Site Loader

Содержание

Как правильно подключить переменный резистор для регулировки напряжения

Содержание

  1. Резистор. Резисторы переменного сопротивления
  2. 1. Потенциометры.
  3. 1.1 Непроволочные.
  4. 1.2. Проволочные.
  5. 2. Основные параметры переменных резисторов.
  6. 2.1. Номинальное сопротивление.
  7. 2.2. Форма функциональной характеристики.
  8. 3. Обозначение переменных резисторов на схемах.
  9. 4. Подстроечные резисторы.
  10. 5. Включение переменных резисторов в электрическую цепь.

Резистор. Резисторы переменного сопротивления

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о резисторах. В первой части статьи мы познакомились с резисторами постоянного сопротивления (постоянными резисторами), а в этой части статьи поговорим о резисторах переменного сопротивления, или переменных резисторах.

Резисторы переменного сопротивления, или переменные резисторы являются радиокомпонентами, сопротивление которых можно изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.

1. Потенциометры.

Потенциометры применяются в качестве плавных регуляторов усиления, регуляторов громкости и тембра, служат для плавной регулировки различных напряжений, а также используются в следящих системах, в вычислительных и измерительных устройствах и т.п.

Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.

Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.

При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.

Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.

В зависимости от резистивного элемента потенциометры разделяются на непроволочные и проволочные.

1.1 Непроволочные.

В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.

Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.

Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.

Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.

1.2. Проволочные.

В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10 – 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

2. Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т. п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0; 2,2; 3,3; 4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

3. Обозначение переменных резисторов на схемах.

На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.

Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования. А если есть необходимость, то дополнительно указывают и число ступеней.

Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т. д. применяются сдвоенные потенциометры, сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.

Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.

Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.

В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.

Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.

4. Подстроечные резисторы.

Подстроечные резисторы являются разновидностью переменных и служат для разовой и точной настройки радиоэлектронной аппаратуры в процессе ее монтажа, наладки или ремонта. В качестве подстроечных используют как переменные резисторы обычного типа с линейной функциональной характеристикой, ось которых выполнена «под шлиц» и снабжена стопорным устройством, так и резисторы специальной конструкции с повышенной точностью установки величины сопротивления.

В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (а) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (б) перемещение контактной щетки осуществляется червячной передачей.

При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.

На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.

5. Включение переменных резисторов в электрическую цепь.

В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.

При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.

Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.

На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.

При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.

По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.

Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.

Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления. В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — нелинейные резисторы.
Удачи!

Литература:
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. В. Фролов — «Язык радиосхем», 1988 г.
М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.

Источник

Как подключить подстроечный и переменный резистор. Параметры переменных резисторов. Включение переменных резисторов в электрическую цепь

Потенциометры — это регулируемые делители напряжения, которые предназначены для регулирования напряжения при неизменной величине тока, и выполненные по типу переменного резистора.

Устройство и работа

На выводы резистивного элемента подается напряжение, которое предполагается регулировать. Подвижный контакт является регулирующим элементом, который приводится в действие вращением ручки. От подвижного контакта снимается напряжение, которое может находиться в диапазоне от нуля до наибольшей величины, равной входному напряжению на потенциометр, и зависит от текущей позиции подвижного контакта.

Потенциометр действует по типу переменного резистора, однако выполняет функции делителя напряжения. Его резистивный компонент представляет собой два резистора, которые соединены последовательно. Положение скользящего контакта является определяющим в определении отношения величины сопротивления 1-го резистора ко 2-му.

Наиболее популярным стал переменный однооборотный резистор. Он широко применяется в радиотехнике в качестве регулятора громкости, и в других устройствах. При изготовлении потенциометров применяются разные материалы для изготовления резистора: металлическая пленка, токопроводящий пластик, проволока, металлокерамика, углерод.

Виды и особенности

Потенциометры классифицируются по типу изменения сопротивления, типу корпуса устройства и другим различным признакам, и параметрам.

Основное разделение потенциометров .
По характеру изменения сопротивления:
  • Линейные . Маркируются буквой «А». Сопротивление изменяется в прямой зависимости от угла поворота передвижного контакта.
  • Логарифмические . Маркируются буквой «В». В начале движения ползунка сопротивление изменяется быстро, а затем замедляется.
  • Экспоненциальные . Маркируются буквой «С». При повороте ручки сопротивление изменяется по экспоненциальной зависимости, то есть, вначале медленно, затем быстрее. Буквенные обозначения не всегда могут соответствовать действительности, так как это зависит от фирмы изготовителя прибора. Поэтому для определения типа потенциометра необходимо изучить техническое описание данного экземпляра.
По типу корпуса потенциометра:
  • Монтажные . Устанавливаются путем пайки на монтажную плату.


Подвижный контакт имеет возможность выполнять несколько оборотов для увеличения точности регулирования параметра. Такие переменные резисторы обычно оснащены винтовым или спиральным резистивным элементом, применяются в устройствах, требующих повышенной точности разрешения и регулировки. Многооборотные модели чаще всего используют в виде подстроечных сопротивлений на монтажной плате.
Сдвоенные.

Включают в себя два переменных резистора, расположенных на одной оси. Это дает возможность выполнять регулировку параллельно двух сопротивлений. В таких моделях наиболее популярно использование сопротивлений с логарифмической и линейной зависимостью. Они применяются в стереорегуляторах усилителей звука, радиоприемниках и других приборов, требующих регулировки одновременно двух отдельных каналов.

  • Линейные (ползунковые) . Такие модели потенциометров разделяют на виды:
    Потенциометр ползунковый.

Одинарный линейный потенциометр служит для устройств аудиоаппаратуры. Такие модели выполняют из токопроводящего пластика для повышения качества изделия, используются для регулировки одного канала.

Линейный двойной.

Такая модель способна регулировать сразу два отдельных канала. Часто применяется для настройки стереофонической аппаратуры в профессиональных аудиоустройствах, требующих управления двумя каналами.
Ползунковый многооборотный.

Его конструкция включает в себя шпиндель, который преобразует вращательное движение в прямолинейное поступательное перемещение ползунка по сопротивлению. Он применяется в местах, где необходимо повышенное разрешение и точность. Такая модель устанавливается для подстройки параметров на монтажной плате.

Также разделяют на:
  • Тонкопленочные.
  • Проволочные.
По назначению делятся:
  • Переменные.
  • Подстроечные.

Сопротивления проволочных образцов выполняются из константановой или манганиновой проволоки, которая намотана на стержень, изготовленный из керамики. Такие модели резисторов изготавливают на мощность более 5 ватт.

Тонкопленочные резисторы включают в себя сопротивление из пленки, которая нанесена на диэлектрическую пластину, похожую на подкову. По ней передвигается ползунок, который связан с выходным контактом. Эта пленка образована слоем углерода, лака или другого токопроводящего материала.

Подстроечные резисторы предназначены для однократной подстройки значения сопротивления. Например, они используются в обратной связи импульсных блоков питания. Такие модели имеют компактные размеры, и спроектированы для профилактических или предварительных настроек устройств. После этого их чаще всего не трогают, оставляют с одной настройкой. Поэтому такие образцы не имеют высокой надежности и прочности, в отличие от переменных резисторов.

Переменные резисторы способны функционировать длительное время и большое число циклов регулировки.

Такие образцы потенциометров имеют повышенную стойкость к износу, в отличие от подстроечных. Переменные резисторы используются в качестве потенциометров в таких устройствах, где требуется настройка громкости звучания акустической системы, либо точная настройка температуры какого-либо устройства.

Потенциометры марки СП-1 на металлическом корпусе имеют вывод для подключения к общему корпусу устройства для защиты от помех.

Резисторы для подстройки марки СПЗ – 28 не имеют металлического корпуса, и его защитой будет корпус прибора, в котором установлен резистор. Внутренняя часть переменных резисторов аналогична, однако внешне они выглядят по-разному. Резисторы переменного типа оснащены надежной металлической или пластмассовой ручкой, которая соединена с ползунком.

Резистор, предназначенный для подстройки, не имеет такой ручки, и регулируется с помощью отвертки. Она вставляется в регулировочный паз механизма, который соединен с ползунком.

На электрических схемах потенциометры чаще всего изображают в виде постоянного резистора, имеющего регулирующий отвод со стрелкой. Она является символом подвижного контакта прибора.

При изображении в схеме применяется изображение в виде прямоугольника, пересеченного наискось стрелкой. Это обозначает, что в работе задействовано два контакта: один – регулирующий, другой – один из двух крайних выводов.

Подстроечный резистор обозначают без стрелки, а контакт регулировки показывают тонкой линией.

Потенциометры с выключателем . Некоторые образцы потенциометров объединяют в одной конструкции две функции: потенциометра и выключателя. В регуляторе громкости такая конструкция очень удобна, особенно в переносном радиоприемнике. Повернув ручку, подключается питание, далее сразу происходит настройка громкости. Выключатель не соединен с цепью резистора, и имеет отдельную цепь. Однако он находится в одном корпусе с потенциометром.

Для примера можно показать такие марки переменных резисторов:
  • 24 S1 (китайский).
  • СПЗ-3М (отечественный).

Существуют также неразборные резисторы для подстройки марки СП4 – 1. Они заливаются эпоксидным компаундом, и служат для устройств военного применения. Резисторы марки СП3 – 16 предназначены для вертикальной установки на монтажную плату.

Металлокерамические потенциометры используются при производстве бытовых устройств. Их припаивают на плату для подстройки некоторых параметров. Мощность таких компактных резисторов достигает 0,5 Вт.

Резисторы с сопротивлением из лаковой пленки СП3-38 имеют открытый корпус. Они не защищены от пыли и влаги, имеют мощность менее 0,25 Вт.

Такие модели необходимо регулировать отверткой из диэлектрического материала, чтобы не допустить случайного замыкания. Подобные резисторы простой конструкции популярны в бытовой технике и электронике, особенно в источниках питания мониторов.

Герметичные потенциометры для подстройки оснащены защитным корпусом. Регулировка осуществляется диэлектрической отверткой. Они имеют повышенную надежность, так как на контактную дорожку не попадает влага и пыль.

Тороидные охлаждаемые переменные резисторы СП5 – 50М обладают достаточно мощным сопротивлением, имеют вентиляционные отверстия для охлаждения. Намотка проводника выполнена по форме тороида. Скользящий контакт перемещается по нему при вращении ручки с помощью отвертки.

В телевизионных приемниках еще встречаются высоковольтные виды подстроечных резисторов НР1-9А.

Их величина сопротивления равна 68 мегом, мощность 4 Вт.

Они представляют собой набор резисторов из металлокерамики, собранные в одном корпусе. Стандартное рабочее напряжение для такого резистора равно 8,5 киловольт, наибольшее напряжение 15 киловольт.

Вроде бы простая деталька, чего тут может быть сложного? Ан нет! Есть в использовании этой штуки пара хитростей. Конструктивно переменный резистор устроен также как и нарисован на схеме — полоска из материала с сопротивлением, к краям припаяны контакты, но есть еще подвижный третий вывод, который может принимать любое положение на этой полоске, деля сопротивление на части. Может служить как перестариваемым делителем напряжения (потенциометром) так и переменным резистором — если нужно просто менять сопротивление.

Хитрость конструктивная:
Допустим, нам надо сделать переменное сопротивление. Выводов нам надо два, а у девайса их три. Вроде бы напрашивается очевидная вещь — не использовать один крайний вывод, а пользоваться только средним и вторым крайним. Плохая идея! Почему? Да просто в момент движения по полоске подвижный контакт может подпрыгивать, подрагивать и всячески терять контакт с поверхностью. При этом сопротивление нашего переменного резистора становится под бесконечность, вызывая помехи при настройке, искрение и выгорание графитовой дорожки резистора, вывод настраимого девайса из допустимого режима настройки, что может быть фатально.
Решение? Соединить крайний вывод с средним. В этом случае, худшее что ждет девайс — кратковременное появление максимального сопротивления, но не обрыв.

Борьба с предельными значениями.
Если переменным резистором регулируется ток, например питание светодиода, то при выведении в крайнее положение мы можем вывести сопротивление в ноль, а это по сути дела отстутствие резистора — светодиод обуглится и сгорит. Так что нужно вводить дополнительный резистор, задающий минимально допустимое сопротивление. Причем тут есть два решения — очевидное и красивое:) Очевидное понятно в своей простоте, а красивое замечательно тем, что у нас не меняется максимально возможное сопротивление, при невозможности вывести движок на ноль. При крайне верхнем положении движка сопротивление будет равно (R1*R2)/(R1+R2) — минимальное сопротивление. А в крайне нижнем будет равно R1 — тому которое мы и рассчитали, и не надо делать поправку на добавочный резистор. Красиво же! 🙂

Если надо воткнуть ограничение по обеим сторонам, то просто вставляем по постоянному резистору сверху и снизу. Просто и эффективно. Заодно можно и получить увеличение точности, по принципу приведенному ниже.

Порой бывает нужно регулировать сопротивление на много кОм, но регулировать совсем чуть чуть — на доли процента. Чтобы не ловить отверткой эти микроградусы поворта движка на большом резисторе, то ставят два переменника. Один на большое сопротивление, а второй на маленькое, равное величине предполагаемой регулировки. В итоге мы имеем две крутилки — одна «Грубо » вторая «Точно » Большой выставляем примерное значение, а потом мелкой добиваем его до кондиции.

В прошлый раз для подключения светодиода к источнику постоянного тока напряжением 6,4 В (4 батарейки АА) мы использовали резистор с сопротивлением порядка 200 Ом. Это в принципе обеспечивало нормальную работу светодиода и не допускало его перегорания. Но что, если мы хотим регулировать яркость светодиода?

Для этого самым простым вариантом будет использование потенциометра (или подстроечного резистора). Он представляет собой в большинстве случаев цилиндр с ручкой регулировки сопротивления и тремя контактами. Разберемся как же он устроен.

Следует помнить, что правильно регулировать яркость светодиода ШИМ-модуляцией, а не изменением напряжения, поскольку для каждого диода существует оптимальное рабочее напряжение. Но для наглядности демонстрации использования потенциометра такое его применение (потенциометра) в учебных целях допустимо.

Отжав четыре зажима и сняв нижнюю крышку мы увидим, что два крайних контакта подсоединены к графитовой дорожке. Средний контакт соединен с кольцевым контактом внутри. А ручка регулировки просто передвигает перемычку, соединяющую графитовую дорожку и кольцевой контакт. При вращении ручки меняется длина дуги графитовой дорожки, которая в конечном итоге и определяет сопротивление резистора.

Следует отметить, что при измерении сопротивления между двумя крайними контактами, показания мультиметра будут соответствовать номинальному сопротивлению потенциометра, поскольку в этом случае измеряемое сопротивление соответствует сопротивлению всей графитовой дорожке (в нашем случае 2 кОм). А сумма сопротивлений R1 и R2 всегда будет примерно равна номинальному, вне зависимости от угла поворота ручки регулировки.

Итак подключив последовательно к светодиоду потенциометр, как показано на схеме, меняя его сопротивление, можно менять яркость светодиода. По сути, при изменении сопротивления потенциометра, мы меняем ток, проходящий через светодиод, что и приводит к изменению его яркости.

Правда при этом следует помнить, что для каждого светодиода есть предельно допустимый ток, при превышении которого он просто сгорает. Поэтому, чтобы предотвратить сгорание диода при слишком сильном выкручивании ручки потенциометра, можно включить последовательно еще один резистор с сопротивлением порядка 200 Ом (данное сопротивление зависит от типа используемого светодиода) как показано на схеме ниже.

Для справки: светодиоды нужно подключать длинной «ногой» к +, а короткой к -. В противном случае светодиод при малых напряжениях просто не будет гореть (не будет пропускать ток), а при некотором напряжении, называемым напряжением пробоя (в нашем случае это 5 В) диод выйдет из строя.

Приемы растягивания диапазона регулировки, обеспечения точной настройки (10+)

Растягиваем диапазон регулировки. Грубая настройка, точная подстройка

Иногда при проектировании радиоэлектронных схем возникает необходимость обеспечить возможность регулировки с малым допуском ошибки. Такая регулировка еще называется регулировкой с растянутым диапазоном. Рассмотрим способы растягивания диапазона.

Для подстройки параметров схемы чаще всего применяются переменные / подстроечные конденсаторы и резисторы. Иногда можно увидеть также катушки индуктивности, с изменяющейся индуктивностью за счет перемещения сердечника. Остановимся на конденсаторных и резисторных схемах. В отношении схемы с переменными дросселями я дам дополнительное пояснение.

Механическое растягивание

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые.

Светомузыка, светомузыкальная приставка своими руками. Схема, конструк…
Как самому собрать свето-музыку. Оригинальная конструкция свето-музыкальной сист…

Высоковольтный полевой транзистор irfp450. МОП, MOSFET. Свойства, пара…
Применение и параметры IRFP450, высоковольтного полевого транзистора…

Трансформатор тока. Токовые клещи. Схема. Устройство. Характеристики. …
Принцип действия токового трансформатора. Проектирование. Формулы для расчета…

Дроссель, катушка индуктивности. Принцип работы. Математическая модель…
Катушка индуктивности, дроссель в электронных схемах. Принцип работы. Применение…

Потенциометром называется изделие, выполняющее функции регулировки электрического тока. Дополнительно устройство может справляться с работой реостата. У всех моделей потенциометров резисторы применяются с отводными контактами различной длины.

В такой области, как электроника, эти изделия пользуются большой популярностью. Главным различием между моделями можно считать общее число поддерживаемых циклов.

Вконтакте

Изделия имеют сквозное сопротивление около 7 Ом . Очень часто подобные устройства используются для регулировки громкости. А также они применяются в разных измерительных приборах. Максимальная полоса регулировки потенциометра зависит от элементов, при помощи которых он собран. Далее, рассмотрим как работает потенциометр и его типы.

Схема потенциометра

Наиболее распространенная схема устройства представляет собой:

  • мощный резистор;
  • несколько контактов;
  • три вывода.

Ключи приборов имеют разную проводимость. Многие устройства оборудованы небольшими диодами. Мощные резисторы необходимо использовать только пассивного типа . Несколько контактов для подсоединения и настройки потенциометра расположены внизу корпуса.

Типы потенциометров и их характеристика

В современной электронике принято использовать такие типы устройств:

  • изделия с однополярным питанием;
  • изделия двухполярным питанием;
  • механические изделия;
  • электронные изделия.

Потенциометры с однополярным питанием

Такие изделия оснащены специальными реостатными ключами. Все виды резисторов в этом случае необходимо использовать только пассивного типа. Двигающиеся контакты устройства обладают большой проводимостью электрического тока . Значение полосы пропускания электронного ключа напрямую зависит от частоты среза. Этот параметр обычно не превышает 2100 килогерц. Подобные характеристики потенциометров очень часто применяются для регулировки тембра.

Потенциометры с двухполярным питанием

Изделия с двухполярным питанием применяются только в вычислительных изделиях. Главной особенностью подобных устройств является большой уровень максимального сопротивления. Электронные ключи для такой аппаратуры необходимо использовать лишь реостатного типа. Внизу изделия находится несколько выводов для подсоединения к электрической схеме. Настройка устройства проводится на специальной мостовой аппаратуре. Значение разброса сопротивления не превышает двух процентов. Отрицательное электрическое напряжение устройства имеет значение не более 4 вольт.

Механические потенциометры

Механическим потенциометром называется изделие для регулирования электрического тока , которое оборудовано специальным поворотным контроллером. Внизу устройства находятся несколько выводов. Электронные ключи нужно использовать резистивного типа. А также в таких изделиях предусмотрена функция программной выборки. Максимальное значение сквозного сопротивления не превышает 4 Ом. Такие изделия не оснащены функцией калибровки. Отрицательное электрическое напряжение подобного устройства составляет около 4 вольт, а линейные искажения не превышают 92 децибела.

Мощные резисторы необходимо использовать только открытого типа. Механические потенциометры оптимально подходят для реверсивного управления. Многие изделия не поддерживают реостатный режим. Стоит заметить, что подобные устройства не применяются для регулирования коэффициента усиления. Максимальное положительное электрическое напряжение имеет значение около 2,5 вольта. Частота среза очень редко превышает 2500 килогерц . Значение полосы пропускания имеет прямую зависимость от характеристик электронного ключа. Такие изделия не принято использовать в вычислительных приборах.

Электронные потенциометры

Электронным потенциометром называется изделие, необходимое для регулирования электрического тока. Многие модели оборудованы несколькими электронными ключами. Мощные резисторы стоит применять лишь резистивного типа. Чтобы реверсивно управлять аппаратурой, можно использовать практически любую модель изделия. Эти устройства могут выдержать до 12 непрерывных циклов управления. Практически все модели обладают функцией программной выборки. Стоит заметить, что электронные изделия можно использовать для регулирования громкости. Значение линейных искажений подобных устройств не превышает 85 децибел .

Электронные изделия довольно часто применяются в вычислительной аппаратуре, потому что частота среза у них не более 3100 килогерц. Значение полосы пропускания электронного ключа составляет около 4 мк, но он во многом зависит от изготовителя. Многие модели таких потенциометров используются для качественной настройки различных фильтров. Стоит отметить, что это устройство не может осуществлять регулировку коэффициента усиления.

Необходимые инструменты и материалы

Чтобы качественно подключить устройство своими руками, необходимы такие инструменты и материалы:

Подключение потенциометра

Выполнять подключение изделия своими руками необходимо в такой последовательности:

  1. Рабочий датчик стоит расположить таким образом, чтобы специальный рычаг для регулирования электрического напряжения был направлен строго вверх, а выводы для закрепления проводов находились около человека. Выводы необходимо пронумеровать слева направо при помощи шариковой ручки.
  2. Первый вывод необходимо присоединить к заземлению. Чтобы это сделать, стоит отрезать провод определенной длины и хорошо припаять его.
  3. Второй вывод необходим для закрепления провода, который отправляет электрическое напряжение на выход датчика.
  4. Третий вывод нужно припаять на вход схемы.
  5. Далее, после выполнения предыдущих действий, стоит протестировать правильную работу датчика. Чтобы это сделать, стоит использовать измерительный прибор. При выполнении этой работы, необходимо вращать движок датчика от наименьшего до наибольшего значения электрического напряжения. Подробнее узнать, как проверить потенциометр можно из многочисленных фото в сети.
  6. Проверив качество работы датчика, необходимо его разместить в электрической схеме, а после этого нужно накрыть изделие защитным кожухом.

Переменный резистор: Печатная плата с углеродными чернилами (потенциометр)

Что такое переменный резистор?

 

A Переменный резистор   изменяет сопротивление от нуля до определенного максимального значения. Они обычно используются в качестве регуляторов громкости и в регуляторах напряжения. Их можно использовать для регулировки элементов схемы (таких как регулятор громкости или диммер лампы) или в качестве датчиков тепла, света, влажности, силы или химической активности.

Переменные резисторы

 

Переменные резисторы можно просто разделить на три типа:

  • Потенциометры
  • Реостаты
  • Цифровые потенциометры

 

Потенциометр

 

Потенциометры используются для изменения сопротивления в цепи путем поворота поворотной ручки. Потенциометры имеют три контакта. Между двумя боковыми контактами находится полоска резистивного материала, и этот материал создает сопротивление. Средний штифт — дворник. Это соединение стеклоочистителя находится где-то на полосе между двумя концами. Вы можете перемещать точку, где стеклоочиститель соединяется с резистивным материалом, поворачивая вал потенциометра. При перемещении дворника влево сопротивление между средним и левым штифтами уменьшается. Затем сопротивление между средним штифтом и правым штифтом увеличивается при перемещении дворника влево.

Потенциометр A 100 кОм

 

Типы потенциометров

 

  • Поворотные потенциометры – наиболее распространенный тип потенциометров. Они используют поворотную ручку для перемещения скребка вокруг резистивного материала.
  • Линейные потенциометры — состоят из линейного ползунка, который управляет положением ползунка вдоль резистивного материала.

 

Потенциометры похожи на делители напряжения

 

Делитель напряжения — это простая схема, которую можно использовать для уменьшения напряжения в цепи. Выходное напряжение зависит от соотношения двух последовательно соединенных резисторов. Выходное напряжение берется из точки между двумя резисторами. Чтобы рассчитать выходное напряжение делителя напряжения, используйте уравнение для делителя напряжения , приведенное ниже:

 

R 1 — ближайший к входному напряжению резистор, R 2 — ближайший к земле резистор, V в — входное напряжение, а V out — выходное напряжение.

Потенциометры в основном представляют собой регулируемые делители напряжения. Внутри потенциометра находится один резистор и движок, который делит резисторы на два и перемещается, чтобы регулировать соотношение между обеими половинами. Внешне обычно имеется три контакта: два контакта подключаются к каждому концу резистора, а третий подключается к движку потенциометра. Если два внешних контакта подключены к напряжению, выход (V из на среднем контакте) будет имитировать делитель напряжения. Если потенциометр полностью повернется в одном направлении, напряжение будет равно нулю. А если повернуть в другую сторону, выходное напряжение приближается к входному, а дворник в среднем положении означает, что выходное напряжение будет вдвое меньше входного.

 

Проводка A Потенциометр

 

  • Начните с определения трех клемм на потенциометре. Расположите его так, чтобы вал был направлен вверх, а три клеммы были обращены к вам. В этом положении вы можете легко идентифицировать клеммы слева направо как клеммы 1, 2 и 3. Заземлите первую клемму потенциометра.
  • В этом приложении клемма 1 обеспечивает заземление. Для этого припаяйте оба конца провода к клемме и шасси электрического компонента соответственно. Отмерьте и отрежьте длину провода, который вам понадобится для подключения клеммы к удобному месту на шасси, и припаяйте оба конца провода к клемме и к шасси компонента. Это заземлит потенциометр. И его можно повернуть до нуля в минимальном положении.
  • Подключите вторую клемму к выходу схемы, чтобы создать вход потенциометра. Входная линия от схемы должна подключаться к нему. Припаяйте это соединение так же, как и предыдущее.
  • Подключите клемму 3 к входу схемы, поскольку клемма 3 является выходом потенциометра. Припаяйте провод так же, как и в первых 2 клеммах.
  • После подключения проверьте с помощью вольтметра. Подсоедините выводы вольтметра к входным и выходным клеммам потенциометра и включите вал. Поворот вала по часовой стрелке или против часовой стрелки может отрегулировать сигнал на вашем устройстве.

Схема регулятора освещенности с потенциометром

 

Цифровой потенциометр

 

Цифровой потенциометр — это тип переменного резистора, который использует цифровые сигналы вместо механического движения для изменения сопротивления. Цифровые потенциометры изменяют сопротивление дискретными шагами в зависимости от подаваемого на него цифрового сигнала. Они отлично подходят для сред, где вибрация, пыль или влага могут заклинить вал механического потенциометра.

Некоторые цифровые потенциометры популярны среди любителей электроники:

Каждый из следующих цифровых потенциометров произведен компанией Renesas Electronics и имеет 100 различных точек сопротивления, работает от 5 В и управляется трехпроводным последовательным интерфейсом:

  • X9C102 – 1 кОм
  • X9C103 – 10 кОм
  • X9C503 – 50 кОм
  • X9C104 – 100 кОм

Семейство цифровых потенциометров MPC41/42 от Microchip также довольно распространено:

  • MCP4131 — 129 точек сопротивления, доступны номиналы 5 кОм, 10 кОм, 50 кОм и 100 кОм, рабочее напряжение от 1,8 до 5,5 В, управление с помощью SPI
  • .
  • MCP42010 — 256 точек сопротивления, доступны номиналы 10 кОм, 50 кОм и 100 кОм, рабочее напряжение от 2,7 до 5,5 В, управление с помощью SPI

 

Объединение потенциометра в печатную плату с углеродными чернилами

 

Все больше и больше конструкций печатных плат используют процесс печати с помощью проводящих углеродных чернил для замены потенциометра и объединения его в печатные платы, включая жесткую плату, гибкую схему и жестко-гибкую плату . Основные требования к таким печатным платам включают стойкость к углероду ( R ), листовую устойчивость ( R ) и линейный допуск (примерно 10%).

За исключением углеродных чернил, серебряных чернил и медной пасты также часто требуются в некоторых специальных конструкциях, но с высокими производственными затратами. Хотите настроить такие печатные платы? Просто свяжитесь с MADPCB для технической помощи и быстрой цитаты.

Проблема с переменным резистором — электрическая

система

#1

У меня проблема с аналоговыми входами.

У меня есть обычный переменный резистор на 100 кОм +5 В и заземление на контактах 3 и 4, а средний провод от переменного резистора на контакте 2. земля. Когда он подключен к аналоговому входу RC, переменный резистор перестает работать. Напряжение, которое выходит из центрального соединения, всегда составляет 5 В. Ничего не меняется, когда вы набираете его вверх или вниз. Все подключено по схеме, я перепроверил и поручил другим проверить. Когда я подключил +5 В и заземление к независимому источнику, а только центральный провод к входному контакту 2, происходит то же самое. Я не пытаюсь вытащить его в средство просмотра приборной панели или что-то в этом роде, просто проверяю напряжение с помощью измерителя.

Будем признательны за любую помощь.


Улыбнись, улыбнись!
– Гасконь, начальник отдела вооружения, MPS Nirvana

Joe_Johnson

#2

Вы подаете 5+ и заземляете от порта аналогового датчика к концам потенциометра 100 кОм, а затем подключаете очиститель к одному из входов датчика, и вы не получаете показания от Pbasic или от вольтметра?

Если это правда, то либо у вас плохой банк, либо у вас плохой RC.

Джо Дж.

Эл_Скеркевич

#3

OK,
Когда я читал ваш пост, вы имеете в виду контакты 2,3,4. Означает ли это, что у вас четыре контакта? Это не тот горшок, который идет в комплекте? Если это потенциометр комплекта, то подключение 5 вольт к одному внешнему контакту и заземление к другому внешнему контакту даст переменное напряжение на среднем контакте. Под землей понимается не корпус робота, а общий аккумулятор. Без обратного пути к отрицательной клемме аккумулятора напряжение на щетке потенциометра будет +5 вольт (или очень близкое к 5 вольтам) при любом положении вала. Это напряжение «холостого хода». Когда через сопротивление не протекает ток, не может быть и падения напряжения. Закон Ома V=I*R
Ал

система

#4

Ссылки на контакты были на аналоговом входе RC. Пот неплох, потому что я тестировал его, не подключая к RC. Я очень надеюсь, что мы не получили плохой RC. Я подключил его к независимому источнику питания (соединение 5 В у нас есть в лаборатории электроники), только стеклоочиститель шел к аналоговому входу, и он по-прежнему делает то же самое. Когда я отключаю аналоговый контакт, он работает нормально.

Джо_Джонсон

#5

Убедитесь, что ваш блок питания и пульт дистанционного управления имеют общую землю?

Нет смысла подавать напряжение на контакт датчика, если оно не соответствует напряжению земли.

Наконец, насколько вы уверены, что у вас правильная распиновка разъема Dsub? Люди ОЧЕНЬ часто щелкают влево и вправо на этих 25-контактных разъемах. Для себя я не покупаю разъемы для этих типов разъемов, у которых нет номера контакта, отформованного в разъеме. Есть слишком много способов перевернуть булавки, если вы не будете осторожны.

Проверьте это.

Джо Дж.

P.S. Еще одна вещь, проверьте свое руководство, чтобы убедиться, что контакты 2,3,4 являются правильными контактами. JJ

система

#6

Да, распиновка правильная. Мы используем тот, который поставляется с комплектом, и на нем действительно есть номера контактов. По крайней мере, у нас так было. И он находится на общих основаниях с правлением.

Я проверил с +5V и заземлением, подключенным к контактам 3 и 4, и стеклоочистителем к 2, что правильно, если только они не опечатались в руководстве.

Я также проверил контакты 5, 6 и 7 с теми же результатами.

Ллойд Бернс

#7

Азаш, я отправил электронное письмо некоторым другим людям в вашей команде с некоторыми шагами, которые вы могли бы предпринять.

Инновации Во-первых, это люди, с которыми можно поговорить. С ними действительно здорово работать.

Джастин Стилтнер

#8

Я думаю, проблема в том, что вы используете 3 провода,
, потому что общее сопротивление между стеклоочистителем и двумя внешними соединениями остается одинаковым, у вас все время одинаковое количество земли,

, отрежьте один из проводов, что подайте землю и посмотрите, что произойдет,

на самом деле все, что вы делали с 3 проводами, меняли, на какой контакт был заземлен +5 В.

Но если в руководстве сказано использовать 3 контакта, то не используйте мое предложение, я не использовал аналоговый многок, так что могу ошибаться.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *