Site Loader

Содержание

Микросхема LM324 – счетверенный операционный усилитель

Если в схеме нужно использовать сразу несколько операционных усилителей, а особых требований например по частоте, выходному току и т.п. нету, то LM324 прекрасный кандидат: в 14 выводном корпусе размещены 4 операционных усилителя общего применения с общим питанием.

Операционные усилители серии LM324 выпускаются несколькими производителями и параметры микросхем от производителя к производителю могут отличаться. Так же разные производители выпускают модификации серии на разные температурные диапазоны и в разных корпусах:

  • для монтажа в отверстия: DIP14;
  • для поверхностного монтажа: SO-14, TSSOP-14, QFN16 3×3;
  • для расширенного температурного диапазона в керамических корпусах.

Например все эти операционные усилители модификации LM324: LM324A, LM324E, LM124, LM224, LM2902, LM2902E, LM2902V, NCV2902.

Характеристики LM324:

  • широкий диапазон питающих напряжений: от 3 до 30В;
  • может работать как при однополярном, так и при двуполярном питании;
  • большой коэффициент усиления по напряжению: 100дБ;
  • широкий частотный диапазон: 1,3МГц;
  • низкий потребляемый ток на усилитель: 375мкА;
  • низкий входной ток смещения: 2нА;
  • низкое входное напряжение смещения, максимум: 5мВ;
  • не требует внешних цепей частотной коррекции;
  • диапазон входных напряжений от 0 В.

Цоколевка LM324 в DIP-14, SO-14, TSSOP-14.

Внутренняя структура одного канала:

LM324 схемы включения

Итак, где же предлагает использовать LM324 Texas Instruments:

  • DVD и блюрей приводы,
  • Домашние кинотеатры,
  • Различные датчики,
  • Мультиметры и осцилографы,
  • Управление различными двигателями,
  • Телевизоры,
  • Весы.

Кстати TI выпускает 324-тые уже более 40 лет – с 1975.
Большое количество операционных усилителей может понадобиться как для схем с большим количеством однотипных каналов, так и в сложных схемах.
Например счетверенный LM324 пригодятся как ни кстати в схеме биквадратного фильтра.

Краткая характеристика операционных усилителей — справочник по операционным усилителям и компараторам

Краткая характеристика операционных усилителей

140УД8  ОУ с полевыми транзисторами на входе
140УД11  быстрый ОУ
140УД12  микромощный ОУ с регулируемым токопотреблением, напряжение питания 3-16.5 В, выходной ток 1.8 мА
140УД13  МДП-предусилитель типа МДМ
140УД14  прецизионный ОУ с малой потребляемой мощностью напряжение питания 5-18 В
140УД17  прецизионный ОУ
140УД18  ОУ с повышенным быстродействием
140УД20  сдвоенный ОУ (типа 140УД7) напряжение питания 5-18 В, выходной ток 8 мА
140УД21  прецизионный ОУ с внутренней импульсной стабилизацией
140УД22  быстродействующий ОУ, для 140УД22А время установления 500 нс
140УД23  быстродействующий ОУ, биполярно-полевая технология, с малыми входными токами, для 140УД23А время установления 500 нс
140УД24  прецизионный ОУ выполненный по КМОП технологии напряжение питания 4.5-5.5 В
140УД25  прецизионный малошумящий ОУ, нормированная эдс шума 5.5 нВ/sqrt(Гц) для 140УД25А,140УД25Б и 8 нВ для 140УД25В
140УД26  прецизионный малошумящий ОУ для низкочастотных устройств, нормированная эдс шума 5.5 нВ/sqrt(Гц) для 140УД26А,140УД26Б и 8 нВ для 140УД26В
140УД27 
прецизионный малошумящий ОУ для высокочастотных устройств
153УД4  микромощный ОУ
153УД5  прецизионный ОУ
153УД6  ОУ с улучшенными статическими параметрами
154УД1  микромощный скоростной ОУ, выходной ток 5 мА время установления 2500 нс (типовое значение)
154УД2  быстродействующий ОУ, время установления 5000 нс
154УД3  быстродействующий ОУ, время установления 500 нс для 154УД3А, время установления 800 нс для 154УД3Б
154УД4  быстродействующий ОУ, Tуст= 600 нс
157УД1  ОУ с мощным выходом, рассеиваемая мощность 0,5 вт (1 вт с теплоотводом), напряжение питания 3-18 В, выходной ток 300 мА
157УД2  сдвоенный ОУ, напряжение питания 3-18 В
157УД3  сдвоенный малошумящий ОУ, напряжение питания 3-18 В, напряжение шумов приведенное ко входу не более 2 мкВ
157УД4  ОУ широкого применения
544УД1  ОУ с полевыми транзисторами на входе
544УД2  ОУ с полевыми транзисторами на входе; широкополосный, быстродействующий
544УД3  ОУ с полевыми транзисторами на входе с малым дрейфом, шумами и входным током (типовые значения 0.006 нА), приведенное ко входу в полосе 0,1-10 Гц, напряжение шумов менее 5 мкВ (типовое 0.5)
544УД4  сдвоенный ОУ с полевыми транзисторами на входе с малыми шумами, полностью заменяет микросхему 574УД2, приведенное ко входу в полосе 0,1-10 Гц, напряжение шумов менее 5 мкВ (типовое 0.5)
544УД5  микромощный ОУ с полевыми транзисторами на входе с нормированными параметрами при напряжениях источников питания +-6 и +-15 В
544УД6  сдвоенный ОУ с полевыми транзисторами на входе с малым дрейфом, шумами и входным током (типовые значения 0.006 нА), приведенное ко входу в полосе 0,1-10 Гц, напряжение шумов менее 5 мкВ (типовое 0.5)
551УД1  прецизионный ОУ
551УД2  сдвоенный ОУ
574УД1 
быстродействующий ОУ с полевыми транзисторами на входе
574УД2  сдвоенный скоростной ОУ с полевыми транзисторами на входе, Uш<150 нВ/Гц (1/2)
574УД3  BIFET ОУ, скоростной с малым дрейфом (5 тип) и шумами, Uш<40 нВ/Гц (1/2) [10 КГц]
574УД4  BIFET ОУ, скоростной с малым дрейфом и шумами
1005УД1  сдвоенный ОУ
1032УД1  2 низковольтных ОУ и два компаратора
1040УД1  сдвоенный ОУ, напряжение питания 2.5-16.5 В, выходной ток 15 мА
1040УД2  сдвоенный ОУ мощный, напряжение питания +24 В, выходной ток 500 мА, рассеиваемая мощность 800 мвт без теплоотвода
1053УД2  сдвоенный операционный усилитель, напряжение питания +4.5-+33 В, выходной ток 15 мА
1053УД3  счетверенный операционный усилитель, напряжение питания +4.5-+33 В, выходной ток 15 мА
1401УД1  счетверенный УПТ с однополярным питанием, E=+4-+30 В.
1401УД2  счетверенный ОУ, E=2.5-16.5 В
1401УД3  счетверенный ОУ с регулируемым током, E=1.5-16.5 В, выходной ток 12 мА, ток смещения 2-20 мкА
1401УД4  счетверенный ОУ, E=5-15 В с полевыми транзисторами на входе
1401УД6  ОУ и компаратор среднего класса с однополярным питанием, напряжение питания +3-+32 В, выходной ток 6 мА
1407УД1  программируемый малошумящий широкополосный ОУ, Uш<5нВ/Гц(1/2) [10 КГц], выходной ток 1 мА, ток смещения <200 мкА
1407УД2  программируемый малошумящий широкополосный ОУ, Uш<15нВ/Гц(1/2) [100 Гц], ток смещения 4 мкА, напряжение питания 2-12 В для КР1407УД3, напряжение питания 5.4-6.6 В для 1407УД3
1407УД3  программируемый малошумящий широкополосный ОУ, Uш<3нВ/Гц(1/2) [1 КГц], работоспособен при питании до 2 В, выходной ток 1 мА, ток смещения 10-150 мкА
1407УД4  счетверенный программируемый ОУ, Uш<7.5нВ/Гц(1/2) [10 КГц], работоспособен при питании до 1.5 В, выходной ток 15 мА, ток смещения 5-150 мкА
1408УД1  высоковольтный ОУ (питание до +/- 40 В)
1408УД2  сдвоенный ОУ (типа 140УД7)
1409УД1  ОУ с малыми входными токами (МДП-вход)
1416УД1  4 малошумящих, широкополосных, регулируемых ОУ
1417УД13  прецизионный предусилитель постоянного
1420УД1  быстродействующий широкополосный ОУ, Uш<8 нВ/Гц(1/2) [10 МГц] (типовое значение), выходной ток 5 мА
1420УД2  быстродействующий ОУ
1422УД1  мощный ОУ с выходным током 1 А.
1423УД1  микромощный КМОП ОУ с Eп= 1-5 В с регулируемым током потребления
1423УД2  2 универсальных КМОП ОУ общего назначения с Eп= 1-5 В с регулируемым током потребления
1423УД3  4 универсальных КМОП ОУ общего назначения с Eп= 1-5 В с регулируемым током потребления
1426УД1  2 малошумящих ОУ для усилителя с магнитной головки звукоснимателя с Eп= 6-18 В с регулируемым током потребления, напряжение шумов в полосе 20-22500 Гц не более 140 мкВ
1427УД1  2 регулируемых ОУ с токовым выходом и два эмиттерных повторителя (Iвых < 300 мА)
1429УД1  2 низковольтных ОУ
1432УЕ1  широкополосный быстродействующий буферный повторитель
1433УД1  ОУ скоростной с малым временем установления (70 нс типовое) и нормированным уровнем шумов с Eп= 9-16.5 В, Uш<20 нВ/Гц(1/2) [ 1 КГц] (типовое значение), Uш< 6 нВ/Гц(1/2) [10 КГц] (типовое значение),
1434УД1  2 ОУ с нормированным уровнем шумов (1.5 мкв для 1434УД1А) с Eп= 2-18 В
1501УД1  прецизионный ОУ с параметрической стабилизацией параметров

Операционный усилитель: одиночный, сдвоенный или счетверенный?

18 февраля

В статье обсуждаются особенности топологии одиночных, сдвоенных и счетверенных операционных усилителей (ОУ) и влияние конструкции на их параметры. Рассмотрены некоторые виды схем на базе ОУ и показано, в каком случае лучше выбрать одиночный, а в каком — сдвоенный или счетверенный вариант ОУ. Статья представляет собой сокращенный перевод [1].

О

чевидным подходом при проектировании схем, где требуется много операционных усилителей, является использование сдвоенных или счетверенных ОУ. Во многих случаях это не влияет на параметры системы, однако для некоторых схем тщательный выбор между одиночными, сдвоенными и счетверенными ОУ, а также правильное размещение этих компонентов на плате могут улучшить характеристики схемы.

Одним их важных положений, выдвинутых еще первым исследователем монолитных ОУ Бобом Уидларом (Bob Widlar), было то, что интегральные схемы следует проектировать на основе согласования параметров компонентов, а не исходя из абсолютных номиналов резисторов или транзисторов. Этот принцип можно применить и при проектировании печатных плат, в которых используется много ОУ.

Действительно ли сдвоенный ОУ — это два ОУ или это один прибор с двумя функциями?

Существует мнение, что сдвоенный ОУ — это два отдельных ОУ, однако есть довольно тонкие различия между монолитной сдвоенной микросхемой и двумя отдельными микросхемами на плате, которые могут вызвать ряд проблем. Поскольку два ОУ расположены рядом на одном кристалле кремния, следует учитывать некоторые электрические и тепловые эффекты при использовании сдвоенного ОУ.

Влияние тепловых эффектов известно более 30 лет [2]. При изменении выходного напряжения ОУ изменяется и тепловое рассеивание, и тепловая волна распространяется по кристаллу по направлению ко входному каскаду, нарушая равновесие на входе и вызывая появление электрического сигнала. Тепловая волна может влиять на обе части сдвоенного ОУ, даже если они электрически разделены.

Наблюдаются также и электрические эффекты. Для уменьшения размера кристалла и, следовательно, стоимости прибора, некоторые узлы схемы, например, цепи смещения и запуска, делают общими для обоих каналов ОУ. Если один канал ОУ выйдет за допустимые пределы условий работы и вызовет отказ схемы смещения, то функционирование другого ОУ также нарушится. Кроме того, при использовании одной пары выводов питания проволочные соединения и некоторые металлизированные проводники на кристалле проводят ток, общий для обоих каналов ОУ. Ток, потребляемый в одной части кристалла, вызовет падение напряжения, степень влияния которого на другой канал ОУ зависит от коэффициента подавления помех по питанию (PSRR), изменяющегося с частотой.

При использовании сдвоенных ОУ имеются свои преимущества и недостатки. Некоторые из преимуществ достаточно очевидны. Во-первых, установка одного корпуса вместо двух снижает стоимость производства системы. Во-вторых, большинство производителей, как правило, предлагает сдвоенные ОУ по более низким ценам, чем два одиночных ОУ. За счет объединения некоторых узлов схемы площадь кристалла сдвоенного ОУ, как правило, меньше, чем удвоенная площадь кристалла одиночного ОУ. Третий момент: время измерения простых приборов, таких как ОУ, которое выполняется на высокоскоростной автоматизированной тестовой системе, ограничено, поэтому стоимость измерения одной функции также меньше. Эти же соображения верны и для стоимости корпуса. Наконец, т.к. два ОУ расположены на пластине очень близко друг к другу, электрические характеристики двух схем, которые обычно не оговорены техническими условиями, тоже очень схожи.

Есть, однако, и некоторые недостатки. При реализации двух или четырех схем в одном корпусе рассеивание мощности увеличивается. Для узкополосных и низковольтовых ОУ (с малым потреблением мощности) это увеличение приводит к незначительному (около 5°C) возрастанию температуры перехода. Для высокоскоростных ОУ, работающих на низкоимпедансную нагрузку, например, на коаксиальный кабель, такое увеличение может быть значительным, достигая едва ли не 30°C. Из-за механических напряжений в кристалле максимальное напряжение смещения для счетверенного ОУ будет выше, чем для сдвоенного или одиночного ОУ. В некоторых случаях сдвоенные ОУ будут иметь более высокое напряжение смещения, чем одиночные ОУ, а счетверенные будут иметь более высокое смещение, чем сдвоенные.

Кроме того, проблему представляют и перекрестные помехи, которые возникают из-за тепловых и электрических эффектов в кристалле. Как уже было сказано, тепловая волна от одного канала ОУ вызывает разбалансировку входного каскада другого канала сдвоенного ОУ. Это проявляется как низкочастотная обратная связь. К тому же, при использовании одного набора выводов питания для микросхемы сопротивление проволочного соединения является общим для всех каналов ОУ, поэтому ток большой нагрузки одной части схемы вызовет падение напряжения на проволочных соединениях. Коэффициент подавления помех по питанию ОУ не является бесконечной величиной, поэтому часть помех будет наводиться на другие части схемы. PSRR уменьшается с увеличением частоты, поэтому помехи проявляются, в основном, на частотах выше 5…10 кГц.

Влияние топологии на характеристики ОУ

Чтобы понять, почему происходят эти эффекты, полезно посмотреть, как устроены одиночные, сдвоенные и счетверенные ОУ.

Входной каскад

Обычно в качестве входного каскада ОУ используется дифференциальная пара. Она может быть выполнена на биполярных транзисторах как npn-, так и pnp-типа или построена на n- или p-канальных MOSFET или же на n- или p-канальных JFET.

Общая проблема для всех вариантов состоит в том, что если температура одного транзистора дифференциальной пары отличается от температуры другого транзистора даже на десятую долю градуса, то каскад будет разбалансирован. При коэффициенте усиления более 100 тыс. это может повлиять на выходное напряжение. Когда выходной каскад рассеивает мощность, тепловая волна перемещается через кристалл ко входному каскаду. Если входной каскад находится сравнительно далеко от выходного, изотермы будут представлять собой почти параллельные линии. Если два входных транзистора расположить таким образом, что волна достигнет обоих транзисторов в одно и то же время, равновесие на входе не нарушится.

Это неплохая идея, но можно предложить и лучшее решение. Если разделить каждый из входных транзисторов на два транзистора и соединить их перекрестно, то тепловая волна будет воздействовать на обе части схемы в меньшей степени, чем если бы транзисторов было только два. Термин «счетверенный ОУ с перекрестным соединением» имеет несколько значений, и это наиболее распространенное из них.

Имеются и другие методы оптимизации топологии кристалла в связи с влиянием в нем напряжений, температурного коэффициента резисторов и других факторов, которые подробно освещены в [3].

Расположение выводов корпуса

В [1] подробно перечислены топологии расположения выводов корпуса, и мы не будем подробно их описывать. Отметим лишь, что оптимальная топология для сдвоенного ОУ не является оптимальной для счетверенного ОУ. Можно, конечно, спроектировать индивидуальные топологии для одиночного, сдвоенного и счетверенного ОУ, но с учетом времени вывода изделия на рынок и стоимости проектирования стандартным подходом является повторное использование существенных частей проекта. Когда в семействе ОУ планируются только одиночные и сдвоенные версии, то обычно оптимизируется топология сдвоенного варианта.

Как-то довольно давно один из производителей создал счетверенный ОУ, который демонстрировал весьма хорошие характеристики. Секрет был в использовании специальной выводной рамки, в которой размещалось два сдвоенных кристалла, т.е. прибор представлял собой гибридное устройство или многокристальный модуль. Это требовало выполнения сборки прибора либо на заводе-изготовителе, либо в компании, специализирующейся на сборке. Конечный процент выхода годных такого прибора приблизительно равен произведению процентов выхода годных отдельных кристаллов. Например, если выход годных кристалла равен 99%, то конечный процент выхода годных прибора был бы равен 0,99 × 0,99 = 98,01%, что вполне допустимо. Если же процент выхода годных кристалла равен 90%, что вполне возможно для приборов с весьма малыми допусками на параметры, то общий выход годных будет равен 0,9 × 0,9 = 81%.

Примеры удачных схем

С учетом сложного взаимодействия между каналами ОУ возникает вопрос: когда имеет смысл использовать согласованные характеристики сдвоенных ОУ? Приходят на ум два довольно распространенных приложения: построение инструментального усилителя, состоящего из трех ОУ, и схема компенсации фазы для критичных приложений. Схема классического инструментального усилителя, состоящего из трех ОУ, показана на рисунке 1.

Рис. 1. Принципиальная схема инструментального усилителя, состоящего из трех ОУ

Как правило, для этого приложения предпочитают использовать счетверенные ОУ, однако заметим, что A1 и A2 могут работать с коэффициентом усиления шума равным пяти, десяти и выше. Это означает, что следует уделить особое внимание напряжению входного смещения и напряжению шума на входе. A3 имеет другие требования, поэтому для него целесообразно использовать другой тип ОУ. A3 обычно работает при значительно меньшем значении коэффициента усиления, и уровень его входного шума по отношению к общему входу инструментального усилителя делится на коэффициент усиления первого каскада, поэтому он менее важен. Наконец, нагрузка для третьего ОУ, в общем случае, больше, чем для первых двух ОУ.

Смещение входного каскада будет зависеть от напряжения смещения операционных усилителей A1 и A2. На рынке имеется немного сдвоенных ОУ, которые имеют гарантированное согласование двух каналов. Даже если согласование не гарантируется, то всегда стараются обеспечить достаточное согласование двух ОУ. Например, максимальный температурный дрейф напряжения смещения AD8599 равен 2,2 мкВ/°C, и хотя согласование не предусмотрено техническими условиями, измерения на случайной выборке из 100 приборов показали максимальную разницу по этому параметру менее 1 мкВ/°C.

При проектировании системы следует учитывать наихудшее сочетание параметров и использовать максимальное значение напряжения смещения Vos, указанное в технической документации для схем в интегральном исполнении. Одним из наиболее важных параметров инструментального усилителя является коэффициент подавления синфазной помехи (CMRR). Согласование ОУ A1 и A2 по CMRR позволяет улучшить общую величину CMRR. Это главная причина, по которой стараются использовать монолитный сдвоенный ОУ для входного каскада в этом приложении.

Нагрузка для A1 и A2 не является большой, однако для A3 нагрузка может быть довольно значительной, поэтому с точки зрения электрических и тепловых факторов лучше использовать монолитный сдвоенный и одиночный ОУ. В пользу этого говорит и возможность более простой разводки. Заметим, что коэффициент подавления синфазной помехи по постоянному и переменному току для выходного каскада существенно зависит от согласования резисторов и паразитных емкостей, что часто игнорируют.

Современный технологический процесс позволяет создать монолитный дифференциальный усилитель с лазерной подгонкой тонкопленочных резисторов (например, AD8271), который стоит меньше и обеспечивает лучшие характеристики, чем дискретный ОУ с четырьмя резисторами с 0,1-% допусками. В зависимости от требуемой величины CMRR на данной частоте, площади на печатной плате, точности системы и тока потребления можно выбрать полный монолитный инструментальный усилитель, например, AD8226.

Мониторинг шин питания

В системе с однополярным питанием сдвиг фазы составляет 45°, когда амплитуда уменьшается на 3 дБ. Расчетные значения фазо- и амплитудно-частотных характеристик приведены в таблице 1. Заметим, что даже на частоте в 100 раз ниже частоты среза сдвиг фазы еще превышает полградуса, а амплитуда немного меньше допустимой величины. Для систем, в которых следует обеспечить высокую точность как по амплитуде, так и по фазе, например, для систем мониторинга линий питания, можно использовать характеристики по переменному току одного канала ОУ для того, чтобы компенсировать фазовую характеристику другого канала ОУ.

Таблица 1. Зависимость сдвига фазы и амплитуды от частота перегиба

Нормализованная частота перегиба

Сдвиг фазы, град.

Амплитуда, дБ

0,001

0,057

-4,34E-6

0,01

0,573

-4,34E-4

0,1

5,71

-0,086

0,5

26,57

-0,969

1(fp)

45

-3,01

2

63,43

-4,77

10

84,29

-20,04

100

89,43

-40,00

Базовая концепция такого подхода показана на рисунке 2. На рисунке 3 изображены фазовые характеристики для обычной однополюсной системы (на графике она обозначена как «нескомпенсированная») и для системы, показанной на рисунке 2 (на графике она обозначена как «скомпенсированная»).

Рис. 2. Схема компенсации фазы на сдвоенном ОУ
Рис. 3. Фазовые характеристики обычной однополюсной системы и схемы с компенсацией фазы, показанной на рисунке 2

Примеры неудачных схем

Счетверенный ОУ в сигнальной цепи

Для сигналов величиной несколько милливольт сигнальная цепь должна иметь малый уровень шума для того, чтобы поддерживать приемлемый уровень общего отношения сигнал-шум. Распределяя коэффициент усиления по цепи и выбирая соответствующий одиночный, сдвоенный или счетверенный ОУ, можно улучшить характеристики и снизить общую стоимость такой схемы. Например, при максимальном входном сигнале равном 50 мВ, 10-В напряжении и 2-кОм резисторе на выходе, потребуется коэффициент усиления равный  200.

Четыре блока сигнальной цепи, показанной на рисунке 4, могут быть сконфигурированы как буфер, инвертирующий суммирующий усилитель с коэффициентом усиления –1 для регулировки смещения всей сигнальной цепи, фильтр Саллена-Кея с коэффициентом усиления 1 или усилительный каскад с коэффициентом усиления 200.

Для реализации общих требований к сигнальной цепи из четырех блоков можно было бы выбрать счетверенный ОУ. Однако это бы-
ло бы плохим решением по нескольким причинам.

1. Для того чтобы получить низкий уровень шума в первом каскаде, необходимо было бы выбрать счетверенный ОУ с малым уровнем шума, например, AD8674.

2. На печатной плате в этом случае возникнет паразитная емкостная связь между выходным и входным каскадами и тепловая связь на кристалле между каналами ОУ.

3. Для последнего каскада потребуется большая величина произведения коэффициента усиления на ширину полосы пропускания.

Лучшим решением (хотя и не единственным) было бы введение большего усиления в начальных каскадах сигнальной цепи. Слишком большое усиление в начальных каскадах может привести к перегрузке промежуточного каскада. Если коэффициент усиления в первом каскаде равен десяти, то вклад собственного шума второго каскада в суммарный шум уменьшается в 10 раз. Поскольку каждый каскад добавляет усиление, то требования к последующему каскаду снижаются.

Таким образом, покупка дорогого счетверенного ОУ с низким уровнем шума и использование его для всех четырех блоков не является столь экономически выгодным решением, как использование сдвоенного ОУ с низким уровнем шума для первых двух каскадов и недорогого сдвоенного ОУ общего назначения для последних двух каскадов.

Усилитель наушников

Даже если было бы возможно создать превосходный сдвоенный ОУ на кремниевом кристалле, имелся бы ряд проблем, связанных с корпусом и печатной платой. Сдвоенные и счетверенные ОУ имеют один общий набор выводов питания, а не два или четыре. Сопротивление проволочного соединения может составлять 50…100 мОм, поэтому использование одного канала сдвоенного ОУ для питания током 100…200 мА наушников
с низким импедансом может вызвать проблемы.

Предполагается, что все символы, обозначающие «землю» на типовой электрической схеме, отражают тот факт, что в этой точке напряжение равно 0 В, но это не совсем верно. В одной точке земляной шины напряжение действительно равно 0 В, но из-за падения напряжения в других точках земляной шины потенциал на самом деле на мкВ выше или ниже 0 В. Из-за того, что проводник печатной платы длиной 1 дюйм может иметь сопротивление 50 мОм, в самых неожиданных местах схемы может возникать дополнительное падение напряжения.

Идеальная схема стереоусилителя наушников на базе двух ОУ теоретически имеет бесконечное разделение каналов. Однако в реальной схеме разделение каналов может не превышать 60 дБ. Дело в том, что проволочные соединения и металлизация на кристалле могут вносить перекрестные помехи, однако основной вклад в ухудшение характеристик схемы вносит проводник печатной платы длиной четверть дюйма, который является общим проводником для нагрузки левого канала и источника сигнала правого канала. Использование двух одиночных ОУ в этом случае позволило бы улучшить характеристики, снизить температуру перехода, повысить надежность и упростить топологию печатной платы усилителя наушников.

Заключение

Для того чтобы получить наилучшие характеристики и снизить стоимость системы, необходимо оценить условия в каждом узле схемы и принять решение об использовании наиболее подходящего ОУ. При автоматизированном монтаже плат и малых размерах корпуса использование одиночных и сдвоенных ОУ вместо счетверенных может не повлиять на общую стоимость системы. Принимая во внимание топологию печатной платы, характеристики системы в диапазоне температур, требуемое разделение каналов, согласование фазы и стоимость, можно выбрать наилучшее сочетание одиночных и сдвоенных ОУ в схеме.

Литература

1. Harry Holt. Op amps: to dual or not to dual?//www.eetimes.com.

2. James Solomon. The Monolithic Op Amp: A Tutorial Study//IEEE JSSC Vol. SC-9, No. 6 Dec.1974.

3. Alan Hastings. Art of A nalog Layout. 2nd Ed//Prentice Hall, 2005.

Вы можете скачать эту статью в формате pdf здесь.

Операционный усилитель: одиночный, сдвоенный или счетверенный?

18 февраля

В статье обсуждаются особенности топологии одиночных, сдвоенных и счетверенных операционных усилителей (ОУ) и влияние конструкции на их параметры. Рассмотрены некоторые виды схем на базе ОУ и показано, в каком случае лучше выбрать одиночный, а в каком — сдвоенный или счетверенный вариант ОУ. Статья представляет собой сокращенный перевод [1].

О

чевидным подходом при проектировании схем, где требуется много операционных усилителей, является использование сдвоенных или счетверенных ОУ. Во многих случаях это не влияет на параметры системы, однако для некоторых схем тщательный выбор между одиночными, сдвоенными и счетверенными ОУ, а также правильное размещение этих компонентов на плате могут улучшить характеристики схемы.

Одним их важных положений, выдвинутых еще первым исследователем монолитных ОУ Бобом Уидларом (Bob Widlar), было то, что интегральные схемы следует проектировать на основе согласования параметров компонентов, а не исходя из абсолютных номиналов резисторов или транзисторов. Этот принцип можно применить и при проектировании печатных плат, в которых используется много ОУ.

Действительно ли сдвоенный ОУ — это два ОУ или это один прибор с двумя функциями?

Существует мнение, что сдвоенный ОУ — это два отдельных ОУ, однако есть довольно тонкие различия между монолитной сдвоенной микросхемой и двумя отдельными микросхемами на плате, которые могут вызвать ряд проблем. Поскольку два ОУ расположены рядом на одном кристалле кремния, следует учитывать некоторые электрические и тепловые эффекты при использовании сдвоенного ОУ.

Влияние тепловых эффектов известно более 30 лет [2]. При изменении выходного напряжения ОУ изменяется и тепловое рассеивание, и тепловая волна распространяется по кристаллу по направлению ко входному каскаду, нарушая равновесие на входе и вызывая появление электрического сигнала. Тепловая волна может влиять на обе части сдвоенного ОУ, даже если они электрически разделены.

Наблюдаются также и электрические эффекты. Для уменьшения размера кристалла и, следовательно, стоимости прибора, некоторые узлы схемы, например, цепи смещения и запуска, делают общими для обоих каналов ОУ. Если один канал ОУ выйдет за допустимые пределы условий работы и вызовет отказ схемы смещения, то функционирование другого ОУ также нарушится. Кроме того, при использовании одной пары выводов питания проволочные соединения и некоторые металлизированные проводники на кристалле проводят ток, общий для обоих каналов ОУ. Ток, потребляемый в одной части кристалла, вызовет падение напряжения, степень влияния которого на другой канал ОУ зависит от коэффициента подавления помех по питанию (PSRR), изменяющегося с частотой.

При использовании сдвоенных ОУ имеются свои преимущества и недостатки. Некоторые из преимуществ достаточно очевидны. Во-первых, установка одного корпуса вместо двух снижает стоимость производства системы. Во-вторых, большинство производителей, как правило, предлагает сдвоенные ОУ по более низким ценам, чем два одиночных ОУ. За счет объединения некоторых узлов схемы площадь кристалла сдвоенного ОУ, как правило, меньше, чем удвоенная площадь кристалла одиночного ОУ. Третий момент: время измерения простых приборов, таких как ОУ, которое выполняется на высокоскоростной автоматизированной тестовой системе, ограничено, поэтому стоимость измерения одной функции также меньше. Эти же соображения верны и для стоимости корпуса. Наконец, т.к. два ОУ расположены на пластине очень близко друг к другу, электрические характеристики двух схем, которые обычно не оговорены техническими условиями, тоже очень схожи.

Есть, однако, и некоторые недостатки. При реализации двух или четырех схем в одном корпусе рассеивание мощности увеличивается. Для узкополосных и низковольтовых ОУ (с малым потреблением мощности) это увеличение приводит к незначительному (около 5°C) возрастанию температуры перехода. Для высокоскоростных ОУ, работающих на низкоимпедансную нагрузку, например, на коаксиальный кабель, такое увеличение может быть значительным, достигая едва ли не 30°C. Из-за механических напряжений в кристалле максимальное напряжение смещения для счетверенного ОУ будет выше, чем для сдвоенного или одиночного ОУ. В некоторых случаях сдвоенные ОУ будут иметь более высокое напряжение смещения, чем одиночные ОУ, а счетверенные будут иметь более высокое смещение, чем сдвоенные.

Кроме того, проблему представляют и перекрестные помехи, которые возникают из-за тепловых и электрических эффектов в кристалле. Как уже было сказано, тепловая волна от одного канала ОУ вызывает разбалансировку входного каскада другого канала сдвоенного ОУ. Это проявляется как низкочастотная обратная связь. К тому же, при использовании одного набора выводов питания для микросхемы сопротивление проволочного соединения является общим для всех каналов ОУ, поэтому ток большой нагрузки одной части схемы вызовет падение напряжения на проволочных соединениях. Коэффициент подавления помех по питанию ОУ не является бесконечной величиной, поэтому часть помех будет наводиться на другие части схемы. PSRR уменьшается с увеличением частоты, поэтому помехи проявляются, в основном, на частотах выше 5…10 кГц.

Влияние топологии на характеристики ОУ

Чтобы понять, почему происходят эти эффекты, полезно посмотреть, как устроены одиночные, сдвоенные и счетверенные ОУ.

Входной каскад

Обычно в качестве входного каскада ОУ используется дифференциальная пара. Она может быть выполнена на биполярных транзисторах как npn-, так и pnp-типа или построена на n- или p-канальных MOSFET или же на n- или p-канальных JFET.

Общая проблема для всех вариантов состоит в том, что если температура одного транзистора дифференциальной пары отличается от температуры другого транзистора даже на десятую долю градуса, то каскад будет разбалансирован. При коэффициенте усиления более 100 тыс. это может повлиять на выходное напряжение. Когда выходной каскад рассеивает мощность, тепловая волна перемещается через кристалл ко входному каскаду. Если входной каскад находится сравнительно далеко от выходного, изотермы будут представлять собой почти параллельные линии. Если два входных транзистора расположить таким образом, что волна достигнет обоих транзисторов в одно и то же время, равновесие на входе не нарушится.

Это неплохая идея, но можно предложить и лучшее решение. Если разделить каждый из входных транзисторов на два транзистора и соединить их перекрестно, то тепловая волна будет воздействовать на обе части схемы в меньшей степени, чем если бы транзисторов было только два. Термин «счетверенный ОУ с перекрестным соединением» имеет несколько значений, и это наиболее распространенное из них.

Имеются и другие методы оптимизации топологии кристалла в связи с влиянием в нем напряжений, температурного коэффициента резисторов и других факторов, которые подробно освещены в [3].

Расположение выводов корпуса

В [1] подробно перечислены топологии расположения выводов корпуса, и мы не будем подробно их описывать. Отметим лишь, что оптимальная топология для сдвоенного ОУ не является оптимальной для счетверенного ОУ. Можно, конечно, спроектировать индивидуальные топологии для одиночного, сдвоенного и счетверенного ОУ, но с учетом времени вывода изделия на рынок и стоимости проектирования стандартным подходом является повторное использование существенных частей проекта. Когда в семействе ОУ планируются только одиночные и сдвоенные версии, то обычно оптимизируется топология сдвоенного варианта.

Как-то довольно давно один из производителей создал счетверенный ОУ, который демонстрировал весьма хорошие характеристики. Секрет был в использовании специальной выводной рамки, в которой размещалось два сдвоенных кристалла, т.е. прибор представлял собой гибридное устройство или многокристальный модуль. Это требовало выполнения сборки прибора либо на заводе-изготовителе, либо в компании, специализирующейся на сборке. Конечный процент выхода годных такого прибора приблизительно равен произведению процентов выхода годных отдельных кристаллов. Например, если выход годных кристалла равен 99%, то конечный процент выхода годных прибора был бы равен 0,99 × 0,99 = 98,01%, что вполне допустимо. Если же процент выхода годных кристалла равен 90%, что вполне возможно для приборов с весьма малыми допусками на параметры, то общий выход годных будет равен 0,9 × 0,9 = 81%.

Примеры удачных схем

С учетом сложного взаимодействия между каналами ОУ возникает вопрос: когда имеет смысл использовать согласованные характеристики сдвоенных ОУ? Приходят на ум два довольно распространенных приложения: построение инструментального усилителя, состоящего из трех ОУ, и схема компенсации фазы для критичных приложений. Схема классического инструментального усилителя, состоящего из трех ОУ, показана на рисунке 1.

Рис. 1. Принципиальная схема инструментального усилителя, состоящего из трех ОУ

Как правило, для этого приложения предпочитают использовать счетверенные ОУ, однако заметим, что A1 и A2 могут работать с коэффициентом усиления шума равным пяти, десяти и выше. Это означает, что следует уделить особое внимание напряжению входного смещения и напряжению шума на входе. A3 имеет другие требования, поэтому для него целесообразно использовать другой тип ОУ. A3 обычно работает при значительно меньшем значении коэффициента усиления, и уровень его входного шума по отношению к общему входу инструментального усилителя делится на коэффициент усиления первого каскада, поэтому он менее важен. Наконец, нагрузка для третьего ОУ, в общем случае, больше, чем для первых двух ОУ.

Смещение входного каскада будет зависеть от напряжения смещения операционных усилителей A1 и A2. На рынке имеется немного сдвоенных ОУ, которые имеют гарантированное согласование двух каналов. Даже если согласование не гарантируется, то всегда стараются обеспечить достаточное согласование двух ОУ. Например, максимальный температурный дрейф напряжения смещения AD8599 равен 2,2 мкВ/°C, и хотя согласование не предусмотрено техническими условиями, измерения на случайной выборке из 100 приборов показали максимальную разницу по этому параметру менее 1 мкВ/°C.

При проектировании системы следует учитывать наихудшее сочетание параметров и использовать максимальное значение напряжения смещения Vos, указанное в технической документации для схем в интегральном исполнении. Одним из наиболее важных параметров инструментального усилителя является коэффициент подавления синфазной помехи (CMRR). Согласование ОУ A1 и A2 по CMRR позволяет улучшить общую величину CMRR. Это главная причина, по которой стараются использовать монолитный сдвоенный ОУ для входного каскада в этом приложении.

Нагрузка для A1 и A2 не является большой, однако для A3 нагрузка может быть довольно значительной, поэтому с точки зрения электрических и тепловых факторов лучше использовать монолитный сдвоенный и одиночный ОУ. В пользу этого говорит и возможность более простой разводки. Заметим, что коэффициент подавления синфазной помехи по постоянному и переменному току для выходного каскада существенно зависит от согласования резисторов и паразитных емкостей, что часто игнорируют.

Современный технологический процесс позволяет создать монолитный дифференциальный усилитель с лазерной подгонкой тонкопленочных резисторов (например, AD8271), который стоит меньше и обеспечивает лучшие характеристики, чем дискретный ОУ с четырьмя резисторами с 0,1-% допусками. В зависимости от требуемой величины CMRR на данной частоте, площади на печатной плате, точности системы и тока потребления можно выбрать полный монолитный инструментальный усилитель, например, AD8226.

Мониторинг шин питания

В системе с однополярным питанием сдвиг фазы составляет 45°, когда амплитуда уменьшается на 3 дБ. Расчетные значения фазо- и амплитудно-частотных характеристик приведены в таблице 1. Заметим, что даже на частоте в 100 раз ниже частоты среза сдвиг фазы еще превышает полградуса, а амплитуда немного меньше допустимой величины. Для систем, в которых следует обеспечить высокую точность как по амплитуде, так и по фазе, например, для систем мониторинга линий питания, можно использовать характеристики по переменному току одного канала ОУ для того, чтобы компенсировать фазовую характеристику другого канала ОУ.

Таблица 1. Зависимость сдвига фазы и амплитуды от частота перегиба

Нормализованная частота перегиба

Сдвиг фазы, град.

Амплитуда, дБ

0,001

0,057

-4,34E-6

0,01

0,573

-4,34E-4

0,1

5,71

-0,086

0,5

26,57

-0,969

1(fp)

45

-3,01

2

63,43

-4,77

10

84,29

-20,04

100

89,43

-40,00

Базовая концепция такого подхода показана на рисунке 2. На рисунке 3 изображены фазовые характеристики для обычной однополюсной системы (на графике она обозначена как «нескомпенсированная») и для системы, показанной на рисунке 2 (на графике она обозначена как «скомпенсированная»).

Рис. 2. Схема компенсации фазы на сдвоенном ОУ
Рис. 3. Фазовые характеристики обычной однополюсной системы и схемы с компенсацией фазы, показанной на рисунке 2

Примеры неудачных схем

Счетверенный ОУ в сигнальной цепи

Для сигналов величиной несколько милливольт сигнальная цепь должна иметь малый уровень шума для того, чтобы поддерживать приемлемый уровень общего отношения сигнал-шум. Распределяя коэффициент усиления по цепи и выбирая соответствующий одиночный, сдвоенный или счетверенный ОУ, можно улучшить характеристики и снизить общую стоимость такой схемы. Например, при максимальном входном сигнале равном 50 мВ, 10-В напряжении и 2-кОм резисторе на выходе, потребуется коэффициент усиления равный  200.

Четыре блока сигнальной цепи, показанной на рисунке 4, могут быть сконфигурированы как буфер, инвертирующий суммирующий усилитель с коэффициентом усиления –1 для регулировки смещения всей сигнальной цепи, фильтр Саллена-Кея с коэффициентом усиления 1 или усилительный каскад с коэффициентом усиления 200.

Для реализации общих требований к сигнальной цепи из четырех блоков можно было бы выбрать счетверенный ОУ. Однако это бы-
ло бы плохим решением по нескольким причинам.

1. Для того чтобы получить низкий уровень шума в первом каскаде, необходимо было бы выбрать счетверенный ОУ с малым уровнем шума, например, AD8674.

2. На печатной плате в этом случае возникнет паразитная емкостная связь между выходным и входным каскадами и тепловая связь на кристалле между каналами ОУ.

3. Для последнего каскада потребуется большая величина произведения коэффициента усиления на ширину полосы пропускания.

Лучшим решением (хотя и не единственным) было бы введение большего усиления в начальных каскадах сигнальной цепи. Слишком большое усиление в начальных каскадах может привести к перегрузке промежуточного каскада. Если коэффициент усиления в первом каскаде равен десяти, то вклад собственного шума второго каскада в суммарный шум уменьшается в 10 раз. Поскольку каждый каскад добавляет усиление, то требования к последующему каскаду снижаются.

Таким образом, покупка дорогого счетверенного ОУ с низким уровнем шума и использование его для всех четырех блоков не является столь экономически выгодным решением, как использование сдвоенного ОУ с низким уровнем шума для первых двух каскадов и недорогого сдвоенного ОУ общего назначения для последних двух каскадов.

Усилитель наушников

Даже если было бы возможно создать превосходный сдвоенный ОУ на кремниевом кристалле, имелся бы ряд проблем, связанных с корпусом и печатной платой. Сдвоенные и счетверенные ОУ имеют один общий набор выводов питания, а не два или четыре. Сопротивление проволочного соединения может составлять 50…100 мОм, поэтому использование одного канала сдвоенного ОУ для питания током 100…200 мА наушников
с низким импедансом может вызвать проблемы.

Предполагается, что все символы, обозначающие «землю» на типовой электрической схеме, отражают тот факт, что в этой точке напряжение равно 0 В, но это не совсем верно. В одной точке земляной шины напряжение действительно равно 0 В, но из-за падения напряжения в других точках земляной шины потенциал на самом деле на мкВ выше или ниже 0 В. Из-за того, что проводник печатной платы длиной 1 дюйм может иметь сопротивление 50 мОм, в самых неожиданных местах схемы может возникать дополнительное падение напряжения.

Идеальная схема стереоусилителя наушников на базе двух ОУ теоретически имеет бесконечное разделение каналов. Однако в реальной схеме разделение каналов может не превышать 60 дБ. Дело в том, что проволочные соединения и металлизация на кристалле могут вносить перекрестные помехи, однако основной вклад в ухудшение характеристик схемы вносит проводник печатной платы длиной четверть дюйма, который является общим проводником для нагрузки левого канала и источника сигнала правого канала. Использование двух одиночных ОУ в этом случае позволило бы улучшить характеристики, снизить температуру перехода, повысить надежность и упростить топологию печатной платы усилителя наушников.

Заключение

Для того чтобы получить наилучшие характеристики и снизить стоимость системы, необходимо оценить условия в каждом узле схемы и принять решение об использовании наиболее подходящего ОУ. При автоматизированном монтаже плат и малых размерах корпуса использование одиночных и сдвоенных ОУ вместо счетверенных может не повлиять на общую стоимость системы. Принимая во внимание топологию печатной платы, характеристики системы в диапазоне температур, требуемое разделение каналов, согласование фазы и стоимость, можно выбрать наилучшее сочетание одиночных и сдвоенных ОУ в схеме.

Литература

1. Harry Holt. Op amps: to dual or not to dual?//www.eetimes.com.

2. James Solomon. The Monolithic Op Amp: A Tutorial Study//IEEE JSSC Vol. SC-9, No. 6 Dec.1974.

3. Alan Hastings. Art of A nalog Layout. 2nd Ed//Prentice Hall, 2005.

Вы можете скачать эту статью в формате pdf здесь.

Операционные усилители

Наим-е Аналог Назначение Корпус
140УД1А-Б MA702 ОУ средней точности Uсм=7.5 мВ, Iвх= 6(А), 9(Б) мкА 301.12-1
КР140УД1А-В MA702 ОУ средней точности Uсм=7 мВ, Iвх= 7(А), 11(Б,В) мкВ 201.14-1
140УД5А-Б
КР140УД5А-Б
б/а ОУ средней точности Uсм=7(А), 4.5(Б) мВ; Iвх= 1(А), 6(Б) мкВ 301.12-1
201.14-1
140УД6А-Б
КР140УД6
140УД601
КР140УД608
MC1456
-
-
MC1456G
ОУ средней точности Uсм=5(А), 8(Б) мВ; Iвх= 30(А), 50(Б) нВ 301.12-2
201.14-1
3101.8-1
2101.8-1
140УД7
КР140УД7
КР140УД708
КФ140УД7
Н140УД7
140УД701
MA741
SFC2741
MA741HC
SFC2741DC
ОУ средней точности Uсм=4 мВ, Iвх=0.2 мкА 301.8-2
201.14-1
2101.8-1
4303.8-1
Н02.16-2В
3101.8-1
140УД8А-Б
КР140УД8А-Г
MA740 ОУ средней точности Uсм=20(А), 100(Б) мВ; Iвх= 5(А), 10(Б) нА 301.12-2
2101.8-1
140УД9
КР140УД9
б/а ОУ средней точности Uсм=5 мВ; Iвх= 350 нА 301.12-2
2108.8-1
140УД10 б/а Быстродействующий ОУ 301.8-2
140УД11
КР140УД11
КР140УД1101
LM318 Быстродействующий ОУ 301.8-2
2101.8-1
238.16-2
140УД12
КР140УД12
КР140УД1208
КР140УД1201
КФ140УД12
MA776
-
MA776PL
Микромощный ОУ с регулируемым, потреблением мощности, Uсм=5 мА; Iвх=7.5 нА; Iп=0.18 мА 301.8-2
201.14-1
2101.8-1
3101.8-1
140УД13 б/а Прецизионный предусилитель ПТ с дифференциальными входами типа МДМ, Uсм=50 мкВ; Iвх=0.5 нА 301.8-2
140УД14
КР140УД14
КР140УД1408
140УД1401
LM108
LM308
LM308F
Прецизионный ОУ с малым потреблением мощности, Uсм=4 мВ; Iвх=3 нА; Iп=0.6 мА 301.8-2
201.14-1
2101.8-1
3101.8-1
К140УД16 б/а Прецизионный ОУ .8-
140УД17А-Б
К140УД17А-Б
140УД1701
Н140УД17А-Б
OP-07A
OP-07E
Прецизионный ОУ
Прецизионный ОУ Iвх=1 нА
301.8-2
301.8-2
3101.8-1
Н04.16-2В
КР140УД18 LF355N ОУ с малым входным током 2101.8-1
140УД20А
КР140УД20А
КР140УД20Б
Н140УД20А-Б
MA747C Сдвоенный ОУ с внутренней частотной коррекцией и защитой от короткого замыкания, Uсм=5 мВ; Iвх=0.2 (0.5 для КР140УД20) мкА 201.14-10
201.14-1
201.14-1
Н04.16-2В
140УД21 HA2900 Прецизионный ОУ с импульсной стабилизацией 3101.8-2
140УД22
КР140УД22
К140УД2201
LF356
LF356N
ОУ широкополосный, быстродействующий 301.8-2
2101.8-1
3101.8-1
140УД23
К140УД23
LF157 Быстродействующий ОУ с малыми входными токами, 10 Мгц, 30 В/мкс, 750 нс 301.8-2
3101.8-1
КР140УД24
140УД24
ICL7650
ICL7650
Сверхпрецизионный ОУ (Uсм<5 мкВ, 0.8 МГц, 2 В/мкс) 2101.8-1
301.8-2
К140УД25А
К140УД25Б
К140УД25В
КР140УД25А
КР140УД25Б
КР140УД25В
OP27A
OP27B
OP27C
OP27ED
OP27FD
OP27GD
Прецизионный малошумящий ОУ (Uсм<30 мкВ, 3 МГц) 301.8-2
301.8-2
301.8-2
2101.8-1
2101.8-1
2101.8-1
К140УД26А
140УД26Б
140УД26В
КР140УД26А
КР140УД26Б
КР140УД26В
КР140УД26Г
OP37A
OP37B
OP37C
OP37ED
OP37FD
OP37GD
OP37GD
Прецизионный малошумящий ОУ повышенного быстродействия (Uсм<30 мкВ, 20 МГц, 20 В/мкс) 3101.8-1
3101.8-1
3101.8-1
2101.8-1
2101.8-1
2101.8-1
2101.8-1
КР140УД27 LM163 Прецизионный измерительный усилитель с тремя фиксированными коэффициентами усиления (10, 100, 1000) 2101.16-1
КР140УД281 LF441 Микромощный ОУ с полевыми транзисторами на входе (Uсм< 2 мкВ, 0.8 МГц, 1 В/мкс) 2101.8-1
КР140УД284 LF444 4-канальный микромощный ОУ с полевыми транзисторами на входе (Uсм< 2 мкВ, 0.8 МГц, 1 В/мкс) 2101.14-1
153УД1
Р153УД1
153УД101
MA709 ОУ средней точности Uсм=5 мВ, Iвх= 2 мкА 301.8-2
2101.8-1
3101.8-1
153УД2
Р153УД2
153УД201
  ОУ средней точности 301.8-2
2101.8-1
3101.8-1
153УД3
Р153УД3
153УД301
MA709A ОУ средней точности Uсм=2 мВ, Iвх= 0.2 мкА 301.8-2
2101.8-1
3101.8-1
К153УД4 б/а Операционный усилитель 301.12-1
153УД5A
153УД5Б
153УД501
MA725 ОУ средней точности Uсм=1 мВ, Iвх= 0.1 мкА 301.8-2
-
3101.8-1
153УД6
Н153УД6
153УД601
LM101A ОУ средней точности Uсм=2 мВ, Iвх= 75 нА 301.8-2
Н04.16-2В
3101.8-1
154УД1A-Б
КР154УД1А-Б
Н154УД1А-Б
HA2700 ОУ быстродействующий Uсм=3 мВ, Iвх= 20 нА, Uр=10 В/мкс 301.8-2
2101.8-1
Н04.16-2В
154УД2A HA2530 ОУ быстродействующий Uсм=2 мВ, Туст= 5 мкс 301.8-2
154УД3А-Б
КР154УД3А-Б
Н154УД3А-Б
AD509 ОУ быстродействующий Tуст=500 нс, Uр=60 В/мкс 301.8-2
2101.8-1
Н04.16-2В
154УД4А-Б
КР154УД4А-Б
HA2520 ОУ быстродействующий Tуст=600 нс, Uр=500 В/мкс 301.8-2
2101.8-1
К157УД1 б/а ОУ средней мощности, Iвых=300 мА 201.9-1
К157УД2 б/а Двухканальный ОУ 201.14-1
К157УД3 б/а Двухканальный ОУ с малыми шумами 201.14-1
К157УД4 б/а ОУ широкого применения 2101.8 -1
544УД1А-В
КР544УД1А-В
MA740 ОУ с полевыми транзисторами на входе Iвх=1 нА 301.8-2
2101.8-1
544УД2А-Б
КР544УД2А-Г
CA3130 Широкополосный ОУ с полевыми транзисторами на входе, Iвх=0.1 нА; Uр=20 В/мкс 301.8-2
2101.8-1
КР544УД3А
КР544УД3Б
  ОУ с полевыми транзисторами на входе с малым дрейфом и шумом, типовой входной ток 0.006 нА 2101.8-1
КР544УД4   Сдвоенный ОУ с полевыми транзисторами на входе и низким уровнем шумов 2101.8-1
КР544УД5   Микромощный ОУ с полевыми транзисторами на входе для напряжений питания +/-6 и +/-15В 2101.8-1
КР544УД6   Сдвоенный ОУ с полевыми транзисторами на входе, малым дрейфом, низким уровнем шумов, типовой входной ток 0.006 нА 2101.8-1
КР544УД7   Счетверенный ОУ с напряжением питания от 3 В . —
КР544УД8 LM158 Сдвоенный ОУ с напряжением питания от 3 В . —
КР544УД10 TS272 Сдвоенный микромощный КМОП ОУ с напряжением питания 2-10 В . —
КР544УД11 TS274 Счетверенный микромощный КМОП ОУ с напряжением питания 2-10 В . —
КР544УД12 OP177G Прецизионный ОУ (Uсм0=20 мкВ тип), дрейф 1мкВ/С тип. 2101.8-1
КР544УД14 LF347 Счетверенный ОУ с полевыми транзисторами на входе с напряжением питания от 3 В . —
КР551УД1A
КР551УД1Б
MA725B ОУ средней точности Uсм=1.2 мВ, Iвх= 0.1 мкА 201.14-1
КР551УД2A
КР551УД2Б
MA739DC Малошумящий двухканальный ОУ, Iвх= 2 мкА 201.14-1
К553УД1А
К553УД1Б
К553УД101А-Б
MA709 ОУ средней точности Uсм=7.5(А), 8(Б) мВ; Iвх=1.5(А),0.2(Б) мкА 201.14-1
-
2101.8-1
К553УД2
К553УД201
LM201 ОУ средней точности Uсм=7.5 мВ, Iвх= 1.5 мкА 201.14-1
2101.8-1
К553УД6
К553УД601
LM201 ОУ средней точности Uсм=2 мВ, Iвх= 75 нА 201.14-1
2101.8-1
574УД1А
574УД1Б
КР574УД1А-В
AD513 Быстродействующий ОУ с полевыми транзисторами на входе, Iвх=0.5 нА; Uр=50 В/мкс 301.8-2
-
2101.8-1
574УД2А
574УД2Б,В
КР574УД2А-Б
TL083J Двухканальный малошумящий ОУ с полевыми транзисторами на входе 301.8-2
-
2101.8-1
574УД3А
574УД3Б
КР574УД3
LF151 Малошумящий ОУ с полевыми транзисторами на входе 301.8-2
-
2108.8-1
574УД4А
КР574УД4
  ОУ, 10 мВ, 25 мкВ/град 3101.8-1
2108.8-1
КР1005УД1 AN6551 Сдвоенный ОУ 1102.9-4
КФ1032УД1 TAB1042 Счетверенный малошумящий широкополосный ОУ, низковольтный (Eп<1.5 В) Н104.16-1В
4118.24-1
КФ1032УД1 TAB1042 2 операционных усилителя и 2 компаратора 4308.16-1
КР1040УД1 LM358 Сдвоенный ОУ, Uсм=7 мВ 2101.8-1
К1040УД2 L272M 2 мощных ОУ, Uсм= 50 мВ, E=24 В, Iвых= 500 мА 1102.9-5
КФ1053УД2 AN6562S Сдвоенный операционный усилитель, E=4.5-33 В, Uсм=7 мВ, К=25000 4309.8-1
КФ1053УД3 NJM2902M Счетверенный операционный усилитель, E=4.5-33 В, Uсм=7 мВ, К=25000 4311.14-2
К1401УД1
К1401УД1
LM2900 Счетверенный ОУ с однополярным питанием, Еп= 4-36 В 201.14-8
2102.14-2
К1401УД2А-Г
1401УД2
Н1401УД2А
LM124D Счетверенный ОУ, Еп= 3-30 В 2102.14-2
201.14-10
Н04.16-1В
К1401УД3 TDB0146 Счетверенный ОУ программируемый с выходным током до 12 мА 2103.16-3
К1401УД4
1401УД4Б
MSLP-347 Счетверенный ОУ, 2.5 Мгц, 10 В/мкс, 1.5 Мгц, 3 В/мкс с полевыми транзисторами на входе 2102.14-2
201.14-10
К1401УД6 LM392 ОУ и компаратор 2101.8-1
1407УД1A
1407УД1Б
КР1407УД1
КФ1407УД1
SE5534 ?
HA2535??
Малошумящий широкополосный ОУ для низкоомных генераторов 301.8-2
-
2101.8-1
4308.16-1
КР1407УД2
КР1407УД2А
LM4250 Малошумящий ОУ программируемый, низковольтный (Еп> 1.2 В) 2101.8-1
1407УД3
КР1407УД3
EK41 Малошумящий ОУ широкополосный низковольтный (Еп> 2 В) 301.8-2
2101.8-1
КФ1407УД4
КФ1407УД4А
КР1407УД4
б/а
б/а
TAB1042
Счетверенный ОУ малошумящий низковольтный (Еп= 1.5-6 В) Ф08.16-1
Ф08.16-1
238.16-3
1408УД1
КР1408УД1
LM143
LM343D
Высоковольтный ОУ (Е=30 В) 201.14-10
201.14-1
1408УД2
КР1408УД2
MA747C Сдвоенный ОУ с внутренней частотной коррекцией и защитой от короткого замыкания на выходе 201.14-10
201.14-1
К1409УД1А-Г
КР1409УД1А-Г
CA3140
CA3140S
ОУ с малым Iвх=50 пА (биМОП) 3101.8-2
2101.8-1
201.14-1
К1416УД1 TAB1042 4 малошумящих широкополосных ОУ 402.16-6
1417УД13   Прецизионный предусилитель постоянного тока, Uсм=50 мкВ, Uдр=0.5 мкВ/град 3101.8 -1
М1417УД20   Сдвоенный операционный усилитель 201.14-10
1417УД64А-Б   Операционный усилитель 401.14-5
Н1420УД1 SE5539 ОУ быстродействующий, широкополосный 280 В/мкс, 60 нс, К=350 Н04.16-2В
Н1420УД2   ОУ быстродействующий, широкополосный Н04.16-2В
1422УД1 MA791 Мощный ОУ 4116.8-2
К1423УД1 ICL7612 Программируемый ОУ на пониженное напряжение питания, КМОП, Е=1-5 В 3101.8-2
К1423УД2А-В ICL7621 2 универсальных ОУ с низким напряжением питания, КМОП, Е=0,9-5,5 В 3101.8-2
М1423УД3А-Б   4-канальный программируемый усилитель 201.16-10
КР1426УД1 NIM2034D 2 ОУ для звукоснимателя 201.14-1
К1427УД1 NE5517 Сдвоенный регулируемый ОУ с токовым выходом и двумя эмиттерными повторителями 2103.16-8
К1429УД1 L272 2 низковольтных ОУ 1102.9-5
Б1432УЕ1А-В   Широкополосный быстродействующий буферный усилитель, К=1, F=200 Мгц, V=1000 В/мкс  
1433УД1 HA5190 ОУ Uсм=5 мВ, Iвх=15 мкА, K>15000, Fт>150 Мгц, V>160 В/мкс, E=15 В с малым временем установления 4116.8-3
КР1434УД1А-В SS1101A 2 ОУ с нормированным уровнем собственных шумов 201.14-1
KР1443УД1 б/а Трёхканальный высоковольтный операционный усилитель с внутренней частотной коррекцией и высоким коэффициентом усиления. Питание-два источника с широким диапазоном напряжения. Ucc до 300B, Ucc1 до -15В, Ucc2 до +15В. MULTIWATT-15

Микросхема LM324 – счетверенный операционный усилитель

Подробности
Категория: Components
Просмотров: 5941

Если в схеме нужно использовать сразу несколько операционных усилителей, а особых требований например по частоте, выходному току и т.п. нету, то LM324 прекрасный кандидат: в 14 выводном корпусе размещены 4 операционных усилителя общего применения с общим питанием. микросхема LM324N производства TI

Операционные усилители серии LM324 выпускаются несколькими производителями и параметры микросхем от производителя к производителю могут отличаться. Так же разные производители выпускают модификации серии на разные температурные диапазоны и в разных корпусах:

 

  • для монтажа в отверстия: DIP14;
  • для поверхностного монтажа: SO-14, TSSOP-14, QFN16 3×3;
  • для расширенного температурного диапазона в керамических корпусах.

микросхема LM324

Например все эти операционные усилители модификации LM324: LM324A, LM324E, LM124, LM224, LM2902, LM2902E, LM2902V, NCV2902.

 

Характеристики LM324:

 

  • широкий диапазон питающих напряжений: от 3 до 30В;
  • может работать как при однополярном, так и при двуполярном питании;
  • большой коэффициент усиления по напряжению: 100дБ;
  • широкий частотный диапазон: 1,3МГц;
  • низкий потребляемый ток на усилитель: 375мкА;
  • низкий входной ток смещения: 2нА;
  • низкое входное напряжение смещения, максимум: 5мВ;
  • не требует внешних цепей частотной коррекции;
  • диапазон входных напряжений от 0 В.

 

Цоколевка LM324 в DIP-14, SO-14, TSSOP-14.

LM324 цоколевка

Внутренняя структура одного канала:

LM324 функциональная схема

LM324 схемы включения

 

Итак, где же предлагает использовать LM324 Texas Instruments:

 

  • DVD и блюрей приводы,
  • Домашние кинотеатры,
  • Различные датчики,
  • Мультиметры и осцилографы,
  • Управление различными двигателями,
  • Телевизоры,
  • Весы.

 

Кстати TI выпускает 324-тые уже более 40 лет – с 1975.
Большое количество операционных усилителей может понадобиться как для схем с большим количеством однотипных каналов, так и в сложных схемах.
Например счетверенный LM324 пригодятся как ни кстати в схеме биквадратного фильтра.

Биквадратный фильтр на LM324

Микросхема LM324 – счетверенный операционный усилитель

Подробности
Категория: Components
Просмотров: 5942

Если в схеме нужно использовать сразу несколько операционных усилителей, а особых требований например по частоте, выходному току и т.п. нету, то LM324 прекрасный кандидат: в 14 выводном корпусе размещены 4 операционных усилителя общего применения с общим питанием. микросхема LM324N производства TI

Операционные усилители серии LM324 выпускаются несколькими производителями и параметры микросхем от производителя к производителю могут отличаться. Так же разные производители выпускают модификации серии на разные температурные диапазоны и в разных корпусах:

 

  • для монтажа в отверстия: DIP14;
  • для поверхностного монтажа: SO-14, TSSOP-14, QFN16 3×3;
  • для расширенного температурного диапазона в керамических корпусах.

микросхема LM324

Например все эти операционные усилители модификации LM324: LM324A, LM324E, LM124, LM224, LM2902, LM2902E, LM2902V, NCV2902.

 

Характеристики LM324:

 

  • широкий диапазон питающих напряжений: от 3 до 30В;
  • может работать как при однополярном, так и при двуполярном питании;
  • большой коэффициент усиления по напряжению: 100дБ;
  • широкий частотный диапазон: 1,3МГц;
  • низкий потребляемый ток на усилитель: 375мкА;
  • низкий входной ток смещения: 2нА;
  • низкое входное напряжение смещения, максимум: 5мВ;
  • не требует внешних цепей частотной коррекции;
  • диапазон входных напряжений от 0 В.

 

Цоколевка LM324 в DIP-14, SO-14, TSSOP-14.

LM324 цоколевка

Внутренняя структура одного канала:

LM324 функциональная схема

LM324 схемы включения

 

Итак, где же предлагает использовать LM324 Texas Instruments:

 

  • DVD и блюрей приводы,
  • Домашние кинотеатры,
  • Различные датчики,
  • Мультиметры и осцилографы,
  • Управление различными двигателями,
  • Телевизоры,
  • Весы.

 

Кстати TI выпускает 324-тые уже более 40 лет – с 1975.
Большое количество операционных усилителей может понадобиться как для схем с большим количеством однотипных каналов, так и в сложных схемах.
Например счетверенный LM324 пригодятся как ни кстати в схеме биквадратного фильтра.

Биквадратный фильтр на LM324

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *