Site Loader

Содержание

Схемы простых зарядных для авто с регулировкой напряжения и тока

Главная » Разное » Схемы простых зарядных для авто с регулировкой напряжения и тока

Три простые схемы регулятора тока для зарядных устройств

Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.

Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.

В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.

Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.

Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Постараюсь пояснить принцип работы схем максимально простыми словами…

Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток. Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно. Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока. Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

Выход операционного усилителя управляется мощным полевым транзистором.

То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока. Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.

Взамен будет нагреваться транзистор и от этого никуда не денешься.

Архив к статье; скачать…

Автор; АКА Касьян

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:
  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

1 схема промышленного ЗУ

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема Электроника

1 схема мощного ЗУ

Мощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3М

За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ

Простая схема

Топ 4 схем импульсных ЗУ

Импульсные ЗУ

1 схема на тиристорное ЗУ

Схема

1 упрощенная схема с сайта Паяльник

Схема

1 схема на интеллектуальное ЗУ

Интеллектуальное ЗУ

4 подробные схемы защиты для ЗУ

Защита

Новые схемы 2017 и 2018 года

Новые схемы

1 схема на китайское ЗУ

Схема

1 простая схема — как собрать ЗУ

Схема

Регулятор тока зарядного устройства

В конструкции самодельного зарядного устройства для автомобильного аккумулятора важной частью является узел стабилизации и ограничения тока. Такой узел дает возможность выставить любой угодный ток заряда, при этом будет делать это за счет повышения или понижения выходного напряжения.

Схема предложенная в статье может отлично работать в совместимости с любым зарядным устройством.

Вариант реализации такого блока до безобразия прост  и собран на одном элементе ОУ. Зарядное устройство должно отдавать напряжение 13,5-14,5 Вольт при токе до 10 Ампер.

Полевой транзистор – основной силовой элемент и весь ток проходит по нему, поэтому обязательно устанавливают на теплоотвод.

Можно использовать низковольтные полевые транзисторы с током от 20 , а еще лучше от 40 Ампер. Для наших целей отлично подойдут мощные N- канальные полевые транзисторы типа IRF3205, IRFZ44/46/48 iили аналогичные.

Силовой шунт в моем случая в виде низкоомного резистора, если кому лень искать, можете использовать шунт , который стоит в дешевых китайских мультиметрах, такие шунты можно использовать для довольно точных замеров при токах до 10-14Ампер.

Полевой транзистор при желании можно заменить на биполярный, но с учетом того, что последний должен иметь большой ток коллектора, к примеру КТ819ГМ или КТ8101 из наших , тоже устанавливают на теплоотвод.

ОУ в моем варианте задействован сдвоенный , типа ЛМ358, но можно использовать и одиночные операционные усилители, к примеру – TL071/081

Автор; АКА Касьян

Зарядное устройство для автомобильного аккумулятора своими руками

Зарядное устройство (ЗУ) для аккумулятора необходимо каждому автолюбителю, но стоит оно немало, а регулярные профилактические поездки в автосервис не выход. Обслуживание батареи в СТО требует времени и денег. Кроме того, на разряженном аккумуляторе до сервиса ещё нужно доехать. Собрать своими руками работоспособное зарядное устройство для автомобильного аккумулятора своими руками сможет каждый, кто умеет пользоваться паяльником.

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Читайте также:  Как выбрать настольный электрический наждак с валом для дома

Самодельные зарядки для АКБ

Собрать своими руками зарядное устройство для автомобильного аккумулятора реально и не особо сложно. Для этого нужно иметь начальные знания по электротехнике и уметь держать в руках паяльник.

Простое устройство на 6 и 12 В

Такая схема самая элементарная и бюджетная. При помощи этого ЗУ вы сможете качественно зарядить любой свинцовый аккумулятор с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч.

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4. Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

К примеру, если необходим ток в 5 А, то понадобится включить тумблеры S4 и S2. Замкнутые S5, S3 и S2 дадут в сумме 11 А. Для контроля напряжения на АКБ служит вольтметр PU1, за зарядным током следят при помощи амперметра PА1.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 см. кв.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

Схема проста, если собрать её из исправных деталей, то в налаживании не нуждается. Это устройство подойдёт и для зарядки шестивольтовых батарей, но «вес» каждого из переключателей S2-S5 будет иным. Поэтому ориентироваться в зарядных токах придётся по амперметру.

С плавной регулировкой тока

По этой схеме собрать зарядник для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.

Читайте также:  Изготовление картофелесажалки для мотоблока и мини-трактора

Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.

Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 — индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.

Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А. Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт. Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке — 42.

Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.

Налаживание устройства сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру.

Из компьютерного блока питания

Чтобы собрать это простое зарядное устройство своими руками, понадобится обычный блок питания от старого компьютера АТХ и знания по радиотехнике. Но зато и характеристики прибора получатся приличными. С его помощью заряжают батареи током до 10 А, регулируя ток и напряжение заряда. Единственное условие — БП желателен на контроллере TL494.

Для создания автомобильной зарядки своими руками из блока питания компьютера придётся собрать схему, приведённую на рисунке.

Пошагово необходимые для доработки операции будут выглядеть следующим образом:

  1. Откусить все провода шин питания, за исключением жёлтых и чёрных.
  2. Соединить между собой жёлтые и отдельно чёрные провода — это будут соответственно «+» и «-» ЗУ (см. схему).
  3. Перерезать все дорожки, ведущие к выводам 1, 14, 15 и 16 контроллера TL494.
  4. Установить на кожух БП переменные резисторы номиналом 10 и 4,4 кОм — это органы регулировки напряжения и тока зарядки соответственно.
  5. Навесным монтажом собрать схему, приведённую на рисунке выше.

Читайте также:  Описание ручных и стационарных электрических циркулярных пил

Если монтаж выполнен правильно, то доработку закончена. Осталось оснастить новое ЗУ вольтметром, амперметром и проводами с «крокодилами» для подключения к АКБ.

В конструкции возможно использовать любые переменные и постоянные резисторы, кроме токового (нижний по схеме номиналом 0.1 Ом). Его рассеиваемая мощность — не менее 10 Вт. Сделать такой резистор можно самостоятельно из нихромового или медного провода соответствующей длины, но реально найти и готовый, к примеру, шунт от китайского цифрового тестера на 10 А или резистор С5−16МВ. Ещё один вариант — два резистора 5WR2J, включённые параллельно. Такие резисторы есть в импульсных блоках питаниях ПК или телевизоров.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

  1. Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Схема простого зарядного устройства для АКБ

Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.

Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.

Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.

Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.

Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т.д.

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

переделал на транзистор

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером.  Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.

Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.

По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.

Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН



Тиристорный регулятор зарядного тока. Простое тиристорное зарядное устройство

Известно, что в процессе эксплуатации аккумуляторов их пластины могут сульфатироваться, что приводит к выходу аккумулятора из строя. Если производить заряд импульсным ассиметричным током, то возможно восстановление таких батарей и продление срока их службы, при этом токи заряда и разряда должны быть установлены 10: 1. Мной изготовлено зарядное устройство, которое может работать в 2х режимах. Первый режим обеспечивает обычный заряд аккумуляторов постоянным током до 10 А. Величина зарядного тока устанавливается тиристорными регуляторами. Второй режим (Вк 1 выключен, Вк 2 включён) обеспечивает импульсный ток заряда 5А и ток разряда 0,5А.

Рассмотрим работу схемы (рис. 1) в первом режиме. Переменное напряжение 220 В поступает на понижающий трансформатор Тр1. Во вторичной обмотке образуются два напряжения по 24В относительно средней точки. Удалось найти трансформатор со средней точкой во вторичной обмотке, что даёт возможность сократить количество диодов в выпрямителях, создать запас по мощности и облегчить тепловой режим. Переменное напряжение со вторичной обмотки трансформатора поступает на выпрямитель на диодах D6, D7. Плюс со средней точки трансформатора поступает на резистор R8, который ограничивает ток стабилитрона Д1. Стабилитрон Д1 определяет рабочее напряжение схемы. На транзисторах Т1 и Т2 собран генератор управления тиристорами. Конденсатор С1 заражается по цепи: плюс питания, переменный резистор R3, R1, С1, минус. Скорость заряда конденсатора С1 регулируется переменным резистором R3. Конденсатор С1 разряжается по цепи: эмиттер – коллектор Т1, база — эмиттер Т2, R4 мину конденсатора. Транзисторы Т1 и Т2 открываются и положительный импульс с эмиттера Т2 через ограничительный резистор R7 и диоды развязки D4 — D5 поступает на управляющие электроды тиристоров. При этом выключатель Вк 1 включён, Вк 2 выключен. Тиристоры в зависимости минусовой фазы переменного напряжения поочерёдно открываются, и минус каждого полупериода поступает на минус аккумулятора. Плюс со средней точки трансформатора через амперметра на плюс аккумулятора. Резисторы R5 и R6 определяют режим работы транзисторов Т1-2. R4 является нагрузкой эмиттера Т2 на котором выделяется положительный импульс управления. R2 — для более стабильной работы схемы (в некоторых случаях можно пренебречь).

Работа схемы ЗУ во втором режиме (Вк1 – выключен; Вк2 – включен). Выключенный Вк1 обрывает цепь управления тиристора D3, при этом он остается постоянно закрыт. В работе остаётся один тиристор D2, который выпрямляет только один полупериод и выдает импульс заряда во время одного полупериода. Во время холостого второго полупериода происходит разряд аккумулятора через включённый Вк2. Нагрузкой служит лампочка накаливания 24В х 24 Вт или 26В х 24Вт (при напряжение на ней 12В она потребляет ток 0.5 А). Лампочка выведена наружу за корпус, чтобы не нагревать конструкцию. Значение зарядного тока устанавливается регулятором R3 по амперметру. Учитывая, что при зарядке батареи часть тока протекает через нагрузку Л1(10%). То показания амперметра должны соответствовать 1,8А (для импульсного зарядного тока 5А). так как амперметр имеет инертность и показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.



Детали и конструкция ЗУ. Трансформатор подойдёт любой с мощностью не менее 150 Вт и напряжением во вторичной обмотке 22 – 25 В. Если использовать трансформатор без средней точки во вторичной обмотке, то тогда надо из схемы исключить все элементы второго полупериода. (Вк1, D5,D3). Схема будет полностью работоспособна в обоих режимах, только в первом будет работать на одном полупериоде. Тиристоры можно использовать КУ202 на напряжение не ниже 60В. Их можно установить на радиатор без изоляции друг от друга. Диоды Д4-7 любые на рабочее напряжение не менее 60В. Транзисторы можно заменить на германиевые низкочастотные с соответствующей проводимостью. работает на любых парах транзисторов: П40 – П9; МП39 – МП38; КТ814 – КТ815 и т.д. Стабилитрон Д1 любой на 12–14В. Можно соединить два последовательно для набора нужного напряжения. В качестве амперметра мной использована головка милиамперметра на 10мА, 10 делений. Шунт подобран экспериментально, намотан проводом 1.2мм без каркаса на диаметр 8мм 36 витков.



Наладка зарядного устройства. Если собрано правильно, работает сразу. Иногда надо установить границы регулирования Мин – Макс. подбором С1, обычно в сторону увеличения. Если есть провалы регулирования подобрать R3. Обычно подключал в качестве нагрузки для регулировки мощную лампочку от диапроектора 24В х 300Вт. В разрыв цепи заряда аккумулятора желательно поставить предохранитель на 10А.

Обсудить статью ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА

Необходимость заряда машинного аккумулятора появляется у наших соотечественников регулярно. Кто-то делает это по причине разряда батареи, кто-то — в рамках технического обслуживания. В любом случае, наличие зарядного устройства (ЗУ) во многом облегчает эту задачу. Подробнее о том, что представляет собой тиристорное зарядное устройство для автомобильного аккумулятора и как изготовить такой девайс по схеме — читайте ниже.

Описание тиристорного ЗУ

Тиристорное зарядное устройство являет собой девайс с электронным управлением зарядным током. Такие девайсы производятся на основе тиристорного регулятора мощности, который является фазоимпульсным. В устройстве ЗУ такого типа нет дефицитных компонентов, а если все его детали будут целыми, то его даже не придется настраивать после изготовления.

С помощью такого ЗУ можно заряжать аккумулятор транспортного средства током от нуля до десяти ампер. Помимо этого, оно может применяться в качестве регулируемого источника питания для тех или иных приборов, к примеру, паяльника, переносной лампы и т.д. По своей форме зарядный ток очень похож на импульсный, а последний, в свою очередь, позволяет продлить ресурс эксплуатации аккумулятора. Использование тиристорного ЗУ допускается в температурном диапазоне от -35 до +35 градусов.

Схема

Если вы решите соорудить тиристорное ЗУ своими руками, то можно применять множество различных схем. Рассмотрим описание на примере схемы 1. Тиристорное ЗУ в данном случае питается от обмотки 2 трансформаторного узла через диодный мост VDI+VD4. Элемент управления выполнен в виде аналога однопереходного транзистора. В данном случае, при помощи переменного резисторного элемента можно регулировать время, на протяжении которого будет осуществляться заряд конденсаторного компонента С2. Если положение этой детали будет крайним правым, то показатель зарядного тока будет наибольшим, и наоборот. Благодаря диоду VD5 осуществляется защита управляющей цепи тиристора VS1.

Плюсы и минусы

Основное преимущество такого прибора — это качественная зарядка током, которая позволит не разрушить, а увеличить ресурс эксплуатации аккумулятора в целом.

Если нужно, ЗУ может быть дополнено всевозможными автоматическими компонентами, предназначенными для таких опций:

  • прибор сможет отключиться в автоматическом режиме, когда зарядка будет завершена;
  • поддержание оптимального напряжения аккумулятора в случае его длительного хранения без эксплуатации;
  • еще одна функция, которую можно расценивать как преимущество — тиристорное ЗУ может сообщать автовладельцу о том, правильно ли он подключил полярность АКБ, а это очень важно при зарядке;
  • также в случае добавления дополнительных компонентов может быть реализовано еще одно преимущество — защита узла от замыканий выхода (автор видео — канал Blaze Electronics).

Что касается непосредственно недостатков, то к ним можно отнести колебания зарядного тока, если напряжение в бытовой сети будет нестабильно. Кроме того, как и другие тиристорные регуляторы, такое ЗУ может создавать определенные помехи для передачи сигнала. Чтобы не допустить этого, при изготовлении ЗУ необходимо дополнительно установить LC-фильтр. Такие фильтрующие элементы, например, используются в сетевых блоках питания.

Как сделать ЗУ самостоятельно?

Если говорить о производстве ЗУ своими руками, то этот процесс рассмотрим на примере схемы 2. В данном случае тиристорное управления осуществляется посредством сдвига фаз. Весь процесс мы описывать не будем, поскольку он индивидуален в каждом случае, в зависимости от добавления дополнительных компонентов в конструкцию. Ниже рассмотрим основные нюансы, которые следует учесть.

В нашем случае устройство собирается на обычном оргалите, в том числе и конденсатор:

  1. Диодные элементы, отмеченные на схеме как VD1 и VD 2, а также тиристоры VS1 и VS2, следует установить на теплоотводе, монтаж последних допускается на общем теплоотводе.
  2. Элементы сопротивления R2, а также R5, следует использовать не менее, чем по 2 ватта.
  3. Что касается трансформатора, то его можно приобрести в магазине либо взять из паяльной станции (качественные трансформаторы можно найти в старых советских паяльниках). Можно перемотать вторичный провод на новый сечением около 1.8 мм на 14 вольт. В принципе, можно использовать и более тонкие провода, поскольку этой мощности будет достаточно.
  4. Когда все элементы будут у вас на руках, всю конструкцию можно установить в один корпус. Например, для этого можно взять старый осциллограф. В этом случае мы не будем давать какие-либо рекомендации, поскольку корпус — это личное дело каждого.
  5. После того, как зарядный прибор будет готов, необходимо проверить его работоспособность. Если у вас есть сомнения касательно качества сборки, то мы бы порекомендовали произвести диагностику прибора на более старой АКБ, которую в случае чего не жалко будет выбросить. Но если вы все сделали правильно, в соответствии со схемой, то проблем в плане эксплуатации возникнуть не должно. Учтите и то, что изготовленное ЗУ не нуждается в настройке, оно изначально должно работать правильно.

Видео «Простое тиристорное ЗУ своими руками»

Как сделать простое тиристорное ЗУ своими руками — смотрите на видео ниже (автор ролика — канал Blaze Electronics).

Устройство с электронным управлением зарядным током, выполненно на базе тиристорного фазоимпульсного регулятора мощности.
Оно не содержит дефицитных деталей, при заведомо рабочих деталях не требует налаживания.
Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, кой, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.
Схема прибора показана на рис. 2.60.
Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный moctVDI + VD4.
Узел управления тиристором исполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1.При крайнем правом по схеме положении его движка зарядный ток станет максимальным, и наоборот.
Диод VD5 оберегает управляющую цепь тиристора VS1 от обратного напряжения, появляющегося при включении тиристора.

Зарядное приспособление в дальнейшем можно дополнить разными автоматическими узлами (отключение по завершении зарядки, поддержание нормального напряжения батареи при продолжительном ее хранении, сигнализации о верной полярности подключения батареи, защита от замыканий выхода и т. д.).
К недочетам прибора можно отнести — колебания зарядного тока при нестабильном напряжении электроосветительной сети.
Как и все подобные тиристорные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними надлежит предусмотреть сетевой LC- фильтр, подобный использующемуся в импульсных сетевых блоках питания.

Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохраннтель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток.
Диоды VD1 + VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор ставят на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами лучше применять теплопроводные пасты.
Заместо тиристора КУ202В подходят КУ202Г — КУ202Е; проверено на практике, что устройство нормально действует и с более мощными тиристорами Т-160, Т-250.
Надлежит заметить, что в качестве теплоотвода тиристора возможно применять непосредственно железную стенку кожуха. Тогда, правда, на корпусе будет минусовой вывод устройства, что в общем-то нежелательно из-за угрозы нечаянных замыканий выходного плюсового провода на корпус. Если укреплять тиристор через слюдяную прокладку, угрозы замыкания не будет, но ухудшится отдача тепла от него.
В приборе может быть применен готовый сетевой понижающий трансформатор нужной мощности с напряжением вторичной обмотки от 18 до 22 В.
Ежели у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 надлежит сменить другим, наибольшего сопротивления (к примеру, при 24 * 26 В сопротивление резистора надлежит увеличить до 200 Ом).
В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две однообразные обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше исполнить по обычной двуполупериодной схеме на 2-ух диодах.
При напряжении вторичной обмотки 28 * 36 В можно вообще отказаться от выпрямителя — его роль станет одновременно играть тиристор VS1 (выпрямление -однополупериодное). Для такового варианта блока питания нужно между резистором R5 и плюсовым проводом подключить разделительный диод КД105Б либо Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в таковой схеме станет ограничен — подходят только те, которые дозволяют работу под обратным напряжением (к примеру, КУ202Е).
Для описанного устройства подойдет унифицированный трансформатор ТН-61. 3 его вторичных обмотки необходимо соединить согласно последовательно, при этом они способны отдать ток до 8 А.
Все детали прибора, кроме трансформатора Т1, диодов VD1 + VD4 выпрямителя, переменного резистора R1, предохранителя FU1 и тиристора VS1, смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.
Чертеж платы представлен в журнале радио № 11 за 2001 год.

Зарядное устройство для автомобильных аккумуляторов.

Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:

Простая схема, без лишних наворотов;
— доступность радиодеталей;
— плавная регулировка зарядного тока от 1 до 10 ампер;
— желательно чтобы это была схема зарядно-тренировочного устройства;
— не сложная наладка;
— стабильность работы (по отзывам тех, кто уже делал данную схему).

Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:


На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор — ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.


Регулируемое зарядное устройство с током заряда 10А на тиристоре КУ202.

И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.

Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:


Схема не плохая, но в ней есть некоторые недостатки:
— колебания напряжения питания приводят к колебанию зарядного тока;
— нет защиты от короткого замыкания кроме предохранителя;
— устройство дает помехи в сеть (лечится с помощью LC-фильтра).

Зарядно-восстанавливающее устройство для аккумуляторных батарей.

Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 — 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.


В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог — таймер 1006ВИ1 . Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом . Транзистор VT1 — на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242 . Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.

Восстановление и зарядка аккумулятора.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их «ассимметричным» током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.



Рис. 1. Электрическая схема зарядного устройства

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22…25 В.
Измерительный прибор РА1 подойдет со шкалой 0…5 А (0…3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000…18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.



Рис. 2. Электрическая схема зарядного устройства

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 — ППБЕ-15, R3 — С5-16MB, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.

Какой провод лучше использовать от зарядного устройства до аккумулятора.

Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:

Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе — прочтите эту статью:

Обычно подзарядка аккумулятора в транспортном средстве происходит во время работы генератора. Однако, при длительном простое автомобиля, на морозе или при наличии неисправностей батарея может разрядиться до такой степени, что становится не способной обеспечить ток, необходимый для запуска двигателя. И здесь на помощь приходит зарядное устройство для автомобильного аккумулятора. Однако стоимость зарядного устройства сильно «бьёт» по карману, и поэтому я решил сам собрать зарядное устройство. Оно позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы, устройства для резки пенопласта, автомобильного насоса-компрессора для подкачки колёс. Устройство не содержит дефицитных деталей и при исправных элементах не требует налаживания. Для данной схемы использован сетевой понижающий трансформатор ТС270-1(выдран из старого лампового телевизора) с напряжением вторичной обмотки 17В. Без внесения изменений подойдет любой с напряжением на вторичной обмотке от 17 до 22В. Корпус использован от блока управления станции катодной защиты газопровода КСС-600(охлаждение в корпусе естественное). В данном зарядном устройстве есть возможность, при возникшей необходимости, установить схему для зарядки малогабаритных аккумуляторов (типа Д-0.55С и др). При этом контроль зарядного тока осуществляется установленным миллиамперметром.
Принципиальная схема устройства показана на фото ниже.

Принципиальная схема устройства


Она представляет собой традиционный тринисторный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VD1-4. Узел управления тринистором выполнен на аналоге однопереходного транзистора VT1,VT2. Время, в течение которого конденсатор С1 заряжается до переключения можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот. Диод VD5 защищает управляющую цепь тринистора от обратного напряжения, возникающего при включении тринистора VS1. Печатная плата устройства и монтажная плата на фото ниже.


Печатная плата


Монтажная плата


Если у готового, используемого трансформатора на вторичной обмотке более 17В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26В до 200Ом). В случае, когда вторичная обмотка имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двухполупериодной схеме на двух диодах.
А при сборке выпрямителя точно по схеме подойдут следующие детали :
С1 — К73-11, емкостью от 0,47 до 1мкФ, а также К73-16, К42У-2, МБГП.
Диоды VD1 — VD4 могут быть любыми на прямой ток 10А и обратное напряжение не менее 50В (это серии Д242, КД203, КД210, КД213).
Вместо тринистора Т10-25 подойдут КУ202В — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тринисторами Т-160, Т-250 (В моём случае это Т10-25).
Транзистор КТ361А заменим на КТ361Б — КТ361Е, КТ3107, КТ502В, КТ502Г, КТ501Ж — КТ501К, а КТ315А — на КТ315Б — КТ315Д, КТ312Б, КТ3102А, КТ503В — КТ503Г, П307.
Вместо диода КД105Б подойдут диоды КД105В, КД105 или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СП3-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10А либо изготовить самому из любого миллиамперметра, подобрав к нему шунт.
Вольтметр РV1 — любой постоянного тока со шкалой на 16Вольт.
Предохранитель FU1 – плавкий на 3А, FU2 – плавкий на 10А.
Диоды и тринистор необходимо установить на теплоотводы, каждый полезной площадью около 100см². Для улучшения теплового контакта данных деталей с теплоотводами желательно использовать теплопроводные пасты.
Больше фото можно посмотреть в моём блоге




Похожие статьи

Зарядные устройства для автомобильных аккумуляторов, универсальные зарядные

△

▽

Зарядные устройства для всех типов автомобильных аккумуляторов с напряжением 12В, 24В. Всегда в наличии универсальные устройства с регулировкой для заряда разных типов батарей. Зарядное устройство Орион оснащено защитой (в зависимости от модели) от короткого замыкания, переплюсовки, перегрева. Многие модели можно использовать в качестве блока питания для разнообразного оборудования. Во многих моделях зарядных устройствах предусмотрены системы индикации, позволяющие получать необходимую информацию. Зарядники от ООО «НПП «ОРИОН СПБ» способное удовлетворить Ваши потребности.


Фильтр

Максимальный зарядный ток, А

Регулировка тока

Максимальный пусковой ток, А

Регулировка напряжения

Напряжение заряда, В

0,5 4,2 5,5 7,4 7,5 12 13,6 14,1 14,2 14,4 14,6 14,8 15 16 18 19 30 1,53 28,2 36

Индикатор заряда


Зарядно-предпусковое устройство Вымпел-57

Артикул: 2048
Номинальное напряжение АКБ:6 В, 12 В
Максимальный зарядный ток, А:20
Регулировка тока:плавная
Регулировка напряжения:плавная
Напряжение заряда, В:7,4, 7,5, 12, 13,6, 14,1, 14,2, 14,4, 14,6, 14,8, 15, 16, 18
Индикатор заряда:сегментный ЖК дисплей
Электронная защита от:короткого замыкания, перегрева, переполюсовки
Использование в качестве блока питания:да

Зарядно-предпусковое устройство Вымпел-55

Артикул:2012
Номинальное напряжение АКБ:6 В, 12 В, 3,7 В, 4 В
Максимальный зарядный ток, А:15
Регулировка тока:дискретная
Регулировка напряжения:дискретная
Напряжение заряда, В:0,5, 4,2, 5,5, 7,4, 7,5, 12, 13,6, 14,1, 14,2, 14,4, 14,6, 14,8, 15, 16, 18
Индикатор заряда:матричный ЖК дисплей
Электронная защита от:короткого замыкания, перегрева, переполюсовки
Использование в качестве блока питания:да
Напряжение питания:220В / 50Гц AC

Зарядно-предпусковое устройство Вымпел-50

Артикул:2011
Номинальное напряжение АКБ:6 В, 12 В
Максимальный зарядный ток, А:15
Регулировка тока:дискретная
Регулировка напряжения:дискретная
Напряжение заряда, В:5,5, 7,4, 7,5, 12, 13,6, 14,1, 14,2, 14,4, 14,6, 14,8, 15, 16, 18
Индикатор заряда:светодиодный дисплей
Электронная защита от:короткого замыкания, перегрева, переполюсовки
Использование в качестве блока питания:да
Напряжение питания:220В / 50Гц AC

На сайте www.orionspb.ru вы можете купить оригинальные зарядные устройства для безопасной зарядки автомобильного аккумулятора производимые в г. Санкт-Петербург.

Заказ зарядных устройств возможен в розницу в интернет-магазине и оптом с наших складов готовой продукции в Москве, Санкт-Петербурге и других городах России, Белорусии, Казахстана и Украины.

На форуме вы можете получить консультацию и техническую поддержку по товару, а так же помощь в вопросе какое зарядное устройство лучше выбрать в вашем случае, узнать отзывы и тесты их работы. Все зарядные устройства поставляются с бесплатной сервисной гарантией нашего предприятия и возможностью постгарантийного ремонта.

В каталоге интернет-магазина по заданным параметрам можно подобрать подходящее Вам зарядное устройство серии ооо «НПП «Орион СПб» или Вымпел, а так же подобрать дополнительно пуско-зарядные устройства, стартовые провода, нагрузочные вилки и ареометры. Условия покупки читайте в разделе доставка и оплата.

Схемы подключения и работы устройства, эксплуатацию устройства, технические характеристики, ток зарядки вы можете посмотреть в инструкция к устройству. Порядок подключения стартовых проводов зарядного устройства к аккумуляторной батарее смотрите в инструкции по подключению.

Отличия марок ооо «НПП Орион СПб» и «Вымпел» зарядных устройств нашего производства смотрите в таблице сравнения.

Видео-обзоры с тестами работы зарядных устройств 

можно увидеть на нашем канале на Youtube.

Определение поддельных зарядных устройств

На рынке появились подделки зарядных устройств производства ооо НПП «ОРИОН СПБ». Посмотрите отличия оригинальных и поддельных устройств, чтобы защититься от некачественной продукции.

Дополнительная информация

Правильный и безопасный заряд аккумулятора — как и чем заряжать? | Статьи

Как правильно и безопасно зарядить авто (мото) свинцово-кислотный аккумулятор. 

Сразу оговоримся — настоящая статья предназначена для неподготовленных людей, аккумуляторщики и опытные пользователи вряд ли почерпнут для себя что-то новое.

Не отвлекаясь на второстепенные моменты, мы постараемся донести до читателей статьи базовые основы заряда аккумулятора и поможем выбрать правильное зарядное устройство.

Какие существуют методы заряда.

1. Заряд постоянным током.

Заряд производится при установленном значении зарядного тока (измеряется в Ампер) без ограничения напряжения (измеряется в Вольт). Пример устройства, обеспечивающего данный способ заряда – классический тяжелый трансформаторный зарядник – выпрямитель. Величина зарядного тока и длительность заряда определяются исходя из значения емкости, технологии изготовления и состояния аккумулятора. Ограничить напряжение при таком способе заряда возможно только вручную, уменьшением значения тока. Данный способ используется как правило профессиональными аккумуляторщиками и рекомендуется только для опытных пользователей.

2. Заряд при постоянном напряжении.

Заряд производится при заданном постоянном значении напряжения. Ток может быть ограничен возможностями и настройками зарядного устройства (пользователем). Пример устройства, обеспечивающего данный способ заряда – автомобильный реле-регулятор. Современные продвинутые реле-регуляторы способны менять напряжение заряда по алгоритмам, установленным автопроизводителями, но суть от этого не меняется – заряд все равно происходит при постоянном напряжении.

3. Заряд смешанным методом.

Первый этап заряда производится методом постоянного тока установленным (ограниченным) значением тока до достижения заданного значения напряжения (предустановлено в зарядном устройстве или ограничено пользователем). Второй этап начинается по достижении заданного напряжения, зарядный ток стабилизируется и его значение начинает падать, по сути на данном этапе заряд уже идет при постоянном напряжении. Правильный заряд этим так называемым смешанным методом могут обеспечить современные импульсные зарядные устройства, но только те, которые имеют функцию ограничения напряжения значением, подходящим для технологии изготовления и состояния конкретно взятого аккумулятора. Данный способ (метод) и подходит больше всего обычному, неопытному пользователю, которому надо при проведении заряда учесть состояние своего аккумулятора и технологию его изготовления, а также уяснить ряд нехитрых правил проведения заряда. Ну и, конечно, надо иметь правильное зарядное устройство.

Необходимо уяснить, что ресурс батареи снижают три основных явления:

– Оплывание (осыпание) активной массы с решеток (электродов), которое происходит при перезаряде либо в процессе естественного механического износа, застарелый сульфат в активной массе также способствует ее быстрому осыпанию. Данное явление носит необратимый характер, лечению не подлежит, при критическом уровне данного процесса батарея подлежит замене.

— Сульфатация, т.е. образование кристаллов сульфата свинца на пластинах в процессе разряда АКБ. Сульфат всегда присутствует в любой батарее, его образование и растворение – это естественный рабочий процесс, происходящий при разряде-заряде батареи. Кристаллы сульфата могут быть небольшими и легко растворимыми, при хроническом недозаряде они становятся крупными и тяжело растворимыми. Данное явление носит обратимый характер, но чем старее в батарее сульфат, тем тяжелее его растворить, тем больше усилий придется для этого приложить и больше действий совершить.

— Расслоение электролита (кислотная стратификация). Электролит состоит из воды и серной кислоты, причем кислота физически тяжелее воды. В процессе заряда сульфат растворяется и кислота снова попадает в электролит, причем стремится стечь по пластинам в нижнюю часть корпуса АКБ. Данное явление наиболее усиливается в разряженных батареях и наименее характерно для тех АКБ, в которых разряд незначительный и своевременно восполняется. Устраняется расслоение электролита путем доведения заряженной батареи до состояния, при котором происходит ее интенсивное «кипение», т.е. электролиз, разложение воды на кислород и водород.

Вышеперечисленные явления как правило идут рука об руку, и эксплуатация АКБ с застарелым сульфатом приводит к ускоренному осыпанию  активной массы (нерабочая осыпающаяся активная масса называется шламом) и повышенному расходу воды из АКБ, все это сопровождается расслоением электролита. Это происходит потому, что крупные кристаллы сульфата уменьшают площадь пластин, на которой происходит химическая реакция, оставшаяся рабочая активная масса подвергается более высокой нагрузке, все больше зарядного тока бесполезно тратится впустую на электролиз – разложение воды на кислород и водород. Соответственно, чем больше в АКБ застарелого сульфата, тем быстрее происходят описанные негативные процессы и все ближе утилизация АКБ.

Правильный и полноценный заряд проводится при температуре АКБ, равной комнатной. Но начинать заряд вполне можно при любой температуре АКБ.

Если нам нужно зарядить исправный аккумулятор, который имеет свежий незначительный разряд, скажем, не более 50 % от емкости, достаточно будет ограничить напряжение окончания заряда 14,8 – 15 Вольт, зарядный ток ограничиваем значением, не превышающем 10 % от номинальной емкости аккумулятора. Свидетельством окончания заряда будет служить падение зарядного тока до значения 0,5 – 1 Ампер. Наличие пробок на аккумуляторе позволит окончательно убедиться в окончании заряда путем измерения контроля уровня электролита и его плотности, которая должна достичь заводской – 1,27 – 1,31 г/см3 (крайне желательно знать исходную плотность).

Если требуется зарядить аккумулятор с почти полностью разряженного состояния, либо есть сомнения относительно его исправности или есть необходимость в сезонном профилактическом заряде, целесообразно применить несколько иной алгоритм заряда, разделив заряд на два этапа.

На первом этапе, не нагружая активную массу на пластинах, проводим заряд током, не превышающем 10 % емкости АКБ, ограничив напряжение безопасным значением, не более 14,4 – 14,8 Вольт. Перед зарядом необходимо убедиться, что уровень электролита достаточен, чтобы были закрыты пластины, при необходимости долить дистиллированную воду. Доводить уровень до исходного на первом этапе не нужно, так как в процессе заряда он может подняться и есть риск получить избыточный уровень электролита. Если батарея была глубоко разряжена или долго эксплуатировалась в состоянии хронического недозаряда, лучше значение тока выставить как можно меньше, вплоть до 1 % от емкости. Чем меньше значение зарядного тока, тем качественнее и полнее происходит заряд, только дольше по времени. На первом этапе задача состоит в том, чтобы максимально полно восполнить емкость батареи без избыточной нагрузки на активную массу на решетках. Индикатор окончания первого этапа заряда – падение зарядного тока до значения менее 1 Ампер, чем меньше, тем лучше.

На втором, самом важном этапе заряда, нужно решить две основные задачи – растворить застарелый сульфат и устранить расслоение электролита. При наличии неравномерного и/или недостаточного уровня электролита также добавляется задача выровнять уровень и плотность электролита во всех банках. В таком случае второй этап заряда также называется уравновешивающим, или выравнивающим зарядом.

Необходимо тщательно выровнять уровень электролита дистиллированной водой. И довести его до уровня заводского, который в разных АКБ составляет от 1,5 до 3 см. Проще, если в АКБ есть какие-либо физические индикаторы в виде, например, пластиковых лапок-ограничителей. Если нет, нужно найти информацию в руководстве или на сайте завода-производителя.

Устанавливаем такие параметры заряда, которые обеспечат интенсивное газовыделение из электролита, т.е «кипение». Напряжение, при котором будет интенсивно кипеть АКБ по технологии Са/Са, составляет примерно 15,5 — 16 Вольт, выставляем 16, гибридная Sb/Ca – 15,3 – 15,6 Вольт, выставляем 15,5 – 15,7 Вольт, для сурьмянистых должно хватить 15 Вольт. Величину зарядного тока лучше ограничить 1 – 5 % от емкости АКБ, причем чем более «запущена» батарея, тем меньше зарядный ток есть смысл выставить, заданное напряжение при этом будет достигаться конечно же дольше.

Положительный результат можно будет считать достигнутым, если зарядный ток после достижения заданного напряжения упал до 1 Ампер и ниже, плотность электролита достигла исходного значения 1,27 – 1,31 г/см3 (необходимо знать заводские параметры плотности), стала равномерной во всех банках, и значение плотности не меняется на протяжении двух – трех часов. Даже если за короткое время зарядный ток упал до низкого значения (0,5 – 1 Ампер), заряд все равно целесообразно продолжить на протяжении нескольких часов для устранения кислотной стратификации. Если положительный результат не достигается на протяжении многих часов, если по плотности «отстают» некоторые банки, можно поднять напряжение заряда на 0,1 – 0,3 Вольт. Иногда можно и даже нужно поднять ток и напряжение заряда и выше, или вообще снять ограничение по напряжению, но, повторяемся, наша статья для неопытных пользователей, данные действия Вы будете осуществлять на свой страх и риск.

Если описанные действия не привели к нужному результату, отдайте АКБ в квалифицированный сервис или замените на новую. Либо выжмите из нее оставшийся ресурс и потом замените.

Если у Вас АКБ с лабиринтной крышкой без пробок, отрегулировать уровень электролита без «колхозинга» не получится, поэтому нужно хотя бы попытаться убедиться, что он есть, путем просвечивания АКБ мощным источником света. Такие батареи, несмотря на то, что маркетологи назвали их «необслуживаемыми», как раз таки очень нуждаются в своевременной правильной дозарядке, потому что полностью заряженная исправная кальциевая АКБ практически не расходует воду, и уровень электролита в ней долгое время остается ровным и стабильным.

Особенности заряда батарей по технологии Са/Са EFB.

Заряд аккумуляторов EFB производится так же, как и обычных кальциевых. Нужно только учесть одну особенность — в правильных EFB пластины толще и скомпонованы плотнее, расстояние между ними меньше, по этой причине электролит в них перемешать тяжелее, плотность в верхних слоях батареи может подниматься дольше. Будьте готовы к тому, что второй этап заряда на повышенном напряжении возможно придется производить дольше, напряжение поднимать выше.

Особенности заряда батарей по технологии AGM, GEL.

А вот AGM и GEL технологии заряжать с применением высоких значений напряжения крайне нежелательно. Ввиду того, что в них отсутствует электролит в жидком виде, кислотная стратификация как таковая отсутствует, перемешивать электролит не нужно, и избыточное напряжение приведет к безвозвратной утрате воды. Поэтому заряжать их следует в один этап с ограничением напряжения 14,3 — 14,4 Вольт. Если результат не достигнут, можно попробовать поднять напряжение заряда до 15 Вольт, но долго скорей всего такая батарея уже не прослужит. Глубокий разряд такие батареи переносят намного хуже классических, и вероятность их восстановления после глубокого разряда намного ниже. Их «конек» — цикличность, т.е. работа в режиме многократного частичного разряда-заряда. Но никак не глубокого разряда. Поэтому задача пользователя при эксплуатации таких батарей — не допускать их разряда и своевременно его восполнять.

Ну и собственно, какое зарядное устройство выбрать?

Полноценное зарядное устройство, которое позволит правильно зарядить аккумулятор, изготовленный по любой технологии, должно иметь регулировку не только зарядного тока, но и, что самое важное, напряжения заряда. Причем крайне желательно, чтобы регулировка была плавной (особенно для зарядного тока) и как можно более широкими диапазонами. Допустима ступенчатая регулировка напряжения заряда, лишь бы этого самого напряжения хватало для правильного заряда. Также важно, чтобы зарядное устройство без «разрешения» пользователя не переходило по окончании заряда в так называемый буферный режим (хранение аккумулятора при пониженном напряжении с компенсацией саморазряда), это препятствует полноценному окончанию заряда и «добивке» емкости до 100%.

Примером полноценного импульсного зарядного устройства, которое способно полностью заменить старый трансформаторник — выпрямитель, является «Вымпел-57» производства ООО «НПП «ОРИОН», либо более продвинутая «интеллектуальная» его версия — «Вымпел-55».

Ну и конечно, старое доброе трансформаторное зарядное устройство — выпрямитель, способное заряжать методом постоянного тока без ограничения напряжения, но, повторимся, на наш взгляд, это инструмент для опытного и умелого пользователя.

Помните, что своевременный и правильный профилактический заряд как минимум в два – три раза продлит ресурс Вашего аккумулятора!

Зарядное устройство для автомобильного аккумулятора своими руками

Тема автомобильных зарядных устройств интересна очень многим. Из статьи вы узнаете, как переделать компьютерный блок питания в полноценное зарядное устройство для автомобильных аккумуляторов. Оно будет представлять собой импульсное зарядное устройство для аккумуляторов с емкостью до 120 А·ч, то есть зарядка будет довольно мощной.

Собирать практически ничего не нужно – просто переделывается блок питания. К нему добавится всего один компонент.

Компьютерный блок питания имеет несколько выходных напряжений. Основные силовые шины имеют напряжение 3,3, 5 и 12 В. Таким образом, для работы устройства понадобится 12-вольтовая шина (желтый провод).

Для зарядки автомобильных аккумуляторов напряжение на выходе должно быть в районе 14,5-15 В, следовательно, 12 В от компьютерного блока питания явно маловато. Поэтому первым делом необходимо поднять напряжение на 12-вольтовой шине до уровня 14,5-15 В.

Затем, нужно собрать регулируемый стабилизатор тока или ограничитель, чтобы была возможность выставить необходимый ток заряда.

Зарядник, можно сказать, получится автоматическим. Аккумулятор будет заряжаться до заданного напряжения стабильным током. По мере заряда сила тока будет падать, а в самом конце процесса сравняется с нулем.

Приступая к изготовлению устройства необходимо найти подходящий блок питания. Для этих целей подойдут блоки, в которых стоит ШИМ-контроллер TL494 либо его полноценный аналог K7500.

Когда нужный блок питания найден, необходимо его проверить. Для запуска блока нужно соединить зеленый провод с любым из черных проводов.

Если блок запустился, нужно проверить напряжение на всех шинах. Если все в порядке, то нужно извлечь плату из жестяного корпуса.

После извлечения платы, необходимо удалить все провода, кроме двух черных, двух зеленого и идет для запуска блока. Остальные провода рекомендуется отпаять мощным паяльником, к примеру, на 100 Вт.

На этом этапе потребуется все ваше внимание, поскольку это самый важный момент во всей переделке. Нужно найти первый вывод микросхемы (в примере стоит микросхема 7500), и отыскать первый резистор, который применен от этого вывода к шине 12 В.

На первом выводе расположено много резисторов, но найти нужный — не составит труда, если прозвонить все мультиметром.

После нахождения резистора (в примере он на 27 кОм), необходимо отпаять только один вывод. Чтобы в дальнейшем не запутаться, резистор будет называться Rx.

Теперь необходимо найти переменный резистор, скажем, на 10 кОм. Его мощность не важна. Нужно подключить 2 провода длиной порядка 10 см каждый таким образом:

Один из проводов необходимо соединить с отпаянным выводом резистора Rx, а второй припаять к плате в том месте, откуда был выпаян вывод резистора Rx. Благодаря этому регулируемому резистору можно будет выставлять необходимое выходное напряжение.

Стабилизатор или ограничитель тока заряда очень важное дополнение, которое должно иметься в каждом зарядном устройстве. Этот узел изготавливается на базе операционного усилителя. Тут подойдут практически любые «операционники». В примере задействован бюджетный LM358. В корпусе этой микросхемы два элемента, но необходим только один из них.

Пару слов о работе ограничителя тока. В этой схеме операционный усилитель применяется в качестве компаратора, который сравнивает напряжение на резисторе с низким сопротивлением с опорным напряжением. Последнее задается при помощи стабилитрона. А регулируемый резистор теперь меняет это напряжение.

При изменении величины напряжения операционный усилитель постарается сгладить напряжение на входах и сделает это путем уменьшения или увеличения выходного напряжения. Тем самым «операционник» будет управлять полевым транзистором. Последний регулирует выходную нагрузку.

Полевой транзистор нужен мощный, поскольку через него будет проходить весь ток заряда. В примере используется IRFZ44, хотя можно использовать любой другой соответствующих параметров.

Транзистор обязательно устанавливается на теплоотвод, ведь при больших токах он будет хорошенько нагреваться. В этом примере транзистор просто прикреплен к корпусу блока питания.

Печатная плата была разведена на скорую руку, но получилось довольно неплохо.

Теперь остается соединить все по картинке и приступить к монтажу.

Напряжение выставлено в районе 14,5 В. Регулятор напряжения можно не выводить наружу. Для управления на передней панели имеется только регулятор тока заряда, да и вольтметр тоже не нужен, поскольку амперметр покажет все, что надо видеть при зарядке.

Амперметр можно взять советский аналоговый или цифровой.

Также на переднюю панель был выведен тумблер для запуска устройства и выходные клеммы. Теперь можно считать проект завершенным.

Получилось несложное в изготовлении и недорогое зарядное устройство, которое вы можете смело повторить сами.

Автор: АКА КАСЬЯН.

Прикрепленные файлы: СКАЧАТЬ.


 

запчасти для бытовой техники, техники для кухни и дома на OLX.ua Украина

Балаклея Сегодня 05:31

Optima 7010 4600

Электроника » Аксессуары и комплектующие

Дрогобыч Сегодня 05:31

Киев, Соломенский Сегодня 04:45

Киев, Шевченковский Сегодня 03:45

50 грн.

Договорная

Одесса, Приморский Сегодня 03:11

Схема автомобильного зарядного устройства

Как правило, во всех зарядных устройствах, регулировка тока зарядки осуществляется мощным тиристором или транзистором которые установлены на большом радиаторе и занимающие много места и не малые по весу. Соответственно из-за больших нагревов регулирующих элементов уменьшается коэффициент полезного действия и надежность всего узла. В автомобильном зарядном устройстве, которое предлагается в этой статье, эти недостатки устранены.

Схема автомобильного зарядного устройства работающего по принципу импульсного регулятора тока представлена на рисунке ниже.

Генератор импульсов, собранный на двух логических элемента 2И-НЕ (DD1.1 и DD1.2), является собственно блоком управления нашего зарядного. Резистором R3 регулируется скважность импульсов вырабатываемых данным блоком.

Элементы DD1.3 и DD1.4, включенные параллельно, выступают в роли буферного усилителя и инвертора выходного сигнала генератора. А полевой транзистор VT1 это регулятор тока.

При параметрах деталей, которые указаны на схеме, частота вырабатываемых импульсов будет составлять около 13 килогерц.

Принцип регулировки тока зарядки основан на изменении частоты генератора. При увеличении частоты скважность импульсов будет уменьшаться, соответственно будет уменьшаться и ток, протекающий через транзистор и аккумулятор, так как транзистор, будет меньше времени находится в открытом состоянии за период. При уменьшении частоты все наоборот.

В открытом состоянии сопротивление транзистора составляет примерно 0,017 Ом. Но так как он работает в режиме ключа на частоте около 13 килогерц, то при токе зарядки аккумулятора 5 ампер нагрев практически отсутствует. И тепловая мощность, рассеиваемая им в атмосферу, будет всего около 0.55 ватта. Соответственно площадь радиатора будет совсем небольшой, или же вообще можно обойтись без радиатора.

Для надежной работы зарядного устройства трансформатор Т1 должен быть мощностью ни менее 150 ватт, с вторичной обмоткой которая обеспечит 16-17 вольт на сглаживающем конденсаторе С1, и током ни менее 6 ампер. Но еще лучше будет, если использовать так называемый «электронный трансформатор», который применяется с галогенными лампами на 12 вольт. Это транзисторный преобразователь с трансформаторным выходом. Его преимуществом является малый размер и меньшее потребление энергии. Можно использовать широко распространенный трансформатор выпускаемый фирмой «Taschibra», мощностью 150 ватт и напряжением 12 вольт. Но для этого его необходимо немного переделать. Нужно домотать вторичную обмотку. Она у него состоит из 4-х параллельных проводов (жгута), каждый 1 мм, 9 витков. Дополняем вторичку еще тремя витками такого же жгута. Это можно сделать не разбирая ферритовый магнитопровод. После такой доработки, напряжение на конденсаторе C1 повысится до необходимых нам 17 вольт, при нагрузке 5,5 ампер.

Далее после трансформатора стоит диодный мост, собранный из диодов Шоттки. При этом VD1 это два диода в одном корпусе (можно и раздельно), VD2-VD3 дискретные. Все диоды устанавливаются на радиаторе через изолирующую прокладку с теплопроводной пастой.

Транзистор то же устанавливается на радиаторе из меди или алюминия размером 50х50х1 мм.

Амперметр взят от бытового магнитофона советского производства М476/2. Можно установить и любой другой, подобрав при этом шунт.

Конденсатор C1 желательно установить как можно большей емкости на напряжение не ниже 25 вольт. C2 примерно 10МкФ 16 вольт.

Микросхему К561ЛА7 можно заменить импортным аналогом, а транзистор на IRFZ44N.

Данное устройство можно использовать не только как зарядное, но и как регулятор мощности различных нагревательных и осветительных приборов или регулировки частоты вращения коллекторных двигателей. При этом выходное напряжение и ток зависят только от номиналов деталей схемы.

Еще одной особенностью этой схемы является возможность регулировать ток от нуля до максимального, в отличие от многих других схем.

 


Анекдот:

Внимательно вчитавшись в название «Калгон»,
я подумал, что оно идеально бы подошло для слабительного.

Точное регулирование постоянного тока способствует быстрой зарядке — Аналоговые — Технические статьи

Поскольку устройства с батарейным питанием стали неотъемлемой частью нашей повседневной жизни, бремени зарядки этих устройств уделяется больше внимания, чем когда-либо. За последние пару лет появилось много новых подходов к решению проблемы длительного времени зарядки, чтобы пользователи могли полностью заряжать свои устройства за минуты, а не часы.

В этом посте я расскажу о тенденциях в области быстрой зарядки и той важной роли, которую играет точное регулирование постоянного тока (CC) в обеспечении быстрых, безопасных и экономичных решений для более быстрой зарядки устройств.

Батареи обычно проходят через две фазы во время зарядки: постоянного тока (CC) и постоянного напряжения (CV). На рисунке 1 показана типичная кривая зарядки литий-ионной (Li-ion) батареи 4,2 В. CC используется примерно для первых 67% заряда, когда большая часть энергии передается от зарядного устройства к аккумулятору. CV срабатывает в течение последних 33% оставшегося времени зарядки, чтобы полностью зарядить аккумулятор и поддерживать полный заряд. Некоторые зарядные устройства накачивают небольшие токи (также называемые непрерывной зарядкой) во время CV, чтобы учесть токи разряда и поддерживать напряжение аккумулятора полностью заряженным.Время, необходимое для полной зарядки аккумулятора, зависит от его емкости и максимально допустимого зарядного тока, который зависит от химического состава аккумулятора и температуры окружающей среды. Например, если у вас есть литий-ионный аккумулятор емкостью 3000 мАч и скоростью заряда 0,8 ° C (где C означает ток, необходимый для зарядки аккумулятора в течение одного часа, производители аккумуляторов рекомендуют его для продления срока службы. life), для полной зарядки аккумулятора потребуется два-три часа.

Рисунок 1: Типичная кривая зарядки литий-ионного аккумулятора

В последнем абзаце описан типичный сценарий зарядки, при котором скорость зарядки считается нормальной с ограниченным квитированием.Недавно представленные методы увеличивают время зарядки, передавая больше энергии батарее во время фазы CC. Эти методы используют либо собственные алгоритмы зарядки, либо соответствуют общепринятому стандарту, например стандарту программируемых источников питания USB Power Delivery (PPS). И настенное зарядное устройство, и устройство выполняют непрерывное квитирование, чтобы интеллектуально сообщать о потребностях аккумулятора и повышать эффективность зарядки.

Двумя основными методами быстрой зарядки являются высокое напряжение и низкий ток (унаследованный метод) и высокий ток и низкое напряжение (новая основная тенденция).Первый метод использует существующий зарядный кабель и ограничивает ток примерно до 2 А, увеличивая при этом уровни напряжения до 15 В. Проблема с этим методом заключается в сильном отводе тепла от необходимого каскада преобразования напряжения на стороне устройства, что снижает как срок службы батареи, так и максимально допустимую энергию, передаваемую батарее.

Второй метод использует напряжение, близкое к напряжению батареи, и более высокий ток, который может течь непосредственно в батарею. Этот метод обычно известен как прямая или быстрая зарядка.Этот метод обеспечивает более высокую скорость зарядки при более низких температурах, поскольку на стороне устройства нет преобразования напряжения. Однако для быстрой зарядки требуются специальные зарядные кабели, позволяющие протекать более высокие токи. Идея состоит в том, чтобы попытаться зарядить аккумулятор со скоростью, максимально приближенной к максимально допустимой, чтобы минимизировать время зарядки.

Учитывая более прохладный температурный профиль быстрой зарядки; он становится все более популярным, и большинство существующих стандартов принимают его. На рисунке 2 показана высокоуровневая блок-схема системы флэш-зарядки.

Рисунок 2: Блок-схема высокого уровня решения для быстрой зарядки

Как вы можете видеть на Рисунке 2, точный контур управления током необходим для ускорения зарядки и добавления дополнительного уровня защиты поверх того, что уже используют другие блоки, такие как зарядные устройства и датчики уровня топлива. Хотя вы можете интегрировать функцию измерения тока, трудно достичь уровня точности, который могут обеспечить специальные решения для измерения тока, используя небольшие шунтирующие сопротивления для минимизации рассеивания тепла и возможность контролировать ток на высокой стороне.

TI предлагает множество специальных датчиков тока, которые хорошо подходят для быстрой зарядки. Эти решения включают семейство INA210, которое обеспечивает высокую точность в широком динамическом диапазоне; INA199, который имеет отличное сочетание точности и стоимости; и новое семейство INA181, которое предлагает лучшее соотношение цены и пропускной способности, точности и цены. В этом приложении широкая полоса пропускания с обратной связью INA181 350 кГц позволяет обнаруживать быстрые колебания CC-сигнала — информацию, которая вам нужна для максимального CC за счет минимизации защитной полосы для защиты и безопасности батареи.

На рис. 3 показан типичный сигнал импульсной зарядки на выходе настенного зарядного устройства.

Рисунок 3: Пример профиля тока быстрой зарядки

Подводя итог, можно сказать, что основным ограничением современных методов быстрой зарядки является рассеивание тепла вблизи батареи, что ограничивает максимально допустимую передаваемую энергию и, таким образом, сводит к минимуму время зарядки. Кроме того, высокие температуры вызывают проблемы с безопасностью и снижением срока службы батарей. Быстрая зарядка является многообещающим методом, поскольку она обеспечивает высокий уровень передачи энергии при относительно более низких температурах, одновременно повышая эффективность зарядки и сводя к минимуму время зарядки.Для обеспечения такой высокой эффективности требуется точный контур регулирования тока, что лучше всего достигается с помощью специальных датчиков тока.

Чтобы получать подобные сообщения на свой почтовый ящик, войдите в систему и подпишитесь на Analog Wire.

Дополнительные ресурсы

Часто задаваемые вопросы о зарядных устройствах

Какие факторы следует учитывать при выборе зарядного устройства?

1.Сколько аккумуляторов вы будете заряжать? Примите во внимание сервисный аккумулятор, стартер, носовое подруливающее устройство и т. Д. Также рассмотрите любое возможное расширение вашей системы в будущем (= достаточное количество выходов зарядного устройства).

2. Зарядное устройство аккумулятора должно иметь такое же напряжение, что и аккумулятор, т. Е. Напряжение аккумулятора 12 В = зарядное устройство 12 В. А для напряжения аккумулятора 24 В требуется зарядное устройство на 24 В.

3. Для безопасной и быстрой зарядки батарей требуется достаточный зарядный ток (измеряется в амперах).Рекомендуемую емкость см. В технических характеристиках зарядного устройства в этом Powerbook.

Пример: Гелевый аккумулятор на 200 Ач требует зарядного устройства минимум на 25 А. Если в процессе зарядки подключено несколько нагрузок (например, обогреватели, холодильник, освещение), необходимо зарядное устройство на 50 А. Если зарядное устройство питается от генератора, а не от сети, рекомендуется использовать батарею на 100 ампер. Зарядное устройство большего размера сокращает время зарядки и позволяет генератору работать в течение более коротких периодов времени.Это повышает уровень комфорта и лучше для окружающей среды.

4. Для простых и часто более дешевых зарядных устройств ток заряда указан для номинального напряжения батареи (= 12 или 24 В). Для зарядки аккумулятора требуется более высокое напряжение заряда, а именно 14,4 или 28,8 В. Если зарядный ток падает при этом (более высоком) напряжении заряда, для зарядки аккумулятора потребуется гораздо больше времени. В результате сокращается срок службы батареи или увеличивается время работы генератора (если зарядное устройство для батареи питается от генератора).Зарядные устройства Mastervolt обеспечивают полный зарядный ток даже при высоком зарядном напряжении и высоких температурах окружающей среды. Это обеспечивает короткое время зарядки и оптимальный срок службы ваших аккумуляторов.

Аккумулятор какого типа я могу заряжать?

Зарядные устройства

Mastervolt подходят для всех типов аккумуляторов. Полную информацию можно найти в технических характеристиках зарядного устройства в разделе «Зарядные характеристики». Mastervolt рекомендует выбрать зарядное устройство с достаточной емкостью и, если возможно, подключить его к датчику температуры аккумулятора и датчику напряжения аккумулятора.Всегда подключайте литий-ионные батареи в соответствии с прилагаемыми инструкциями и внимательно следуйте инструкциям по установке (зарядка с температурной компенсацией не требуется).

Могу ли я заряжать литий-ионные батареи разных типов?

Большинство зарядных устройств Mastervolt могут заряжать литий-ионные батареи. При использовании современных литий-ионных аккумуляторов Mastervolt (серии MLI и MLS) бесплатное загружаемое программное обеспечение для настройки (MasterAdjust) позволяет просто настроить зарядное устройство.Другие характеристики заряда также могут быть легко установлены. Обратите внимание, что все литий-ионные батареи следует устанавливать в соответствии с инструкциями производителя.

Может ли зарядное устройство Mastervolt оставаться подключенным всю зиму?

Да, это не проблема. Зарядные устройства Mastervolt безопасны в использовании и даже лучше для самих аккумуляторов. Напряжение заряда регулируется в соответствии с температурой батареи, чтобы гарантировать, что батареи остаются в оптимальном состоянии, увеличивая срок их службы.Трехступенчатый + метод зарядки обеспечивает ежемесячный цикл поглощения, поэтому аккумулятор остается активным.

У меня иногда бывает ограниченный номинал предохранителя через сеть переменного тока. Могу ли я использовать большое зарядное устройство?

Да, можно. Все зарядные устройства Mastervolt и Combis оснащены новейшей электроникой, что снижает их энергопотребление примерно на 40% по сравнению с обычными зарядными устройствами. Например, потребляемая мощность 12-вольтовых зарядных устройств Mastervolt приведена ниже для моделей на 230 В.Указанные уровни тока относятся к работе с максимальной мощностью, то есть в тот момент, когда зарядное устройство обеспечивает полную мощность.

Кроме того, каждое зарядное устройство с зарядным током более 15 А (12 В) может быть оборудовано панелью дистанционного управления. Это бесполезно для небольших зарядных устройств, так как потребление тока будет минимальным. Использование панели дистанционного управления позволяет дополнительно снизить исходящий ток заряда, в результате чего зарядное устройство использует еще меньше энергии от сети.Это предотвратит перегорание предохранителей, но немного увеличит время зарядки.

Могу ли я установить зарядное устройство в машинном отделении или отсеке?

Зарядные устройства

Mastervolt можно легко установить в машинном отделении. Даже при высоких температурах зарядные устройства Mastervolt обеспечивают максимальный ток заряда, надежно и быстро заряжая аккумуляторы. Выходной ток будет автоматически уменьшен, если окружающая температура станет очень высокой.

Могу ли я заряжать аккумуляторы отдельно?

Некоторые модели оснащены тремя выходами, что позволяет заряжать три блока батарей независимо друг от друга.Большинство зарядных устройств Mastervolt имеют дополнительный выход для стартерной батареи. Этот выход снабжает, например, стартерную аккумуляторную батарею поддерживающим зарядом. Также можно заряжать несколько комплектов батарей через изолятор батареи (также известный как диодный разветвитель). Возникающая потеря напряжения компенсируется настройкой зарядного устройства или подключением кабелей датчиков.

Можно ли подключить зарядное устройство к тому же разъединителю аккумулятора, что и генератор?

Хотя это возможно, лучше и удобнее установить два отдельных изолятора батареи.Если это должно быть проблематично, используйте изолятор батареи для обоих. В этом случае убедитесь, что изолятор батареи или Battery Mate достаточно мощный, чтобы одновременно обрабатывать ток зарядного устройства и генератора переменного тока.

Какого диаметра должен быть кабель между зарядным устройством и аккумулятором?

При расчете необходимого диаметра этих кабелей руководствуйтесь следующим практическим правилом: 1 мм² толщины кабеля на каждые 3 ампера. Например, для зарядного устройства на 50 ампер требуется кабель 50: 3 или 16.6 мм². Ближайший к этому стандартный кабель — 16 мм². Это применимо, когда расстояние составляет не более трех метров. Для больших расстояний вам понадобится более толстый кабель.

Какое максимально допустимое расстояние между зарядным устройством и аккумуляторами?

Как правило, максимальная длина составляет три метра при использовании описанного ранее метода расчета. Также возможна длина кабеля 6 метров, но в этом случае необходимо использовать более толстые кабели. Для приведенного ранее примера потребуются кабели сечением 25 мм2.

Могу ли я параллельно подключить зарядное устройство к генератору?

Зарядное устройство можно подключать параллельно к генератору переменного тока, например, двигательной установки. Такая ситуация возникает, когда двигатель работает и одновременно запускается генератор 230 В.

Сколько времени пройдет, прежде чем мои батареи полностью зарядятся?

Время зарядки аккумулятора напрямую зависит от отношения емкости аккумулятора к емкости зарядного устройства. Другими важными факторами, определяющими, сколько времени требуется для полной зарядки разряженной батареи, являются тип батареи и энергопотребление потенциальных потребителей.

Как правило, для свинцово-кислотных аккумуляторов емкость аккумулятора следует разделить на максимальную емкость заряда и прибавить четыре часа. Четыре часа предназначены для времени поглощения, в течение которого батарея определяет, насколько больше необходим ток, и емкость батареи увеличивается с прибл. От 80% до 100%.

Конечно, это правило не учитывает энергопотребление другого подключенного оборудования: если подключены такие нагрузки, как холодильник или освещение, их потребляемая мощность должна быть вычтена из доступной емкости зарядки.

Пример: Возьмем пустую батарею на 200 Ач, зарядное устройство на 50 А и подключенную нагрузку, потребляющую 10 А. Время зарядки в этом случае будет около 200 / (50-10) = 5 часов, или 9 часов в целом, включая четыре часа времени поглощения. Если батареи разряжены только наполовину, время перезарядки будет 100 / (50-10) = 2,5 + 4 часа, всего 6,5 часов. Время впитывания короче с гелевыми и AGM батареями — около двух-трех часов. Поэтому аккумуляторы этих типов заряжаются быстрее, чем обычные (см. Также «Зарядка аккумуляторов»).

Что такое определение напряжения?

Независимо от толщины, каждый кабель имеет некоторое сопротивление, что приводит к потере определенного количества напряжения между зарядным устройством и аккумуляторами. Эта потеря напряжения зависит от толщины кабеля и тока зарядного устройства. Зарядное устройство аккумулятора стандартно измеряет напряжение на своих выходных клеммах. Из-за потерь в кабеле напряжение выше, чем напряжение аккумулятора. Выходное напряжение зарядного устройства батареи за вычетом потерь напряжения на кабелях и есть напряжение батареи.Когда на кабелях пропадает большое напряжение, зарядное устройство может слишком рано переключиться на фазу поглощения, что означает, что аккумулятор не будет полностью заряжен или время зарядки увеличится. Чтобы компенсировать потерю напряжения через кабели, необходимо подключить измерительные провода между зарядным устройством и аккумуляторами. Эти (тонкие) кабели гарантируют, что зарядное устройство батареи измеряет напряжение непосредственно на положительной и отрицательной клеммах батареи, а не на выходных клеммах зарядного устройства.Потери напряжения во время зарядки компенсируются, и аккумуляторы заряжаются быстро и эффективно. Таким же образом можно компенсировать падение напряжения, например, на диодном разветвителе (изоляторе батареи).

Что такое технология зарядки 3 ступени +?

3-ступенчатая + технология зарядки

Mastervolt — это самый быстрый и безопасный способ зарядки гелевых, AGM, литий-ионных аккумуляторов и аккумуляторов открытого типа. Он состоит из следующих этапов:

Первый этап: МАССОВАЯ фаза

В фазе накопления зарядное устройство вырабатывает максимальный ток, т.е.г. 50 ампер для ChargeMaster 12/50 и напряжение аккумулятора увеличивается. Продолжительность этой фазы зависит от емкости аккумулятора, емкости зарядного устройства и любых потребителей, подключенных к аккумулятору во время зарядки. Чем больше батарея, тем больше времени занимает этот шаг; чем больше зарядное устройство, тем короче ступень. Если подключены такие потребители, как холодильник, они также должны получать питание от зарядного устройства, что снижает ток заряда, поступающий в батареи, и увеличивает время, необходимое для зарядки.

Второй шаг: Фаза ПОГЛОЩЕНИЯ

Второй этап, фаза поглощения, начинается, когда аккумулятор достигает максимального напряжения. В этот момент аккумулятор заряжен примерно на 80%, и ток заряда начинает медленно уменьшаться. При 25 ° C максимальное напряжение составляет 14,25 В для батареи 12 В и 28,5 В для батареи 24 В. На этом этапе аккумулятор заряжается до 100%, что занимает примерно три-четыре часа, в зависимости от типа аккумулятора, зарядного устройства и количества заряда.

Третий этап: Фаза FLOAT

Когда аккумулятор полностью заряжен в конце фазы абсорбции, начинается фаза плавания. Зарядное устройство Mastervolt переключается на поддерживающее напряжение, так что аккумулятор остается полностью заряженным и в оптимальном состоянии. Все существующие потребительские нагрузки также получают питание. Зарядное устройство остается в плавающей фазе до тех пор, пока напряжение аккумулятора не упадет из-за большой нагрузки или пока зарядное устройство не отключится из-за отключения источника питания.

PLUS фаза

Большинство зарядных устройств Mastervolt оснащены дополнительной ступенькой, фазой PLUS. В периоды, когда батарея находится в состоянии покоя, цикл абсорбции продолжительностью один час будет выполняться каждые 12 дней, чтобы гарантировать, что батарея остается в идеальном состоянии.

Обратный усилитель

Во время фазы поглощения батарея принимает все меньший ток. Если ток заряда остается ниже определенного уровня в течение определенного периода времени, аккумулятор считается полностью заряженным.Этот максимальный ток заряда называется обратным током, а соответствующий период — временем обратного тока. Зарядное устройство воспринимает это как сигнал для перехода к следующему этапу, фазе плавающего режима. Как и многие другие параметры зарядного устройства, обратный ток и обратный ток могут быть установлены установщиком с помощью программного обеспечения, которое свободно доступно на веб-сайте Mastervolt. Фактически, установщик может использовать это программное обеспечение для настройки зарядного устройства в соответствии с требованиями вашей бортовой системы.

Для чего нужен датчик температуры?

При зарядке аккумулятора важно точное напряжение заряда. Напряжение заряда должно соответствовать температуре аккумулятора. Когда аккумулятор холодный, напряжение заряда должно быть немного выше, чтобы аккумулятор полностью зарядился. При высоких температурах окружающей среды необходимо снизить напряжение заряда, чтобы аккумулятор не перезарядился. Зарядные устройства Mastervolt стандартно настроены на температуру батареи 25 ° C.

Когда датчик температуры подключен к зарядному устройству, выходное напряжение изменится на 0.03 В на ° C для 12-вольтовой системы и 0,06 В на ° C для 24-вольтовой системы. Это соответствует советам большинства производителей аккумуляторов. Например, при температуре 15 ° C максимальное напряжение заряда для 12-вольтовой системы составляет 14,55 вольт, а при 30 ° C — 14,1 вольт. Соответствующие значения для системы на 24 В составляют 29,1 и 28,2 В. При температуре 12 ° C напряжение не увеличивается, чтобы защитить подключенные нагрузки от перенапряжения. При 50 ° C напряжение заряда снижается до 12 или 24 В, чтобы защитить аккумулятор от таких высоких температур.Подключение датчика температуры обеспечивает быструю и безопасную зарядку аккумулятора нужным напряжением.

Как заряжать аккумуляторы с ограниченной мощностью?

Когда несколько больших зарядных устройств подключаются параллельно, доступного 230-вольтового соединения часто бывает недостаточно. Подключите одно из зарядных устройств аккумулятора, чтобы предотвратить перегрузку сети переменного тока. Хотя это увеличит время, необходимое для зарядки, обычно вы все равно подключены к сети на более длительный период времени (на ночь).Оба зарядных устройства могут получать питание, если генератор работает, поскольку генератор обычно обеспечивает большую мощность, чем подключение к сети. Два зарядных устройства не вызовут перегрузки силового соединения. Другой вариант — оснастить судно или транспортное средство двумя розетками на 230 В.

Какое зарядное устройство необходимо для аккумулятора емкостью 200 Ач и стартерного аккумулятора 100 Ач?

Стартерная аккумуляторная батарея обычно не учитывается при расчете емкости зарядного устройства — она ​​используется только для запуска двигателя и поэтому имеет тенденцию к частичному разряду, если вообще разряжается.Пока вы используете двигатель, генератор подзаряжает аккумулятор, а при подключении к сети он заряжается через второй выход зарядного устройства Mastervolt. Как показывает практика, 25% емкости (до 50% для гелевых аккумуляторов) от емкости аккумулятора достаточно для быстрой и безопасной зарядки аккумулятора, а также для питания бортовых систем. Например, для батареи на 200 Ач подойдет зарядное устройство на 50 ампер.

Достаточно ли 10% емкости аккумулятора?

Определенно нет.Вы можете принять от 25% до 50% с батареями Mastervolt. Старое правило 10% было обычным явлением в те дни, когда зарядные устройства не имели регулирования тока и напряжения, а слишком высокий ток мог перезарядить батареи. Зарядные устройства Mastervolt идеально регулируют ток / напряжение, а также оснащены датчиком температуры, который обеспечивает регулировку напряжения в соответствии с температурой аккумулятора. Во время зарядки аккумуляторов подключаются несколько нагрузок, и эти нагрузки также получают питание от зарядного устройства, поэтому доступный ток заряда для аккумуляторов будет уменьшен.

Можно ли параллельно подключить несколько зарядных устройств?

Зарядные устройства Mastervolt не только являются зарядными устройствами, но и обеспечивают питание бортовой системы на 12 или 24 В. Их можно легко подключить параллельно, если вы захотите увеличить емкость. Фактически, это часто единственный способ запитать вашу 12- или 24-вольтовую систему с помощью 230- или 400-вольтовой сети. Точно так же, если вам нужен ток заряда выше 100 ампер, можно параллельно подключить несколько зарядных устройств.Параллельная система с несколькими зарядными устройствами не требует специального оборудования. Его можно установить точно так же, как и одиночное зарядное устройство, за исключением того, что каждое зарядное устройство будет иметь свои собственные кабели, ведущие к батарее или распределителю постоянного тока.

Проводка компенсации напряжения также подключается отдельно для каждого зарядного устройства. Датчик температуры для каждого зарядного устройства должен быть отдельно подключен к аккумулятору, который, как вы ожидаете, достигнет максимальной температуры. Если зарядные устройства и датчики правильно подключены, зарядный ток будет равномерно распределяться по подключенным зарядным устройствам.

Остается возможность, что одно из зарядных устройств переключится на фазу абсорбции раньше, чем другие. Это совершенно нормальное явление, вызванное допусками при регулировке, не влияющее на время зарядки и работу зарядного устройства. При параллельном подключении нескольких зарядных устройств рекомендуется, чтобы они были одной модели, типа и емкости. Например, когда зарядное устройство на 100 ампер подключено параллельно зарядному устройству на 50 ампер, зарядный ток не будет равномерно распределяться между ними.Хотя это не повлияет на процесс зарядки и не повредит зарядным устройствам, более эффективно установить два зарядных устройства на 75 ампер каждое.

<< Назад к обзору

Высоковольтное сильноточное зарядное устройство

работает со всеми топологиями преобразователя и любой конфигурацией аккумуляторов

Рынок аккумуляторных батарей в бытовой электронике достиг стабильного уровня зрелости, когда разработка зарядного устройства требует немного больше усилий, чем отказ от специализированного Зарядное устройство IC в дизайн.Это связано с тем, что батареи в бытовой электронике соответствуют устаревшим стандартам с популярными конфигурациями, плавающими напряжениями, токами заряда, выходными напряжениями и алгоритмами заряда. Тем не менее, спрос на батареи, не подходящие для этих стандартных форм, постоянно растет. Большая часть этого спроса обусловлена ​​инициативами по экологически чистому производству в сочетании с общим переходом на портативное оборудование в медицинской и других специализированных областях.

Специализированные микросхемы зарядных устройств не успевают за нынешним взрывным ростом разнообразия приложений.Растущее разнообразие конфигураций аккумуляторов просто слишком обширно: от киловаттных вилочных погрузчиков для помещений и изолированного медицинского оборудования до промышленных датчиков, собирающих энергию на микромощности. Многие приложения предъявляют уникальные требования к оптимальному хранению энергии, которые не могут быть удовлетворены с помощью существующих микросхем зарядных устройств.

Например, на рынке нет специализированных микросхем зарядного устройства, которые могут заряжать аккумуляторные батареи с постоянным напряжением 30 В или выше, обеспечивать зарядный ток 10 А и поддерживать эффективную зарядку в топологии понижающе-повышающего, повышающего или обратного тока.В результате разработчики обратились к относительно громоздким решениям с дискретными компонентами, по сути, вернувшись к темным векам до появления зарядных устройств. Хотя дискретные решения могут удовлетворить многие требования к зарядным устройствам, они не могут сравниться с простотой использования и компактностью специализированных микросхем зарядных устройств. Разработчикам требуется решение, которое сохраняло бы простоту специальной микросхемы зарядного устройства с универсальностью решений для дискретных компонентов.

Зарядное устройство LTC4000 компании

Linear заполняет пробел между приложениями, поддерживаемыми простыми в использовании специальными интегральными схемами зарядного устройства, и теми, которые в противном случае потребовали бы сложных дискретных решений.LTC4000 сохраняет простоту специализированного зарядного устройства с одной микросхемой, но использует модель с двумя микросхемами, чтобы соответствовать универсальности приложений дискретных решений. Он может работать в паре с любой топологией преобразователя DC / DC или AC / DC, включая, помимо прочего, понижающий, повышающий, понижающий-повышающий, SEPIC и обратноходовой.

LTC4000 выполняет функции зарядного устройства, с которыми не справляются специализированные микросхемы зарядного устройства. Он сочетается практически с любым преобразователем постоянного тока в постоянный, создавая полное, многофункциональное решение для зарядного устройства — забудьте о сборке дискретных компонентов.

Широкий диапазон входного напряжения (3–60 В) LTC4000 и практически неограниченный ток позволяют создавать эффективные, высокопроизводительные и полнофункциональные зарядные устройства, которые не уступают по характеристикам специализированным микросхемам зарядных устройств. На рисунке 1 показано типичное приложение: LTC4000 в паре с LTC3786 для создания зарядного устройства для 5-элементных литий-ионных аккумуляторов на 5 А.

Рис. 1. Зарядное устройство повышающего преобразователя от 6 В до 21 В при 5 А для пяти литий-ионных элементов

LTC4000 преобразует практически любой источник питания постоянного / постоянного тока с внешней компенсацией линейной технологии в зарядное устройство с:

  • Широкий диапазон входного и выходного напряжения от 3 В до 60 В
  • Точный (± 0.25%) резистор программируемого напряжения холостого хода батареи
  • Таймер с выбором вывода или отключение тока
  • Температурная зарядка с использованием термистора NTC
  • Автоматическая подзарядка
  • C / 10 капельный заряд для глубоко разряженных элементов
  • Плохое обнаружение батареи и выходы индикатора состояния
  • Прецизионный датчик тока обеспечивает низкое напряжение считывания в приложениях с высоким током

LTC4000 также включает интеллектуальное управление PowerPath через внешние полевые транзисторы с низкими потерями.Один внешний полевой транзистор используется для предотвращения обратного тока с выхода батареи или системы на вход. Другой PFET используется для управления зарядкой и разрядкой аккумулятора.

В этом случае низкий уровень потерь в полевых транзисторах имеет решающее значение для систем, требующих большого тока заряда для аккумуляторов большой емкости. Этот второй PFET также обеспечивает функцию мгновенного включения, которая обеспечивает немедленное питание системы ниже по потоку, даже при подключении к сильно разряженной батарее или батарее с коротким замыканием.

Элемент управления

PowerPath преимущественно обеспечивает питание системной нагрузки.Когда входная мощность ограничена, нагрузка на систему всегда имеет приоритет над зарядкой. Кроме того, если нагрузка системы требует большей мощности, чем может поддерживать вход, батарея используется для обеспечения дополнительной мощности, чтобы удовлетворить общую выходную нагрузку системы.

LTC4000 доступен в низкопрофильных 28-выводных корпусах QFN и SSOP размером 4 мм × 5 мм.

В основе LTC4000 лежат четыре внутренних усилителя ошибок, выходы которых объединяются для управления контуром управления внешнего преобразователя постоянного тока в постоянный. Таким образом, он может контролировать практически любой цикл зарядки аккумулятора, независимо от химического состава и плавающего напряжения.

На рисунке 2 показана упрощенная блок-схема четырех усилителей внутренней ошибки (A4-A7). Каждый из четырех входных усилителей крутизны отвечает за отдельный контур регулирования: входной ток, ток заряда, напряжение холостого хода аккумулятора и выходное напряжение. Усилитель выходной крутизны (A10) гарантирует, что контур, требующий наименьшего напряжения на выводе ITH для регулирования, управляет внешним преобразователем постоянного тока в постоянный.

Рис. 2. Упрощенная блок-схема ядра LTC4000 — четыре усилителя ошибок с объединенным выходом

Контур регулирования входного тока (A4 на рис. 2) предотвращает превышение входным током предела входного тока, программируемого резистором.Этот предел входного тока предотвращает перегрузку источника всей системы, обеспечивая более предсказуемое и надежное поведение. Кроме того, это добавляет дополнительный уровень защиты, чтобы продлить срок службы силовых компонентов преобразователя постоянного / постоянного тока и любых источников, в которых отсутствует защита от перегрузки по току.

Другой контур регулирования тока — это контур регулирования зарядного тока (A5). Этот контур контролирует фазу постоянного тока цикла зарядки, гарантируя, что ток заряда, измеряемый через резистор считывания зарядного тока, не превышает программируемый резистором полный ток заряда.

Контур регулирования постоянного тока управляет зарядкой до тех пор, пока аккумулятор не достигнет своего постоянного напряжения. В этот момент вступает в действие контур регулирования напряжения аккумулятора (A6), ток заряда начинает падать, и зарядное устройство входит в фазу постоянного напряжения цикла зарядки.

Напряжение холостого хода программируется с помощью резистивного делителя обратной связи между выводом BAT и выводом FBG. Вывод FBG отключает нагрузку резисторного делителя, когда V IN отсутствует. Это гарантирует, что резистивный делитель напряжения с плавающей запятой не потребляет ток батареи, когда батарея (подключенная к выводу BAT) является единственным доступным источником питания.Для V IN ≥ 3,0 В типичное сопротивление между выводом FBG и GND составляет 100 Ом.

Когда батарея не заряжается и не подает питание на нагрузку, внешний PFET, подключенный к батарее, отключается (Рисунок 4). В этом сценарии контур регулирования выходного напряжения (A7 на рисунке 2) управляет внешним преобразователем постоянного тока в постоянный. Цикл регулирования выходного напряжения аналогичен циклу регулирования напряжения батареи. Этот контур регулирует напряжение на выводе CSP на основе резистивного делителя обратной связи между выводом CSP и выводом FBG.Это регулирование выходного напряжения важно для обеспечения того, чтобы выходное напряжение системы оставалось хорошо регулируемым, когда аккумулятор отключен от нагрузки.

Рисунок 3. Фазы зарядки аккумулятора для 3-х серий LiFePO 4 элемента со схемой, показанной на Рисунке 1

Рисунок 4. Входной идеальный диод и батарея Контроллер PowerPath

Другой важной особенностью LTC4000 является управление PowerPath, которое состоит из двух функций: управление идеальным входным диодом, обеспечивающее идеальную диодную функцию с низкими потерями от преобразователя постоянного / постоянного тока к выходу; и элемент управления PowerPath аккумулятора, обеспечивающий интеллектуальный маршрут PowerPath между выходом системы и аккумулятором.

Функция идеального входного диода обеспечивает низкие потери проводимости от выхода DC / DC преобразователя (вывод IID — анод) к выходу системы (вывод CSP — катод). Низкие потери теплопроводности важны для эффективности и управления теплом в сильноточных системах. Эта функция также предотвращает обратный ток с выхода системы на преобразователь постоянного / постоянного тока. Такой обратный ток вызывает ненужную разрядку аккумулятора и в некоторых случаях может привести к нежелательному поведению преобразователя постоянного / постоянного тока. Это идеальное поведение диода достигается за счет управления внешним полевым транзистором (M1), затвор которого подключен к выводу IGATE (рисунок 4).

Контроллер PowerPath внешнего полевого транзистора, подключенного к выводу BGATE, аналогичен контроллеру входного идеального диода, управляющему выводом IGATE (рисунок 4). Когда не заряжается, PMOS ведет себя как идеальный диод между выводами BAT (анод) и CSN (катод). Идеальное поведение диода позволяет батарее обеспечивать ток для нагрузки системы, когда выход DC / DC находится в пределе тока или DC / DC медленно реагирует на немедленное увеличение нагрузки на выходе. Эта функция обеспечивает стабильное выходное напряжение системы.

Помимо идеального поведения диода, BGATE позволяет току течь от вывода CSN к выводу BAT во время зарядки. Когда ток течет от вывода CSN к выводу BAT, существует два режима работы. Первый — при зарядке сильно разряженной батареи (напряжение батареи ниже порога МГНОВЕННОГО ВКЛЮЧЕНИЯ, V BAT (INST ON) ). В этой области работы контроллер (A11 на рис. 4) регулирует напряжение на выходе системы примерно до 86% от конечного уровня напряжения холостого хода.Эта функция обеспечивает выходное напряжение системы, значительно превышающее напряжение батареи при зарядке сильно разряженной батареи. Эта функция INSTANT ON позволяет LTC4000 обеспечивать достаточное напряжение на выходе системы независимо от напряжения батареи.

Вторая область работы возникает, когда напряжение обратной связи батареи больше или равно пороговому значению МГНОВЕННОГО ВКЛЮЧЕНИЯ. В этой области на выводе BGATE устанавливается низкий уровень, чтобы позволить PMOS полностью включиться, уменьшая любую рассеиваемую мощность из-за тока заряда.

LTC4000 имеет широкую универсальность применения — его можно использовать в паре с преобразователем постоянного / постоянного тока для создания зарядного устройства для аккумуляторов любой конфигурации. Следующие приложения иллюстрируют эту универсальность.

Высокое напряжение, сильноточное зарядное устройство

Построить полную систему зарядки с LTC4000 и преобразователем постоянного тока в постоянный так же просто, как использовать специальную микросхему зарядного устройства. На рис. 5 показан LTC4000, управляющий понижающим преобразователем LT3845A в зарядном устройстве, разработанном для аккумуляторной батареи 3S LiFePO 4 (3S относится к трем элементам в последовательной конфигурации).Понижающий преобразователь LT3845A выбран из-за его простоты и высокого входного напряжения 60 В.

Рисунок 5. Зарядное устройство с понижающим преобразователем от 48 В до 10,8 В при 10 А для LiFePO серии 3 4 Аккумулятор

Каждая из ячеек LiFePO 4 имеет типичное напряжение холостого хода 3,6 В, в результате чего общее напряжение холостого хода составляет 10,8 В. Напряжение холостого хода 10,8 В устанавливается R BFB2 = 133 кОм и R BFB1 = 1,13 М. Как только напряжение холостого хода установлено, определяется значение R OFB1 и R OFB2 — это устанавливает выходное напряжение при завершении зарядки.Здесь R OFB2 установлен на 127 кОм и R OFB1 на 1,15 МОм, чтобы установить выходное напряжение стабилизации на 12 В.

После установки напряжения холостого хода и выходного напряжения установите полный ток заряда аккумулятора. В этом конкретном примере ток полной зарядки установлен на 10 А с использованием значения R CS , равного 5 мОм, и значения R CL , равного 24,9 кОм. Регулируемое напряжение считывания на R CS должно быть как можно большим для максимальной точности. Однако большее напряжение считывания заставляет R CS рассеивать больше мощности.Поскольку усилитель ошибки регулирования зарядного тока имеет максимальный уровень регулирования 1 В, это означает, что регулируемое напряжение считывания на R CS ограничено максимумом 50 мВ (= 1 В / 20). При токе заряда 10 А максимальная рассеиваемая мощность на этом измерительном резисторе составляет 0,5 Вт.

Любое значение R CL , превышающее 20 кОм, не повлияет на уровень полного тока заряда, но пока оно меньше 200 кОм, оно влияет на регулируемый уровень тока непрерывного заряда. В этом примере 24.Значение 9k выбрано, чтобы установить уровень тока непрерывного заряда 1,25A. Капельная зарядка может происходить в начале цикла зарядки, когда напряжение на батарее составляет менее 68% от поддерживающего напряжения. Эта функция непрерывного заряда особенно важна для литий-ионных аккумуляторов, поскольку им требуется меньший ток (обычно <20% от полного тока заряда) для безопасного и постепенного повышения напряжения аккумулятора перед подачей на них полного тока заряда.

Единственный другой контур регулирования с заданным значением — это контур регулирования входного тока.Используя метод, аналогичный настройке R CS , в этом примере R IS установлен на 5 мОм, а вывод IL остается плавающим (внутренне подтянутым к напряжению выше 1 В), чтобы установить максимальный предел входного тока 10 А.

Четырех простых шагов, описанных здесь, достаточно, чтобы настроить решение для зарядки LTC4000 для зарядки многих типовых конфигураций аккумуляторов. Для дальнейшей настройки решения можно выбрать несколько других значений компонентов для программирования алгоритма прекращения заряда. LTC4000 предлагает как прерывание таймера, так и прерывание уровня тока заряда.

При прекращении уровня зарядного тока процесс зарядки завершается, когда уровень зарядного тока падает (в режиме постоянного напряжения) до уровня, запрограммированного на выводе CX.

После завершения таймера процесс зарядки продолжается в режиме постоянного напряжения до тех пор, пока не истечет период времени, запрограммированный конденсатором на выводе TMR. В этом примере LTC4000 настроен с периодом завершения таймера 2,9 часа с использованием конденсатора 0,1 мкФ, подключенного к выводу TMR. 22.Резистор 1 кОм, подключенный к выводу CX, устанавливает уровень тока заряда 1 А, после чего вывод индикатора состояния заряда (CHRG) принимает состояние высокого Z.

LTC4000 обеспечивает зарядку с учетом температурных требований через вывод NTC. Резистор с отрицательным температурным коэффициентом (NTC), термически связанный с батареей, подключен в цепи резисторного делителя между выводами BIAS, NTC и GND. Этот резистор NTC позволяет приостанавливать зарядку, когда температура батареи выходит за пределы определенного диапазона. В этом примере диапазон температуры батареи установлен в пределах –1.От 5 ° C до 41,5 ° C. Зарядка с учетом температурных требований защищает аккумуляторы от опасных условий зарядки, таких как очень высокая или низкая температура, которые могут потенциально повредить аккумуляторы и сократить их срок службы.

Единственные оставшиеся компоненты, которые могут нуждаться в настройке, — это последовательный резистор и схема компенсации конденсаторов между выводами CC и ITH, а также схема резисторного делителя, подключенная к выводу VM. В качестве начальных значений в цепи компенсации можно установить резистор 10 кОм, соединенный последовательно с конденсатором 100 нФ.Затем его можно оптимизировать, глядя на реакцию во временной области на небольшое возмущение сигнала для каждого из четырех контуров регулирования. В этом примере окончательные оптимизированные значения составляют 14,7 кОм и 47 нФ.

Вывод VM является входом для компаратора с пороговым значением 1,193 В. Когда напряжение на этом выводе ниже порогового значения, на выводе RST устанавливается низкий уровень. Когда он выше порога, вывод RST переходит в состояние высокого Z. Подключив вывод RST к выводу DC / DC RUN или SHDN, этот компаратор выдает простой и точный сигнал UVLO (блокировка пониженного напряжения), который можно использовать для запуска внешнего преобразователя.В этом примере входной уровень UVLO установлен на 14,3 В. Установка минимального напряжения гарантирует, что вход преобразователя находится в пределах рабочего диапазона, прежде чем он будет запущен. Это, в свою очередь, обеспечивает более последовательное и предсказуемое поведение при включении зарядного устройства в целом.

Для дискретного решения с характеристиками, аналогичными характеристикам 10A / 3-элементного LiFePO 4 , потребовалось бы как минимум два усилителя считывания тока на стороне высокого напряжения, четыре операционных усилителя, а также два контроллера идеальных диодов высокого напряжения.Каждый из них должен быть протестирован и квалифицирован отдельно, чтобы гарантировать совместимость их технических характеристик, таких как диапазон синфазного режима, скорость и диапазон входного напряжения питания. Кроме того, дискретное решение потребует микропроцессора для обработки алгоритма зарядки.

Как показано в примере, LTC4000 исключает эти компоненты и необходимость их тестирования. Конструкция упрощается до выбора подходящего преобразователя постоянного тока в постоянный для требований напряжения и мощности и нескольких пассивных компонентов — в основном резисторов для установки важных параметров системы зарядного устройства.

На рис. 6 показан LTC4000 в паре с LTC3805-5 для создания изолированного одноэлементного литий-ионного зарядного устройства с зарядным током 2А. Это приложение демонстрирует возможности LTC4000 для создания уникального зарядного устройства с использованием доступных преобразователей постоянного тока в постоянный практически любой топологии. Это простое решение на основе LTC4000 избавляет от необходимости разрабатывать сложное дискретное решение.

Рисунок 6. 18–72 В IN до 4,2 В при 2А изолированное зарядное устройство для одноэлементной литий-ионной батареи

В LTC4000 задача разработки изолированного зарядного устройства сводится к выбору соответствующего изолированного преобразователя, выбору полевых транзисторов и определению номиналов некоторых резисторов и конденсаторов.Для приложения, показанного на рисунке 6, мы используем изолированный обратноходовой преобразователь LTC3805-5 с возможностью высокого входного напряжения. Два относительно низковольтных полевых транзистора используются для управления PowerPath, поскольку на вторичной стороне появляются только напряжения менее 6 В. Единственным уникальным соединением в этом конкретном приложении является использование оптрона для доставки сигнала обратной связи ITH от LTC4000 на вторичной стороне к выводу ITH LTC3805-5 на первичной стороне.

Полученное зарядное устройство способно заряжать одноэлементный литий-ионный аккумулятор (4.2V float) на 2A в изолированной среде. Система имеет широкий входной диапазон от 18 В до 72 В с временем окончания зарядки 2,9 часа, а также ток постоянной зарядки 220 мА.

Общее решение ограничивает общий выходной ток системы до 2,5 А контролируемым образом. Предотвращая перегрузку первичной обмотки по току, ограничение входного тока обеспечивает дополнительный уровень защиты силовых компонентов и повышает общую надежность системы.

Еще одно уникальное, но часто востребованное решение для зарядного устройства — это зарядное устройство buckboost.Опять же, в настоящее время нет специального решения для ИС. На рис. 7 показан LTC4000 в паре с LTC3789 для создания полнофункционального повышающего 12-вольтового зарядного устройства для свинцово-кислотных аккумуляторов.

Рис. 7. 6–36 В IN от до 14,4 В при 4,5 А повышающее напряжение 6-элементного зарядного устройства для свинцово-кислотных аккумуляторов

Понижающая-повышающая топология позволяет заряжать батарею от напряжения ниже или выше, чем ее постоянное напряжение, упрощая выбор батареи и входного напряжения в конструкции системы. Затем количество последовательно соединенных аккумуляторных элементов можно оптимизировать с учетом других параметров системы или, возможно, цены и доступности таких аккумуляторных блоков.Точно так же гибкость и простота программирования зарядного тока путем установки значений двух резисторов (R CS и R CL ) также дополнительно упрощают выбор емкости батареи при проектировании системы.

Общее решение для зарядки пары LTC4000 и LTC3789, показанное выше, способно заряжать свинцово-кислотную аккумуляторную батарею 12 В (14,4 В абсорбции и 13,4 В холостого хода) при 4,5 А от входного напряжения источника, которое может находиться в диапазоне от 6 В до 36 В. Система запрограммирована на ограничение входного тока 12.5A, позволяя распределять нагрузку между входом и батареей, если нагрузка системы требует от входа более 12,5A. Эта функция особенно важна в нижней части диапазона напряжения источника, где входной ток быстро увеличивается, чтобы удовлетворить растущие потребности в выходной мощности.

Зарядное устройство, показанное здесь, не имеет оконечной нагрузки, что позволяет осуществлять непрерывную зарядку при постоянном напряжении при конечном напряжении холостого хода 13,4 В. Подключение вывода CHRG к выводу BFB через резистор 187k реализует двухступенчатый алгоритм зарядки (абсорбционный и плавающий), общий для свинцово-кислотных аккумуляторов.Общий алгоритм зарядки сначала заряжается до уровня поглощения 14,4 В, пока ток заряда не упадет до 500 мА. В этот момент вывод CHRG принимает состояние с высоким Z, изменяя цепь резисторов обратной связи, подключенных к выводу BFB. Таким образом, зарядное устройство переходит в режим конечного плавающего постоянного напряжения с конечным целевым значением 13,4 В. Если напряжение аккумулятора падает ниже 13,1 В (порог перезарядки), контакт CHRG снова становится низким, и зарядное устройство снова настраивается на зарядку аккумулятора до уровня поглощения 14.4В.

Поскольку это схема понижающего и повышающего зарядного устройства, аккумуляторная батарея с любым плавающим напряжением от 3 В до 36 В может поддерживаться простой регулировкой резисторных делителей и выбором PFET. Подобные изменения позволяют программировать ток заряда аккумулятора от нескольких миллиампер до десятков ампер.

На рис. 8 показана демонстрационная плата сопряжения LTC4000 и LTC3789. Обратите внимание, что необходимое пространство, занимаемое LTC4000 и его пассивными компонентами, невелико, занимая площадь менее 3.6см 2 . Это позволяет создать компактное решение для зарядки практически любого аккумулятора.

Рис. 8. Демонстрационная схема, показывающая полное зарядное устройство, сформированное путем соединения LTC4000 и LTC3789

.

Рост спроса на альтернативные источники энергии в сочетании со взрывным ростом портативных промышленных и медицинских приложений привел к потребности в большом количестве систем с питанием от аккумуляторных батарей. Многие из этих систем предъявляют требования, которым не могут соответствовать специализированные ИС зарядного устройства, предназначенные для конкретного химического состава / конфигурации батарей и входных / выходных напряжений.Дискретные решения могут удовлетворить потребности этих систем, но такие решения сложнее реализовать, они занимают значительно больше места на печатной плате и требуют значительно больше времени на разработку, чем специализированные решения на ИС.

Зарядное устройство LTC4000 заполняет пробел между приложениями, поддерживаемыми простыми в использовании специализированными интегральными схемами зарядного устройства, и приложениями, поддерживаемыми более сложными дискретными решениями. Широкий диапазон входных напряжений (3–60 В) LTC4000 и практически неограниченные возможности по току позволяют выполнять сопряжение с любой топологией преобразователя постоянного / постоянного или переменного / постоянного тока, включая понижающий, повышающий, понижающий-повышающий, SEPIC и обратноходовой.В сочетании с подходящим преобразователем мощности LTC4000 образует эффективное и высокопроизводительное полнофункциональное зарядное устройство, обычно занимающее менее 3,6 см 2 .

Уникальная входная регулировочная петля зарядного устройства

упрощает отслеживание максимальной точки мощности солнечной панели

Достижения в области аккумуляторных технологий и повышения производительности устройств сделали возможным создание сложной электроники, которая работает в течение длительного времени без подзарядки. Даже в этом случае для некоторых устройств подзарядка батарей путем подключения к сети невозможна.Аварийные придорожные телефоны, навигационные буи и удаленные станции мониторинга погоды — это всего лишь несколько приложений, которые не имеют доступа к электросети, поэтому они должны получать энергию из окружающей среды.

Солнечные панели обладают огромным потенциалом в качестве источников энергии для сбора энергии — им просто нужны батареи для хранения собранной энергии и обеспечения ее переносимости в темное время суток. Солнечные панели относительно дороги, поэтому получение максимальной мощности от панелей имеет первостепенное значение для минимизации размера панели.Сложная часть — это балансировка размера солнечной панели с требуемой мощностью. Характеристики солнечных панелей требуют тщательного управления выходной мощностью панели в зависимости от нагрузки, чтобы эффективно оптимизировать выходную мощность панели для различных условий освещения.

Для данного уровня освещенности солнечная панель имеет определенную рабочую точку, которая производит максимальное количество энергии (см. Рисунок 1). Поддержание этой точки пиковой мощности во время работы при изменении условий освещения называется отслеживанием максимальной пиковой мощности (MPPT).Для выполнения этой функции часто используются сложные алгоритмы, такие как периодическое изменение нагрузки панели при непосредственном измерении выходного напряжения и выходного тока панели, вычисление выходной мощности панели, а затем форсирование точки операции, которая обеспечивает пиковую выходную мощность в виде освещения и / или температуры. условия меняются. Этот тип алгоритма обычно требует сложной схемы и микропроцессорного управления.

Рис. 1. Зависимость тока от напряжения и мощности от напряжения для солнечной панели при различных уровнях освещения.Выходное напряжение панели в точке максимальной мощности (V MP ) остается относительно постоянным независимо от уровня освещенности.

Однако существует интересная взаимосвязь между выходным напряжением солнечной панели и мощностью, которую она производит. Выходное напряжение солнечной панели в точке максимальной мощности остается относительно постоянным независимо от уровня освещенности. Отсюда следует, что принудительное срабатывание панели таким образом, чтобы выходное напряжение поддерживалось на уровне этого пикового напряжения мощности (V MP ), дает пиковую выходную мощность панели.Таким образом, зарядное устройство может поддерживать передачу пиковой мощности, используя эту характеристику V MP вместо реализации сложных схем и алгоритмов MPPT.

LT3652 — это законченное монолитное понижающее мультихимическое зарядное устройство, которое работает с входным напряжением до 32 В (макс. 40 В абс.) И заряжает аккумуляторные батареи с плавающим напряжением до 14,4 В. LT3652 включает в себя инновационную схему регулирования входного сигнала, которая реализует простой и автоматический метод управления входным напряжением питания зарядного устройства при использовании плохо регулируемых источников, таких как солнечные батареи.LT3652HV, высоковольтная версия зарядного устройства, доступна для зарядки батарейных блоков с плавающим напряжением до 18 В.

Входной контур регулирования поддерживает максимальную мощность для солнечных панелей

Входной контур регулирования LT3652 линейно снижает выходной ток заряда батареи, если входное напряжение питания падает до запрограммированного уровня. Эта схема регулирования с обратной связью управляет током заряда и, следовательно, нагрузкой на входной источник питания, так что входное напряжение питания поддерживается на запрограммированном уровне или выше.При питании от солнечной панели LT3652 реализует операцию MPPT, просто программируя минимальный уровень входного напряжения на пиковое напряжение этой панели, V MP . Требуемое пиковое напряжение программируется через резистивный делитель.

Если во время зарядки мощность, требуемая LT3652, превышает доступную мощность от солнечной панели, входной контур регулирования LT3652 снижает ток заряда. Это может произойти из-за увеличения желаемого тока заряда аккумулятора или падения уровня освещенности солнечной панели.В любом случае контур регулирования поддерживает выходное напряжение солнечной панели на запрограммированном уровне V MP , установленном резисторным делителем на VIN_REG.

Входной контур регулирования — это простой и элегантный метод принудительной работы с пиковой мощностью от конкретной солнечной панели. Контур регулирования входного напряжения также позволяет оптимизировать работу от других типов плохо регулируемых источников, где входное питание может исчезнуть в условиях перегрузки по току.

Встроенное полнофункциональное зарядное устройство

LT3652 работает с фиксированной частотой коммутации 1 МГц и обеспечивает характеристику заряда при постоянном токе / постоянном напряжении (CC / CV).Деталь программируется с помощью внешнего резистора для обеспечения тока заряда до 2 А с точностью тока заряда ± 5%. Микросхема особенно подходит для диапазонов напряжений, связанных с популярными и недорогими солнечными панелями «система 12 В», которые обычно имеют напряжение холостого хода около 25 В.

Зарядное устройство использует опорное напряжение холостого хода 3,3 В с обратной связью, поэтому любое желаемое напряжение холостого хода аккумулятора от 3,3 В до 14,4 В (или до 18 В с LT3652HV) можно запрограммировать с помощью резисторного делителя.Точность обратной связи по плавающему напряжению для LT3652 составляет ± 0,5%. Широкий диапазон выходных напряжений LT3652 подходит для аккумуляторов различного химического состава и конфигураций, включая до трех последовательно соединенных литий-ионных / полимерных элементов, до четырех последовательных элементов LiFePO 4 (литий-железо-фосфат) и герметичных свинцово-кислотных (SLA) аккумуляторов. содержащий до шести последовательно соединенных ячеек. Также доступна высоковольтная версия зарядного устройства LT3652HV. LT3652HV работает с входным напряжением до 34 В и может заряжаться до плавающего напряжения 18 В, вмещая 4-элементные литий-ионные / полимерные батареи или 5-элементные батареи LiFePO 4 .

LT3652 содержит программируемый таймер безопасности, используемый для прекращения зарядки по достижении желаемого времени. Простое подключение конденсатора к выводу ТАЙМЕРА включает таймер. Замыкание контакта TIMER на землю настраивает LT3652 на прекращение зарядки, когда ток заряда падает ниже 10% от запрограммированного максимума (C / 10), с точностью определения C / 10 ± 2,5%. Использование таймера безопасности для завершения позволяет подзарядку при токах менее C / 10. После завершения зарядки LT3652 переходит в режим ожидания с низким током (85 мкА).Функция автоматической подзарядки запускает новый цикл зарядки, если напряжение аккумулятора падает на 2,5% ниже запрограммированного напряжения холостого хода. LT3652 выпускается в низкопрофильных 12-выводных корпусах DFN и MSOP размером 3 мм × 3 мм.

Энергосберегающее отключение при низком токе покоя

В LT3652 используется вывод отключения с прецизионным порогом, позволяющий легко реализовать функции блокировки при пониженном напряжении с помощью резисторного делителя. В режиме отключения при слабом токе LT3652 потребляет только 15 мкА от входного источника питания.Микросхема также поддерживает зарядку с определенным температурным режимом, отслеживая температуру батареи с помощью одного термистора, прикрепленного к контакту NTC детали. Устройство имеет два двоично-кодированных контакта состояния с открытым коллектором, которые отображают рабочее состояние зарядного устройства LT3652, CHRG и FAULT. Эти выводы состояния могут управлять светодиодами для визуальной сигнализации состояния зарядного устройства или использоваться в качестве сигналов логического уровня для систем управления.

На рис. 2 показано 2-элементное зарядное устройство LiFePO 4 на 2 А с управлением цепями питания.Эта схема обеспечивает питание нагрузки системы от батареи, когда солнечная панель недостаточно освещена, и напрямую от солнечной панели, когда доступна мощность, необходимая для нагрузки системы. Контур регулирования входного напряжения запрограммирован для панели ввода пиковой мощности 17 В. В зарядном устройстве используется терминатор C / 10, поэтому цепь заряда отключается, когда требуемый ток заряда аккумулятора падает ниже 200 мА. В этом зарядном устройстве LT3652 также используются два светодиода, которые отображают состояние и сигнализируют о неисправности.Эти булавки с двоичным кодом сигнализируют о зарядке аккумулятора, режимах ожидания или выключения, сбоях температуры аккумулятора и неисправностях аккумулятора.

Рис. 2. Диспетчер питания солнечной панели на 2 А для 2-элементной батареи LiFePO 4 с отслеживанием пиковой мощности 17 В.

Точка регулирования входного напряжения программируется с помощью резисторного делителя от выхода панели к выводу VIN_REG. Максимальный выходной ток заряда уменьшается, когда напряжение на выходе солнечной панели падает до 17 В, что соответствует 2.7V на выводе VIN_REG. Таким образом, этот сервоконтур действует для динамического снижения требований к мощности системы зарядного устройства до максимальной мощности, которую может обеспечить панель, поддерживая использование энергии солнечной панели близко к 100%, как показано на Рисунке 3.

Рис. 3. Порог регулирования входного напряжения 17 В позволяет отслеживать пиковую мощность солнечной панели до более 98%.

LT3652 требует блокирующего диода при использовании батареи с напряжением выше 4,2 В. Падение напряжения на этом диоде приводит к потере мощности, что снижает эффективность зарядки.Этот срок можно значительно сократить, заменив блокирующий диод полевым транзистором с каналом P-типа, как показано на рисунке 4.

Рис. 4. Зарядное устройство 2A 3-элементного LiFePO 4 , использующее полевой транзистор с P-каналом для блокировки входа для повышения эффективности сильноточной зарядки.

На рисунке 4 показано 3-элементное зарядное устройство LiFePO 4 2A с плавающим напряжением 10,8 В. Это зарядное устройство имеет порог регулирования входного напряжения 14,5 В и активируется контактом SHDN, когда V IN ≥ 13 В. Завершение цикла зарядки контролируется 3-часовым циклом таймера.Блокирующий диод, обычно используемый последовательно с входным источником питания для защиты от обратного напряжения, заменяется полевым транзистором. Зажим на стабилитроне 10 В используется для предотвращения превышения максимального напряжения полевого транзистора V GS . Если указанный диапазон V IN не превышает максимальное значение V GS входного полевого транзистора, этот зажим не требуется.

Во время сильноточного периода зарядки нормального цикла зарядки (I CHG > C / 10) на выводе состояния CHRG удерживается низкий уровень. В зарядном устройстве, показанном на рисунке 4, этот сигнал CHRG используется для опускания затвора блокирующего полевого транзистора на низкий уровень, обеспечивая низкоомный путь источника питания, который устраняет падение блокирующего диода для повышения эффективности преобразования.Рисунок 5 показывает, что добавление этого блокирующего полевого транзистора повышает эффективность на 4% по сравнению с работой с блокирующим диодом Шоттки.

Рис. 5. Сравнительная эффективность блокирующего диода Шоттки по сравнению с блокирующим полевым транзистором при повышении напряжения батареи для трехэлементного зарядного устройства LiFePO 4 от 15 В до 10,8 В.

Если таймер используется для завершения, основной диод полевого транзистора обеспечивает путь проводимости, когда токи заряда

Когда LT3652 активно заряжается, ИС обеспечивает внутреннюю нагрузку на контур переключения, чтобы гарантировать работу с обратной связью во всех условиях. Это достигается за счет подачи 2 мА на вывод BAT всякий раз, когда активен цикл зарядки.В зарядном устройстве с питанием от солнечной панели условия низкой освещенности могут привести к падению входного напряжения солнечной панели ниже порогового значения входного регулирования, в результате чего выходной ток заряда будет уменьшен до нуля. Если зарядное устройство остается включенным во время этого состояния (т. Е. Напряжение панели остается выше порогового значения UVLO), внутренняя нагрузка батареи приводит к утечке тока из батареи. Это нежелательно по очевидным причинам, но это условие может быть устранено путем включения однонаправленного проходного элемента, который предотвращает обратный ток от батареи.

Linear Technology создает высокоэффективную ИС с проходным элементом, идеальный диод LTC4411, который имеет эффективное прямое падение, близкое к нулю. Влияние на общую эффективность зарядного устройства и конечное напряжение холостого хода незначительно из-за чрезвычайно низкого прямого падения во время проводимости.

На рис. 6 показано зарядное устройство LT3652 с питанием от солнечной батареи, в котором используется защита от обратного освещения при слабом освещении с использованием микросхемы с идеальным диодом LTC4411. В условиях низкой освещенности, если напряжение панели упадет ниже порога регулирования входа, LT3652 снизит ток заряда аккумулятора до нуля.В случае, когда входное напряжение остается выше порога UVLO, зарядное устройство остается включенным, но поддерживается в состоянии нулевого тока заряда. LT3652 пытается снизить ток 2 мА на выводе BAT; однако LTC4411 предотвращает обратную проводимость от батареи.

Рис. 6. Зарядное устройство для литий-ионных аккумуляторов на 2 А с идеальным диодным выходным проходным элементом; ИС с идеальным диодом LTC4411 предотвращает обратную проводимость в условиях низкой освещенности.

LT3652 может использоваться для повышающих и повышающих / понижающих зарядных устройств за счет включения повышающего преобразователя постоянного тока в постоянный.Внешний преобразователь генерирует локальный источник высокого напряжения для LT3652, который используется в качестве источника питания. Входной контур регулирования LT3652 отлично работает, когда он обернут вокруг обоих преобразователей.

На рисунке 7 показано низковольтное литий-ионное зарядное устройство на 1,5 А с питанием от солнечной панели и плавающим напряжением 4,2 В. Это зарядное устройство предназначено для работы от солнечной панели с пиковым напряжением питания 3,8 В.

Рис. 7. Низковольтная солнечная панель питает одноэлементное зарядное устройство Li-ion на 1,5 А.LT3479 увеличивает выходное напряжение солнечной панели 3,8 В для работы зарядного устройства LT3652. Работа LT3652 с обратной связью включает в себя повышающий преобразователь, таким образом регулируя вход LT3479 в V MP солнечной панели на 3,8 В.

Импульсный повышающий преобразователь LT3479, работающий на частоте 1 МГц, используется во внешнем интерфейсе для создания источника питания 8 В, который используется для питания LT3652. Это зарядное устройство работает с входным напряжением от 3,8 В до 24 В, максимального входного напряжения для LT3479.Когда входное напряжение приближается к 8 В (или выше), повышающий преобразователь LT3479 больше не регулируется, в конечном итоге работая с рабочим циклом 0% и эффективно замыкая входное питание через проходной диод Шоттки на LT3652. Поскольку контур регулирования входа контролирует вход LT3479, когда входное напряжение падает до порога регулирования входа, LT3652 уменьшает ток заряда, уменьшая текущие требования повышающего преобразователя LT3479. Сервоприводы входного напряжения в точку регулирования, с повышающим преобразователем и комбинацией зарядного устройства LT3652, извлекающей пиковую мощность, доступную от солнечной панели.

Несколько зарядных устройств LT3652 можно использовать параллельно для создания зарядного устройства, которое превышает допустимый ток заряда одного LT3652. В приложении, показанном на рис. 8, три сети зарядных устройств LT3652 на 2 А подключены параллельно, чтобы получить трехэлементное литий-ионное зарядное устройство на 6 А с плавающим напряжением 12,3 В, которое использует оконечную нагрузку C / 10. Это зарядное устройство совместимо с солнечной энергией и имеет входной порог регулирования 20 В. В этом зарядном устройстве также реализован полевой транзистор с блокировкой входа для повышения эффективности зарядки.

Рис. 8. Зарядное устройство для 3-элементной литий-ионной батареи на 6 А с использованием трех микросхем зарядного устройства LT3652.

Три микросхемы зарядного устройства LT3652 имеют общую сеть обратной связи по плавающему напряжению и общую сеть регулирования входов. Для компенсации входных токов смещения на вывод LT3652 V FB рекомендуется использовать цепь обратной связи с эквивалентным сопротивлением 250 кОм. Поскольку три LT3652 используют одну и ту же сеть обратной связи в этом зарядном устройстве, а входные токи смещения также распределяются по сети, эквивалентное сопротивление сети снижается до 250 кОм / 3, или ~ 83 кОм.

Из-за допусков в опорных напряжениях одна из ИС, скорее всего, включится раньше другой во время события автоматической подзарядки. В этом случае аккумулятор автоматически перезаряжается максимум на 2А. Если аккумулятор продолжает разряжаться из-за нагрузки> 2 А, включается второе зарядное устройство. Более высокие токи разряда задействуют третью микросхему зарядного устройства, позволяя зарядному устройству производить полный ток заряда системы 6А. Контакты CHRG на всех LT3652 связаны вместе, чтобы включить полевой транзистор, блокирующий вход, поэтому полевой транзистор имеет низкое сопротивление независимо от того, в каком порядке происходит автоматический перезапуск ИС.

Функции NTC и состояния являются общими для всех трех LT3652, причем каждая ИС использует специальный термистор NTC. Контакты состояния открытого коллектора ИС закорочены вместе, поэтому при включении любого или всех отдельных зарядных устройств загорается индикатор состояния CHRG. Точно так же при отказе NTC в любой из ИС загорается индикатор состояния ОТКАЗ. Отдельные функции LT3652 NTC подчиняются друг другу через диод, подключенный от общих выводов FAULT к общим выводам VIN_REG всех трех ИС.

Этот диод опускает вывод VIN_REG ниже порогового значения VIN_REG, если какая-либо из ИС вызывает сбой NTC, который отключает весь выходной ток заряда до тех пор, пока не будет устранено условие сбоя температуры.

LT3652 — это универсальная платформа для простых и эффективных решений для зарядных устройств на солнечной энергии, применимых к большому разнообразию химического состава и конфигураций аккумуляторов. LT3652 одинаково хорошо подходит для приложений с обычным питанием, предлагая небольшие и эффективные зарядные устройства для самых разных типов аккумуляторов и напряжений в батареях.

Зарядные устройства на солнечных батареях позволяют использовать панель почти на 100%, снижая затраты на решение за счет минимальной площади панели. Компактный размер ИС в сочетании со скромными требованиями к внешним компонентам позволяет создавать крошечные и недорогие автономные системы зарядных устройств, обеспечивая простое и эффективное решение для реализации настоящей независимости от сети для портативной электроники.


Глубоко

Для более подробного обсуждения функции отслеживания точки максимальной мощности LT3652 см. «Проектирование зарядного устройства для солнечных батарей» в выпуске журнала LT Magazine

за декабрь 2009 г.

Полное руководство по зарядке свинцово-кислотной батареи

Надежная работа и длительный срок службы герметичного свинцово-кислотного аккумулятора будет зависеть от правильной зарядки аккумулятора.Следование неправильным процедурам зарядки или использование неподходящего зарядного оборудования может привести к сокращению срока службы аккумулятора и / или снижению его производительности. Выбор подходящего зарядного устройства SLA и методов, используемых для его зарядки, так же важен, как и выбор правильного аккумулятора для конкретного применения.

Power Sonic рекомендует выбирать зарядное устройство, разработанное с учетом химического состава вашей батареи. Это означает, что при зарядке герметичных свинцово-кислотных аккумуляторов мы рекомендуем использовать герметичные зарядные устройства для свинцово-кислотных аккумуляторов, такие как зарядные устройства SLA серии A-C от Power Sonic.

МЕТОДЫ ЗАРЯДКИ АККУМУЛЯТОРОВ

Герметичные свинцово-кислотные батареи можно заряжать с помощью любого из следующих способов зарядки:

  • Постоянное напряжение
  • Постоянный ток
  • Конический ток
  • Двухступенчатое постоянное напряжение

Для достижения максимального срока службы и емкости аккумулятора, наряду с приемлемым временем зарядки и экономичностью, лучше всего подходит зарядка с ограничением постоянного напряжения и тока.

Для зарядки герметичных свинцово-кислотных аккумуляторов, напряжение постоянного тока между 2.30 В на элемент (плавающий) и 2,45 В на элемент (быстрый) подается на клеммы аккумулятора. В зависимости от уровня заряда (SoC), после разряда элемент может временно быть ниже, чем приложенное напряжение. Однако через некоторое время он должен выровняться.

Во время зарядки сульфат свинца положительной пластины становится диоксидом свинца. Когда батарея достигает полного заряда, положительная пластина начинает вырабатывать диоксид, вызывая внезапное повышение напряжения из-за уменьшения внутреннего сопротивления.Таким образом, заряд с постоянным напряжением позволяет обнаруживать это увеличение напряжения и, таким образом, контролировать текущую величину заряда.

ХАРАКТЕРИСТИКИ ЗАРЯДА АККУМУЛЯТОРА

При постоянном напряжении или постепенной зарядке ток, принимаемый аккумулятором, уменьшается по мере увеличения напряжения и степени заряда. Батарея полностью заряжена, когда ток стабилизируется на низком уровне в течение нескольких часов. Есть два критерия для определения того, когда батарея полностью заряжена: (1) конечный уровень тока и (2) пиковое напряжение зарядки при протекании этого тока.

Типичные характеристики заряда герметичных свинцово-кислотных аккумуляторов для работы в цикле, когда зарядка не постоянна, а пиковое напряжение может быть выше. Типовые характеристики для заряда аккумуляторных батарей резервного типа. Здесь зарядка идет непрерывно, и пиковое напряжение заряда должно быть ниже.

СПОСОБЫ ЗАРЯДКИ АККУМУЛЯТОРОВ

Выбор подходящего метода зарядки для герметичного свинцово-кислотного аккумулятора зависит от предполагаемого использования (циклический или плавающий), экономических соображений, времени перезарядки, ожидаемой частоты и глубины разряда (DoD) и ожидаемого срока службы.Цель любого метода зарядки — контролировать ток заряда в конце заряда.

ЗАРЯДКА ПОСТОЯННОГО НАПРЯЖЕНИЯ

Зарядка при постоянном напряжении — лучший метод зарядки герметичных свинцово-кислотных аккумуляторов. В зависимости от приложения аккумуляторы могут заряжаться непрерывно или прерывисто. В приложениях, где для работы требуется резервное питание, например, система безопасности или источник бесперебойного питания (ИБП), когда питание переменного тока было прервано, рекомендуется непрерывная подзарядка.Непрерывная циклическая зарядка используется в основном с портативным оборудованием, где уместна периодическая зарядка, например, с электрическими инвалидными колясками и передвижными медицинскими тележками.

Метод заряда с постоянным напряжением обеспечивает подачу постоянного напряжения на аккумулятор и ограничивает начальный ток заряда. Необходимо установить напряжение заряда в соответствии с заданными зарядно-температурными характеристиками. Неточные настройки напряжения могут вызвать перезаряд или недозаряд. Этот метод зарядки можно использовать как для циклических, так и для резервных приложений.

Цепь зарядки с постоянным напряжением Зарядные характеристики при постоянном напряжении

ПОСТОЯННЫЙ ТОК ЗАРЯДА

Зарядка постоянным током подходит для приложений, в которых известны ампер-часы разряда предыдущего цикла разряда. Время заряда и количество заряда можно легко рассчитать, однако для получения постоянного тока с высокой точностью необходима дорогостоящая схема. Контроль напряжения заряда или ограничение времени заряда необходимы, чтобы избежать чрезмерного перезаряда батареи.

Хотя этот метод зарядки очень эффективен для восстановления емкости SLA-батареи, которая хранилась в течение длительного периода времени, или для периодической перезарядки для выравнивания емкостей элементов, ему не хватает определенных свойств, необходимых в современной электронной среде.

КОНУСНЫЙ ТОК ЗАРЯДКА

Метод зарядки конусным током не рекомендуется, поскольку он не подходит для герметичных свинцово-кислотных аккумуляторов и может сократить срок их службы. Однако из-за простоты схемы и низкой стоимости зарядка конусным током широко используется для зарядки нескольких номеров и / или для циклической зарядки.

При использовании зарядного устройства для аккумуляторов с конусным током время зарядки должно быть ограничено или необходимо включить цепь отключения зарядки для предотвращения перезарядки.

В схеме зарядки с пониженным током ток уменьшается пропорционально увеличению напряжения. При разработке конического зарядного устройства всегда учитывайте колебания напряжения питания. В этом случае падение внутреннего сопротивления преобразуется в тепло. Следует измерить тепло, выделяемое контуром, и, если требуется, в конструкцию следует включить радиатор.

Схема зарядки конусным током Характеристики заряда с пониженным током для этого типа в основном нерегулируемого зарядного устройства

ПЕРЕЗАРЯДКА СВИНЦОВО-КИСЛОТНОЙ БАТАРЕИ

В результате слишком высокого напряжения заряда в батарею будет протекать чрезмерный ток после достижения полной зарядки, вызывая разложение воды в электролите и преждевременное старение.

При высоком уровне перезарядки аккумулятор постепенно нагревается. По мере того, как он становится более горячим, он будет принимать больше тока, нагреваясь еще больше.Это называется тепловым разгоном и может вывести аккумулятор из строя всего за несколько часов.

ЗАРЯД КИСЛОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ

Если приложено слишком низкое напряжение заряда, ток по существу прекратится до того, как батарея будет полностью заряжена. Это позволяет части сульфата свинца оставаться на электродах, что в конечном итоге снижает емкость аккумулятора.

Батареи, которые хранятся в разряженном состоянии или слишком долго остаются на полке, могут поначалу казаться «разомкнутыми» или могут принимать гораздо меньший ток, чем обычно.Это вызвано явлением под названием «сульфатирование». В этом случае оставьте зарядное устройство подключенным к аккумулятору. Обычно батарея начинает принимать увеличивающийся ток, пока не будет достигнут нормальный уровень тока. Если нет реакции, даже если напряжение заряда превышает рекомендуемые уровни, возможно, батарея находилась в разряженном состоянии слишком долго для восстановления, и в этом случае потребуется замена батареи SLA.

ЦИКЛ ЗАРЯДКИ СВИНЦОВОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ

Циклические (или циклические) приложения обычно требуют, чтобы подзарядка выполнялась за относительно короткое время.Однако начальный зарядный ток не должен превышать 0,30 x C ампер. Так же, как напряжение аккумулятора падает во время разряда, оно медленно повышается во время зарядки. Полный заряд определяется напряжением и протекающим током. Когда при зарядном напряжении 2,45 ± 0,05 В / элемент ток, принимаемый аккумулятором, падает до менее 0,01 x C ампера (1% от номинальной емкости), аккумулятор полностью заряжен и зарядное устройство следует отключить или переключить на напряжение холостого хода от 2,25 до 2,30 вольт / элемент. Напряжение не должно превышать 2.45 ± 0,05 В / элемент.

ЗАРЯДКА СВИНЦОВОГО АККУМУЛЯТОРА В РЕЖИМЕ ОЖИДАНИЯ

Резервные приложения обычно не требуют, чтобы аккумулятор заряжался так же быстро или так часто, как в циклическом режиме. Однако батарею необходимо держать постоянно заряженной, чтобы восполнить энергию, которая израсходована из-за внутренних потерь и износа самой батареи. Хотя эти потери в свинцово-кислотных батареях Power Sonic очень малы, их необходимо заменять по мере саморазряда батареи; в то же время на батарею нельзя давать больше этих потерь, иначе она будет перезаряжена.Для этого используется метод зарядки с постоянным напряжением, называемый резервной или плавающей зарядкой.

Рекомендуемое постоянное напряжение холостого хода составляет 2,25 — 2,30 В на элемент. Поддержание этого плавающего напряжения позволит аккумулятору определять собственный уровень тока и оставаться полностью заряженным без необходимости отсоединять зарядное устройство от аккумулятора. Постоянный ток для полностью заряженной батареи, плавающей при рекомендованном напряжении заряда, обычно колеблется в районе 0,001 ° C (например, 7 мА для батареи 7 Ач.)

Поплавковое зарядное устройство в основном представляет собой источник постоянного напряжения. Как и в случае с циклическими зарядными устройствами, необходимо следить за тем, чтобы начальный зарядный ток не превышал 0,30 x C ампера.

ДВУХЭТАПНАЯ ЗАРЯДКА ПОСТОЯННОГО НАПРЯЖЕНИЯ

В этом методе используются два устройства постоянного напряжения. На начальной фазе заряда используется установка высокого напряжения. Когда зарядка почти завершена и напряжение заряда повысилось до заданного значения (при уменьшении тока заряда), зарядное устройство переключает напряжение на более низкое значение.Этот метод позволяет осуществлять быструю зарядку в циклическом или плавающем режиме без возможности перезарядки даже после продолжительных периодов зарядки.

Двухступенчатое зарядное устройство SLA с ограничением тока Двухступенчатая зарядная характеристика при постоянном напряжении.

ЗАРЯДКА 2 ИЛИ БОЛЕЕ БАТАРЕЙ СЕРИИ

Свинцово-кислотные батареи — это группы элементов по 2 вольта, соединенных последовательно, обычно по 2, 3, 4 или 6 элементов на батарею. Свинцово-кислотные батареи напряжением до 48 В и выше можно заряжать последовательно и безопасно и эффективно.Однако по мере увеличения количества батарей в серии увеличивается вероятность небольших различий в емкости. Эти различия могут быть результатом возраста, истории хранения, колебаний температуры или неправильного обращения.

Полностью заряженные батареи никогда не следует смешивать с разряженными батареями при последовательной зарядке. Разряженные аккумуляторы перед подключением необходимо зарядить.

Когда одно зарядное устройство постоянного напряжения подключено ко всей цепочке высокого напряжения, один и тот же ток течет через все ячейки в цепочке.В зависимости от характеристик отдельных батарей, некоторые из них могут перезаряжаться, в то время как другие остаются в слегка недозаряженном состоянии.

Чтобы свести к минимуму влияние индивидуальных различий батарей, используйте батареи одного возраста, производителя, ампер-часов и истории и, если возможно, заряжайте цепочками не более 24 или 48 вольт.

ЗАРЯДКА АККУМУЛЯТОРОВ ПАРАЛЛЕЛЬНО

Свинцово-кислотные батареи можно использовать параллельно с одной или несколькими батареями равного напряжения.При параллельном подключении аккумуляторов ток зарядного устройства будет почти поровну делиться между аккумуляторами. Специального подбора батарей не требуется. Если батареи разной емкости подключены параллельно, ток будет делиться между батареями пропорционально емкостям (фактически, внутренним сопротивлениям).

При параллельной зарядке аккумуляторов, когда ожидается различная степень заряда, лучше всего предусмотреть, чтобы токи не слишком сильно изменялись между батареями.

ТЕМПЕРАТУРНАЯ КОМПЕНСАЦИЯ АККУМУЛЯТОРА

Герметичные свинцово-кислотные батареи

Power Sonic хорошо работают как при низких, так и при высоких температурах. Однако при низких температурах эффективность заряда снижается; при температурах выше 45 ° C (113 ° F) эффективность заряда увеличивается настолько быстро, что существует опасность теплового разгона, если температурная компенсация не точна.

Влияние температуры на напряжение заряда менее критично в приложениях с плавающей запятой, чем в циклическом режиме, когда применяются относительно высокие токи заряда с целью короткого времени перезарядки.

Влияние температуры обязательно следует учитывать при проектировании или выборе системы зарядки. Температурная компенсация желательна в цепи зарядки, особенно при работе за пределами диапазона от 5 ° C до 35 ° C
(от 41 ° F до 95 ° F). Температурный коэффициент составляет -2 мВ / элемент / ° C ниже 20 ° C (68 ° F) при использовании поплавка и -6 мВ / элемент / ° C ниже 20 ° C при циклическом использовании. Для более высоких температур следует соответственно уменьшить напряжение заряда.

В приведенной ниже таблице температурной компенсации батареи показаны рекомендуемые напряжения заряда для различных температур, основанные на окружающем напряжении заряда на элемент.

25629 906 ° C (77 ° F)
Температура Циклическое использование (В) Плавающее использование (В)
-40 ° C (-40 ° F) 2,85 — 2,9533 2,38 — 2,43 906
-20 ° C (-4 ° F) 2,67 — 2,77 2,34 — 2,39
-10 ° C (14 ° F) 2,61 — 2,71 2,32 — 2,37
0 ° C (32 ° F) 2,55 — 2,65 2,30 — 2.35
10 ° C (50 ° F) 2,49 — 2,59 2,28 — 2,33
20 ° C (68 ° F) 2,43 — 2,53 2,26 — 2,31
2,40 — 2,50 2,25 — 2,30
30 ° C (86 ° F) 2,37 — 2,47 2,24 — 2,29
40 ° C (104 ° F) ) 2,31 — 2,41 2,22 — 2,27
50 ° C (122 ° F) 2.25 — 2,35 2,20 — 2,25

ДОПОЛНИТЕЛЬНАЯ ЗАРЯДКА SLA АККУМУЛЯТОРОВ

Все аккумуляторы теряют емкость из-за саморазряда, рекомендуется подзарядить любую аккумуляторную батарею, которая хранилась в течение длительного периода времени, перед вводом в эксплуатацию.

Для успешного пополнения заряда батареи, хранившейся более 12 месяцев, напряжение холостого хода должно быть выше 2,0 В на элемент. В этом случае всегда проверяйте напряжение холостого хода перед попыткой дополнительной зарядки.

ЭФФЕКТИВНОСТЬ ЗАРЯДКИ АККУМУЛЯТОРА

Эффективность зарядки (η) аккумулятора выражается следующей формулой:

Эффективность зарядки зависит от степени заряда аккумулятора, температуры и скорости зарядки. График ниже иллюстрирует концепцию состояния заряда и эффективности зарядки.

На приведенном ниже графике показано, что герметичные свинцово-кислотные аккумуляторы Power Sonic демонстрируют очень высокую эффективность зарядки даже при низкой скорости зарядки.

Всегда важно подбирать зарядное устройство, чтобы обеспечить правильный ток и напряжение для заряжаемой батареи. Например, нельзя использовать зарядное устройство на 24 В для зарядки аккумулятора на 12 В.

Если у вас есть какие-либо вопросы о совместимости существующего зарядного устройства с одним из наших продуктов, позвоните нам или отправьте нам электронное письмо. Мы будем рады помочь вам с зарядкой.

Знакомство с зарядными устройствами

Одним из наиболее распространенных типов электронных схем, используемых в современных портативных электронных устройствах, являются зарядные устройства, в частности, для зарядки литий-ионных и литий-полимерных аккумуляторов.

В этой статье мы рассмотрим три распространенных зарядных устройства, от простых до более сложных.

Опубликовано Джон Тил

Во-первых, я делаю обзор Microchip MCP73831, который прост в использовании и является отличным аккумулятором для начала. Далее я рассмотрю Texas Instruments BQ24092, которая представляет собой немного более совершенное зарядное устройство.

Наконец, мы рассмотрим значительно более сложное зарядное устройство Texas Instruments BQ24703.Я немного пойду по пути памяти, так как BQ24703 оказался зарядным устройством, которое я разработал много лет назад, когда работал дизайнером микросхем в Texas Instruments.

Первые два зарядных устройства (MCP73831 и BQ24092) оба являются линейными зарядными устройствами, тогда как BQ24703 — это понижающее зарядное устройство с переключателем.

Если вам нужно узнать разницу между линейным зарядным устройством и импульсным зарядным устройством, обязательно прочтите мою предыдущую статью о регуляторах напряжения. В этой статье я подробно обсуждаю разницу между линейным регулятором и импульсным стабилизатором, и те же принципы применимы к зарядным устройствам.

MCP73831

Первое зарядное устройство, которое я рассмотрю, — это Microchip MCP73831. Это зарядное устройство предназначено для зарядки одного элемента и предназначено для литий-ионных или литий-полимерных аккумуляторов.

Рисунок 1. Принципиальная схема типичного приложения с использованием MCP73831.

Одноэлементная литиевая батарея выдает около 3,6 В. Итак, если вы видите литиевую батарею с номинальным выходным напряжением 7,2 В, то она состоит из двух элементов, соединенных последовательно. Если напряжение АКБ 14.4 В, значит, это 4-элементный аккумулятор.

Чтобы заряжать многоэлементные аккумуляторные блоки, необходимо, чтобы входное напряжение питания превышало напряжение зарядки аккумулятора, либо вам необходимо импульсное импульсное зарядное устройство, которое может создавать напряжение заряда выше, чем входное напряжение.

Три этапа зарядки литиевой батареи

Существует три стадии зарядки литиевой батареи: стадия предварительной зарядки, стадия быстрой зарядки и стадия завершения заряда.

В режиме предварительной зарядки или быстрой зарядки зарядное устройство регулирует величину тока, подаваемого в аккумулятор.Но во время завершения заряда зарядное устройство регулирует напряжение, поступающее на батарею, одновременно измеряя ток, протекающий в батарею.

Рисунок 2 — Этапы зарядки перезаряжаемых литиевых батарей (график взят из технического описания Texas Instruments BQ24092)

1 — Этап предварительной зарядки

Первый этап — это этап предварительной зарядки, также известный как этап подзарядки. На этом этапе зарядное устройство посылает в батарею только небольшой ток (постоянный заряд).Если аккумулятор обнаружен, зарядное устройство начнет процесс зарядки.

Постоянный заряд — это небольшой процент от полного тока заряда. Цель этого этапа — зарядить аккумулятор до определенного уровня, чтобы его можно было быстро зарядить на следующем этапе (см. Ниже).

Зарядное устройство автоматически переходит в стадию предварительной зарядки, когда батарея сильно разряжена и напряжение ниже определенного порога.

После начала предварительной зарядки зарядное устройство контролирует напряжение аккумулятора до тех пор, пока не будет достигнуто пороговое значение напряжения предварительной зарядки.

Пороговое значение напряжения предварительной зарядки — это заранее определенный процент от максимального тока заряда, который вы отвечаете за программирование.

Когда напряжение батареи превышает пороговое значение напряжения предварительной зарядки, зарядное устройство переходит в стадию быстрой зарядки.

2 — Ступень быстрой зарядки

Ступень быстрой зарядки, также известная как ступень постоянного тока, регулирует величину тока, поступающего в батарею.

И ток предварительной зарядки, и ток быстрой зарядки устанавливаются одним резистором на выводе PROG MCP73831.

Для зарядки аккумулятора используется постоянный ток, который регулируется в зависимости от выбранного вами максимального тока заряда.

Для MCP73831 максимальный ток заряда устанавливается путем подключения резистора между выводом программы и землей (см. Рисунок 1). Вы можете выбрать ток заряда от 15 мА до 500 мА.

Когда аккумулятор почти полностью заряжается во время этапа быстрой зарядки, он переключается на этап завершения зарядки.

3 — Этап завершения заряда

Конечная стадия зарядки называется стадией завершения заряда или стадией постоянного напряжения.Во время этого этапа зарядное устройство аккумулятора переключается в режим управления напряжением, где оно регулирует напряжение, поступающее на аккумулятор, а не ток.

Хотя напряжение на аккумуляторе регулируется, зарядное устройство контролирует процесс зарядки, измеряя ток заряда.

Когда зарядный ток в режиме управления напряжением падает ниже заранее определенного процента запрограммированного тока, зарядное устройство знает, что аккумулятор полностью заряжен, и процесс зарядки прекращается.

После завершения цикла зарядки зарядное устройство продолжит отслеживать напряжение аккумулятора. Если напряжение аккумулятора упадет ниже предварительно установленного порога зарядки, зарядное устройство инициирует новый цикл зарядки, и весь процесс будет повторяться.

Вы можете заметить на графике на Рисунке 2, что существует также четвертая стадия, называемая терморегулированием. Однако этот этап вступает в игру только в том случае, если рассеиваемая мощность достаточно высока, и внутренняя температура зарядного устройства превышает 125 ° C.

Если система спроектирована так, что зарядное устройство никогда не достигает этой температуры, то этап терморегулирования не включается. Я обсуждаю это более подробно в разделе о рассеянии мощности ниже.

Установка тока быстрой зарядки

Ток быстрой зарядки для MCP73831 устанавливается резистором, помещенным на программный вывод (PROG) на землю. Ток быстрой зарядки рассчитывается по следующей формуле:

Ток заряда = 1000 / сопротивление (Уравнение 1)

Например, если резистор представляет собой резистор на 2000 Ом, то ток быстрой зарядки будет рассчитан как:

Ток заряда = 1000/2000 = 0.5 А = 500 мА (Уравнение 2)

Обратите внимание, что 500 мА — это максимальный ток заряда для этого зарядного устройства. Если бы вместо него был использован резистор на 4000 Ом, максимальный ток заряда был бы только 250 мА.

Точная настройка тока быстрой зарядки будет зависеть от емкости аккумулятора и максимального тока, который может подаваться от внешнего источника напряжения.

При зарядке литиевой батареи максимальная скорость заряда обычно должна составлять 1 ° C, что означает:

Ток заряда = 1 x Емкость аккумулятора (Уравнение 3)

Например, если у вас аккумулятор емкостью 500 мАч, то скорость заряда 1 C составляет 500 мА.Если у вас аккумулятор емкостью 150 мАч, то скорость заряда 1 C составит 150 мА.

Абсолютный максимальный ток заряда для литиевой батареи обычно составляет 2 C. Следовательно, если у вас батарея емкостью 150 мАч, то абсолютный максимальный ток заряда будет 300 мАч.

Хотя некоторые аккумуляторы могут разогреться до такого уровня, обычно рекомендуется придерживаться скорости 1 C, если только в аккумуляторе не указано, что его можно заряжать с более высокой скоростью заряда.

Также необходимо учитывать максимальный ток, который может обеспечивать внешний источник питания.Вам необходимо спроектировать систему так, чтобы входной ток никогда не превышал максимальный номинальный ток для внешнего источника питания.

Для линейного зарядного устройства входной ток от внешнего источника по существу равен уставке тока быстрой зарядки.

Однако для импульсных регуляторов входной ток питания будет значительно отличаться от тока быстрой зарядки, идущего к аккумулятору.

Для понижающего зарядного устройства входной ток будет меньше, чем ток батареи, но для повышающего зарядного устройства он будет выше, чем ток батареи.

Рассеиваемая мощность

При работе с зарядными устройствами, особенно линейными, такими как MCP73831, важно учитывать рассеиваемую мощность. Линейные зарядные устройства не очень эффективны при определенных обстоятельствах, и очень важно, чтобы зарядное устройство не перегревалось. В противном случае ток зарядки будет автоматически снижен ниже желаемого уровня, чтобы температура не превысила максимум.

Рассеиваемая мощность в линейном зарядном устройстве (или линейном регуляторе) определяется на основе:

  • Величина тока нагрузки
  • Дифференциал напряжения между входом и выходом

Чем выше ток нагрузки или дифференциал напряжения, тем выше мощность (помните: мощность = напряжение x ток).

Максимальная рассеиваемая мощность и вероятность перегрева обычно возникают при переходе от фазы предварительной зарядки к фазе быстрой зарядки.

В этот момент напряжение аккумулятора находится на самом низком уровне, поэтому разница напряжений на зарядном устройстве максимальна, а ток также максимален в режиме быстрой зарядки. Это точка, в которой перепад напряжения и ток нагрузки максимальны.

MCP738 доступен с различными уставками порогового напряжения батареи при переходе от предварительной зарядки к быстрой.В качестве примера предположим, что этот порог составляет 70%. Это означает, что когда напряжение аккумулятора достигнет 70% от регулируемого выходного напряжения, зарядное устройство переключится в режим быстрой зарядки.

Для литиевой батареи 3,6 В регулируемое напряжение заряда в режиме постоянного напряжения составляет 4,2 В. 70% от этого значения составляет примерно 3 В, поэтому при переходе от предварительной зарядки к быстрой зарядке аккумулятор будет иметь напряжение 3 В.

Обратите внимание, что MCP73831 доступен с 4 различными регулируемыми напряжениями заряда: 4.2 В, 4,35 В, 4,4 В и 4,5 В.

Предположим, мы заряжаемся от порта USB, который обеспечивает напряжение 5 В. Следовательно, в начале фазы быстрой зарядки на входе 5 В и 3 В на выходе. Это соответствует дифференциальному напряжению 2 В.

Если ток быстрой зарядки установлен на 500 мА, тогда зарядное устройство будет рассеивать 1 Вт мощности при этом переходе.

Чтобы определить рейтинг Theta-JA, обратитесь к таблице данных зарядного устройства. Обычно это указывается в разделе «тепловые характеристики» или «температурные характеристики».Тета-JA будет выражаться в Кл / ватт.

Рисунок 3 — Температурные характеристики из таблицы данных MCP73831.

Чтобы определить, насколько нагревается зарядное устройство, используйте уравнение:

Прирост температуры = Рассеиваемая ватт x Theta-JA (Уравнение 4)

Это уравнение показывает, насколько компонент нагревается выше температуры окружающего воздуха. Чтобы получить абсолютную температуру, вы все равно должны добавить температуру окружающего воздуха в уравнение 4.

Например, если вы рассчитываете, что прирост температуры составляет 50 ° C, а температура окружающего воздуха равна 40 ° C, тогда компонент будет иметь температуру 90 ° C.

Большинство электронных компонентов рассчитаны на температуру до 125 ° C. Всегда избегайте превышения этой температуры, в противном случае зарядное устройство снизит ток заряда по мере необходимости, чтобы поддерживать температуру ниже 125 ° C.

Тип упаковки: SOT 23 по сравнению с DFN

MCP738 доступен в двух пакетах, включая пакет SOT-23 с выводами и пакет DFN без вывода выводов. DFN имеет значительно лучшие тепловые характеристики, чем SOT-23.

Рисунок 4. Два доступных пакета для MCP73831.

SOT-23: SOT-23 имеет рейтинг Theta-JA 230 C / Вт. Таким образом, если зарядное устройство рассеивает один ватт мощности, оно нагревается на 230 C. Если вы предположите, что вы находитесь при комнатной температуре (25 C), зарядное устройство на самом деле нагреется до 255 C.

Это определенно запустит стадию терморегулирования, которая снизит ток заряда, чтобы температура зарядного устройства оставалась ниже 125 ° C. Пакет SOT-23 следует выбирать только для приложений с низким энергопотреблением.

DFN. Пакет DFN, с другой стороны, имеет Theta-JA всего 76 C. Следовательно, на каждый 1 ватт мощности продукт будет нагреваться только на 76 C. Опять же, если вы находитесь при комнатной температуре, продукт собирается нагреться до 101 C. Это ниже порога 125 C и намного лучше, чем у SOT-23.

Таким образом, для приложений с высокими требованиями к рассеиваемой мощности пакет DFN — лучший выбор.

Ключевыми критериями выбора линейного зарядного устройства для удовлетворения требуемых требований к мощности являются корпус (который учитывает спецификацию Theta-JA), рассеиваемую мощность и максимальную температуру окружающей среды, при которой продукт будет работать.

С переключаемыми зарядными устройствами перегрев становится меньшей проблемой, потому что они, как правило, намного более энергоэффективны и обычно не рассеивают много энергии.

ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF. 15 шагов для разработки нового электронного оборудования .

Защита аккумулятора

Как вы, возможно, знаете, литиевые батареи могут быть очень летучими. Если вы перезарядите их или они закорочены, они могут загореться или взорваться.

Вы, наверное, слышали о телефонах Samsung Galaxy, которые продолжали гореть. По этой причине при работе с этими батареями очень важно учитывать защиту.

Рис. 5 — Без надлежащей защиты литиевая аккумуляторная батарея может загореться или взорваться.

Есть два варианта защиты:

Вариант №1: Выбрать аккумулятор со встроенной защитой . Я почти всегда рекомендую использовать аккумулятор со встроенной защитой, по крайней мере, на начальном этапе.

Если вы посмотрите, например, на литий-полимерную батарею, у многих из них будет крошечная печатная плата под лентой (обычно золотого цвета), которая расположена наверху, где выходят выводы.

Эта печатная плата уже встроена и защищает аккумулятор. Это предотвращает его перезарядку или короткое замыкание.

Рис. 6. Я рекомендую сначала использовать литиевые батареи, в которые уже встроена необходимая плата защиты.

Вариант № 2: Спроектировать защиту самостоятельно. Вы можете спроектировать защиту отдельно как часть вашего собственного продукта или на вашей собственной плате. Однако я обычно не рекомендую это вначале.

Если ваша цепь работает неправильно, вы рискуете взорвать аккумулятор, пока пытаетесь заставить цепь работать.

Я почти всегда рекомендую использовать аккумуляторы со встроенной защитой. Таким образом, вам просто не придется об этом беспокоиться.

Краткое описание MCP73831:

  • Ограничен максимальным током заряда 500 мА
  • Только одноэлементное зарядное устройство
  • Линейное зарядное устройство (вместо импульсного зарядного устройства)
  • Всего пять контактов
  • Вывод одиночного выхода состояния
  • Один штырь для установки различных зарядных токов
  • Нет возможности контролировать температуру батареи

Texas Instruments BQ24092

Подобно MCP73831, BQ24092 представляет собой линейное зарядное устройство для зарядки одного литиевого элемента.MCP73831 имеет только 5 активных контактов, тогда как BQ24092 имеет 9 активных контактов.

Один из дополнительных контактов позволяет независимо программировать токи предварительной зарядки и завершения зарядки отдельно от тока быстрой зарядки.

Другой дополнительный вывод обеспечивает вывод состояния, указывающий на наличие достаточного входного напряжения питания. Другой вывод контролирует температуру батареи, и, наконец, четвертый дополнительный вывод — это функция отмены тока заряда для USB-приложений.

Вскоре мы рассмотрим все эти дополнительные контакты более подробно.

Рисунок 7 — Типовая схема применения зарядного устройства Texas Instruments BQ24092.

Более высокий ток быстрой зарядки

Одно из больших различий между BQ24092 и MCP73831 — это максимальный ток заряда. С помощью MCP73831 вы можете запрограммировать ток быстрой зарядки от 15 мА до 500 мА.

С помощью BQ24092 вы можете запрограммировать ток заряда от 10 мА до 1000 мА.Ток заряда устанавливается через резистор, подключенный к выводу ISET.

Поскольку BQ24092 имеет более высокий максимальный ток заряда, его особенно удобно использовать при зарядке более крупных аккумуляторов.

Как обсуждалось ранее, обычно требуется зарядить литиевую батарею со скоростью 1 C.

Например, если у вас аккумулятор емкостью 500 мАч, вы хотите зарядить его максимальным током заряда 500 мА. С другой стороны, если у вас аккумулятор емкостью 1000 мАч, вы хотите зарядить его максимальным током 1000 мА.

Если вы используете ток заряда ниже 1С, процесс зарядки займет неоправданно много времени. Поскольку всем нам нужны устройства, которые заряжаются как можно быстрее, вы обычно должны заряжать их с максимальной скоростью, разрешенной аккумулятором.

Использование BQ24092 по сравнению с MCP73831 не принесет огромных преимуществ, если вы используете аккумулятор емкостью 500 мАч. Однако, если у вас есть аккумулятор на 1000 мАч, то BQ24092 позволит вам заряжать его в два раза быстрее, чем зарядное устройство Microchip.

Токи предварительной зарядки и завершения зарядки

Для быстрого обзора существует три различных уровня тока заряда, которые обычно необходимо запрограммировать для зарядного устройства:

  1. Ток предварительной зарядки. Это также известно как ток предварительной зарядки или ток постоянной зарядки. Это слабый ток, который предварительно заряжает аккумулятор, если он сильно разряжен. Вы не можете (или не должны) сразу начинать быструю зарядку разряженного литиевого аккумулятора. Думайте об этом этапе предварительной подготовки как о прогреве двигателя вашего автомобиля перед поездкой в ​​холодный зимний день.
  2. Ток быстрой зарядки. Когда аккумулятор достигает определенного уровня заряда, обычно около 10% от полного заряда, заряд переходит в режим быстрой зарядки. Это когда ток заряда максимальный.
  3. Конечный ток. Зарядное устройство выдает регулируемое напряжение и контролирует зарядный ток, поступающий в аккумулятор. Как только зарядный ток опускается ниже определенного порога, называемого порогом отключения, аккумулятор считается полностью заряженным, и процесс зарядки прекращается.

MCP73831 использует один резистор для установки тока предварительной зарядки, тока быстрой зарядки и тока завершения зарядки.

Это может быть несколько ограничивающим фактором, поэтому BQ24092 имеет два отдельных контакта для программирования зарядных токов. Один вывод устанавливает ток быстрой зарядки, а другой вывод устанавливает токи предварительной зарядки и завершения зарядки.

Функция отмены тока заряда для USB

BQ24092 также имеет специальный входной вывод под названием ISET2, который позволяет вам переопределить запрограммированный ток заряда для приложений зарядки на основе USB.

Когда на выводе ISET2 высокий уровень, ток заряда устанавливается на 500 мА. Когда этот вывод остается плавающим, ток заряда падает до 100 мА. Когда на выводе ISET2 установлен низкий уровень, используется запрограммированный ток заряда.

USB-порт на компьютере (на жаргоне USB это называется стандартным нисходящим портом или SDP) может обеспечивать ток не более 500 мА.

В исходной спецификации USB устройство должно было запросить разрешение у хоста (через процесс, называемый перечислением), чтобы потреблять эти 500 мА.Без перечисления максимально допустимый ток составлял всего 100 мА.

Многие устройства (особенно с разряженными батареями) не обнаружили, что 100 мА достаточно даже для включения питания, чтобы начать процесс подсчета. Таким образом, спецификация USB была обновлена ​​в 2013 году, чтобы обеспечить до 500 мА без перечисления.

BQ24092 был выпущен до этого обновления спецификации USB, поэтому он предлагает настройку 100 мА для функций USB, хотя этот текущий уровень больше не используется для USB.

Пин Power Good

И MCP73831, и BQ24092 имеют контакт, который загорается светодиодом, чтобы указать, когда идет зарядка.Этот же вывод можно также использовать в качестве выходного вывода для микроконтроллера, позволяя микроконтроллеру контролировать процесс зарядки.

На зарядном устройстве MCP73831 этот вывод называется выводом STAT, а на BQ24092 — выводом CHG.

Однако, в отличие от MCP73831, BQ24092 также имеет вывод Power Good (PG). Этот вывод указывает (через светодиод или вывод ввода / вывода на микроконтроллер), что источник питания, питающий зарядное устройство, превышает указанный допустимый порог напряжения.

Функция PG полезна, потому что многие компоненты будут работать неправильно, если у них нет соответствующего входного напряжения.

Датчик температуры батареи

Еще одно важное преимущество BQ24092 по сравнению с MCP73831 состоит в том, что он включает в себя вывод измерения температуры. Это позволяет зарядному устройству контролировать температуру аккумулятора и при необходимости регулировать зарядный ток, чтобы аккумулятор не перегревался.

Существует четыре пороговых значения температуры аккумулятора: 60 ​​° C, 45 ° C, 10 ° C и 0 ° C.Нормальная зарядка происходит при температуре от 10 ° C до 45 ° C.

Если температура аккумулятора находится в пределах от 0 ° C до 10 ° C, то ток быстрой зарядки уменьшается вдвое. Если температура составляет от 45 ° C до 60 ° C, максимальное регулируемое напряжение снижается до 4,1 В. Если температура аккумулятора выше 60 ° C или ниже 0 ° C, зарядное устройство отключается.

Texas Instruments BQ24703

Я особенно рад рассмотреть зарядное устройство BQ4703, потому что это зарядное устройство, которое я разработал для Texas Instruments, когда работал там инженером-конструктором много лет назад.

Это зарядное устройство значительно сложнее, чем первые два, которые мы рассматривали, но в этой статье мы рассмотрим его шаг за шагом.

Мы начнем с рассмотрения нескольких основных моментов, которые отличают это зарядное устройство от двух предыдущих. Затем мы рассмотрим типичную принципиальную схему приложения.

Регулятор переключения

BQ24703 имеет много дополнительных функций по сравнению с относительно менее сложными MCP73831 и BQ24092.Однако первое, что отличает это зарядное устройство от других, — это переключаемое зарядное устройство.

Как я уже упоминал, линейные зарядные устройства (такие как MCP73831 и BQ24092) тратят много энергии, особенно если входное напряжение намного выше, чем выходное напряжение.

Эта потерянная мощность рассеивается в виде тепла. Если температура слишком высока, зарядное устройство вынуждено уменьшить ток заряда, чтобы предотвратить перегрев зарядного устройства. В этом случае аккумулятор заряжается дольше.

Как и линейный регулятор, линейное зарядное устройство расходует больше энергии, когда входное напряжение значительно выше, чем выходное напряжение.

Боковое примечание: Линейное зарядное устройство — это на самом деле просто линейный регулятор с возможностью регулирования напряжения или тока (в зависимости от стадии зарядки), поэтому многие из основных концепций применимы к обоим. То же самое верно и для импульсных регуляторов и импульсных зарядных устройств.

Есть два типа переключаемых зарядных устройств, понижающие и повышающие (как и импульсные регуляторы).

Для получения более подробной информации о линейных и импульсных регуляторах см. Мой предыдущий блог о том, как выбрать правильные регуляторы напряжения для вашего проекта.

Понижающий стабилизатор принимает более высокое напряжение и понижает его до более низкого напряжения, в то время как повышающий стабилизатор принимает более низкое напряжение и увеличивает его до более высокого напряжения.

BQ24703 — это понижающее переключаемое зарядное устройство. Следовательно, входное напряжение должно быть выше, чем напряжение аккумулятора, который он пытается зарядить. Этот тип зарядного устройства особенно выгоден по сравнению с линейными зарядными устройствами, когда у вас большой перепад напряжения между входным и выходным напряжениями.

Например, предположим, что ваше входное напряжение составляет 12 В, а ваша батарея литиевая только 3,7 В. Зарядное устройство с понижающей коммутацией, такое как BQ24703, будет тратить намного меньше энергии, чем линейное зарядное устройство в этом приложении.

Он также будет заряжать аккумулятор быстрее, поскольку он сможет оставаться в режиме быстрой зарядки и использовать указанный максимальный ток для зарядки аккумулятора, поскольку он не переходит в режим терморегулирования.

С другой стороны, если входное напряжение составляет всего 5 В (например, с зарядными устройствами USB), то линейное зарядное устройство, вероятно, имеет больше смысла.Линейные зарядные устройства менее сложны, требуют меньшего количества компонентов и дешевле, поэтому используйте импульсные зарядные устройства только тогда, когда это действительно необходимо.

Зарядное устройство для нескольких элементов

Зарядные устройства

для нескольких ячеек позволяют объединять несколько ячеек последовательно для получения более высоких выходных напряжений.

Например, вместо одной ячейки 3,7 В, многоэлементное зарядное устройство позволит вам объединить две ячейки по 3,7 В для создания двухэлементной батареи 7,4 В. Вы можете даже сложить три ячейки, чтобы получить 11,1 В и так далее.

Рисунок 8 — Двухэлементный литий-полимерный аккумулятор с выходным напряжением 7,4 В.

При зарядке нескольких элементов с помощью линейного зарядного устройства или зарядного устройства с понижающей коммутацией входное напряжение должно быть выше, чем напряжение аккумулятора, который вы пытаетесь зарядить.

Способом обойти это ограничение является использование импульсного зарядного устройства, которое может принимать небольшое входное напряжение и повышать его до более высокого выходного напряжения. Например, это означает, что с помощью повышающего зарядного устройства вы можете заряжать двухэлементную батарею (Vbat = 7.2 В) от источника питания 5 В.

Динамическое управление питанием

Другая ключевая функция BQ24703 называется динамическим управлением питанием (DPM). Это означает, что зарядное устройство может динамически изменять ток заряда аккумулятора в зависимости от величины доступного тока.

Например, допустим, максимальный ток, который может обеспечить адаптер переменного тока, составляет 1 А, а ваша система потребляет 400 мА, в то время как вы также пытаетесь зарядить аккумулятор. После этого BQ24703 автоматически установит ток заряда аккумулятора на 600 мА.

IBAT = IADPT — ISYS

IBAT = ток заряда аккумулятора, IADPT = ток сетевого адаптера и ISYS = ток системы.

В этом же примере, если ток, требуемый остальной частью системы, внезапно уменьшится до 200 мА, то функция DPM выделит до 800 мА для зарядки аккумулятора. Конечно, это произойдет только в том случае, если быстрая зарядка была установлена ​​на 800 мА или выше.

DPM позволяет аккумулятору всегда заряжаться максимально доступным током.Чем меньше ток использует система, тем больше тока зарядное устройство выделяет для зарядки аккумулятора.

Селекторный переключатель системы

Помимо динамического управления питанием, в BQ24703 также встроен системный селекторный переключатель.

Это позволяет вручную или автоматически отключать питание системы от адаптера переменного тока или аккумулятора.

Например, при питании продукта от адаптера переменного тока, если вы внезапно отключите его от сети, BQ24703 автоматически переключит систему на питание от батареи.

Затем, если вы снова подключите его к розетке переменного тока, вы также можете настроить его на переключение обратно на питание переменного тока.

Эта функция реализуется через два внешних переключателя MOSFET, которые управляются BQ24703.

Схема обзора

Далее мы рассмотрим типичную схему приложения из таблицы данных для BQ24703, чтобы подробнее изучить это зарядное устройство.

См. Типичную схему применения на странице 10 таблицы данных, которая также показана ниже на Рисунке 9.

Рисунок 9 — Типовая схема применения зарядного устройства Texas Instruments BQ24703.

МОП-транзисторы: Существует несколько различных МОП-транзисторов, включая U1, U2 и U3. Все это P-MOSFET. Обратите внимание, что U1 не обозначен на схеме, но находится в правом нижнем углу схемы выше.

U1 и U2 выполняют функцию переключателя системы. Когда U1 включен, система питается от батареи, а когда U2 включен, система получает питание непосредственно от адаптера переменного тока.

U1 управляется выводом BATDRV, а U2 управляется выводом ACDRV на BQ24703.

Эти переключатели называются прерыванием перед включением, что означает, что один переключатель выключается до включения другого. Это гарантирует, что оба переключателя никогда не будут включены одновременно, что приведет к короткому замыканию напряжения адаптера переменного тока непосредственно на батарею.

Понижающий импульсный стабилизатор: МОП-транзистор с маркировкой U3 в сочетании с диодом D4 и индуктором L1 образуют основную схему понижающего импульсного зарядного устройства.Затвор U3 управляется BQ24703 через вывод PWM.

Ток адаптера переменного тока (ACP / ACN): На входе адаптера переменного тока находится резистор R14, который является чувствительным резистором. BQ24703 измеряет падение напряжения на этом резисторе, чтобы определить ток адаптера переменного тока. R13, R15 и C3 все образуют фильтр нижних частот, поэтому любой коммутационный шум удаляется из напряжения считывания тока адаптера.

Все это позволяет зарядному устройству измерять ток, потребляемый от адаптера переменного тока.Это важно, чтобы зарядное устройство знало, как динамически управлять мощностью (DPM) и сколько тока доступно для зарядки аккумулятора.

Контакт ACDET: Также имеется контакт обнаружения переменного тока, который служит для обнаружения адаптера переменного тока. Это всего лишь один вывод, который подключается к напряжению адаптера переменного тока через резисторный делитель. Это позволяет зарядному устройству узнать, присутствует ли адаптер переменного тока.

Если вы запитываете систему напрямую от адаптера переменного тока и внезапно отключите его, зарядное устройство обнаружит, что он отключен, и автоматически переключится на питание системы от аккумулятора.

Вывод IBAT: Вывод IBAT выдает напряжение, пропорциональное току заряда аккумулятора. Вы можете передать это в аналого-цифровой преобразователь (АЦП) в микроконтроллере, чтобы контролировать ток зарядки аккумулятора.

Штырь VREF. Вывод VREF выдает регулируемое напряжение 5 В, которое можно использовать в качестве точного опорного напряжения для любой уставки резисторного делителя или для подтягивающих резисторов на любом из выходов с открытым стоком.

ACSEL: Контакт выбора переменного тока позволяет вручную выбрать, от адаптера переменного тока или от батареи питается система.

АВАРИЙНЫЙ СИГНАЛ: Аварийный сигнал генерируется, если обнаруживается, что батарея разряжена.

ACPRES: Контакт наличия переменного тока — это выход, который сообщает вам, присутствует ли адаптер переменного тока или нет.

SRSET и ACSET: Это два напряжения, которые вы устанавливаете через резистивный делитель, который устанавливает ток адаптера и ток заряда аккумулятора.

VS: Этот вывод контролирует напряжение системы, чтобы реализовать функцию прерывания перед включением, которую я упомянул для функции выбора системы.

BATP: Этот вывод контролирует выходное напряжение на батарее через резистивный делитель. Это образует контур обратной связи, который регулирует выходное напряжение зарядного устройства.

BATDEP: Этот вывод подключается к другому резистивному делителю напряжения батареи. Он предназначен для настройки сигнализации, если напряжение батареи упадет ниже определенного напряжения (которое задается соотношением резисторов в делителе).

COMP: Любая цепь, имеющая петлю обратной связи, потенциально может стать генератором, если эта обратная связь станет положительной.RC-цепь, подключенная к этому выводу, помогает компенсировать этот контур обратной связи, чтобы предотвратить нежелательные колебания.

SRP / SRN: Эти два контакта подключаются к измерительному резистору для измерения тока заряда аккумулятора. Как и в случае с резистором считывания адаптера переменного тока, имеется фильтр нижних частот (R19, R21 и C8) для фильтрации любых шумов переключения.

VHSP: Это внутренний вывод источника напряжения, который генерирует напряжение, которое на фиксированное число вольт ниже напряжения адаптера переменного тока.Это напряжение затем используется для управления P-FETS с фиксированным напряжением затвора.

Если напряжение адаптера переменного тока выше 10,5 В, тогда VHSP будет равно напряжению адаптера минус 10 В. Например, если напряжение адаптера составляет 12 В, тогда VHSP будет равно 2 В. Это сделано для того, чтобы гарантировать, что полевые транзисторы не получают напряжение управления затвором выше, чем они могут выдержать.

Заключение

В этой серии мы внимательно рассмотрели три различных решения для зарядных устройств, которые хорошо работают в новых электронных продуктах.

Мы начали с относительно простого MCP73831 от Microchip. Это одноэлементное линейное зарядное устройство с максимальным током заряда 500 мА. Это может быть хорошим решением для многих зарядных устройств на базе USB.

При выборе линейного зарядного устройства не забывайте обращать пристальное внимание на тип корпуса, мощность и максимальную температуру окружающей среды, при которой будет работать ваш продукт. Ничто не убьет ваш стартап быстрее, чем сжечь клиента, поэтому обязательно защитите аккумулятор, чтобы избежать перезарядки или короткого замыкания.

Затем мы рассмотрели немного более продвинутый BQ24092 от Texas Instruments. Как и MCP73831, это одноэлементное линейное зарядное устройство, но оно имеет максимальный ток зарядки до 1 А.

Он предлагает больший контроль над токами предварительной зарядки и быстрой зарядки и имеет различные состояния завершения, которые вы можете программировать независимо. Он также включает в себя контактный датчик температуры для контроля температуры батареи.

Наконец, мы рассмотрели один из моих проектов — BQ24703.Это понижающее зарядное устройство с переключателем и возможностью заряжать несколько ячеек. Он также включает расширенные функции, такие как динамическое управление питанием и переключатель системы.

Наконец, не забудьте скачать бесплатно PDF : Ultimate Guide to Develop and Sell Your New Electronic Hardware Product . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.

Другой контент, который может вам понравиться:

Импульсная, линейная и импульсная зарядка T

Аннотация: Существует три метода зарядки Li + аккумуляторов: импульсный, линейный и импульсный.У каждого метода есть свои преимущества и недостатки. Зарядка в режиме переключения сводит к минимуму рассеивание мощности в широком диапазоне напряжений адаптера переменного тока, но занимает больше места на плате и усложняет линейную и импульсную зарядку. Линейные зарядные устройства имеют небольшие размеры и отлично подходят для оборудования, чувствительного к шуму, но рассеиваемая мощность высока. Импульсные зарядные устройства небольшие и эффективные, но для них требуется адаптер переменного тока с ограничением тока. Выберите метод оплаты, исходя из приоритета стоимости, площади и эффективности.

Зарядка аккумуляторов Li + в мобильных телефонах и КПК — это баланс.С одной стороны, большой ток необходим для быстрой замены энергии, расходуемой из батареи при передаче голоса или данных. С другой стороны, зарядное устройство должно быть маленьким, чтобы поместиться внутри постоянно уменьшающегося форм-фактора мобильного телефона и коммуникативного КПК. Знание типов доступных зарядных устройств и компромиссов между ними позволяет разработчику выбрать правильное зарядное устройство для конкретного приложения.

Требования к зарядным устройствам Li +

Зарядное устройство Li + аккумулятора должно ограничивать зарядный ток и максимальное напряжение аккумулятора.Разработчики должны проконсультироваться с производителем батареи, чтобы определить, что требуется для безопасной зарядки конкретной батареи. Другие функции часто добавляются для увеличения срока службы батарей или работы зарядного устройства. К ним относятся снижение зарядного тока для чрезмерно разряженных элементов, обнаружение неисправных элементов, мониторинг напряжения аккумулятора и / или измерение уровня топлива, ограничение входного тока, выключение зарядного устройства после завершения заряда, автоматический перезапуск зарядки после частичного разряда, индикация состояния заряда и управление включением / отключением внешнего зарядного устройства.

Эти функции могут быть реализованы в самом зарядном устройстве, в ASIC или дискретной схеме, или, возможно, в программном обеспечении микроконтроллера. Разработчики схем решают, какие функции включить и как их реализовать, в зависимости от конкретного приложения и приемлемого уровня стоимости или сложности.

Типы зарядных устройств Li +

Зарядные устройства Li + бывают трех типов: импульсные, линейные и импульсные. Основное различие между этими топологиями — это размер и стоимость vs.компромисс производительности, который они предлагают. Зарядные устройства

с импульсным режимом обычно больше и сложнее и требуют большого пассивного выходного LC-фильтра; дополнительное пространство на плате повышает эффективность.

Линейные и импульсные зарядные устройства занимают мало места на плате и требуют минимум внешних компонентов. Хотя линейному зарядному устройству может не потребоваться много места на плате для размещения ИС и ее внешних компонентов, ему может потребоваться дополнительная площадь на плате для рассеивания тепла, выделяемого проходным транзистором зарядного устройства.Импульсные зарядные устройства не представляют этой проблемы. Однако для них требуется адаптер переменного тока с ограничением по току, который обычно стоит дороже.

Импульсные зарядные устройства

На рисунке 1 показана схема типичного импульсного зарядного устройства Li +. Он использует контроллер зарядного устройства MAX1737 Li + с двумя n-канальными полевыми МОП-транзисторами для понижения напряжения адаптера переменного тока до напряжения батареи. Рассеиваемая мощность этой схемы остается ниже примерно 1 Вт во всем диапазоне напряжения батареи и в широком диапазоне напряжений адаптера переменного тока.Эту схему можно легко масштабировать, чтобы можно было заряжать до четырех последовательных ячеек токами до 4 А.


Рис. 1. Зарядное устройство MAX1737 Switch Mode Li +.

Зарядные устройства с импульсным режимом имеют стабильно низкое рассеивание мощности при больших колебаниях входного напряжения и напряжения батареи, что является несомненным преимуществом перед линейными зарядными устройствами. Зарядные устройства с импульсным режимом также имеют преимущество перед импульсными зарядными устройствами: они хорошо работают в широком диапазоне входного напряжения, что позволяет использовать меньший и более дешевый сетевой адаптер переменного тока, чем при использовании импульсного зарядного устройства.Основными недостатками зарядного устройства такого типа являются его размер и сложность. Контроллер вместе с внешними переключателями и LC-фильтром занимает больше места на плате, чем другие типы зарядных устройств. К другим недостаткам относятся электромагнитные помехи и электрические помехи, вызванные переключающим действием зарядного устройства, и излучение, вызванное индуктором выходного фильтра. Фиксированная частота переключения контроллера, однако, позволяет легко фильтровать электрические шумы, но следует соблюдать осторожность при компоновке схемы и выборе компонентов, чтобы предотвратить проблемы с помехами.

Схема зарядного устройства, показанная на Рисунке 1, включает в себя множество других функций, которые увеличивают как срок службы батареи, так и работу системы. Например, контроллер схемы зарядного устройства позволяет установить ограничение на ток, протекающий в цепи. Когда этот ток достигает предела, контроллер автоматически снижает ток, заряжающий аккумулятор, ограничивая ток, который может течь на вход схемы. Поскольку зарядное устройство ограничивает входной ток, для питания цепи можно использовать адаптер переменного тока меньшего размера и, как правило, более дешевый.

Зарядное устройство включает в себя конечный автомат, который выключает зарядное устройство после завершения зарядки и автоматически перезапускает зарядку, когда часть заряда слилась с аккумулятора. Функции безопасности включают бережную предварительную зарядку чрезмерно разряженных аккумуляторов при пониженном токе и возможность обнаружения неисправных аккумуляторов. Кроме того, индикаторы заряда и состояния могут напрямую управлять светодиодами или связываться с микроконтроллером.

Линейные зарядные устройства

Один из способов минимизировать размер и сложность зарядного устройства — использовать линейное зарядное устройство.В линейном зарядном устройстве используется проходной транзистор (обычно MOSFET, но иногда и биполярный транзистор) для понижения напряжения адаптера переменного тока до напряжения батареи. Количество внешних компонентов намного меньше: для линейных зарядных устройств требуются входные и выходные байпасные конденсаторы, а иногда требуется внешний проходной транзистор и резисторы для установки пределов напряжения и тока.

Основная проблема линейного зарядного устройства — это рассеивание мощности. Зарядное устройство просто понижает напряжение адаптера переменного тока до напряжения аккумулятора.Рассеиваемая мощность проходного элемента равна напряжению адаптера минус напряжение аккумулятора, умноженное на ток зарядки. В случае зарядного устройства 1 А, регулируемого напряжения адаптера переменного тока 5 В ± 10% и напряжения батареи, которое варьируется от 4,2 В до 2,5 В, рассеиваемая мощность может составлять от 0,3 Вт до 3,0 Вт.

На рисунке 2 показано типичное линейное зарядное устройство Li +. В этой схеме используется MAX1898 и внешний полевой МОП-транзистор с p-каналом для снижения напряжения адаптера переменного тока до напряжения батареи. Этот тип зарядного устройства намного проще, чем тип переключателя, главным образом потому, что пассивный LC-фильтр не требуется.Он рассеивает наибольшую мощность, когда напряжение батареи минимально, поскольку разница между фиксированным входным напряжением и напряжением батареи наибольшая в этом состоянии. MAX1898 включает в себя функцию (называемую состоянием предварительной квалификации ), которая снижает ток зарядки для любого напряжения батареи менее 2,5 В. Поэтому в наихудшем случае рассеяние мощности происходит, когда уровень заряда батареи чуть выше номинального порога предварительной квалификации 2,5 В, а входное напряжение максимально. Для входа 5 В ± 10% максимальное входное напряжение равно 5.5В. С учетом допуска минимальное напряжение предварительной квалификации MAX1898 составляет 2,375 В. Таким образом, в худшем случае рассеиваемая мощность проходного транзистора составляет 3,125 Вт на ампер зарядного тока. При больших токах зарядки (около 1 А) большая рассеиваемая мощность может привести к чрезмерному нагреву небольшого мобильного телефона или КПК, что может снизить его производительность. К сожалению, уменьшение зарядного тока для устранения проблем рассеивания мощности увеличивает время зарядки. Выбор между дополнительным нагревом и временем дополнительной зарядки может быть затруднен в зависимости от области применения.


Рис. 2. Линейное зарядное устройство MAX1898 Li +.

Даже с учетом проблемы рассеивания мощности, связанной с линейной зарядкой, это все равно может быть лучшим выбором для беспроводных устройств. Поскольку нет переключающего действия и не требуются индукторы, линейные зарядные устройства имеют более низкие кондуктивные и излучаемые эмиссии, чем другие типы зарядных устройств. Благодаря такому снижению шума линейное зарядное устройство может стать подходящим решением для чувствительных к шуму беспроводных устройств.

MAX1898 включает в себя: индикатор зарядки, который может напрямую управлять светодиодом или микроконтроллером, схему пониженного напряжения аккумулятора, которая снижает ток зарядки для чрезмерно разряженных аккумуляторов, таймер для выключения зарядного устройства после завершения зарядки и регулируемый порог перезапуска до автоматически возобновляет зарядку, если аккумулятор разряжен.Вывод ISET устанавливает зарядный ток и показывает его уровень, пока зарядное устройство регулирует напряжение. Напряжение на выводе ISET можно контролировать с помощью АЦП или компаратора, чтобы определить, когда ток зарядки аккумулятора упал до достаточно низкого уровня; либо этот уровень, либо встроенный таймер можно использовать для прекращения зарядки. Контроллер также включает в себя выходной контакт, который указывает состояние зарядки (/ CHG \), и комбинированный входной и выходной контакт (EN / OK), который указывает на наличие входного напряжения и включает зарядное устройство.

Импульсные зарядные устройства

Третий тип зарядного устройства Li +, импульсное зарядное устройство, разделяет некоторые преимущества как импульсных, так и линейных зарядных устройств. Подобно импульсному зарядному устройству, импульсное зарядное устройство работает эффективно. Когда напряжение заряжаемой батареи низкое, проходной транзистор остается включенным и проводит входной ток источника непосредственно к батарее. Когда напряжение батареи достигает напряжения стабилизации батареи, зарядное устройство подает импульс входного тока для достижения желаемого зарядного тока, таким образом регулируя напряжение батареи на желаемом пределе напряжения.Потому что транзистор не работает в своей линейной области во время этой части цикла заряда, а действует как переключатель, и рассеиваемая мощность намного ниже, чем у линейного зарядного устройства. Поскольку импульсному зарядному устройству не требуется выходной LC-фильтр, оно меньше, чем импульсное зарядное устройство.

На рисунке 3 показано импульсное зарядное устройство MAX1736 Li +. Он не уступает линейному зарядному устройству по простоте и небольшому количеству внешних компонентов. Благодаря более низкому рассеянию мощности компромисс между временем зарядки и рассеиваемой мощностью не следует рассматривать как линейное зарядное устройство.


Рисунок 3. Импульсное зарядное устройство Li +.

Однако к импульсному зарядному устройству предъявляются особые требования. Во-первых, источник входного напряжения, который питает зарядное устройство, должен быть ограничен по току. Текущий предел должен быть достаточно точным; настенные кубы с таким уровнем точности доступны не так повсеместно, как кубики без точного ограничения тока. К тому же они дороже. Однако в некоторых случаях ограничение тока адаптера переменного тока указывается достаточно точно, чтобы гарантировать, что неисправность в устройстве, которое он питает, не создаст угрозы безопасности.Если по той или иной причине требуется точное ограничение входного тока, то при его использовании для зарядки не требуется никаких дополнительных затрат.

MAX1736 автоматически заряжает аккумулятор при низком токе 6 мА, когда напряжение аккумулятора ниже 2,5 В, чтобы предотвратить его повреждение в чрезмерно разряженном состоянии. Однако контроллер не прекращает зарядку автоматически. В большинстве случаев он прекращает зарядку после того, как зарядный ток упадет ниже некоторого порогового значения, обычно 10% от предельного зарядного тока.Чтобы установить этот режим прекращения заряда, вывод GATE на MAX1736 используется для непосредственного управления входом микроконтроллера. Измеряя рабочий цикл напряжения на выводе GATE, микропроцессор определяет средний ток. В случае 10%, когда рабочий цикл на выводе GATE упадет ниже 10%, микроконтроллер завершит зарядку. Микроконтроллер также может отключить MAX1736, управляя контактом EN. Когда входной источник отсутствует или на контакте EN низкий уровень заряда батареи уменьшается до 2 мкА, чтобы зарядное устройство не разряжало батарею после завершения зарядки.

Заключение

Зарядные устройства импульсного режима рассеивают мало энергии в широком диапазоне входного и зарядного напряжения и тока, но имеют большую стоимость и сложность, чем другие типы. Линейные зарядные устройства меньше и менее сложны, чем устройства, работающие в режиме переключения, но в большинстве случаев они рассеивают больше энергии. Импульсные зарядные устройства рассеивают значительно меньше энергии и занимают небольшую площадь на плате, но требуют более дорогих адаптеров переменного тока, которые ограничивают потребляемый от них ток.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *