушку A и включаем катушку B, ближайшие зубцы смещаются относительно магнитного полюса. Поток снова действует, чтобы минимизировать крутящий момент, заставляя ротор сделать еще один шаг.

    Альтернативный подход — гибридный шаговый двигатель, который обладает характеристиками обоих типов. В гибридном шаговом двигателе постоянный магнит ротора ориентирован так, что магнитные полюса расположены аксиально, а не сбоку. Зубчатый железный или стальной диск прикреплен к каждой стороне магнита. Каждый диск имеет одинаковое количество зубцов, но они синхронизированы относительно друг друга, так что зубцы на северном полюсе на половину шага не совпадают по фазе с зубцами на южном полюсе (см. Рисунок 2).В результате в осевом направлении получается ротор с чередующимися северным и южным полюсами. Обычный размер гибридного шагового двигателя составляет 200 шагов на оборот с углом шага 1,8 °.

    Режимы возбуждения
    Количество фаз в шаговом двигателе определяется количеством отдельных наборов катушек, которые должны быть последовательно запитаны, чтобы вращать ротор. Один двигатель может иметь большое количество фаз; и наоборот, одна фаза может иметь от двух до N обмоток. Как правило, чем большее количество обмоток запитано в одной фазе, тем больше потребляемая мощность, но также и больше крутящий момент.Теоретически конструкция ограничивается только возможностями обработки и объемом пространства, необходимого для различения обмоток. На практике, однако, после определенного момента пустое пространство, потребляемое слишком большим количеством фаз, снижает общий крутящий момент, который может генерировать двигатель. Таким образом, конструкция обмотки и способ ее вращения играют ключевую роль в производительности.

    Полноступенчатый однокатушечный режим
    Шаговые двигатели могут возбуждаться в любом из нескольких режимов, каждый из которых имеет разные характеристики.Самым простым режимом возбуждения является полноступенчатый режим с одной катушкой или волновой режим, в котором на каждом шаге возбуждается только одна катушка статора. Он обеспечивает минимальный крутящий момент, поэтому его нельзя использовать с высокими нагрузками. Однако это минимизирует потребление энергии.

    Полноступенчатый двухкатушечный режим
    В этом режиме возбуждения катушки статора запитываются попарно. Вспомните кривую зависимости крутящего момента от положения, показанную на рисунке 2. Если мы возбуждаем две катушки одновременно, их кривые крутящего момента накладываются друг на друга, чтобы получить больший крутящий момент, который выглядит следующим образом (см. Рисунок 5).

    Конструкция потребляет в два раза больше напряжения или тока, чем в режиме с одной катушкой, в зависимости от того, подключен ли он последовательно или параллельно, но она может обеспечивать почти 100% номинального крутящего момента.

    Полушаговый режим с одной катушкой
    Полушаговый режим позволяет увеличить разрешение шагового двигателя вдвое без изменения ротора или статора. Шаговый двигатель, работающий в режиме полушага с одной катушкой, возбуждает один полюс, затем возбуждает две соседние катушки, чтобы продвинуть ротор на полшага, затем возбуждает другой одиночный полюс, чтобы продвинуться еще на полшага, и т. Д.(см. рисунок 6). Полушаговый режим увеличивает разрешение простым изменением приводной электроники.

    Полушаговый режим двойной катушки
    В этом режиме две катушки получают питание на первой ступени, затем на четыре, затем на две и т.д. Затем одновременно возбуждаются соседние катушки (см. Рисунок 7). Обратите внимание, что для двухфазного двигателя это означает, что все катушки возбуждаются одновременно.В этом случае половинный шаг не только увеличивает разрешение, но и позволяет двигателю создавать оптимальный крутящий момент.

    Преимущества повышенного разрешения выходят за рамки точности позиционирования. Уменьшение угла шага снижает вибрацию и позволяет избежать резонансов в двигателе. В результате движение становится более плавным и бесшумным.

    Микрошаговый
    Эффект может быть увеличен с помощью микрошага. Микрошаг делит основной угол шага на меньшие приращения; например, режим микрошага с делением на 10 уменьшит стандартный угол шага в 10 раз.

    Давайте посмотрим на наиболее распространенную форму микрошага, известную как микрошаговый синус / косинус. Мы возбуждаем две катушки одновременно для достижения комбинированного удерживающего момента, равного удерживающему моменту одной обмотки в соответствии с:

    Тогда ток, который мы подаем на две обмотки, чтобы установить ротор под углом, определяется выражением:

    , где I A — ток через обмотку A с равновесием под углом 0, I B — ток через обмотку B с равновесием под углом S , и I max — максимальное допустимый ток через любую обмотку двигателя.

    Микрошаговый режим стал возможен благодаря наличию мощных и недорогих микроконтроллеров. Однако это не идеальное решение. Цифровые контроллеры, используемые для генерации управляющего сигнала, ограничены возможностями квантования аналого-цифрового преобразователя.

    Фиксатор или притяжение между зубьями ротора и магнитами может вносить колебания и движение, а трение может ограничивать точность. Тем не менее, этот метод может обеспечить очень хорошую производительность для ряда приложений. Во второй части этого руководства мы обсудим особенности проводки и драйверов, а также компромиссы, связанные с выбором правильного типа шагового двигателя.

    Ссылки
    1. Дуглас Джонс, «Управление шаговыми двигателями», http://homepage.cs.uiowa.edu/~jones/step/index.html

    Прочтите часть II этой статьи

    Основы шагового двигателя

    — openlabpro.com

    Шаговые двигатели — это двигатели постоянного тока, используемые для точных управляемых операций.В этом уроке мы изучаем основы шагового двигателя.

    Что такое шаговый двигатель

    Как следует из названия, шаговый двигатель или просто шаговый двигатель, который представляет собой бесщеточный синхронный двигатель постоянного тока, перемещается дискретными шагами для завершения своего вращения. В общем случае каждый шаг в шаговом двигателе перемещается на 1,8 градуса, и, следовательно, ротору требуется 200 шагов, чтобы завершить одно вращение. Шаговые двигатели также доступны с углами шага 30, 15, 5, 2,5 и 2. Шаговый двигатель работает по принципу электромагнетизма и может управляться с обратной связью или без нее.Поскольку можно точно контролировать положение и скорость двигателя с помощью сложных компьютерных систем, шаговые двигатели предпочтительны во многих приложениях для точного управления движением, таких как робототехника.

    Биполярный шаговый двигатель

    Основы шагового двигателя — Как работает шаговый двигатель?

    Как и в случае с любыми другими двигателями, шаговый двигатель имеет вращающуюся часть, которая уместно называется ротором, и статическую часть, называемую статором. Статор и ротор имеют магнитные полюса, и при подаче напряжения на полюса статора ротор перемещается, чтобы выровняться со статором.Ротор — это кусок железа в форме центральной шестерни. Статор представляет собой набор зубчатых электромагнитов, расположенных вокруг центральной шестерни.


    Когда на фазные обмотки шагового двигателя подается ток, в статоре создается соответствующий магнитный поток в направлении, перпендикулярном направлению протекания тока. Электромагниты включаются по одному. Когда на один электромагнит подается питание с помощью внешней схемы управления или микроконтроллера, вал ротора поворачивается таким образом, что он выравнивается со статором в положении, которое минимизирует противодействие магнитному потоку.Это означает, что электромагнит притягивает зубья шестерни, на которые электромагнит смещается относительно остальных электромагнитов. Из-за этого, когда включается следующий электромагнит, первый электромагнит выключается, в результате чего зубья шестерни притягиваются ко второму электромагниту. Таким образом, ротор совершает ступенчатое вращение, которое является целым числом, определяемым углом перемещения на каждом шаге.

    Режимы возбуждения или включения шагового двигателя

    Управляя углом каждого шага, мы можем контролировать разрешение и плавность вращения ротора.Есть три режима возбуждения.

    Полный шаг

    В этом режиме ротор перемещается на основной угол 1,8 градуса за один шаг и, таким образом, делает 200 шагов для завершения вращения. Мы можем добиться этого, запитав только одну фазу обмоток статора или две фазы. Однофазный режим работы требует минимального количества энергии от схемы драйвера. В двухфазном режиме работы две фазы запитываются одновременно, что приводит к увеличению крутящего момента и скорости.

    Полушаговый режим

    Ротор перемещается на половину базового угла за один шаг, что приводит к улучшенному крутящему моменту по сравнению с однофазным полноступенчатым режимом. Также это удваивает плавность вращения и разрешение.

    Микрошаговый

    В микрошаговом режиме основной угол делится на минутные значения до 256 раз. Микрошаговый режим предпочтителен там, где требуется повышенная плавность вращения.

    Типы шаговых двигателей

    Шаговый двигатель с постоянным магнитом

    Типичный угол шага шагового двигателя с постоянным магнитом равен 7.От 5 до 15 градусов. Ротор намагничивается путем изменения северного и южного полюсов, расположенных по прямой линии, параллельной железному валу ротора. В результате увеличивается интенсивность магнитного потока, и, следовательно, в шаговых двигателях этого типа значительно увеличивается крутящий момент. Шаговые двигатели с постоянными магнитами имеют низкое разрешение из-за более высоких значений углов шага. Это также недорогие моторы.

    Шаговый двигатель с регулируемым сопротивлением

    Это самые ранние шаговые двигатели, которые в настоящее время широко не используются.В двигателях этого типа ротор состоит из многозубого ротора, сделанного из мягкого железа, и когда катушки статора, окружающие ротор, получают питание от источника постоянного тока, зубья ротора притягиваются к полюсам намагниченного статора, и, таким образом, вращение происходит место.

    гибридный шаговый двигатель

    Поскольку обычные углы шага гибридного шагового двигателя составляют от 3,6 градуса до 0,9 градуса, характеристики двигателя, крутящего момента и скорости этого типа двигателей выше, чем у шагового двигателя с постоянными магнитами.Поскольку этот тип шаговых двигателей обладает характеристиками как типа с постоянными магнитами, так и их называют гибридными шаговыми двигателями. Ротор, как и в случае с электродвигателем с регулируемым сопротивлением, многозубый. Электромагнит намагничен в осевом направлении и концентричен вокруг вала.

    Униполярный шаговый двигатель и биполярный шаговый двигатель

    Другая классификация основана на типе базовых обмоток двухфазного шагового двигателя. Это униполярный шаговый двигатель , и биполярный шаговый двигатель . Основное различие между униполярным и биполярным шаговыми двигателями заключается в том, что первый работает с одной полярностью, а второй работает как с положительным, так и с отрицательным напряжением. Еще одно различие между униполярным и биполярным двигателями заключается в том, что для униполярных шаговых двигателей в каждой из катушек униполярного двигателя требуется провод, чтобы пропускать ток к тому или иному концу катушки. Эта разница в направлении создает две полярности тока вместо положительной и отрицательной полярностей.

    Биполярный шаговый двигатель

    Из-за наличия дополнительного провода в середине катушек униполярный шаговый двигатель будет производить половину магнитного потока из-за уменьшенного тока.Следовательно, биполярный шаговый двигатель производит больший крутящий момент, чем униполярный шаговый двигатель.

    Униполярный шаговый двигатель

    Применение шагового двигателя

    Как упоминалось ранее, шаговые двигатели нашли свое применение в системах позиционирования с управляемым движением, поскольку с помощью шаговых двигателей, управляемых компьютером, легко произвести точное управление положением. Они широко используются в биомедицинском оборудовании, где требуется точное и точное управление положением. Они также присутствуют в драйверах дисков, компьютерных принтерах и сканерах, интеллектуальном освещении, объективах фотоаппаратов и различных других распространенных устройствах и оборудовании.
    Шаговые двигатели предпочтительнее в робототехнике из-за их характеристик точности. В 3D-камерах, плоттерах X Y, ЧПУ и некоторых других платформах для камер также используются шаговые двигатели из-за их высокой надежности и точности.

    Достоинства и недостатки шагового двигателя

    Преимущества

    Благодаря точному приращению движения ротора очень легко точно контролировать скорость вращения. Это делает шаговый двигатель вполне приемлемым в робототехнике и автоматизации.Другими преимуществами являются простота конструкции и низкая стоимость обслуживания. Шаговый двигатель легко настраивается в любых условиях окружающей среды, и это очень надежная машина. Другой важной и важной особенностью является то, что он очень чувствителен к запуску, остановке и реверсированию. Это тоже приятная черта. Поскольку крутящий момент на низкой скорости сравнительно выше в шаговых двигателях, они предпочтительны в приложениях, где требуется высокий крутящий момент на низкой скорости. Отсутствие щеток является преимуществом, поскольку увеличивает общий срок службы двигателя.Если фазные обмотки находятся под напряжением, ротор будет создавать максимальный крутящий момент в состоянии покоя.

    Недостатки

    Одним из основных недостатков двигателей постоянного тока такого типа является то, что он требует большего количества тока, чем обычный двигатель постоянного тока. Хотя крутящий момент сравнительно выше на более низких скоростях, он очень низкий на высоких скоростях, и работать на более высоких скоростях непросто. Это еще один серьезный недостаток. Такие двигатели относительно неэффективны. Отсутствие механизма обратной связи — еще один недостаток, поскольку система обратной связи необходима для обеспечения безопасности.

    Поделитесь любовью, поделитесь этим

    .

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *