Реферат Аберрации оптических систем
скачатьРеферат на тему:
План:
- Введение
- 1 Монохроматические аберрации
- 1.1 Теория аберраций
- 1.2 Монохроматические аберрации третьего порядка
- 1.3 Монохроматические аберрации высших порядков
- 2 Хроматические аберрации
- 3 «Дифракцио́нная аберрация» Примечания
Литература
Введение
- У термина «аберрация» есть и другие значения, см. аберрация.
Аберра́ции оптических систем — ошибки, или погрешности изображения в оптической системе, вызываемые отклонением луча от того направления, по которому он должен был бы идти в идеальной оптической системе. Аберрации характеризуют различного вида нарушения гомоцентричности [1] в структуре пучков лучей, выходящих из оптической системы.
Величины аберраций могут быть получены, как сравнением координат лучей, путём непосредственного расчёта по точным геометро-оптическим формулам, так и приближённо, с помощью формул теории аберраций.
При этом, возможно характеризовать аберрации, как критериями лучевой оптики, так и на основе представлений волновой оптики. В первом случае, отступление от гомоцентричности выражается через представление о геометрических аберрациях и фигурах рассеяния лучей в изображениях точек. Во втором случае, оценивается деформация прошедшей через оптическую систему сферической световой волны, вводя представление о волновых аберрациях. Оба способа описания взаимосвязаны, описывают одно и то же состояние, и различаются лишь формой описания.
Как правило, если объектив обладает большими аберрациями, то их проще характеризовать величинами геометрических аберраций, а если малыми, то на основе представлений волновой оптики.
Аберрации можно разделить на монохроматические, то есть присущие монохромным пучкам лучей, и хроматические.
Сферическая аберрация
Кома
Хроматическая аберрация
Ахроматическая линза
1. Монохроматические аберрации
Геометрические аберрации внемеридионального (косого) луча.
AQ — внемеридиональный луч
P -входной зрачок
P’ — выходной зрачок
A’ 0 — идеальное изображение точки A
A’ — реальное изображение точки A
δg’ и δG’ — отступления от идеального изображения.
Такие погрешности изображений присущи всякой реальной оптической системе, и принципиально неустранимы. Их возникновение объясняется тем, что преломляющие поверхности неспособны собрать в точку сколько-нибудь широкие пучки лучей, падающие на них под большими углами. Эти аберрации приводят к тому, что изображением точки является некоторая размытая фигура (фигура рассеяния), а не точка, что, в свою очередь, отрицательно влияет на чёткость изображения и нарушает подобие изображения и предмета.
1.1. Теория аберраций
Теория геометрических аберраций устанавливает функциональную зависимость аберраций от координат падающего луча и конструктивных элементов оптической системы — от радиусов её поверхностей, толщин, показателей преломления линз и т. д.
1.2. Монохроматические аберрации третьего порядка
где и — координаты луча, входящие в качестве сомножителей членов ряда.
Число таких коэффициентов аберраций третьего порядка равно пяти и, как правило, они обозначаются буквами S
Каждым из пяти коэффициентов определяется одна из так называемых пяти аберраций Зейделя:
- SI — сферическая аберрация;
- SII — кома;
- SIII — астигматизм;
- SIV — кривизна поля (поверхности) изображения;
- SV — дисторсия.
В реальных системах отдельные виды монохроматических аберраций почти никогда не встречаются. В действительности, наблюдается сочетание всех аберраций, а исследование сложной аберрационной фигуры рассеяния методом выделения отдельных видов аберраций (любого порядка) — не более чем искусственный приём, облегчающий анализ явления.
1.3. Монохроматические аберрации высших порядков
Пример сложных фигур рассеяния для осевого и наклонных пучков лучей объектива Зоннар 1:1.5.
Как правило, картину распределения лучей в фигурах рассеяния заметно осложняет то, что на комбинацию всех аберраций третьего порядка налагаются аберрации высших порядков. Это распределение заметно меняется с изменением положения точки объекта и отверстия системы. Так например, сферическая аберрация пятого порядка, в отличие от сферической аберрации третьего порядка, отсутствует в точке на оптической оси, но при этом растёт пропорционально квадрату удаления от неё.
Влияние аберраций высших порядков возрастает, по мере роста относительного отверстия объектива, причём настолько быстро, что, на практике, оптические свойства светосильных объективов определяются именно высшими порядками аберраций.
Величины аберраций высших порядков учитываются на основании точного расчёта хода лучей через оптическую систему (трассировки). Как правило, с применением специализированных программ для оптического моделирования (Code V, OSLO, ZEMAX и пр.)
2. Хроматические аберрации
Хроматические аберрации, обусловленные дисперсией оптических сред, из которых образована оптическая система, то есть зависимостью показателя преломления оптических материалов, из которых изготовлены элементы оптической системы, от длины проходящей световой волны. Могут проявляться в постороннем окрашивании изображения, и в появлении у изображения предмета цветных контуров, которые у предмета отсутствовали.
К этим аберрациям относятся хроматическая аберрация (хроматизм) положения, иногда называемая «продольным хроматизмом», и хроматическая аберрация (хроматизм) увеличения.
Так же к хроматическим аберрациям принято относить хроматические разности геометрических аберраций, в основном, хроматическую разность сферических аберраций для лучей различных длин волн (так. наз. «сферохроматизм»), и хроматическую разность аберраций наклонных пучков.
3. «Дифракцио́нная аберрация»
Возникает вследствие дифракции света на диафрагме и оправе фотообъектива. Дифракционная аберрация ограничивает разрешающую способность фотообъектива. Из-за этой аберрации минимальное угловое расстояние между точками, разрешаемое объективом, ограничено величиной λ/D радиан, где λ (лямбда) — длина электромагнитной волны светового диапазона (волны с длиной от 400 нм до 700 нм), а D — диаметр объектива.
В оптических системах полностью устранить аберрации невозможно. Их доводят до минимально возможных значений, обусловленных техническими требованиями и ценой изготовления системы. Иногда, также, минимизируют одни аберрации за счёт увеличения других.
Примечания
- Гомоцентрическим (гомоцентричным) называется пучок световых лучей, испускаемых светящейся точкой или сходящихся в одной точке.
- То есть, лежащая в меридиональной плоскости.
Меридиональной плоскостью, в оптических системах с центральной симметрией, будет любая плоскость, к которой принадлежит оптическая ось системы. В европейской и американской оптической литературе эта плоскость чаще именуется тангенциальной.
Сагиттальной плоскостью, для любого пучка лучей лежащего в меридиональной плоскости, будет плоскость, включающая главный луч этого пучка, и перпендикулярная меридиональной плоскости.
Литература
- Волосов Д. С. Фотографическая оптика. М., «Искусство», 1971.
- Русинов М. М. Композиция оптических систем. Л., «Машиностроение», 1989.
- Сивухин Д. В. Общий курс физики. Оптика. М., «Наука», 1985.
- Перевод раздела про оптическую терминологию из «Canon Lens Work II» — www.photoweb.ru/lenswork1.htm#33
Аберрации оптических систем
Аберрации оптических систем (от латинского aberratio – отклонение) – искажения, ошибки, или погрешности изображений, формируемых оптическими системами. Причина их возникновения в то, что луч отклоняется от того направления, по которому в близкой к идеалу оптической системе он должен был бы идти. Различные нарушения гомоцентричности (отчетливости, соответствия или окрашенности) в структуре выходящих из оптической системы пучков лучей характеризуют аберрации.
Наиболее распространенными видами аберраций оптических систем можно считать:
1. Сферическую аберрацию. Она характеризуется недостатком изображения. При нем испущенные одной точкой объекта световые лучи, проходящие вблизи оси оптической системы, и лучи, проходящие через отдаленные от оси части системы, не собираются в одной точке.
2. Кому. Так называют аберрацию, которая возникает во время косого прохождения световых лучей через оптическую систему. В результате этого наблюдается нарушение симметрии пучка лучей относительно его оси и изображение точки (которая создается системой) принимает вид несимметричного пятна рассеяния.
3. Астигматизм. Об этой аберрации говорят, когда световая волна испытывает деформацию во время прохождения оптической системы. В результате этого, наблюдается деформация, при которой исходящие из одной точки объекта пучки лучей не пересекаются в одной точке, а располагаются в двух взаимно перпендикулярных отрезках на некотором расстоянии друг от друга. Такие пучки получили название астигматических.
4. Дисторсию. Так называется аберрация, характеризующаяся нарушением геометрического подобия между объектом и изображением объекта. Она обуславливается неодинаковостью линейного оптического увеличения на разных участках изображения.
5. Кривизну поля изображения. При этой аберрации наблюдается процесс, когда изображение плоского предмета получается резким на искривленной поверхности, а не на плоскости, как должно было.
Все вышеперечисленные виды аберраций оптических систем называются геометрическими или аберрациями Зейделя. В реальных системах отдельные виды геометрических аберраций можно встретить крайне редко. Куда чаще мы можем наблюдать симбиоз всех аберраций. А метод выделения отдельных видов аберраций является искусственным приемом, призванным облегчить анализ явления.
В то же время существует и хроматическая аберрация. Наблюдается связь этого вида аберрации и зависимости показателя преломления оптических сред от длины волны света. Проявления этой аберрации наблюдаются в оптических системах, в которые входят элементы из преломляющих материалов. Как пример, линзы. Отметим также, что зеркалам свойственна ахроматичность.
Проявление хроматических аберраций может наблюдаться при виде постороннего окрашивания изображения, а также, когда у изображения предмета появляются цветные контуры, которых у предмета ранее не наблюдалось. Хроматические аберрации обусловливаются дисперсией оптических сред (зависимость показателя преломления оптических материалов от длины проходящей световой волны). Именно из них образуется оптическая система
К числу этих аберраций можно отнести хроматическую аберрацию или хроматизм положения (ее иногда называют «продольным хроматизмом») и хроматическу аберрацию или хроматизм увеличения.
Хотите узнать больше об аберрациях оптических систем? У вас остались какие-то вопросы или появилось желание получше разобраться в отдельных нюансах? – Мы всегда готовы вам помочь. Просто зарегистрируйтесь на нашем сайте, выберите подходящий тарифный план и вперед!
Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!
Зарегистрироваться
© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.
Аберрация оптической системы — Википедия
Аберра́ция оптической системы — ошибка или погрешность изображения в оптической системе, вызываемая отклонением луча от того направления, по которому он должен был бы идти в идеальной оптической системе. Аберрацию характеризуют различного вида нарушения гомоцентричности[1] в структуре пучков лучей, выходящих из оптической системы.
Величина аберрации может быть получена как сравнением координат лучей путём непосредственного расчёта по точным геометро-оптическим формулам, так и приближённо — с помощью формул теории аберраций.
При этом возможно характеризовать аберрацию как критериями лучевой оптики, так и на основе представлений волновой оптики. В первом случае отступление от гомоцентричности выражается через представление о геометрических аберрациях и фигурах рассеяния лучей в изображениях точек. Во втором случае оценивается деформация прошедшей через оптическую систему сферической световой волны, вводя представление о волновых аберрациях. Оба способа описания взаимосвязаны, описывают одно и то же состояние и различаются лишь формой описания.
Как правило, если объектив обладает большими аберрациями, то их проще характеризовать величинами геометрических аберраций, а если малыми, то на основе представлений волновой оптики.
Аберрации можно разделить на монохроматические, то есть присущие монохромным пучкам лучей, и хроматические.




Такие погрешности изображений присущи всякой реальной оптической системе, и принципиально неустранимы. Их возникновение объясняется тем, что преломляющие поверхности неспособны собрать в точку широкие пучки лучей, падающие на них под большими углами.
Эти аберрации приводят к тому, что изображением точки является некоторая размытая фигура (фигура рассеяния), а не точка, что, в свою очередь, отрицательно влияет на чёткость изображения и нарушает подобие изображения и предмета.
Теория аберраций[править | править код]
Теория геометрических аберраций устанавливает функциональную зависимость аберраций от координат падающего луча и конструктивных элементов оптической системы — от радиусов её поверхностей, толщин, показателей преломления линз и т. д.
Монохроматические аберрации третьего порядка[править | править код]
Теория аберраций ограничивается приближённым представлением составляющих аберраций (δg′{\displaystyle \delta g’} и δG′{\displaystyle \delta G’}) в виде ряда, члены которого содержат некие коэффициенты (суммы переменных) a1,a2,…,ak{\displaystyle a_{1},a_{2},\dots ,a_{k}}, зависящие только от конструктивных элементов оптической системы и от положения плоскостей объекта и входного зрачка, но не зависящие от координат луча. Так например, меридиональная[2] составляющая аберрации третьего порядка может быть представлена формулой:
- δg′=a1′m3+a2′lm2+a3′l2m+a4′l3{\displaystyle \delta g’=a’_{1}m^{3}+a’_{2}lm^{2}+a’_{3}l^{2}m+a’_{4}l^{3}},
где l{\displaystyle l} и m{\displaystyle m} — координаты луча, входящие в качестве сомножителей членов ряда.
Число таких коэффициентов аберраций третьего порядка равно пяти и, как правило, они обозначаются буквами SI, SII, SIII, SIV, SV.
Причём, в целях упрощения анализа, предполагают, что в формулах только один из коэффициентов не равен нулю, и определяет соответствующую аберрацию.
Каждым из пяти коэффициентов определяется одна из так называемых пяти аберраций Зейделя:
- SI — сферическая аберрация;
- SII — кома;
- SIII — астигматизм;
- SIV — кривизна поля (поверхности) изображения;
- SV — дисторсия.
В реальных системах отдельные виды монохроматических аберраций почти никогда не встречаются. В действительности, наблюдается сочетание всех аберраций, а исследование сложной аберрационной фигуры рассеяния методом выделения отдельных видов аберраций (любого порядка) — не более чем искусственный приём, облегчающий анализ явления.
Монохроматические аберрации высших порядков[править | править код]
Как правило, картину распределения лучей в фигурах рассеяния заметно осложняет то, что на комбинацию всех аберраций третьего порядка налагаются аберрации высших порядков. Это распределение заметно меняется с изменением положения точки объекта и отверстия системы. Так например, сферическая аберрация пятого порядка, в отличие от сферической аберрации третьего порядка, отсутствует в точке на оптической оси, но при этом растёт пропорционально квадрату удаления от неё.
Влияние аберраций высших порядков возрастает, по мере роста относительного отверстия объектива, причём настолько быстро, что, на практике, оптические свойства светосильных объективов определяются именно высшими порядками аберраций.
Величины аберраций высших порядков учитываются на основании точного расчёта хода лучей через оптическую систему (трассировки). Как правило, с применением специализированных программ для оптического моделирования (Code V, OSLO, ZEMAX и пр.)
Хроматические аберрации обусловлены дисперсией оптических сред, из которых образована оптическая система — то есть зависимостью показателя преломления оптических материалов, из которых изготовлены элементы оптической системы, от длины проходящей световой волны.
Могут проявляться в постороннем окрашивании изображения и в появлении у изображения предмета цветных контуров, которые у предмета отсутствовали.
К этим аберрациям относятся хроматическая аберрация (хроматизм) положения, иногда называемая «продольным хроматизмом», и хроматическая аберрация (хроматизм) увеличения.
Также к хроматическим аберрациям принято относить хроматические разности геометрических аберраций, в основном, хроматическую разность сферических аберраций для лучей различных длин волн (так. наз. «сферохроматизм») и хроматическую разность аберраций наклонных пучков.
Дифракционная аберрация обусловлена волновой природой света, и следовательно — носит фундаментальный характер, и поэтому принципиально не устранима. Высококачественные объективы страдают ею в точно той же мере, что и дешёвые. Она может быть уменьшена лишь посредством увеличения апертуры оптической системы. Эта аберрация возникает вследствие дифракции света на диафрагме и оправе фотообъектива. Дифракционная аберрация ограничивает разрешающую способность фотообъектива. Из-за этой аберрации минимальное угловое расстояние между точками, разрешаемое объективом, ограничено величиной 1,22×λ/D{\displaystyle 1,22\times \lambda /D} радиан, где λ{\displaystyle \lambda } (лямбда) — длина электромагнитной волны светового диапазона (волны с длиной от 400 нм до 700 нм), а D{\displaystyle D} — диаметр объектива (в тех же единицах, что и λ{\displaystyle \lambda }).
В оптических системах полностью устранить аберрации невозможно. Их доводят до минимально возможных значений, обусловленных техническими требованиями и ценой изготовления системы. Иногда, также, минимизируют одни аберрации за счёт увеличения других.
- ↑ Гомоцентрическим (гомоцентричным) называется пучок световых лучей, испускаемых светящейся точкой или сходящихся в одной точке.
- ↑ То есть, лежащая в меридиональной плоскости.
Меридиональной плоскостью, в оптических системах с центральной симметрией, будет любая плоскость, к которой принадлежит оптическая ось системы. В европейской и американской оптической литературе эта плоскость чаще именуется тангенциальной.
Сагиттальной плоскостью, для любого пучка лучей лежащего в меридиональной плоскости, будет плоскость, включающая главный луч этого пучка, и перпендикулярная меридиональной плоскости.
- Волосов Д. С. Фотографическая оптика. М.: Искусство, 1971.
- Русинов М. М. Композиция оптических систем. Л.: Машиностроение, 1989.
- Сивухин Д. В. Общий курс физики. Оптика. М.: Наука, 1985.
Реферат Аберрация оптических систем
скачатьРеферат на тему:
План:
- Введение
- 1 Монохроматические аберрации
- 1.1 Теория аберраций
- 1.2 Монохроматические аберрации третьего порядка
- 1.3 Монохроматические аберрации высших порядков
- 2 Хроматические аберрации
- 3 «Дифракцио́нная аберрация» Примечания
Литература
Введение
- У термина «аберрация» есть и другие значения, см. аберрация.
Аберра́ции оптических систем — ошибки, или погрешности изображения в оптической системе, вызываемые отклонением луча от того направления, по которому он должен был бы идти в идеальной оптической системе. Аберрации характеризуют различного вида нарушения гомоцентричности [1] в структуре пучков лучей, выходящих из оптической системы.
Величины аберраций могут быть получены, как сравнением координат лучей, путём непосредственного расчёта по точным геометро-оптическим формулам, так и приближённо, с помощью формул теории аберраций.
При этом, возможно характеризовать аберрации, как критериями лучевой оптики, так и на основе представлений волновой оптики. В первом случае, отступление от гомоцентричности выражается через представление о геометрических аберрациях и фигурах рассеяния лучей в изображениях точек. Во втором случае, оценивается деформация прошедшей через оптическую систему сферической световой волны, вводя представление о волновых аберрациях. Оба способа описания взаимосвязаны, описывают одно и то же состояние, и различаются лишь формой описания.
Как правило, если объектив обладает большими аберрациями, то их проще характеризовать величинами геометрических аберраций, а если малыми, то на основе представлений волновой оптики.
Аберрации можно разделить на монохроматические, то есть присущие монохромным пучкам лучей, и хроматические.
Сферическая аберрация
Кома
Хроматическая аберрация
Ахроматическая линза
1. Монохроматические аберрации
Геометрические аберрации внемеридионального (косого) луча.
AQ — внемеридиональный луч
P -входной зрачок
P’ — выходной зрачок
A’ 0 — идеальное изображение точки A
A’ — реальное изображение точки A
δg’ и δG’ — отступления от идеального изображения.
Такие погрешности изображений присущи всякой реальной оптической системе, и принципиально неустранимы. Их возникновение объясняется тем, что преломляющие поверхности неспособны собрать в точку сколько-нибудь широкие пучки лучей, падающие на них под большими углами. Эти аберрации приводят к тому, что изображением точки является некоторая размытая фигура (фигура рассеяния), а не точка, что, в свою очередь, отрицательно влияет на чёткость изображения и нарушает подобие изображения и предмета.
1.1. Теория аберраций
Теория геометрических аберраций устанавливает функциональную зависимость аберраций от координат падающего луча и конструктивных элементов оптической системы — от радиусов её поверхностей, толщин, показателей преломления линз и т. д.
1.2. Монохроматические аберрации третьего порядка
Теория аберраций ограничивается приближённым представлением составляющих аберраций (δg ‘ и δG’ ) в виде ряда, члены которого содержат некие коэффициенты (суммы переменных) а1, а2,…аk, зависящие только от конструктивных элементов оптической системы и от положения плоскостей объекта и входного зрачка, но не зависящие от координат луча. Так например, меридиональная[2] составляющая аберрации третьего порядка может быть представлена формулой:
где и — координаты луча, входящие в качестве сомножителей членов ряда.
Число таких коэффициентов аберраций третьего порядка равно пяти и, как правило, они обозначаются буквами SI, SII, SIII, SIV, SV. Причём, в целях упрощения анализа, предполагают, что в формулах только один из коэффициентов не равен нулю, и определяет соответствующую аберрацию.
Каждым из пяти коэффициентов определяется одна из так называемых пяти аберраций Зейделя:
- SI — сферическая аберрация;
- SII — кома;
- SIII — астигматизм;
- SIV — кривизна поля (поверхности) изображения;
- SV — дисторсия.
В реальных системах отдельные виды монохроматических аберраций почти никогда не встречаются. В действительности, наблюдается сочетание всех аберраций, а исследование сложной аберрационной фигуры рассеяния методом выделения отдельных видов аберраций (любого порядка) — не более чем искусственный приём, облегчающий анализ явления.
1.3. Монохроматические аберрации высших порядков
Пример сложных фигур рассеяния для осевого и наклонных пучков лучей объектива Зоннар 1:1.5.
Как правило, картину распределения лучей в фигурах рассеяния заметно осложняет то, что на комбинацию всех аберраций третьего порядка налагаются аберрации высших порядков. Это распределение заметно меняется с изменением положения точки объекта и отверстия системы. Так например, сферическая аберрация пятого порядка, в отличие от сферической аберрации третьего порядка, отсутствует в точке на оптической оси, но при этом растёт пропорционально квадрату удаления от неё.
Влияние аберраций высших порядков возрастает, по мере роста относительного отверстия объектива, причём настолько быстро, что, на практике, оптические свойства светосильных объективов определяются именно высшими порядками аберраций.
Величины аберраций высших порядков учитываются на основании точного расчёта хода лучей через оптическую систему (трассировки). Как правило, с применением специализированных программ для оптического моделирования (Code V, OSLO, ZEMAX и пр.)
2. Хроматические аберрации
Хроматические аберрации, обусловленные дисперсией оптических сред, из которых образована оптическая система, то есть зависимостью показателя преломления оптических материалов, из которых изготовлены элементы оптической системы, от длины проходящей световой волны. Могут проявляться в постороннем окрашивании изображения, и в появлении у изображения предмета цветных контуров, которые у предмета отсутствовали.
К этим аберрациям относятся хроматическая аберрация (хроматизм) положения, иногда называемая «продольным хроматизмом», и хроматическая аберрация (хроматизм) увеличения.
Так же к хроматическим аберрациям принято относить хроматические разности геометрических аберраций, в основном, хроматическую разность сферических аберраций для лучей различных длин волн (так. наз. «сферохроматизм»), и хроматическую разность аберраций наклонных пучков.
3. «Дифракцио́нная аберрация»
Возникает вследствие дифракции света на диафрагме и оправе фотообъектива. Дифракционная аберрация ограничивает разрешающую способность фотообъектива. Из-за этой аберрации минимальное угловое расстояние между точками, разрешаемое объективом, ограничено величиной λ/D радиан, где λ (лямбда) — длина электромагнитной волны светового диапазона (волны с длиной от 400 нм до 700 нм), а D — диаметр объектива.
В оптических системах полностью устранить аберрации невозможно. Их доводят до минимально возможных значений, обусловленных техническими требованиями и ценой изготовления системы. Иногда, также, минимизируют одни аберрации за счёт увеличения других.
Примечания
- Гомоцентрическим (гомоцентричным) называется пучок световых лучей, испускаемых светящейся точкой или сходящихся в одной точке.
- То есть, лежащая в меридиональной плоскости.
Меридиональной плоскостью, в оптических системах с центральной симметрией, будет любая плоскость, к которой принадлежит оптическая ось системы. В европейской и американской оптической литературе эта плоскость чаще именуется тангенциальной.
Сагиттальной плоскостью, для любого пучка лучей лежащего в меридиональной плоскости, будет плоскость, включающая главный луч этого пучка, и перпендикулярная меридиональной плоскости.
Литература
- Волосов Д. С. Фотографическая оптика. М., «Искусство», 1971.
- Русинов М. М. Композиция оптических систем. Л., «Машиностроение», 1989.
- Сивухин Д. В. Общий курс физики. Оптика. М., «Наука», 1985.
- Перевод раздела про оптическую терминологию из «Canon Lens Work II» — www.photoweb.ru/lenswork1.htm#33
АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ • Большая российская энциклопедия
АБЕРРА́ЦИИ ОПТИ́ЧЕСКИХ СИСТЕ́М (от лат. aberratio – уклонение), искажения изображений, создаваемых оптич. системами. Проявляются в том, что оптич. изображения не вполне отчётливы, неточно соответствуют объектам или оказываются окрашенными. Существует неск. видов аберраций. Наиболее распространёнными являются хроматическая аберрация и следующие геометрич. аберрации: сферическая, астигматизм, кома, дисторсия, кривизна поля изображения.
Сферическая аберрация заключается в том, что световые лучи, испущенные одной точкой объекта и прошедшие одни из них вблизи оптич. оси, а другие через отдалённые от оси части системы, не собираются в одной точке. Вследствие этого изображение, создаваемое параллельным пучком лучей на перпендикулярном оси экране, имеет вид не точки, а кружкá с ярким ядром и ослабевающим по яркости ореолом (т. н. кружок рассеяния). Специальным подбором линз (собирающих и рассеивающих) сферич. аберрацию можно почти полностью устранить.

Рис. 1. Световой пучок, прошедший через оптическую систему, обладающую астигматизмом. Внизу показаны сечения пучка плоскостями, перпендикулярными оптической оси системы.
Астигматизм проявляется в том, что изображение точки, не лежащей на главной оптич. оси, представляет собой не точку, а две взаимно перпендикулярные линии, расположенные в разных плоскостях на некотором расстоянии друг от друга. Изображения точки в промежуточных между этими плоскостями сечениях имеют вид эллипсов (рис. 1). Астигматизм обусловлен неодинаковостью кривизны оптич. поверхности в разных плоскостях сечения падающего на неё светового пучка и возникает либо вследствие асимметрии оптич. системы (напр., в цилиндрич. линзах), либо в обычных сферич. линзах при падении светового пучка под большим углом к оси. Астигматизм исправляют таким подбором линз, чтобы одна компенсировала астигматизм другой. Астигматизмом может обладать человеческий глаз (см. Астигматизм глаза).
При наклонном падении лучей на оптич. систему в результате нарушения симметрии пучка возникает ещё одна аберрация – кома, при которой изображение точки имеет вид несимметричного пятна рассеяния. Её размеры пропорциональны квадрату угловой апертуры оптич. системы и угловому удалению точки-объекта от оптич. оси. Кома велика в телескопах с параболич. зеркалами. Исправляют кому подбором линз.

Рис. 2. Дисторсия.
Для дисторсии характерно нарушение геометрич. подобия между объектом и его изображением. Дисторсия обусловлена неодинаковым линейным увеличением оптич. системы на разных участках изображения. Пример искажений, которые даёт система, обладающая дисторсией, приведён на рис. 2. Слева от центрального квадрата показано его изображение, искажённое за счёт подушкообразной (положительной) дисторсии, справа – искажённое за счёт бочкообразной (отрицательной) дисторсии. Дисторсия устраняется подбором линз.
Кривизна поля – аберрация осесимметричной оптич. системы, она заключается в том, что изображение плоского предмета получается плоским не в плоскости, как должно быть в идеальной системе, а на искривлённой поверхности. В сложных оптич. системах кривизну поля исправляют, сочетая линзы с поверхностями разной кривизны.
Оптич. системы могут обладать одновременно неск. аберрациями, устранить их все сразу – очень сложная задача. Обычно аберрации устраняют частично в зависимости от назначения оптич. системы. В некоторых случаях используют методы адаптивной оптики.
Хроматич. аберрация связана с зависимостью показателя преломления сред от длины волны света.
Несовершенства изображений, формируемых оптич. системой, возникают также в результате дифракции света на оправах линз, диафрагмах и т. п. Такие аберрации принципиально неустранимы, хотя и могут быть уменьшены. Но они обычно не так сильно влияют на изображение, как геометрические и хроматические.
Аберрация оптической системы – характеристика и основные виды
Аберрация оптической системы – это искажения изображений, которые возникают на выходе из оптической системы. Название происходит от лат. aberratio — уклонение, удаление. Искажения состоят в том, что оптические изображения не полностью соответствуют предмету. Это проявляется в размытости изображения и называется монохроматической геометрической аберрацией либо окрашенности изображения — хроматической аберрацией оптической системы. Чаще всего оба вида аберрации проявляются вместе.
В приосевой (параксиальной) области оптическая система работает практически идеально, точка отображается точкой, а прямая — прямой и т.д. Однако, по мере отдаления точки от оптической оси, лучи от нее пересекаются в плоскости изображения не в одной точке. Таким образом, возникает круг рассеивания, т.е. возникают аберрации.
Величину аберрации можно определить путем расчёта по геометрическим и оптическим формулам через сравнение координат лучей, а также приближённо при помощи формул теории аберраций.
Существует описание явления аберрации как в лучевой теории (отступление от идентичности описывается через геометрические аберрации и фигуры рассеяния лучей), так и в представлениях волновой оптики (оценивается деформация сферической световой волны по пути через оптическую систему). Обычно, для характеристики объектива с большими аберрациями используются геометрические аберрации, в противном случае применяются представления волновой оптики.
В 1856 году немецкий ученый Зайдель в результате анализа световых лучей установил пять аберраций объектива, появляющихся при прохождении через объектив монохромного света (т.е. света одной волны). Эти аберрации, описанные ниже, называются пятью аберрациями Зайделя. Монохроматические геометрические аберрации оптических систем являются следствием их несовершенства и проявляются в монохроматичном свете. В отличие от идеальной оптической системы, в которой все лучи от какой-либо точки предмета в меридиональной плоскости после прохождения через систему концентрируются в одной точке, в реальной оптической системе пересечение плоскости изображения этими лучами происходит в разных точках. Координаты этих точек зависят от направления луча, координат точки пересечения с плоскостью входного зрачка и конструктивных элементов оптической системы (радиусы поверхностей, толщина оптических элементов, коэффициенты преломления линз и тд.).
Сферическая аберрацияПроявляется в несовпадении фокусов для лучей света, проходящих на разных расстояниях от оптической оси, вследствие чего нарушается гомоцентричность пучков лучей от точечного источника, хотя симметрия этих пучков сохраняется. Это единственный вид геометрической аберрации, которая имеет место даже тогда, когда исходная точка расположена на главной оптической оси системы. При сферической аберрации цилиндрический пучок лучей после преломления линзой приобретает вид не конуса, а воронкообразной фигуры. Изображение точки имеет дисковую форму с неоднородной освещённостью. Причиной является тот факт, что преломляющие поверхности линз пересекаются с лучами широкого пучка под различными углами, из-за чего удалённые лучи преломляются сильнее и образуют свои точки схода на некотором отдалении от фокальной плоскости.
КомаАберрация Кома нарушает гомоцентричность широких световых пучков, которые входят в систему под углом к оптической оси. На оси центрированных оптических систем кома отсутствует. Каждый участок кольцевой зоны оптической системы, удалённый от оси на расстояние R даёт кольцо изображения точки, радиус которого увеличивается с увеличением R. Из-за несовпадения центров колец происходит их наложение, что приводит к тому, что изображение точки, формируемое оптической системой, принимает форму несимметричного пятна рассеяния с максимальной освещённостью у вершины фигуры рассеяния, напоминающего комету. В сложных оптических системах кому корректируют вместе со сферической аберрацией путем подбора линз. Системы без коматической и сферической аберрации называют апланатами.
АстигматизмЕсли для объектива исправлены сферическая аберрация и кома, т.е. точка объекта, расположенная на оптической оси, правильно воспроизводится в виде точки изображения, но при этом точка объекта, не лежащая на оси, воспроизводится на изображении не в виде точки, а в виде эллипса или линии, то такой тип аберрации называется астигматизмом. Причиной возникновения является различная кривизна оптической поверхности в различных плоскостях сечения, а углы преломления лучей пучка зависят от углов их падения. При прохождении через оптическую систему лучи пересекаются на разном расстоянии от преломляющей поверхности. В результате в разных сечениях фокус светового пучка оказывается в разных точках.
Существует такое положение на поверхности изображения, когда все лучи пучка в меридиональной (или перпендикулярной ей сагиттальной) плоскости пересекутся на этой поверхности. Астигматический пучок изображает точку в форме двух астигматических фокальных линий на фокальных поверхностях, имеющих форму поверхностей вращения, и касающихся друг друга в точке оси системы. Если для некоторой точки поля положения этих поверхностей не совпадают, имеет место астигматизм или астигматическую разность меридионального и сагиттального фокусов. Астигматизм называют положительным, если меридиональные фокусы находятся ближе к поверхности преломления, чем сагиттальные, в противном случае — отрицательным.
Проявляется в том, что изображение плоского (перпендикулярного к оптической оси) объекта находится на поверхности, вогнутой либо выпуклой по отношению к объективу, что делает резкость неравномерной по полю изображения. При резкой фокусировке центральной части изображения края будут лежать не в фокусе (не резкими) и наоборот. Кривизна поля изображения, как правило, достигает больших значений у простых объективов (до 4 линз). Корректируется подбором кривизны поверхностей и толщины линз, а также расстояний между ними. Для качественного исправления, с учетом других видов аберраций, необходимо присутствие в составе не менее двух отрицательных линз. При диафрагмировании отрицательное влияние кривизны поля на качество изображения уменьшается.
ДисторсияДисторсией (искривлением) является изменение линейного увеличения по полю зрения, что приводит к нарушению геометрического подобия между объектом и его изображением. Этот вид аберрации не зависит от координат пересечения луча и плоскости входного зрачка, но зависит от расстояния от источника до оптической оси. Оптическая система без дисторсии называется ортоскопической. В объективах с симметричной конструкцией проявляется незначительно. Для устранения дисторсии применяют подбор линз и других элементов при разработке оптической системы. В цифровой фотографии дисторсия может быть исправлена с помощью компьютерной обработки.
Хроматические аберрацииИзлучение большинства источников света характеризуется сложным спектральным составом, что приводит к возникновению хроматических аберраций, которые, в отличие от геометрических, могут возникать и в параксиальной области. Дисперсия (рассеивание) света – зависимость показателя преломления оптического элемента от длины волны света, является причиной возникновения двух видов хроматических аберраций: хроматизма положения фокусов и хроматизма увеличения. В первом случае, который еще называют продольным хроматизмом, возникает смещение плоскости изображения для разных длин волн, во втором — изменяется поперечное увеличение. Хроматические аберрации проявляются в окрашивании изображения, в появлении у него цветных контуров, отсутствующих у источника. К хроматическим аберрациям относят также хроматические разности геометрических аберраций, в частности, хроматическую разность сферических аберраций (сферохроматизм) для лучей различных длин волн и хроматическую разность аберраций наклонных пучков.
Дифракционная аберрацияПричиной дифракционной аберрации является волновая природа света. Возникает, как результат дифракции света на диафрагме и оправе объектива. Препятствует увеличению разрешающей способности фотообъектива. Из-за дифракционной аберрации ограничено минимальное угловое расстояние между точками, разрешаемое объективом. Высококачественные объективы подвержены ей в той же степени, что и простые. Полностью принципиально не устранима, однако может быть уменьшена путем увеличения апертуры оптической системы.
Устранить аберрации полностью в оптических системах невозможно. Важно свести их к минимально допустимым значениям, которые обусловлены техническими требованиями и стоимостью изготовления системы.
Автор: FC,
05.10.2014 г.
АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ — это… Что такое АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ?
(от лат. aberra-tio — уклонение, удаление) — искажения изображений, даваемых реальными оптич. системами, заключающиеся в том, что оптич. изображения неточно соответствуют предмету, оказываются размыты (монохроматич. геом. А. о. с.) или окрашены (хроматич. А. о. с.). В большинстве случаев аберрации обоих типов проявляются одновременно.
В приосевой, т. н. параксиальной, области (см. Параксиальный пучок лучей )оптич. система близка к идеальной, т. е. точка изображается точкой, прямая линия — прямой и плоскость — плоскостью. Но при конечной ширине пучков и конечном удалении точки-источника от оптич. оси нарушаются правила параксиальной оптики: лучи, испускаемые точкой предмета, пересекаются не в одной точке плоскости изображений, а образуют кружок рассеяния, т. е. изображение искажается — возникают аберрации.
Геом. А. о. с. характеризуют несовершенство оп-тич. систем в монохроматич. свете. Происхождение А. о. с. можно понять, рассмотрев прохождение лучей через центрированную оптич. систему L (рис. 1). — плоскость предмета,
— плоскость изображений,
и
— соответственно плоскости входного и выходного зрачков.


В идеальной оптич. системе все лучи, испускаемые к.-л. точкой C(z, у )предмета, находящейся в меридиональной плоскости (z=0) на расстоянии у=l от оси, пройдя через систему, собрались бы снова в одну точку . В реальной оптич. системе эти лучи пересекают плоскость изображения
в разных точках. При этом координаты
точки В пересечения луча с плоскостью изображения зависят от направления луча и определяются координатами
и
точки А пересечения с плоскостью входного зрачка. Отрезок
характеризует несовершенство изображения, даваемого данной оптич. системой. Проекции этого отрезка на оси координат равны
и
и характеризуют поперечную аберрацию. В заданной оптич. системе
и
являются ф-циями координат падающего луча СА:
. и
. Считая координаты малыми, можно разложить эти ф-ции в ряды по
,
и l.
Линейные члены этих разложений соответствуют параксиальной оптике, следовательно коэфф. при них должны быть равными нулю; чётные степени не войдут в разложение ввиду симметричности оптич. системы; т. о. остаются нечётные степени, начиная с третьей; аберрации 5-го порядка (и выше) обычно не рассматривают, поэтому первичные А. о. с. наз. аберрациями 3-го порядка. После упрощений получаются след. ф-лы
(*)
Коэфф. А, В, С, D, Е зависят от характеристик оптич. системы (радиусов кривизны, расстояний между оптич. поверхностями, показателей преломления). Обычно классификацию А. о. с. проводят, рассматривая каждое слагаемое в отдельности, полагая др. коэфф. равными нулю. При этом для наглядности представления об аберрации рассматривают семейство лучей, исходящих из точки-объекта и пересекающих плоскость входного зрачка по окружности радиуса р с центром на оси. Ей соответствует определённая кривая в плоскости изображений, а семейству концентрич. окружностей в плоскости входного зрачка радиусов ,
,
и т. д. соответствует семейство кривых в плоскости изображений. По расположению этих кривых можно судить о распределении освещённости в пятне рассеяния, вызываемом аберрацией.
Сферическая аберрация соответствует случаю, когда , а все др. коэфф. равны нулю. Из выражения (*) следует, что эта аберрация не зависит от положения точки С в плоскости объекта, а зависит только от координаты точки А в плоскости входного зрачка, а именно, пропорциональна
. Распределение освещённости в пятне рассеяния таково, что в центре получается острый максимум при быстром уменьшении освещённости к краю пятна. Сферич. аберрация — единств. геом. аберрация, остающаяся и в том случае, если точка-объект находится на гл. оптич. оси системы.
Кома определяется выражениями при коэфф. ВK0.. Равномерно нанесённым на входном зрачке окружностям соответствуют в плоскости изображения семейства окружностей (рис. 2) с радиусами, увеличивающимися как , центры к-рых удаляются от параксиального изображения также пропорционально
Огибающей этих окружностей ( каустикой )являются две прямые, составляющие угол 60°. Изображение точки при наличии комы имеет вид несимметрич. пятна, освещённость к-рого максимальна у вершины фигуры рассеяния и вблизи каустики. Кома отсутствует на оси центрированных оптич. систем.
Астигматизм и кривизна поля соответствуют случаю, когда не равны нулю коэфф. С и D. Из выражения (*) следует, что эти аберрации пропорциональны квадрату удаления точки-объекта от оси и первой степени радиуса отверстия. Астигматизм обусловлен неодинаковой кривизной оптич. поверхности в разных плоскостях сечения и проявляется в том, что волновой фронт деформируется при прохождении оптич. системы, и фокус светового пучка в разных сечениях оказывается в разных точках. Фигура рассеяния представляет собой семейство эллипсов с равномерным распределением освещённости. Существуют две плоскости — меридиональная и перпендикулярная ей сагиттальная, в к-рых эллипсы превращаются в прямые отрезки. Центры кривизны в обоих сечениях наз. фокусами, а расстояние между ними является мерой астигматизма.

Пучок параллельных лучей, падающих на оптич. систему под углом (рис. 3), в меридиональном сечении имеет фокус в точке т, а в сагиттальном — в точке s. С изменением угла
положения фокусов т и s меняются, причём геом. места этих точек представляют собой поверхность вращения MOM и SOS вокруг гл. оси системы. На поверхности КОК, находящейся на равных расстояниях от MOM и SOS, искажение наименьшее, поэтому поверхность КОК наз. поверхностью наилучшей фокусировки. Отклонение этой поверхности от плоскости представляет собой аберрацию, наз. кривизной поля. В оптич. системе может отсутствовать астигматизм (напр., если MOM и SOS совпадают), но кривизна поля остаётся: изображение будет резким на поверхности КОК, а в фокальной плоскости FF изображение точки будет иметь вид кружка.
Дисторсия проявляется в случае, если ; как видно из ф-л (*), она может быть в меридиональной плоскости:
. Дисторсия не зависит от координат точки пересечения луча с плоскостью входного зрачка (поэтому каждая точка изображается точкой), но зависит от расстояния точки до оптич. оси
, поэтому изображение искажается, нарушается закон подобия. Напр., изображение квадрата имеет вид подушкообразной и бочкообразной фигур (рис. 4) соответственно в случае Е>0 и Е<0.
Труднее всего устранить сферич. аберрацию и кому. Уменьшая диафрагму, можно было бы практически полностью устранить обе эти аберрации, однако уменьшение диафрагмы уменьшает яркость изображения и увеличивает дифракц. ошибки.

Подбором линз устраняют дисторсию, астигматизм и кривизну поля изображения.
Хроматич. аберрации. Излучение обычных источников света обладает сложным спектральным составом, что приводит к возникновению хроматич. аберраций. В отличие от геометрических, хроматич. аберрации возникают и в параксиальной области. Дисперсия света порождает два вида хроматич. аберраций: хроматизм положения фокусов и хроматизм увеличения. Первая характеризуется смещением плоскости изображения для разных длин волн, вторая — изменением поперечного увеличения. Подробнее см. Хроматическая аберрация.
Лит.: Слюсарев Г. Г., Методы расчета оптических систем, 2 изд., Л., 1969; Сивухин Д. В., Общий курс физики, [т. 4] — Оптика, 2 изд., М., 1985; Теория оптических систем, 2 изд., М., 1981. Г. Г. Слюсарев.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.