Как определить сечение провода по диаметру и наоборот: формулы и готовые таблицы
Провода широко применяются в сфере электрических сетей самого разного назначения. Транспортировка энергии посредством кабельно-проводниковых изделий на первый взгляд кажется простой и понятной.
Однако для обеспечения безопасной эксплуатации электропроводки, необходимо учесть ряд важных нюансов при проектировании и обустройстве электрических сетей. Одна из таких деталей – умение правильно рассчитать сечение провода по диаметру, ведь от точности определения зависит граница допустимого тока, идущего через проводник.
Как определить сечение или диаметр, есть ли разница между этими параметрами? Постараемся разобраться в статье. Кроме того, мы подготовили сводные таблицы, которые помогут выбрать проводник в зависимости от условий монтажа электросети, материала изготовления кабельной жилы и мощностных характеристик подключаемых агрегатов.
Содержание статьи:
Необходимость и порядок проведения расчета
Электрическим током питается самое разное оборудование, обладающее различной мощностью. И диапазон мощностей весьма обширный.
Каждый отдельно взятый электрический аппарат представляет собой нагрузку, в зависимости от величины которой требуется подвод тока определенной силы.
По «умолчанию» или банальному незнанию основ электрики проводники несложно подключить, игнорируя все существующие требования к диаметрам и сечениям. Другой вопрос – что может получиться из такой практики в процессе эксплуатации
Необходимое количество тока под требуемую нагрузку можно пропустить через провода разного диаметра (сечения).
Но в условиях недостаточного сечения проводника для прохождения заданного объёма тока возникает эффект увеличенного сопротивления. Как следствие – отмечается нагрев провода (кабеля).
Если игнорировать подобное явление и продолжать пропускать ток, создаётся реальная опасность нагрева вплоть до момента возгорания. Такая ситуация грозит серьёзной аварийной ситуацией. Вот почему расчетам и подбору цепей передачи тока к нагрузке требуется уделять повышенное внимание.
Последствия неточных расчетов электрических проводников по сечению (диаметру) могут сопровождаться явлениями от незначительной деформации изолирующего материала до реального возгорания и крупного пожара
Правильный расчёт, грамотный подбор положительно сказывается и на работе оборудования, выступающего в качестве нагрузки.
Так что, помимо фактора безопасности, расчёт сечений электрического кабеля по диаметру или наоборот, является обязательным действием с точки зрения обеспечения эффективной эксплуатации электрических машин.
Определение диаметра жилы проводника
Собственно, выполнить эту операцию можно простым линейным замером. Для точного замера рекомендуется использовать точечный инструмент, например, штангенциркуль, а ещё лучше – микрометр.
Относительно низкий по точности результат, но вполне приемлемый для многих вариантов применения проводов даёт замер диаметра обычной линейкой.
Замер и определение диаметра жилы точечным инструментом, в качестве которого выступает штангенциркуль. Этот способ линейного измерения даёт результат, достаточно точный для последующего расчета сечения проводника
Конечно же, измерение следует проводить в состоянии оголенного проводника, то есть предварительно .
Кстати, изоляционным покрытием, к примеру, медного провода, считается также тонкий слой напыления лака, которое также необходимо снимать, когда требуется очень точный расчет.
Существует «бытовой» способ измерения диаметра, пригодный в тех случаях, когда под руками отсутствуют точечные измерительные инструменты. Для применения способа потребуется отвертка электрика и школьная линейка.
Проводник под измерение предварительно зачищается от изоляции, после чего наматывается плотно виток к витку на штанге отвертки. Обычно мотают десяток витков – удобное число для математических расчетов.
Линейное измерение диаметра – ещё один широко распространенный способ определения параметра проводника для расчета мощности (пропускной способности). Применяется с использованием обычной линейки и любого основания, куда допустимо намотать проводник (+)
Далее намотанную на штанге отвертки катушку измеряют линейкой от первого до последнего витка. Полученное значение на линейке необходимо разделить на число витков (в данном случае на 6). Результатом такого нехитрого расчета будет диаметр жилы провода.
Вычисление сечения электрического провода
Для определения значения сечения жилы проводника придется уже пользоваться математической формулировкой.
По сути, сечением жилы проводника является площадь поперечного среза – то есть, площадь круга. Диаметр которого определяется методикой, описанной выше.
Сечение жилы – фактически площадь круга. Соответственно вычисление этого сегмента геометрической математики допустимо выполнить посредством традиционной формулы при условии известного значения диаметра или радиуса
Опираясь на значение диаметра, несложно получить значение радиуса, разделив диаметр пополам.
Собственно, потребуется к полученным данным добавить константу «π» (3,14), после чего можно вычислить значение сечения по одной из формул:
S = π*R2 или S = π/4*D2,
где:
- D – диаметр;
- R – радиус;
- S – поперечное сечение;
- π – константа, соответствующая 3,14.
Указанные классические формулы используются и для определения сечения многожильных проводников. Стратегия расчёта остается практически неизменной, за исключением некоторых деталей.
В частности, изначально вычисляется сечение одной жилы из пучка, после чего полученный результат умножается на общее количество жил.
Рассчитать сечение многожильного проводника допустимо при помощи того же математического способа, что применяется к одинарному проводу, но дополнительно учитывается число существующих жил в качестве множителя
Почему следует считать важным фактором ? Очевидный момент, связанный напрямую законом Джоуля-Ленца, – потому что параметром сечения проводника определяется граница допустимого тока, текущего через этот проводник.
Определение диаметра по сечению
Математическим расчетом допустимо определить диаметр жилы проводника, когда известен параметр сечения.
Это, конечно, не самый практичный вариант, учитывая наличие более простых способов определения диаметра, но использование такого варианта не исключается.
Измерение диаметра с высокой точностью при помощи слесарного инструмента – микрометра, даёт практически аналогичный результат, когда расчеты проводят с помощью формулы
Для выполнения расчета потребуются фактически те же самые числовые сведения, что использовались при расчетах сечения с помощью математической формулы.
То есть, константа «π» и значение площади круга (сечения).
Применяя эти значения формулы ниже, получают значение диаметра:
D = √4S/π,
где:
- D – диаметр;
- S – поперечное сечение;
- π – константа, соответствующая 3,14.
Применение этой формулы может быть актуальным, когда известен параметр сечения и под руками нет никаких подходящих инструментов для измерения диаметра.
Параметр сечения допустимо получить, к примеру, из документации на проводник или из таблицы для расчетов, где представлены наиболее часто используемые классические варианты.
Таблицы для выбора подходящего проводника
Удобным и практичным вариантом подбора нужного провода (кабеля) является пользование специальными таблицами, где обозначены диаметры и сечения относительно мощностей и/или проводимых токов.
Наличие такой таблицы под рукой – легкий и простой способ быстро определиться с проводником под требуемую электрическую установку.
Определение нужных значений посредством классической таблицы – один из наиболее удобных способов выбора требуемого проводника при производстве монтажных работ
Учитывая, что традиционными проводниками электротехнического монтажа выступают продукты с медными или алюминиевыми жилами, существуют таблицы для обоих видов металлов.
Также табличными данными зачастую представлены значения для напряжения 220 вольт и 380 вольт. Плюс, учитываются значения условий монтажа – закрытая или .
Фактически получается, что на одном листе бумаги или на картинке, загруженной в смартфон, содержится объёмная техническая информация, которая позволяет обойтись без отмеченных выше математических (линейные) расчетов.
Более того, многие производители кабельной продукции, чтобы упростить покупателю выбор нужного проводника, к примеру, под установку розеток, предлагают таблицу, в которой внесены все нужные значения.
Останется только определить, какая нагрузка планируется на конкретную электроточку и каким образом будет выполнен монтаж, и на основании этой информации подобрать правильный провод с медными или алюминиевыми жилами.
Примеры таких вариантов расчета диаметра провода по сечению приведены в таблице, где рассмотрены варианты для медных и алюминиевых жил, а также способы укладки проводки – открытый или скрытый тип. Из первой таблицы можно определить показатель .
Таблица соответствия сечения диаметру медных и алюминиевых жил в зависимости от условий монтажа
Мощность, Вт | Ток, А | Медная жила проводника | Алюминиевая жила проводника | ||||||
Открытый тип | Закрытый тип | Открытый тип | Закрытый тип | ||||||
S, мм2 | D, мм | S, мм2 | D, мм | S, мм2 | D, мм | S, мм2 | D, мм | ||
100 | 0,43 | 0,09 | 0,33 | 0,11 | 0,37 | 0,12 | 0,40 | 0,14 | 0,43 |
200 | 0,87 | 0,17 | 0,47 | 0,22 | 0,53 | 0,25 | 0,56 | 0,29 | 0,61 |
300 | 1,30 | 0,26 | 0,58 | 0,33 | 0,64 | 0,37 | 0,69 | 0,43 | 0,74 |
400 | 1,74 | 0,35 | 0,67 | 0,43 | 0,74 | 0,50 | 0,80 | 0,58 | 0,86 |
500 | 2,17 | 0,43 | 0,74 | 0,54 | 0,83 | 0,62 | 0,89 | 0,72 | 0,96 |
750 | 3,26 | 0,65 | 0,91 | 0,82 | 1,02 | 0,93 | 1,09 | 1,09 | 1,18 |
1000 | 4,35 | 0,87 | 1,05 | 1,09 | 1,18 | 1,24 | 1,26 | 1,45 | 1,36 |
1500 | 6,52 | 1,30 | 1,29 | 1,63 | 1,44 | 1,86 | 1,54 | 2,17 | 1,66 |
2000 | 8,70 | 1,74 | 1,49 | 2,17 | 1,66 | 2,48 | 1,78 | 2,90 | 1,92 |
2500 | 10,87 | 2,17 | 1,66 | 2,72 | 1,86 | 3,11 | 1,99 | 3,62 | 2,15 |
3000 | 13,04 | 2,61 | 1,82 | 3,26 | 2,04 | 3,73 | 2,18 | 4,35 | 2.35 |
3500 | 15,22 | 3,04 | 1,97 | 3,80 | 2,20 | 4,35 | 2,35 | 5,07 | 2,54 |
4000 | 17,39 | 3,48 | 2,10 | 4,35 | 2,35 | 4,97 | 2,52 | 5,80 | 2,72 |
4500 | 19,57 | 3,91 | 2,23 | 4,89 | 2,50 | 5,59 | 2,67 | 6,52 | 2,88 |
5000 | 21,74 | 4,35 | 2,35 | 5,43 | 2,63 | 6,21 | 2,81 | 7,25 | 3,04 |
6000 | 26,09 | 5,22 | 2,58 | 6,52 | 2,88 | 7,45 | 3,08 | 8,70 | 3,33 |
7000 | 30,43 | 6,09 | 2,78 | 7,61 | 3,11 | 8,70 | 3,33 | 10,14 | 3,59 |
8000 | 34,78 | 6,96 | 2,98 | 8,70 | 3,33 | 9,94 | 3,56 | 11,59 | 3,84 |
9000 | 39,13 | 7,83 | 3,16 | 9,78 | 3,53 | 11,18 | 3,77 | 13,04 | 4,08 |
10000 | 43,48 | 8,70 | 3,33 | 10,87 | 3,72 | 12,42 | 3,98 | 14,49 | 4,30 |
Кроме того, существует стандарт сечений и диаметров, распространяемый на круглые (фасонные) неуплотненные и уплотненные токопроводящие жилы кабелей, проводов, шнуров. Эти параметры регламентирует ГОСТ 22483-2012.
Под стандарт подпадают кабели из медной (медной луженой), алюминиевой проволоки без металлического покрытия или с металлическим покрытием.
Медные и алюминиевые жилы кабелей и проводов стационарной укладки разделяют по классам 1 и 2. Провода, шнуры, кабели нестационарной и стационарной укладки, где требуется повышенная степень гибкости на монтаже, разделяются на классы от 3 до 6.
Таблица соответствия по классам для кабельных (проводных) медных жил
Номинальное сечение жилы, мм2 | Максимально допустимый диаметр медных жил, мм | ||||
однопроволочных (класс 1) | многопроволочных (класс 2) | многопроволочных (класс 3) | многопроволочных (класс 4) | гибких (классы 5 и 6) | |
0,05 | – | – | – | 0,35 | – |
0,08 | – | – | – | 0,42 | – |
0,12 | – | – | – | 0,55 | – |
0,20 | – | – | – | 0,65 | – |
0,35 | – | – | – | 0,9 | – |
0,5 | 0,9 | 1,1 | 1,1 | 1,1 | 1,1 |
0,75 | 1,0 | 1,2 | 1,2 | 1,3 | 1,3 |
1,0 | 1,2 | 1,4 | 1,5 | 1,5 | 1,5 |
1,2 | – | – | 1,6 | 1,6 | – |
1,3 | 1,5 | 1,7 | 1,8 | 1,8 | 1,8 |
2,0 | – | – | 1,9 | 2,0 | – |
2,5 | 1,9 | 2,2 | 2,4 | 2,5 | 2,6 |
3,0 | – | – | 2,5 | 2,6 | – |
4 | 2,4 | 2,7 | 2,8 | 3,0 | 3,2 |
5 | – | – | 3,0 | 3,2 | – |
6 | 2,9 | 3,3 | 3,9 | 4,0 | 3,9 |
8 | – | – | 4,0 | 4,2 | – |
10 | 3,7 | 4,2 | 4,7 | 5,0 | 5,1 |
16 | 4,6 | 5,3 | 6,1 | 6,1 | 6,3 |
25 | 5,7 | 6,6 | 7,8 | 7,8 | 7,8 |
35 | 6,7 | 7,9 | 9,1 | 9,1 | 9,2 |
50 | 7,8 | 9,1 | 11,6 | 11,6 | 11,0 |
70 | 9,4 | 11,0 | 13,7 | 13,7 | 13,1 |
95 | 11,0 | 12,9 | 15,0 | 15,0 | 15,1 |
120 | 12,4 | 14,5 | 17,1 | 17,2 | 17,0 |
150 | 13,8 | 16,2 | 18,9 | 19,0 | 19,0 |
185 | – | 18,0 | 20,0 | 22,0 | 21,0 |
240 | – | 20,6 | 23,0 | 28,3 | 24,0 |
300 | – | 23,1 | 26,2 | 34,5 | 27,0 |
400 | – | 26,1 | 34,8 | 47,2 | 31,0 |
500 | – | 29,2 | 43,5 | – | 35,0 |
625 | – | 33,0 | – | – | – |
630 | – | 33,2 | – | – | 39,0 |
800 | – | 37,6 | – | – | – |
1000 | – | 42,2 | – | – | – |
Для алюминиевых проводников и кабелей ГОСТом 22483-2012 также предусмотрены параметры номинального сечения жилы, которые отвечают соответствующему диаметру, зависящему от класса жилы.
Более того, согласно этому же ГОСТу, указанные диаметры можно использовать для медного проводника класса 1, если требуется вычислить его минимальный диаметр.
Таблица соответствия по классам для кабельных (проводных) алюминиевых жил
Номинальное сечение жилы, мм2 | Диаметр круглых жил (алюминиевых), мм | |||
Класс 1 | Класс 2 | |||
минимальный | максимальный | минимальный | максимальный | |
16 | 4,1 | 4,6 | 4,6 | 5,2 |
25 | 5,2 | 5,7 | 5,6 | 6,5 |
35 | 6,1 | 6,7 | 6,6 | 7,5 |
50 | 7,2 | 7,8 | 7,7 | 8,0 |
70 | 8,7 | 9,4 | 9,3 | 10,2 |
95 | 10,3 | 11,0 | 11,0 | 12,0 |
120 | 11,6 | 12,4 | 12,5 | 13,5 |
150 | 12,9 | 13,8 | 13,9 | 15,0 |
185 | 14,5 | 15,4 | 15,5 | 16,8 |
240 | 16,7 | 17,6 | 17,8 | 19,2 |
300 | 18,8 | 19,8 | 20,0 | 21,6 |
400 | – | – | 22,9 | 24,6 |
500 | – | – | 25,7 | 27,6 |
625 | – | – | 29,0 | 32,0 |
630 | – | – | 29,3 | 32,5 |
Дополнительные рекомендации по выбору типа проводов и кабелей для обустройства электрических сетей в квартире и доме приведены в статьях:
Выводы и полезное видео по теме
Видеороликом ниже демонстрируется практический пример определения сечения проводника простыми методами.
Просмотр ролика рекомендуется, так как наглядно представленная информация способствует увеличению объёма знаний:
Работа с электрическими проводами всегда требует ответственного отношения с точки зрения расчета.
Поэтому электрик любого ранга должен знать методику расчета и уметь пользоваться существующими техническими таблицами. Тем самым достигается не только существенная экономия средств на монтаже за счет точного расчета, но главное – гарантируется безопасность эксплуатации вводимой линии.
Есть, что дополнить, или возникли вопросы по определению сечения провода? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом подбора проводов для обустройства электрической сети в доме или квартире. Форма для связи находится в нижнем блоке.
Содержание:
В электрических сетях существует множество параметров, определяемых различными способами. Среди них имеется специальная таблица, диаметр и сечение провода с ее помощью определяются с высокой точностью. Такие точные данные требуются при добавлении электрической нагрузки, а старый провод не имеет буквенной маркировки. Однако даже условные обозначение не всегда соответствуют действительности. В основном это связано с недобросовестностью изготовителей продукции. Поэтому лучше всего сделать самостоятельные расчеты. Применение измерительных приборовДля определения диаметра жил проводов и кабелей широко применяются различные измерительные приборы, показывающие наиболее точные результаты. В основном для этих целей практикуется использование микрометров и штангенциркулей. Несмотря на высокую эффективность, существенным недостатком данных устройств является их высокая стоимость, имеющая большое значение, если инструмент планируется задействовать всего 1-2 раза. Как правило, специальными приборами пользуются электрики-профессионалы, постоянно занимающиеся электромонтажными работами. При грамотном подходе становится возможным измерение диаметра жил проводов даже на рабочих линиях. После получения необходимых данных остается только воспользоваться специальной формулой: Результатом вычисления будет площадь круга, которая и есть сечение жилы провода или кабеля. Определение сечения линейкойЭкономичным и точным методом считается определение сечение кабелей и проводов с помощью обыкновенной линейки. Кроме нее потребуется простой карандаш и сама проволока. Для этого жила провода зачищается от изоляции, а затем плотно накручивается на карандаш. После этого, с помощью линейки измеряется общая длина намотки. Полученный результат измерений нужно разделить на количество витков. В итоге получается диаметр провода, который понадобится для последующих вычислений. Сечение кабеля определяется по предыдущей формуле. Для получение более точных результатов, намотанных витков должно быть как можно больше, но не менее 15-ти. Витки плотно прижимаются между собой, поскольку свободное пространство способствует значительному увеличению погрешности в расчетах. Снизить погрешность можно с помощью большого количества замеров, производимых в разных вариантах. Существенным недостатком данного способа является возможность измерений только относительно тонких проводников. Это объясняется сложностями, возникающими при накручивании толстого кабеля. Кроме того, требуется заранее купить образец продукции для выполнения предварительных измерений. Таблица соотношений диаметров и сеченийОпределение сечений кабелей и проводов с помощью формул считается довольно трудоемким и сложным процессом, не гарантирующим точного результата. Для этих целей существует специальная готовая таблица, диаметр и сечение провода в которой наглядно представляет их соотношение. Например, при диаметре проводника 0,8 мм, его сечение будет составлять 0,5 мм. Диаметр в 1 мм соответствует сечению уже 0,75 мм и так далее. Достаточно только измерить диаметр провода, а затем заглянуть в таблицу и вычислить нужное сечение. При выполнении вычислений нужно соблюдать определенные рекомендации. Для определения сечения необходимо использовать провод, полностью очищенный от изоляции. Это связано с возможными уменьшенными размерами жил и более высоким изоляционным слоем. В случае каких-либо сомнений в размерах кабеля, рекомендуется приобретать проводник с более высоким сечением и запасом мощности. В случае определения сечения многожильного кабеля, вначале вычисляются диаметры отдельных проводов, полученные значения суммируются и используются в формуле или в таблице. Калькулятор определения сечение провода по диаметру |
фото, видео, формулы для расчета диаметра провода и площади поперечного сечения
Когда появляется необходимость провести электрическую проводку в новом доме или сделать замену старой, то чаще всего неопытные электрики сталкиваются с проблемой подбора самого кабеля. То есть, какой он должен быть, из какого материала и какого сечения. Для этого существует таблица сечения проводов, которую можно найти в интернете. Но что делать если доступа к мировой паутине нет, то есть, вы за городом, возводите свой собственный дом, а в поселке с интернетом проблемы. Выход один – самостоятельно подобрать сечение провода, сделав несколько математических выкладок, даже в уме.
Итак, начать надо с пояснения, что электрический ток, проходящий по электрическому кабелю с определенной мощностью, выделяет некоторое количество тепла. И если мощность будет достаточно большой, то изоляция провода может не выдержать тепловой энергии. Она просто расплавится, а это стопроцентное короткое замыкание между двумя жилами, расположенными в одном кабеле. И хорошо, если сработает автоматический выключатель в распределительном щите, который предотвратит возгорание.
То есть, протекающий по проводам ток зависит от нагрузки в сети. Поэтому формула тока такова:
I=P/U, где
- I – сила тока;
- P – потребляемая мощность;
- U – напряжение.
Но сам ток также зависит от сопротивления кабеля. И чем оно больше, тем труднее току проходить по жилам провода (объяснения по-простому). Поэтому данный показатель необходимо обязательно учитывать, определяя сечение провода. Сопротивление зависит от сечения кабеля, от его длины и материала, из которого изготовлен. Если говорить о частном домостроении, то длину кабеля можно в расчет и не брать, слишком небольшие участки в схеме разводки дома. А вот материал и сечение играют важную роль.
Расчет сечения
Если перед вами лежит кабель, сечение которого вы не знаете (нет маркировки), то этот показатель можно самостоятельно рассчитать, используя формулу площади круга:
S=πd²/4=0,8d².
То есть, замеряете своими руками при помощи штангенциркуля диаметр жилы и вставляете данный показатель в формулу. Если маркировка на проводе осталась, к примеру, ВВГ 3х1,5, то это значит, что перед вами трехжильный провод с сечением 1,5 мм².
Внимание! Чем больше сечение провода, тем большую токовую нагрузку он может нести.
Но необходимо учитывать и тот факт, что провода бывают разные в плане материала, из которого они изготавливаются. В основе всех электрических кабелей лежит или медь, или алюминий. Так вот медные кабели выдерживают большую токовую нагрузку, чем алюминиевые. К тому же они практически не окисляются, поэтому, когда перед вами стоит выбор, то предпочтение лучше всего отдать медному варианту.
Есть еще один момент, который необходимо учитывать. Этот способ проводки схемы электроснабжения. То есть, электрический кабель уложен в штробы и заштукатурен, или проводка была проведена в гофрированном шланге, или была сделана открытая электропроводка. В чем разница?
Все дело в том, что внутренняя проводка (скрытая) создает условия, при которых провод оказывается в замкнутом пространстве. То есть, нагреваясь, он не отдает тепло воздуху, который его окружает. А, значит, перегревается быстрее и больше. А это, в свою очередь, снижает ресурс эксплуатации и создает условия быстрого выхода из строя. То есть, в такой проводке необходимо использовать провода сечением чуть больше, чем по номиналу.
Плотность тока
Постепенно, разбираясь в электрических проводах, а точнее, в выборе сечения кабеля, мы подошли к еще одному не менее важному показателю – плотности тока. Что это такое? По сути, это все та же сила тока, измеряемая в амперах, которая проходит через стандартную величину сечения электрического провода, равную одному миллиметру в квадрате.
Скажем так, что это относительная величина, поэтому ее можно использовать в формуле, определяющей диаметр провода:
d=1,1*√I/Ip, где Ip – плотность тока.
Теперь можно вычислить сечение провода, подставляя значение «d» в формулу площади. В конечном итоге получаем, что S=I/Ip.
Но где тогда взять показания «Ip»? Это стандартные величины, зависящте опять-таки от материала, из которого изготавливаются провода, и вида проводки. Нижняя таблица показывает данную зависимость.
Площадь кругаМатериал | Медь | Алюминий |
Скрытая проводка | 6 А/мм² | 4 |
Открытая проводка | 10 | 6 |
Как мы и говорили выше, медь в данном случае предпочтительнее.
Давайте рассмотрим один простой пример расчета. Вводные данные:
- Провод медный.
- Открытая проводка.
- Нагрузка на кабель 2,2 кВт.
Сначала находим силу тока в электрической цепи: I=P/U=2200 Вт:220 В= 10 А.
Теперь находим сечение самого провода: S=I/Ip=10:10=1 мм², где второе число «10» выбираем из вышеупомянутой таблицы. Таким образом, можно самостоятельно рассчитать все сечения кабелей на каждом участке электрической сети дома. Главное – правильно рассчитать потребляемую мощность на каждом шлейфе. А это, как вы знаете, суммарная мощность все бытовых приборов и лампочек освещения. К примеру, если рассчитывается участок кухни, то придется сложить мощность всех аппаратов, а это холодильник, микроволновка, кофеварка, электрический чайник, вытяжка, блендер и так далее, плюс освещение. Данный показатель указывается на бирках приборов и стеклянном корпусе ламп.
В принципе, для себя можно такую таблицу сечения проводов собрать самостоятельно, учитывая все раскладки, о которых написано выше. То есть, если знать потребляемую мощность на всех электрических контурах, то можно по участкам разбить кабели в зависимости от их сечения.
Мощность некоторых бытовых электроприборов- Во-первых, это упростит проведение монтажа. То есть, вы никогда не запутаетесь, где какой кабель должен быть проложен.
- Во-вторых, можно будет подсчитать расходы, связанные с покупкой проводки, и тем самым определить бюджет ремонта.
- В-третьих, таблица поможет в будущем. Если потребляемая мощность не изменится с годами, то вам не надо будет опять проводить все расчеты. Достаточно достать таблицу и вспомнить, какого сечения кабель, где был уложен.
Заключение по теме
Итак, к чему мы пришли? Создавая таблицу сечения проводов в своем собственном доме, вы просто обеспечиваете себе безопасность, связанную с эксплуатацией электрической сети дома. Плюс облегчаете себе работу, когда дело дойдет до замены или ремонта.
Как определить сечение провода или жил кабеля: 7 способов
При монтаже электропроводки необходимо следить за тем, чтобы реальное сечение проводника соответствовало заложенному в проекте. Так как этот параметр определяет сопротивление электрическому току, а при несоответствии возникнет перегрев и угроза возгорания. На практике встречаются такие ситуации, когда приобретенный провод вообще не маркирован или у электромонтажника возникают сомнения по поводу соответствия заявленных характеристик фактическим. В таком случае нужно знать, как определить сечение провода на месте проведения работ.
Почему возникает несоответствие?
Несмотря на то, что в условиях современной конкуренции производители всеми силами стремятся не упустить своих клиентов, некоторые из них берутся за надувательство. Для этого они экономят металл за счет уменьшения диаметра. Достаточно убрать всего лишь пару квадратных миллиметров, и на сотнях километров кабеля это окупиться значительным снижением себестоимости.
А потом и покупателю цену снизят, и сами останутся довольными. Но вот потребитель, в конечном итоге, подводит себя под угрозу из-за того, что сопротивление проводника гораздо ниже заявленного. И в месте прокладки такого провода возникает вероятность возгорания.
Способы определения сечения провода пошагово
Существует несколько способов для измерения сечения по диаметру жилы. Если провод одножильный, то замеры будут производиться сразу на нем, а вот из бухты кабеля необходимо выпутать один проводник. После этого его очищают от изоляции, чтобы остался только металл.
Рис. 1: Удаление изоляции с проводаЧтобы вычислить площадь круга через величину радиуса, применяется расчет по формуле: S = π × R2, где:
- π – константа равная 3,14;
- R – радиус окружности.
Но, в связи с тем, что с практической точки зрения гораздо проще вычислить диаметр, равный двум радиусам, формула расчета примет такой вид: S = π × (D/2)2.
Рис. 2: Диаметр проводаВ зависимости от способов замеров диаметра выделяют такие методы вычисления сечения.
По диаметру с помощью штангенциркуля или микрометра
Наиболее актуальным вариантом, чтобы измерить диаметр являются такие приборы, как штангенциркуль и микрометр. Данные устройства позволяют измерить диаметр максимально точно. Для этого вам понадобится провод и микрометр
Рис. 3: Провод и микрометрРассмотрите пример определения сечения для одножильного провода (рисунок 4).
Рис. 4: Измерение микрометромДля этого фиксатор Б переводится в открытое положение. Ручка микрометра откручивается на такое расстояние, чтобы провод легко поместился в пространстве между щупами А. Затем при помощи ручки Г прибор закручивается до срабатывания трещотки. После этого фиксируются показания по всем трем шкалам в точке В.
В данном примере диаметр составляет 1,4 мм, следовательно, чтобы вычислить сечение, необходимо S = 3,14 × 1,4 × 1,4 / 4 = 1,53 мм2. Такую же процедуру определения сечения можно произвести, используя штангенциркуль.
Преимуществом такого метода является возможность измерить любой проводник круглого сечения, даже если он уже установлен и эксплуатируется для питания какого-либо электрического прибора. Основной недостаток метода – это высокая стоимость приспособлений, естественно, что приобретать их для пары замеров совершенно нецелесообразно.
По диаметру с помощью карандаша или ручки
Данный способ определения сечения основан на том факте, что по всей длине у провода одинаковый диаметр. Возьмите обычный карандаш, ручку или фломастер, на который намотайте провод по спирали. Чтобы исключить толщину изоляции, ее необходимо срезать по всей длине. Кольца должны располагаться максимально плотно, чем больше пространство между кольцами, тем ниже точность.
Рис. 5: Определение сечения карандашомТак как все провода имеют одинаковую толщину, то для определения диаметра медных проводов, измерьте длину всей намотки и разделите на количество витков. В данном примере D = 15 мм / 15 витков = 1 мм, соответственно, используя ту же формулу расчета, получим сечение S = 3,14 × 1 × 1 / 4 = 0,78 мм2. Заметьте, чем больше витков вы сделаете, тем более точно определите сечение.
Стоит отметить, что преимущество такого метода в том, что для определения сечения можно использовать только подручные средства. Недостаток – низкая точность и возможность намотки только тонких проводников. В примере использовался относительно тонкий провод, но расстояние между витками уже просматривается. Из-за чего точность оставляет желать лучшего, разумеется, что алюминиевую проволоку таким способом согнуть не удастся.
По диаметру с помощью линейки
Сразу оговоримся, что для измерения линейкой можно брать только относительно толстый провод, чем меньше толщина, тем ниже точность. Диаметр жилки при этом может определяться ниткой или бумагой, второй вариант является наиболее предпочтительным, так как дает большую точность.
Рис. 6: Подготовка бумаги для замераОторвите небольшую полоску и загните ее с одной стороны. Предпочтительнее более тонкая бумага, поэтому не нужно складывать листок в несколько раз.
Рисунок 7: Обматывание бумагойЗатем бумагу прикладывают к проводу и заворачивают по окружности до соприкосновения полоски. В месте соприкосновения ее загибают второй раз и прикладывают к линейке для измерения.
Рисунок 8: измерение при помощи линейкиЧерез полученную длину окружности L находят диаметр жилки D = L / 2 π, а расчет сечения выполняется как показывалось ранее. Данный метод определения сечения хорошо подходит для крупных алюминиевых жил. Но точность в этом методе наиболее низкая.
По диаметру с помощью готовых таблиц
Этот метод подходит для проводов стандартного сечения. К примеру, вы уже определили диаметр по одному из вышеприведенных методов. После чего вы используете таблицу для определения сечения.
Таблица 1: определение сечения через диаметр провода
|
К примеру, если у вас диаметр получился 1,8 мм, то это значит, что сечение по таблице будет равно 2,5 мм2.
По мощности или току
Если известна проводящая способность жилы, то с ее помощью можно определить сечение. Для этого понадобится один из параметров токопроводящей жилы – ток или мощность. Тоже можно сделать, если вы сможете рассчитать нагрузку. После чего из нижеприведенных таблиц необходимо выбрать соответствующий вариант. Но при этом необходимо учитывать алюминиевыми или медными жилами выполнен провод.
Таблица 2: для выбора сечения медного провода, в зависимости от силы потребляемого тока
Максимальный расчетный ток, А | 1,0 | 2,0 | 3,0 | 4,0 | 5,0 | 6,0 | 10,0 | 16,0 | 20,0 | 25,0 | 32,0 | 40,0 | 50,0 | 63,0 |
Стандартное сечение медного провода, мм2 | 0,35 | 0,35 | 0,50 | 0,75 | 1,0 | 1,2 | 2,0 | 2,5 | 3,0 | 4,0 | 5,0 | 6,0 | 8,0 | 10,0 |
Диаметр провода, мм | 0,67 | 0,67 | 0,80 | 0,98 | 1,1 | 1,2 | 1,6 | 1,8 | 2,0 | 2,3 | 2,5 | 2,7 | 3,2 | 3,6 |
Таблица 3: для выбора сечения медного провода, в зависимости от потребляемой мощности
Мощность электроприбора, ватт (Вт) | 100 | 300 | 500 | 700 | 900 | 1000 | 1200 | 1500 | 1800 | 2000 | 2500 | 3000 | 3500 | 4000 |
Стандартное сечение жилы медного провода, мм2 | 0,35 | 0,35 | 0,35 | 0,5 | 0,75 | 0,75 | 1,0 | 1,2 | 1,5 | 1,5 | 2,0 | 2,5 | 2,5 | 3,0 |
Таблица 4: для определения сечения жил из алюминиевого провода
Диаметр провода, мм | 1,6 | 1,8 | 2,0 | 2,3 | 2,5 | 2,7 | 3,2 | 3,6 | 4,5 | 5,6 | 6,2 |
Сечение провода, мм2 | 2,0 | 2,5 | 3,0 | 4,0 | 5,0 | 6,0 | 8,0 | 10,0 | 16,0 | 25,0 | 35,0 |
Максимальный ток при длительной нагрузке, А | 14 | 16 | 18 | 21 | 24 | 26 | 32 | 38 | 55 | 65 | 75 |
Максимальная мощность нагрузки, киловатт (кВт) | 3,0 | 3,5 | 4,0 | 4,6 | 5,3 | 5,7 | 6,8 | 8,4 | 12,1 | 14,3 | 16,5 |
К примеру, если при монтаже электропроводки из алюминия вам известно, что максимальный ток, который провод может пропускать при длительной нагрузке, составляет 21 А, то чтобы выбрать сечение необходимо посмотреть строку выше — 4 мм2.
Расчет сечения многожильного провода
Если используется многожильный провод, в котором все проводники одинаковые, общее сечение определяется путем сложения площади всех. К примеру, измеряют размер для одной жилы любым из вышеприведенных методов. После чего фактическое сечение определяется по формуле So = n × Si, где
- So – это общее сечение всего проводника;
- n – число проводников одинакового диаметра;
- Si – сечение одного провода.
Расчет сечения кабеля с помощью онлайн калькуляторов
Советы от электрика
Если вы подбираете провод или кабель ВВГНГ для того, чтобы запитать электрическую сеть, обратите внимание на следующие моменты:
- Посмотрите на цвет медного и алюминиевого провода, так как изготовитель мог сэкономить и использовать сплав, что значительно увеличивает электрическое сопротивление и не позволяет использовать допустимые нагрузки по сечению.
- Насколько бы тонкой изоляцией не обладал гибкий кабель, для расчета сечения вам все равно необходимо измерять только жилу. Так как лишние миллиметры позволят использовать провод меньшим сечением для запитки чрезмерной нагрузки, а это чревато повреждениями.
- Если на каком-то этапе вы засомневались в достаточности сечения или поняли, что применять приборы меньшей мощности не получится, лучше смонтировать проводку более толстым проводом.
Как определить соответствие параметров?
Как правило, избежать подобных казусов во время покупки позволяет предельная внимательность с вашей стороны:
- На нормальном проводе обязательно присутствует его маркировка, которая предоставляет покупателю всю информацию о модели, особенностях эксплуатации, параметрах. В случае столкновения с сомнительной продукцией, можно обнаружить, что данные об изделии представлены не в полном объеме или вовсе отсутствуют.
- Если проводник действительно хорош, на него обязательно должны предоставить сертификаты качества. Техническая документация свидетельствует о том, что такой он не только изготовлен в соответствии с НД, но и прошел соответствующие испытания.
- Хороший провод не может стоить копейки – так как цена материалов достаточно высока, дешевизна должна заставить задуматься о том, не кроется ли в этом какой-то подвох. При желании вы можете прийти в магазин с микрометром или штангенциркулем и выполнить проверку, чтобы развеять сомнения.
Видео способы и методики
Таблицы и формулы для выбора сечения кабеля
Электроэнергия может вырабатываться генератором на напряжении 6, 10, 18кВ. Далее она идет по шинопроводам или комплектным токопроводам к трансформаторам, которые повышают эту величину до 35-330кВ. Чем выше напряжение, тем дальше эту энергию передавать. Затем уже по ЛЭП электричество идет до потребителей. Там опять трансформируется через понижающие трансформаторы до величины 0,4кВ. И между всеми этими преобразованиями электричество идет по воздушным, кабельным линиям различного напряжения. Выбор сечения этих кабелей отдельный вопрос, который и рассматривается в данной статье.
Если обратиться к основам вопроса, то его сразу можно разделить на две части. Часть первая, выбор сечения в сетях до 1кВ, ну и вторая часть (в отдельной статье) — выбор сечения в сетях выше 1кВ. Кроме того, рассмотрим общий для этих классов напряжения вопрос — определение сечения кабеля по диаметру. Сразу предупреждаю, что впереди много таблиц, но пусть это Вас не пугает, так как порой таблица лучше тысячи слов.
Выбор и расчет сечения кабелей напряжением до 1кВ (для квартиры, дома)
Электрические сети до 1кВ самые многочисленные — это как паутина, которая обвивает всю электроэнергетику и в которой такое бесчисленное множество автоматов, схем и устройств, что голова у неподготовленного человека может пойти кругом. Кроме сетей 0,4кВ промышленных предприятий (заводов, ТЭЦ), к этим сетям относится и проводка в квартирах, коттеджах. Поэтому вопросом выбора и расчета сечения кабеля задаются и люди, которые далеки от электричества — простые владельцы недвижимости.
Кабель используется для передачи электроэнергии от источника к потребителю. В квартирах мы рассматриваем участок от электрического щитка, где установлен вводной автоматический выключатель на квартиру, до розеток, в которые подключаются наши приборы (телевизоры, стиральные машины, чайники). Всё, что отходит от автомата в сторону от квартиры в ведомстве обслуживающей организации, туда лезть мы права не имеем. То есть рассматриваем вопрос прокладки кабелей от вводного автомата до розеток в стене и выключателей на потолке.
В общем случае для освещения берут 1,5 квадрата, для розеток 2,5, а расчет необходим, если требуется подключать что-то нестандартное с большой мощностью — стиралку, бойлер, тэн, плиту.
Выбор сечения кабеля по мощности
Рассматривать далее буду квартиру, так как на предприятиях люди грамотные и всё знают. Чтобы прикинуть мощность необходимо знать мощность каждого электроприемника, сложить их вместе. Единственным минусом при выборе кабеля большего сечения, чем необходимо, является экономическая нецелесообразность. Так как больший кабель больше стоит, но меньше греется. А если выбрать правильно то выйдет и дешевле и греться не будет сильно. В меньшую же сторону округлять нельзя, так как кабель будет больше греться от протекания в нем тока и быстрее придет в неисправное состояние, которое может повлечь за собой неисправность электроприбора и всей проводки.
Первым шагом при выборе сечения кабеля будет определение мощности подключенных к нему нагрузок, а также характер нагрузки — однофазная, трехфазная. Трехфазная это может быть плита в квартире или станок в гараже в частном доме.
Если все приборы уже приобретены, то можно узнать мощность каждого по паспорту, который идет в комплекте, или, зная тип, можно найти в интернете паспорт и посмотреть мощность там.
Если приборы не куплены, но покупать их входит в ваши планы, то можно воспользоваться таблицей, где занесены наиболее популярные приборы. Выписываем значения мощностей и складываем те величины, которые одновременно могут включаться в одну розетку. Приведенные ниже значения носят справочный характер, при расчете следует брать большее значение (если указан диапазон мощности). И всегда лучше посмотреть в паспорт, чем брать средние показатели из таблиц.
Электроприбор | Вероятная мощность, Вт |
---|---|
Стиральная машина | 4000 |
Микроволновка | 1500-2000 |
Телевизор | 100-400 |
Экран | Э |
Холодильник | 150-2000 |
Чайник электрический | 1000-3000 |
Обогреватель | 1000-2500 |
Плита электрическая | 1100-6000 |
Компьютер (тут всякое возможно) | 400-800 |
Фен для волос | 450-2000 |
Кондиционер | 1000-3000 |
Дрель | 400-800 |
Шлифовальная машина | 650-2200 |
Перфоратор | 600-1400 |
Выключатели, которые идут после вводного удобно разделять на группы. Отдельные выключатели для питания плиты, стиралки, бойлера и других мощных приборов. Отдельные для питания освещения отдельных комнат, отдельные для групп розеток комнат. Но это в идеале, в реальности бывает просто вводной и три автомата. Но что-то я отвлекся…
Зная значение мощности, которая будет подключаться к данной розетке мы выбираем по таблице сечение с округлением в большую сторону.
За основу возьму таблицы 1.3.4-1.3.5 из 7-го издания ПУЭ. Эти таблицы даны для проводов, шнуров алюминиевых или медных с резиновой и (или) ПВХ изоляцией. То есть то что мы используем в домашней проводке — к данному типу подходит и любимые электриками медные NYM и ВВГ, и алюминиевый АВВГ.
Кроме таблиц нам понадобятся две формулы активной мощности: для однофазной (P=U*I*cosf) и трехфазной сети (та же формула, только еще умножить на корень из трех, который равен 1,732). Косинус принимаем единице, будет у нас для запаса.
Хотя существуют таблицы, где для каждого типа розетки (розетка для станка, розетка для того, для сего) описан свой косинус. Но больше единицы он быть не может, поэтому не страшно, если примем его 1.
Еще перед взглядом в таблицу стоит определиться как и в каком количестве у нас будут проложены наши провода. Варианты есть следующие — открыто или в трубе. А в трубе можно двух- или трех- или четырех одножильных, одного трехжильного или одного двухжильного. Для квартиры нам на выбор либо два одножильных в трубе — это на 220В, либо четыре одножильных в трубе — на 380В. При прокладке в трубе, необходимо, чтобы процентов 40 оставалось свободного пространства в этой самой трубе, это для отсутствия перегрева. Если прокладывать необходимо провода в другом количестве или другим способом то смело открывайте ПУЭ и пересчитывайте для себя, или же выбирайте не по мощности, а по току, о чем пойдет речь чуть позже в этой статье.
Выбирать можно как медный, так и алюминиевый кабель. Хотя, в последнее время большее применение получает медный, так как для одной и той же мощности потребуется меньшее сечение. К тому же медь имеет лучшие электропроводящие свойства, механическую прочность, меньше подвержена окислению, и плюс ко всему срок службы медного провода выше по сравнению с алюминием.
Определились с тем, медь или алюминий, 220 или 380В? Что же, смотрим в таблицу и выбираем сечение. Но учитываем, что в таблице у нас приведены значения для двух или четырех одножильных проводов в трубе.
осчитали мы нагрузку например в 6кВт для розетки на 220В и смотрим 5,9 мало, хоть и близко, выбираем 8,3кВт — 4мм2 для меди. А если решили алюминий, то 6,1кВт — тоже 4мм2. Хотя выбрать стоит медь, так как ток при таком же сечении будет допустимый на 10А больше.
Выбор сечения кабеля по току
Суть выбора аналогичная, только теперь у нас есть ПУЭ, где прописаны токи, но сами токи нам неизвестны. Хотя, постойте… Ведь мы знаем мощности приборов и можем по формуле вычислить величины токов. Да и токи могут быть написаны в паспортах на изделия. Аналогично смотрим в таблицы ниже. Это уже таблицы из официальных документов, так что придраться не к чему.
Выбор сечения провода с резиновой или ПВХ изоляцией по допустимому току
Данные провода наиболее распространены, поэтому и приведена эта таблица. В ПУЭ же имеются другие таблицы на все случаи жизни для проводов, кабелей, шнуров с оболочкой и без при прокладке в воде, земле и воздухе. Но это уже частные случаи. Кстати, таблица что приведена при расчете по мощности полностью является частным случаем таблиц выбора по току, которые являются официальными и описаны в ПУЭ.
Расчет кабеля по мощности и длине
В случае, если вы прокладываете кабель на длинное расстояние (ну метров 15 и более), то Вам необходимо учитывать и падение напряжения, которое вызвано сопротивлением кабельной линии.
Чем же неблагоприятно для нас падение напряжения на конце кабельной линии? Для лампочки это ухудшение светового потока при снижении напряжения, или уменьшение срока службы при повышенном напряжении. Существуют допустимые величины отклонения напряжения. Но в основном для электроприборов это плюс минус пять процентов.
В этом случае требуется произвести расчет, и в случае, если напряжение будет ниже номинального на 5% и более, то придется увеличить сечение и заново произвести расчет. Или же воспользоваться очередной таблицей.
Сейчас немного углубимся в матчасть. Падение напряжения для трехфазной сети определяется по формуле:
Эта величина состоит из двух частей, активной(R) и индуктивной(X). Индуктивной частью можно пренебречь в следующих случаях:
- сеть постоянного тока
- сеть переменного тока, при cos=1
- сети, выполненные кабелями или изолированными проводами, проложенными в трубах, если их сечение не больше определенной величины, но не будем углубляться дальше.
В общем индуктивной составляющей пренебрегаем, косинус принимаем равным 1. Значение R определяется по формуле:
где р — удельное сопротивление (для меди — 0,0175, а для алюминия — 0,03)
Далее два варианта расчета:
а) по заданному значению падения напряжения находим допустимое сечение и выбираем следующее большее значение.
б) по заданному значению мощности или тока определяем падение напряжения на участке, и в случае, если оно будет больше 5%, выбираем другое сечение и повторяем расчет.
В вышеприведенных формулах длина в метрах, ток в амперах, напряжение в вольтах, площадь в мм2. Сама величина падения напряжения в относительных величинах, безразмерная. Формулы пригодны для расчетов при отсутствии индуктивной составляющей и косинусе равном 1. Ряд сечений кабелей стандартный. В принципе с полученным значением сечения можно идти на рынок и смотреть, что подойдет с округлением в большую сторону.
А можно воспользоваться таблицами в интернетах, но эти таблицы… Не понятно откуда и для какого случая они построены. Формулы — наше всё!
Определение сечения кабеля по диаметру
Если у Вас есть возможность замерить диаметр жилы кабеля, естественно голой, без изоляции, значит можно определить сечение этой жилы. Опять у нас два пути: формула или таблица. Каждый пусть выбирает, что ему удобнее.
Формула: пидэквадратначетыре. Это все знают. Измеряем диаметр провода (линейка, штангенциркуль, микрометр), повторюсь очищенного. Значение возводим в квадрат, умножаем на число пи (равно 3,14) и делим на 4. Получаем значение сечения. Примерное, ведь погрешности тут и в числе пи и в самом измерении. Хотите, вот таблица элементарная — измеряем диаметр, смотрим соответствует ли заявленному на бирке сечению.
Если провод многожильный, то либо каждую жилу измеряем, а потом считаем их число. Ну и умножаем число на диаметр одной и далее по схеме, приведенной выше. Либо, если они хорошо скручены в форме круга на конце, производим замер как на одножильном.
Сохраните в закладки или поделитесь с друзьями
Последние статьи
Самое популярное
Сечение провода и диаметр: таблица
Одной из основных характеристик как бытовой, так и промышленной электропроводки является площадь поперечного сечения проводника, которая непосредственно связана с диаметром токопроводящих жил. От этого показателя зависит передаваемая проводником полезная мощность, степень нагрева проводника и общая безопасность системы электроснабжения. При недостаточной площади поперечного сечения существенно повышается пожароопасность электрической системы вследствие перегрева токопроводящих жил.
Сечение провода и диаметр таблица, отражающая взаимосвязь между этими параметрами будет приведена ниже, формируют основные параметры любых линий электропередач. Использование правильно подобранных проводов существенно увеличивает срок службы линий электропередач и повышает надежность работы.
Для правильного определения площади поперечного сечения проводника существует несколько распространенных методов. Прежде всего, необходимо с достаточной степенью точности измерить диаметр провода.
Как измерить диаметр проводов по сечению
В настоящее время заявленные в технических условиях параметры проводов далеко не всегда соответствуют действительности. Такой важный параметр как диаметр токопроводящей жилы может быть занижен, что приводит к резкому увеличению плотности тока и, как следствие, к перегреву и выходу из строя изоляции, а иногда и к возникновению пожара.
Для того чтобы избежать подобных неприятных ситуаций, не лишним будет прежде чем приобрести провод самостоятельно измерить диаметр жилы и удостовериться в соответствии заявленных характеристик действительным.
Использование микрометра является наиболее точным методом измерения диаметра, однако в бытовых условиях такой инструмент используется редко, поэтому заменить его с достаточной степенью точности можно штангенциркулем.
В случае отсутствия этих измерительных приборов, с достаточной степенью точности можно измерить диаметр провода при помощи обыкновенной линейки. Для этого необходимо снять изоляционный материал на расстоянии порядка 10—15см. После чего нужно плотно прижимая витки друг к другу, намотать на стержень 10 витков проволоки и измерить линейный размер полученной навивки. Полученный размер делится на число витков и таким образом вычисляется диаметр токопроводящей жилы.
Само по себе определение диаметра провода является принципиальным моментом и служит для определения такого важного параметра, как площадь поперечного сечения проводника, однако не стоит недооценивать важность этого замера.
Определение сечения проводов по диаметру
Для определения поперечного сечения проводника при известном диаметре используется формула известная со школьного курса геометрии:
S =π * R2, или S = π/4 * D2
В этой формуле:
S – искомая площадь, мм2;
D – измеренный диаметр токопроводящей жилы, мм;
R – радиус, мм; R=D/2;
В случае использования многожильных кабелей площадь определяется как сумма площадей отдельных токопроводящих жил.
После вычисления таким образом поперечного сечения провода, можно с достаточной степенью точности провести расчеты нагрузочных и эксплуатационных параметров электропроводки.
Диаметр и сечение проводов в таблице
При покупке электрических проводов не всегда удобно производить вычисление поперечного сечения проводов, хотя определить диаметр токопроводящей жилы не сложно. Для этого случая разработаны специальные таблицы, отражающие взаимосвязь между диаметром проводника и площадью его поперечного сечения. Использование таких таблиц чрезвычайно удобно для определения параметров незнакомого провода.
На первый взгляд, использование таких таблиц не целесообразно, поскольку на бирке проводника указаны его основные параметры, однако и здесь не обошлось без определенных тонкостей. Дело в том, что заявленные производителем параметры далеко не всегда соответствуют действительности, а вот параметры, приведенные в таблице абсолютно объективны.
Если при замере диаметра результат, приведенный в таблице, не существенно отличается от заявленного, значит, вы имеете дело с качественным проводом, но бывают случаи, когда площадь поперечного сечения не соответствует измеренному диаметру провода, в этом случае использование таблицы позволит избежать покупки некачественного кабеля.
Таблица ПУЭ выбора сечения кабеля, провода
ПУЭ, Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров | ||||||
Сечение токопроводящей жилы, мм2 | Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке) | |||||
открыто (в лотке) | 1 + 1 (два 1ж) | 1 + 1 + 1 (три 1ж) | 1 + 1 + 1 + 1 (четыре 1ж) | 1*2 (один 2ж) | 1*3 (один 3ж) | |
0,5 | 11 | — | — | — | — | — |
0,75 | 15 | — | — | — | — | — |
1,00 | 17 | 16 | 15 | 14 | 15 | 14 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
4,0 | 41 | 38 | 35 | 30 | 32 | 27 |
6,0 | 50 | 46 | 42 | 40 | 40 | 34 |
10,0 | 80 | 70 | 60 | 50 | 55 | 50 |
16,0 | 100 | 85 | 80 | 75 | 80 | 70 |
25,0 | 140 | 115 | 100 | 90 | 100 | 85 |
35,0 | 170 | 135 | 125 | 115 | 125 | 100 |
50,0 | 215 | 185 | 170 | 150 | 160 | 135 |
70,0 | 270 | 225 | 210 | 185 | 195 | 175 |
95,0 | 330 | 275 | 255 | 225 | 245 | 215 |
120,0 | 385 | 315 | 290 | 260 | 295 | 250 |
150,0 | 440 | 360 | 330 | — | — | — |
185,0 | 510 | — | — | — | — | — |
240,0 | 605 | — | — | — | — | — |
300,0 | 695 | — | — | — | — | — |
400,0 | 830 | — | — | — | — | — |
Сечение токопроводящей жилы, мм2 | открыто (в лотке) | 1 + 1 (два 1ж) | 1 + 1 + 1 (три 1ж) | 1 + 1 + 1 + 1 (четыре 1ж) | 1 * 2 (один 2ж) | 1 * 3 (один 3ж) |
Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке) |
ПУЭ, Таблица 1.3.5. Допустимый длительный ток для проводов | ||||||
Сечение токопроводящей жилы, мм2 | Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке) | |||||
открыто (в лотке) | 1 + 1 (два 1ж) | 1 + 1 + 1 (три 1ж) | 1 + 1 + 1 + 1 (четыре 1ж) | 1*2 (один 2ж) | 1*3 (один 3ж) | |
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | — | — | — |
185 | 390 | — | — | — | — | — |
240 | 465 | — | — | — | — | — |
300 | 535 | — | — | — | — | — |
400 | 645 | — | — | — | — | — |
Сечение токопроводящей жилы, мм2 | открыто (в лотке) | 1 + 1 (два 1ж) | 1 + 1 + 1 (три 1ж) | 1 + 1 + 1 + 1 (четыре 1ж) | 1 * 2 (один 2ж) | 1 * 3 (один 3ж) |
Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке) |
ПУЭ, Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных | |||||
Сечение токопроводящей жилы, мм2 | Ток *, А, для проводов и кабелей | ||||
одножильных | двухжильных | трехжильных | |||
при прокладке | |||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |
1,5 | 23 | 19 | 33 | 19 | 27 |
2,5 | 30 | 27 | 44 | 25 | 38 |
4 | 41 | 38 | 55 | 35 | 49 |
6 | 50 | 50 | 70 | 42 | 60 |
10 | 80 | 70 | 105 | 55 | 90 |
16 | 100 | 90 | 135 | 75 | 115 |
25 | 140 | 115 | 175 | 95 | 150 |
35 | 170 | 140 | 210 | 120 | 180 |
50 | 215 | 175 | 265 | 145 | 225 |
70 | 270 | 215 | 320 | 180 | 275 |
95 | 325 | 260 | 385 | 220 | 330 |
120 | 385 | 300 | 445 | 260 | 385 |
150 | 440 | 350 | 505 | 305 | 435 |
185 | 510 | 405 | 570 | 350 | 500 |
240 | 605 | — | — | — | — |
ПУЭ, Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных | |||||
Сечение токопроводящей жилы, мм2 | Ток *, А, для проводов и кабелей | ||||
одножильных | двухжильных | трехжильных | |||
при прокладке | |||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |
2,5 | 23 | 21 | 34 | 19 | 29 |
4 | 31 | 29 | 42 | 27 | 38 |
6 | 38 | 38 | 55 | 32 | 46 |
10 | 60 | 55 | 80 | 42 | 70 |
16 | 75 | 70 | 105 | 60 | 90 |
25 | 105 | 90 | 135 | 75 | 115 |
35 | 130 | 105 | 160 | 90 | 140 |
50 | 165 | 135 | 205 | 110 | 175 |
70 | 210 | 165 | 245 | 140 | 210 |
95 | 250 | 200 | 295 | 170 | 255 |
120 | 295 | 230 | 340 | 200 | 295 |
150 | 340 | 270 | 390 | 235 | 335 |
185 | 390 | 310 | 440 | 270 | 385 |
240 | 465 | — | — | — | — |
ПУЭ, Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами | |||
Сечение токопроводящей жилы, мм2 | Ток *, А, для проводов и кабелей | ||
одножильных | двухжильных | трехжильных | |
0.5 | — | 12 | — |
0.75 | — | 16 | 14 |
1 | — | 18 | 16 |
1.5 | — | 23 | 20 |
2.5 | 40 | 33 | 28 |
4 | 50 | 43 | 36 |
6 | 65 | 55 | 45 |
10 | 90 | 75 | 60 |
16 | 120 | 95 | 80 |
25 | 160 | 125 | 105 |
35 | 190 | 150 | 130 |
50 | 235 | 185 | 160 |
70 | 290 | 235 | 200 |
ГОСТ 16442-80, Таблица 23. Допустимые токовые нагрузки кабелей до 3КВ включ. с медными жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А* | ||||||
Сечение токопроводящей жилы, мм2 | Ток *, А, для проводов и кабелей | |||||
одножильных | двухжильных | трехжильных | ||||
при прокладке | ||||||
в воздухе | в земле | в воздухе | в земле | в воздухе | в земле | |
1,5 | 29 | 32 | 24 | 33 | 21 | 28 |
2,5 | 40 | 42 | 33 | 44 | 28 | 37 |
4 | 53 | 54 | 44 | 56 | 37 | 48 |
6 | 67 | 67 | 56 | 71 | 49 | 58 |
10 | 91 | 89 | 76 | 94 | 66 | 77 |
16 | 121 | 116 | 101 | 123 | 87 | 100 |
25 | 160 | 148 | 134 | 157 | 115 | 130 |
35 | 197 | 178 | 166 | 190 | 141 | 158 |
50 | 247 | 217 | 208 | 230 | 177 | 192 |
70 | 318 | 265 | — | — | 226 | 237 |
95 | 386 | 314 | — | — | 274 | 280 |
120 | 450 | 358 | — | — | 321 | 321 |
150 | 521 | 406 | — | — | 370 | 363 |
185 | 594 | 455 | — | — | 421 | 406 |
240 | 704 | 525 | — | — | 499 | 468 |
ГОСТ 16442-80, Таблица 24. Допустимые токовые нагрузки кабелей до 3КВ включ. с алюминиевыми жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А* | ||||||
Сечение токопроводящей жилы, мм2 | Ток *, А, для проводов и кабелей | |||||
одножильных | двухжильных | трехжильных | ||||
при прокладке | ||||||
в воздухе | в земле | в воздухе | в земле | в воздухе | в земле | |
2.5 | 30 | 32 | 25 | 33 | 51 | 28 |
4 | 40 | 41 | 34 | 43 | 29 | 37 |
6 | 51 | 52 | 43 | 54 | 37 | 44 |
10 | 69 | 68 | 58 | 72 | 50 | 59 |
16 | 93 | 83 | 77 | 94 | 67 | 77 |
25 | 122 | 113 | 103 | 120 | 88 | 100 |
35 | 151 | 136 | 127 | 145 | 106 | 121 |
50 | 189 | 166 | 159 | 176 | 136 | 147 |
70 | 233 | 200 | — | — | 167 | 178 |
95 | 284 | 237 | — | — | 204 | 212 |
120 | 330 | 269 | — | — | 236 | 241 |
150 | 380 | 305 | — | — | 273 | 278 |
185 | 436 | 343 | — | — | 313 | 308 |
240 | 515 | 396 | — | — | 369 | 355 |
Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.Сечения приняты из расчета нагрева жил до 65°С при температуре окружающей среды +25°С. При определении количества проводов, прокладываемых в одной трубе, нулевой рабочий провод четырехпроводной системы трехфазного тока (или заземляющий провод) в расчет не входит.
Токовые нагрузки для проводов, проложенных в лотках (не в пучках), такие же, как и для проводов, проложенных открыто.
Если количество одновременно нагруженных проводников, проложенных в трубах, коробах, а также в лотках пучками, будет более четырех, то сечение проводников нужно выбирать как для проводников, проложенных открыто, но с введением понижающих коэффициентов для тока: 0,68 при 5 и 6 проводниках, 0,63 — при 7-9, 0,6 — при 10-12.
Для облегчения выбора сечения и учета дополнительных условий можно воспользоваться формой «Расчет сечения провода по допустимому нагреву и допустимым потерям напряжения». Значения токов для малых сечений для медных проводников получен методом экстрапляции.
Расчет по экономическому критерию для конечных потребителей не производится.