LIMP Arta Software — программный измеритель RCL
Продолжу описание программы LIMP из пакета фирмы Arta Software. С ее помощью можно определять номиналы сопротивлений, индуктивностей, емкостей. Для этого достаточно компьютера, бесплатной программы и аппаратной части из одного резистора и нескольких шнуров.
Содержание / Contents
Конечно, этот измеритель не может заменить специализированные приборы ни по удобству, ни по точности измерений, но покупать дорогостоящий прибор ради нескольких измерений не всегда целесообразно. Предлагаемый инструмент чисто радиолюбительский — измерения медленные и требуют определенной работы мозга и рук, зато бесплатно и своими руками.Мне самому было интересно покопаться. ARTA пишет, что для точности желательно, чтобы Z было менее 100 Ом, гораздо меньше, чем входное сопротивление звуковой карты (якобы оно примерно 20 кОм). Думаю, что очень низкое Z при измерении очень больших емкостей, тоже ухудшает точность, но на практике мало интересно — емкость 20000 мкФ или 22000 мкФ, важнее знать, что эта емкость есть, не высохла, а если есть нужда в подборе одинаковых емкостей, то абсолютное значение тоже не так важно. Еще раз напоминаю — смотрите результат при фазе для конденсаторов около -90, а индуктивностей +90. Кстати, у конденсаторов с плохой термозависимостью видно как изменяется Z от тепла пальцев.
Можно проверить древние емкости из запасов (ESR не видно, а жаль), падение емкости из-за высыхания или обрыва, видно сразу.
Нет слов, специальные приборы в 1000 раз лучше, но они денег стоят и место занимают.
Сначала я даже хотел опустить этот пункт — дешевые цифровые китайские тестеры есть у всех, но подумав, нашел случаи, когда данный метод может быть полезен.
Это измерение малых сопротивлений — до 0,1 Ом включительно. Сначала надо откалибровать прибор и замкнуть его щупы. С длинным шнуром у меня получилось 0,24 Ом. Эту величину будем вычитать из всех измерений низкоомных резисторов. У меня есть горсть резисторов С5-16МВ-5 на 3,9 Ом с точностью 1%.
Все проверенные резисторы дали такой результат. 4,14 – 0,24 = 3,9
Для проверки была измерена горсть других низкоомных резисторов, без замечаний. Самым низкоомным был на 0,51 Ом +- 5%. Измеренное значение 0,5 Ом. К сожалению, не смог найти в своих запасах 0,1 Ом, но я уверен, что и с ними не было бы проблем, нужны только зажимы с хорошими контактами.
Плавно переходим к индуктивностям. У меня сейчас нет точных индуктивностей, поэтому я просто проверил качественную, но не количественную работоспособность метода.
Это измерения дросселя ДМ-0,1 на 30 мкГн, получилось правдоподобно.
Вот дроссель из импульсного блока питания. Тоже похоже на правду. За точность не ручаюсь — здесь есть место для исследований.
Самая интересная часть, есть непонятное, но результаты очень интересные. Диапазон измерений от 0,1 мкФ до 100 000 мкФ. Точность — несколько процентов. Более-менее терпимые результаты получаются от 0,01 мкФ, но измерения на низких частотах длинным шнуром с большой емкостью, малоцелесообразны. Я исходил из того, что интерес представляют емкости порядка долей-единиц мкФ для фильтров акустических систем и регуляторов тембра, разделительных конденсаторов УНЧ. Была надежда увидеть ESR (не оправдалась). Поскольку прецизионных емкостей я у себя не нашел, пришлось использовать статистический метод и здравый смысл. Сначала я сделал и хотел представить большую таблицу, но потом очевидная истина дошла и до меня, для вас только результаты.
Это конденсатор 0,15 MKP X2. На какой частоте измерять? Arta освещает это невнятно. Говорят, что надо измерять при импедансе менее 100 Ом (одна клетка на графике слева 800 Ом)…
Вот и пример. Это неполярный оксидный конденсатор 2,2 мкФ на 15 В. Есть сильное подозрение в его низком качестве и непригодности для аудиофилов. У неэлектролитических конденсаторов на большее напряжение фазовый график другой. Здесь же наиболее достоверные результаты в области 0,5…1 кГц.
Конденсатор 1 мкФ К10-47В на 50 В ТКЕ Н30. Достоверный и стабильный результат в диапазоне частот 1…20 кГц при фазовом сдвиге 85…90 град.
Любопытство потянуло меня посмотреть: а что будет, если измерять оксидные (электролитические) конденсаторы? Оказалось, что измерять можно! Результат абсолютно не зависит от полярности подключения, я измерил даже 4 банки по 10 000 мкФ соединенные параллельно и получил достоверный результат. О достоверности я могу судить потому, что до этого измерил десятки конденсаторов от 1 до 15 000 мкФ.
Получилось 44 миллиФарады. Обратите внимание на фазовую характеристику в области нескольких кГц, она приобретает характер индуктивности. Что это — несовершенство инструмента или действительно на таких частотах емкость обкладок работает хуже, а индуктивность рулона обмотки говорит все громче? Параллельное подключение небольшой пленочной емкости на график не повлияло.
Бывает и такое. Это одна из старых выпаянных оксидных емкостей. Явно, ей место на свалке. Представляете, что такая емкость сделает со звуком?!
Можно попасть и в такую ловушку.
Обратите внимание на фазовую характеристику. Это получилось при единственной настройке:
При любых других Sampling rate и FFT size фазовая характеристика имеет всплеск:
и значение емкости другое, правда, разница в 4%, главное не измерять на скачке фазы.
Итак, вы видите, что пища для размышлений и экспериментов есть, может быть попробовать сравнить «поющие» и «не поющие» конденсаторы. Я пробовал подключать обмотки сетевых трансформаторов, получил единицы и десятки Генри. Вот ТПП 259.
Может быть, для тьболюбов будет интересно посмотреть Z их трансформаторов? Я сделал «короткозамкнутый виток», вернее закоротил низковольтную обмотку. Z до 5 кГц упала очень сильно, как будет от одного витка и можно ли извлечь из этого пользу, не знаю. Все измерения здесь я делал с помощью приставки и усилителя, как в прошлой статье по измерениям параметров Тиля-Смолла, просто так мне было удобнее, не вижу проблем при измерениях без усилителя.
Камрад, смотри полезняхи!
Сергей (Chugunov)
РФ, Москва
О себе автор ничего не сообщил.
В радиолюбительской практике часто возникает необходимость в определении физических параметров полупроводниковых элементов или их цоколевку. Как правило, с такой задачей не справляются обычные мульти метры, а искать характеристики радиоэлементов в справочниках отнимает много времени и отвлекает мастера в процессе работы. Именно поэтому для радиолюбителя очень полезным было бы устройство, которое быстро поможет определить параметры биполярного или полевого транзистора, тиристора, симистора, диода, диодной сборки, сопротивление резистора, емкость конденсатора, индуктивность катушки и частоту с высокой точностью. Так-как транзистомер не меряет индуктивность и частоту и не очень точно, как писали ранее сопротивление и емкость (хотя оказалось это не совсем верно. Я добился корректировкой прошивки высоких результатов), я решил собрать еще один прибор, который мог точнее измерить сопротивление, емкость и самое главное индуктивность. Полазив по просторам интернета, я нашел схему такого прибора и самое главное транзистомер и LCR метр, работающих на один дисплей! (ОЩУТИМАЯ ЭКОНОМИЯ СРЕДСТВ). Поизучав форумы, собрав все возможные прошивки и поэкспериментировав в ПРОТЭУСЕ, я выбрал лучшее и собрал этот прибор, но с учетом будущего. Хотелось еще что-то добавить, например, частотомер! После настройки прибор меня порадовал точностью и простотой измерения! Ничего не надо выставлять, вставил, нажал и получил результат! ВИДЕОЧерез некоторое время добавил частотомер сделав нижнюю плату и переделал верхнюю, не подходила коммутация питания. Дело в том, что включать одновременно два и более приборов нельзя! Вот схема данного прибора. Как видно из схемы коммутировать три и более приборов очень просто. Дисплей подключен ко всем трем приборам через развязывающие диоды, а питание на приборы подаются с помощью ключей, тем самым исключая одновременного включения нескольких. В данном случае если включен LCR метр (он является доминирующим), то включить транзистомер или частотомер не выйдет, так как ихние ключи заблокированы питанием LCR метра. Чтобы включить транзистомер или частотомер нужно выключить LCR метр. Далее если включен транзистомер или частотомер включить LCR метр он своим питанием выключит то что было включено! В архиве на форуме находятся схема в «Splan», платы в «Layout», мои правленые прошивки в формате «hex» и «e2p», фьюзы для Меги и Тини, фото констант для корректировки показаний. |
Набор для сборки продвинутого LCR-метра XJW01
Я уже довольно длительное время пользуюсь самодельным измерителем емкости и ESR конденсаторов, собранного по схеме от автора GO с форума ProRadio. Попутно в моем использовании есть и другой, не менее популярный измеритель FCL с сайта cqham.Сегодня в обзоре прибор, который имеет выше заявленную точность, а также фактически объединяющий оба указанных выше прибора.
Внимание, много фото, мало текста, может быть критично для пользователей с дорогим трафиком.
Стоит наверное начать с того, что данный прибор продается и в полном, т.е. уже собранном виде. Но в данном случае конструктор был выбран целенаправленно, так как это как минимум позволяет немного сэкономить средства, а как максимум, просто получить удовольствие от сборки. Причем наверное второе важнее.
Вообще я давно хотел сменить предыдущую модель C-ESR метра. В принципе он работает, но после как минимум одного ремонта стал вести себя не совсем адекватно при измерении ESR. А так как я много работаю с импульсными блоками питания (хотя это и для обычных актуально), то этот параметр для меня даже более важен, чем просто емкость.
Но в данном случае мы имеем дело не с просто измерителем C-ESR, а с прибором, который измеряет ESR + LCR, а полный список измеряемых величин выглядит еще больше, кроме того заявлена еще и неплохая точность.
Индуктивность 0,01 uH — 2000H (10 uH)
Ёмкость 200pF — 200 мФ (10pF) Разрешение 0,01pF
Сопротивление 2000мОм- 20MОм (1.5 Ом) Разрешение 0,1 мОм
Точность 0,3 – 0,5 %
Частота тестового сигнала 100 Гц, 1 кГц, 7,831 кГц
Тестовое напряжение 200 мВ
Функция калибровки автоматическая
Выходное сопротивление 40 Ом
Прибор умеет измерять —
Q — Добротность
D — Коэффициент потерь
Θ — Угол сдвига фаз
Rp — Эквивалентное параллельное сопротивление
ESR — Эквивалентное последовательное сопротивление
Xp — Эквивалентная параллельная емкость
Xs — Эквивалентная последовательная емкость
Cp — Параллельная емкость
Cs — Последовательная емкость
Lp — Параллельная индуктивность
Ls — Последовательная индуктивность
При этом измерение проводится мостовым методом при помощи четырехпроводного подключения компонента.
На мой взгляд ближайшим конкурентом является Е7-22, но он имеет меньше заявленную точность измерения (0.5-0.8%), тестовую частоту только 120 Гц и 1 кГц и тестовое напряжение 0.5 Вольта против 0.3%, 120 Гц — 1 кГц — 7.8 кГц, 0.2 Вольта у обозреваемого.
Продается данное устройство в нескольких вариантах комплектации, в обзоре использован почти самый полный вариант. Цены со страницы продавца.
1. Только сам прибор без корпуса — $21.43
2. Прибор + один вид щупов — $25.97
3. Прибор + второй вид щупов — $26.75
4. Прибор + два вида щупов — $31.29
5. Корпус к прибору. — $9.70
Упаковано все было в кучу маленьких пакетов.
Так как при доставке через посредника обычно учитывается вес посылки, то я дополнительно решил взвесить, без кабелей вышло 333 грамма, с кабелями заметно больше, 595 грамм.
В общем-то вполне можно покупать и без кабелей, особенно если есть из чего их сделать самому, так как разница только в цене комплекта выходит около 10 долларов, не считая веса.
Вот кстати с кабелей я и начну.
Упакованы в отдельные пакеты, даже просто по ощущениям вес приличный.
Первый комплект представляет из себя по сути обычные "крокодилы", но побольше размером и в пластмассе. Но на самом деле не все так просто, губки подключены к разным проводам (разъемам) чтобы реализовать корректное четырехпроводное подключения.
Кабель в меру гибкий, жесткость скорее добавляет то, что кабелей четыре, при этом они экранированные. К самому прибору щупы подключаются при помощи обычных BNC разъемов, экран подключен только на стороне BNC разъема.
Нареканий к качеству нет, единственно что не очень понравилось, отсутствие цветной маркировки около разъемов, так как сами крокодилы её имеют. В итоге для подключения надо каждый раз смотреть, какой куда подключаем. Решение — сделать метку изолентой около разъемов.
А вот второй комплект куда интереснее, он позволяет работать с мелкими компонентами, так как представляет собой пинцет.
На фото видно, что центральные жилы проводов соединяются не у концов пинцета, а на некотором расстоянии, т.е. такой вариант чуть хуже предыдущего, но и реализовать систему как у "крокодилов" здесь сложнее. Цветовой маркировки нет.
Для удобства пользования пинцет имеет направляющую, защищающую губки от сдвига друг относительно друга. Не знаю насколько долго они прослужат, но пока пользоваться довольно удобно, хотя есть и замечание — сжимать надо ближе к самим губкам, если сжимать пинцет около середины корпуса, то губки могут не сходиться полностью.
Буквально пару слов о том, что вообще такое — четырехпроводное подключение или подключение методом Кельвина. Картинки взяты отсюда, текст мой 🙂
При привычном нам измерении сопротивления (кстати не только сопротивления) может довольно сильно влиять такая паразитная вещь, как провода к щупам. Думаю многие знают, что редко какой мультиметр при замкнутых щупах и нижнем пределе измерения покажет 0. На индикаторе обычно при этом отображается некое значение примерно 0.05-0.5 Ома, это и есть паразитное сопротивление.
Иногда его можно компенсировать путем включения функции относительных измерений(Rel), но это не всегда удобно и далеко не всегда корректно.
Сам принцип измерения сопротивления довольно прост. Подключаем компонент к источнику тока и измеряем напряжение на компоненте. Но так как у нас есть сопротивление проводов, то получим в итоге сумму, состоящею из реального сопротивления компонента и сопротивления провода.
Если сопротивление большое, то обычно это особой роли не играет, а вот если речь идет о величинах в 1-10 Ом и меньше, то проблема вылазит в полный рост.
Для решения этой проблемы разделяют цепи, по которым идет ток через компонент и цепи непосредственно измерения.
В реальной жизни это выглядит примерно так, как показано на схеме.
Кроме того, подобный способ используется к примеру и в блоках питания. Например фото из моего обзора мощного преобразователя. Здесь также можно разделить силовую цепь и цепь обратной связи, тогда падение напряжения на проводах не будет сказываться на напряжении на нагрузке.
Еще вы подобное наверняка видели в компьютерных блоках питания по цепи 3.3 Вольта (оранжевые провода). только там использована трехпроводная схема (тот самый добавочный тонкий провод к силовому разъему)
Блок питания 12 Вольт 1 Ампер, внешне неплохой. Впрочем я пробовал подключать его и просто к нагрузке, работает нормально.
Но из-за вилки с плоскими штырями использовать его неудобно, заменю на что-то другое, благо напряжение стандартное.
Реально прибор может питаться напряжением 9-15 Вольт.
Жаль, что нельзя выбрать комплектацию без БП, думаю такой БП найдется дома у многих радиолюбителей.
Основная часть комплекта была разбита на три отдельных пакета.
В одном из них самый обычный дисплей 2004 (20 символов, 4 строки) с подсветкой.
Плата прибора была тщательно обернута "воздушной" пленкой.
Здесь как раз тот случай, когда на фото в магазине плата кажется меньше, чем есть на самом деле 🙂
Реальные размеры 100х138мм.
Переднюю часть платы занимает место для разъемов подключения щупов.
Средняя часть — измерительный узел, переключатели, операционные усилители. Видимо предполагалась экранировка данного узла, но самого экрана в комплекте нет.
В верхней части "мозги" и питание.
В первых версиях прибора использовались линейные стабилизаторы питания, в данной версии они заменены на импульсные.
Также виден разъем для подключения блока питания и выключатель.
Замена стабилизаторов на импульсные может заметно помочь при питании от аккумуляторов. Например в комплекте к алюминиевому корпусу идет кассета на 3 аккумулятора 18650.
Управляет всем микроконтроллер 12C5A60S2. Базируется он на стареьком 8051 ядре и имеет на борту восьмиканальный 10 бит АЦП. В первых версиях прибора он был в DIP-40 корпусе, в новых версиях заменен на SMD вариант.
Также на плате имеется разъем для подключения к программатору.
Несколько отдельных фото установленных компонентов.
Снизу пусто, сюда выведены только точки пайки экрана и контрольные точки выходов стабилизаторов и преобразователей питания.
Ну и последний пакетик, с радиодеталями, которые собственно надо будет еще установить на плату.
Сюда входит плата клавиатуры, а также всякие резисторы, конденсаторы, разъемы и т.д.
Вообще конструкция довольно продумана, мелкие компоненты уже распаяны на плате, установить и запаять надо только более габаритные. Т.е. сохранен элемент "рукоприкладства", но при этом нет мазохизма для начинающих радиолюбителей в плане пайки мелких компонентов, да и "накосячить" куда сложнее. В итоге можно довольно быстро собрать устройство и получить при этом положительные впечатления от процесса.
Компоненты разложены по пакетикам, но в основном по нескольку номиналов в одном пакете.
Все резисторы, которые входят в комплект, прецизионные. На начальном этапе я на всякий случай измерил их реальное сопротивление.
В сборке помогает то, что номиналов немного, но при этом они еще и легко измеряются даже дешевым тестером, так как нет резисторов слишком близких друг к другу по номиналу.
Вверху то, что надо паять, номиналов по сути всего шесть — 40 Ом, 1, 2, 10, 16 и 100 кОм.
Вверху резисторы из подписанного пакета, они на плату не запаиваются, а используются для проверки и калибровки прибора. Сначала я думал что их надо запаивать в какие-то ответственные места, собственно потому и измерил сопротивление. Но потом выяснилось, что они "лишние", а количество (16 штук) устанавливаемых резисторов совпадает с количеством, которые были в первом пакете.
В комплект входят конденсаторы с номиналами — 3.3, 10, 22, 47 нФ, 0.1, 0.2 и 0.47мкФ.
Ниже на фото я обозначил конденсаторы так, как они обозначены на плате.
Кроме того дополнительно устанавливаются разъемы, пара электролитических конденсаторов, реле и пищалка.
Пока ждал свою посылку, поискал в интернете расширенную информацию о приборе. Выяснилось что есть не только схема, а и разные версии печатной платы, прошивки, да и вообще довольно много людей занимается данной моделью.
Схема конечно довольно условна, но общее понимание вполне дает.
Но попутно вспомнил, что примерно 8-9 лет назад, в моем же городе человек разрабатывал подобное устройство. Если посмотреть на схему, то можно увидеть много общего, причем разработан он был до обозреваемого.
Очень поднял настроение комментарий продавца на странице товара, сорри за гуглоперевод.
В простом виде (ну очень утрированно) он означает — платы все я проверяю, высылаю в отличном виде, потому не надо мне присылать ваши поделки, паяные горячим гвоздем на коленке с ортофосфоркой вместо флюса.
Любите вашу плату и относитесь к ней как к любимой подруге 🙂
Стоит отметить, что как качество изготовления платы, так и пайка компонентов на 5 баллов. Все не только аккуратно припаяно, но и тщательно промыто!
При этом все установочные места промаркированы и имеют как позиционное обозначение, так и указание номинала компонента. Вот честно, 5 баллов.
Видео распаковки и описания комплекта.
Переходим к сборке. Вообще я когда раскрыл все эти пакеты и разложил на столе, то реально хотелось сразу сесть и спаять эту конструкцию, остановило только то, что было решено сделать некую небольшую инструкцию для сборки, если вдруг это решит делать кто-то из начинающих.
Первым делом высыпаем на стол резисторы и находим те, которых больше всего, это номиналы 2 и 10 кОм.
Устанавливаем и запаиваем сначала их. Это позволит быстро убрать с платы большую часть свободных мест и облегчит потом поиск оставшихся.
Я прекрасно понимаю, что моя инструкция совсем для начинающих, потому остальную часть сборки спрячу под спойлер.
Проделываем все то же самое с остальными резисторами, благо их осталось мало.
С конденсаторами аналогичная ситуация, сначала запаиваем конденсаторы 10нФ (103), так как их больше всего.
Затем номиналы 0.1 и 0.22 мкФ (104 и 224).
Ну и еще несколько конденсаторов, их буквально по 1-2 штуки.
Реле и разъемы неправильно установить крайне тяжело, пищалка имеет обозначение + как на плате, так и на самой пищалке (длинный вывод — плюс).
Пара электролитических конденсаторов также вряд ли вызовет проблемы, их по одному каждого номинала, на плате белым обозначен минус (короткий вывод).
BNC разъемы паялись на удивление хорошо. Вообще за все время сборки я не пользовался флюсом, хватало того, что был в припое.
Последний штрих, установка стоек. Здесь уже каждый делает по своему.
Вообще я не совсем понял, почему в комплекте 16 стоек. 8 длинных нужны для установки платы клавиатуры и индикатора, допустим 4 коротких снизу или сверху, но почему 8?
В итоге я сделал по своему, 8 длинных стоят сверху платы, а 4 коротких снизу. Такой вариант позволяет более удобно использовать временно плату без корпуса. При этом верхние стойки индикатора стоят винтами вверх, а короткие вкручены в них.
Пара фото спаянной платы для контроля.
После сборки мы получаем довольно красивую печатную плату, главное ничего не напутать в процессе 🙂
Выводы резисторов я формовал при помощи небольшого приспособления, но оказалось, что расстояние между выводами получается немного больше, чем надо. В итоге я решил резисторы немного приподнять над платой, но скорее для красоты, по крайней мере мне так больше нравится.
После пайки обязательно промываем плату, так как флюса было мало, то я обошелся спиртом.
Уже после сборки обратил внимание, что плату можно немного укоротить от базовых 138мм. Примерно до 123-124мм если оставить разъем программирования или до 114мм если его тоже вырезать. Разъемы подключения щупов в таком случае подключаются проводами в специально предназначенные отверстия. Возможно будет полезно при "упаковке" в маленький корпус.
На плате клавиатуры расположены только кнопки, причем случайно дали не 8, а 9 кнопок. Одна кнопка "слиплась" с другой.
Зато не положили в комплекте одну "гребенку", пришлось немного распотрошить "загашник", заодно достал и ответные части.
Правда в моем случае были только угловые разъемы, зато много 🙂
Вообще полезно иметь в хозяйстве набор таких разъемов, бывает частенько выручают.
Припаиваем разъемы к плате клавиатуры и индикатору. Кстати, подключение клавиатуры реализовано полноценно, т.е. каждой кнопке свой вывод процессора, а не использование резисторов и АЦП, как это иногда бывает.
Вот и все, комплект полностью готов.
В собранном виде компоновка напоминает мультиметр, сверху индикатор, ниже кнопки, а еще ниже разъемы.
Как можно понять из того, что я писал выше, это вторая версия прибора, по сути доработанная. Но вот вариант корпуса мне больше нравится именно у предыдущей версии и в планах делать именно такой вариант корпуса. Правда стоит такой корпус порядка 9-10 долларов, а если покупать с платой клавиатуры и передней панелью, то еще больше. Кстати у меня уже был обзор такого корпуса, где я собирал в нем регулируемый блок питания.
Мой же вариант рассчитан под установки в алюминиевый корпус.
И по задумке должен выглядеть как на этом фото. Но скажем так, дизайн это больше индивидуальное, в интернете мне попадались различные варианты.
После сборки у меня остались тестовые резисторы, кнопка и немного крепежа. Ну и блок питания со щупами конечно.
Теперь переходим к описанию возможностей прибора и специфики его работы.
При включении приветственная надпись, затем базовый рабочий экран. К слову, все заработало сразу, в приборе вообще нет никаких подстроечных элементов, собрал — включил — пользуйся.
Прибор умеет работать в четырех основных режимах:
1. Автоматический выбор. Здесь прибор сам определяет что измерять. Выбор производится по преобладающей величине. Т.е. если у компонента преобладает емкостная составляющая, то перейдет в режим измерения емкости, если индуктивная, то в режим измерения индуктивности. Иногда может ошибаться, особенно если компонент имеет несколько выраженных составляющих, например некоторые резисторы могут быть определены как индуктивность.
В помощь автоматике добавили ручной выбор —
2. Измерение емкости
3. Индуктивности
4. Сопротивления.
Также на индикатор выводится частота тестового сигнала и предел измерения. Пределы измерения несколько "нестандартны" и насчитывают аж 16 штук — 1.5, 4.5, 13, 40, 120, 360 Ом. 1, 3, 9, 10, 30, 90, 100, 300, 900 кОм и 2.7 МОм.
По умолчанию прибор стартует в автоматическом режиме измерения на частоте 1кГц.
Немного об управлении.
Под индикатором расположены восемь кнопок, он подписаны.
M — Меню, отсюда производят необходимые калибровки и сброс настроек на заводские.
RNG — Диапазон. В меню эта кнопка дает доступ к подменю калибровок.
С — Быстрая автоматическая калибровка.
L — Переключение режима индикации (первое фото). В меню — память
X — Переключение режимов работы прибора. В режиме меню — выход.
R — Уменьшение значения в режиме калибровки (X- увеличение)
Q — режим относительных измерений. Можно использовать для подбора двух одинаковых компонентов. подключаем образцовый компонент, нажимаем на кнопку, отключаем образцовый и подключаем подбираемые. На экране будет отображен процент расхождения (второе фото).
F — Выбор частоты 100 Гц — 1 кГц — 7.8 кГц.
Вид меню прибора.
Режим быстрой калибровки по нажатию кнопки С имеет два варианта:
1. При измерении емкости и индуктивности производится с разомкнутыми щупами.
2. При измерении сопротивления — с замкнутыми. В обоих вариантах прибор самокалибруется три раза по каждой из частот.
3, 4. Калибровка в режиме сопротивления, видно сопротивление щупов до калибровки и после.
В режиме измерения малых сопротивлений калибровка имеет довольно большое значение, так как возможности прибора позволяют даже "увидеть" сопротивление выводов конденсатора, не говоря о разных проводах.
Естественно в этом режиме удобно измерять сопротивление низкоомных резисторов, а также такие "нестандартные" измерения как — сопротивление контактов кнопок, реле или разъемов.
В плане точности измерения сопротивления прибор вполне может соперничать с моим Unit 181.
При измерении индуктивности прибор также вел себя довольно неплохо. На фото индуктивность 22мкГн и три теста с разными частотами индуктивности с номиналом 150мкГн.
Вот теперь можно перейти к главному, собственно для чего в основном он мне нужен, измерению параметров конденсаторов.
Поначалу я просто тыкал разные конденсаторы и смотрел что показывает, но один (а точнее пара) меня удивил.
Я промерил пару одинаковых конденсаторов, которые были выпаяны из старой (около 20 лет) Венгерской или Чехословацкой аппаратуры. Один показал 488мкФ, а второй почти 600. Все бы ничего, но изначально это конденсаторы 470мкФ 40 Вольт.
Причем они по разному себя ведут на частоте 7.8 кГц. Вернее разница в емкости не пропорциональна друг с другом.
Затем я взял еще один конденсатор (вроде Матсушита), купленный давно, но так и лежащий в загашнике.
Прибор смог нормально измерить емкость на частоте 100 Гц и 1 кГц, но на высокой частоте емкость отобразил несколько некорректно. Вообще на частоте 7.8 кГц прибор ведет иногда себя немного странно, иногда завышая емкость относительно первых двух частот. Иногда (при измерении емких конденсаторов) сваливается в режим —-OL—- или показывает превышение более 20мФ.
Кстати, разрешение прибора позволяет даже увидеть разницу места подключения к выводу. Да же на примере одного вывода видно, как меняется внутреннее сопротивление. Это я собственно к тому, что меня иногда спрашивают, а можно подключить конденсатор на проводах, если он не влазит на место. Подключить можно, но характеристики немного снизятся.
Как вы понимаете, просто измерять конденсаторы неинтересно, потому я попросил у товарища его Е7-22. Попутно заметил, что даже управление приборами имеет очень много общего.
Первым делом шли пленочные конденсаторы. Внизу прецизионный 1% конденсатор с заявленной емкостью 0.39025 мкФ.
1, 2. Полимерный конденсатор емкостью 100мкФ
3, 4. А вот с измерением больших емкостей у Е7-22 есть проблемы. Обозреваемый прибор без проблем измеряет емкость в 10000мкФ на частоте 1 кГц, Е7-22 даже на 4700 у меня уже выдавал перегрузку.
1, 2. Capxcon серии KF емкостью 330 мкФ.
3, 4. Конденсатор той же фирмы (якобы), просто пролежавший в ящике несколько лет и вспухший.
А это уже просто ради любопытства. Пара конденсаторов из моей старой материнской платы, которая отработала 24/7 около 10 лет.
1. 2200мкФ
2. 1000мкФ
Емкость у первого конденсатора заметно упала, но вот внутреннее сопротивление в порядке. Чаще бывает наоборот, емкость остается прежней, а внутреннее сопротивление растет.
Видео процесса работы и тестов.
Если у вас есть еще предложения тестов, то пока у меня на руках сразу два прибора, то мог бы поэкспериментировать. Мне же в голову пришло только проверить размах тестового сигнала.
Ниже показан размах тестового сигнала относительно земли. Верхние два — обозреваемый на частотах 100 Гц и 7.8. кГц, нижние — Е7-22 на частотах 120 Гц и 1 кГц. Разница около 2.5 раза.
Выше я писал, что в планах применять корпус где индикатор расположен не параллельно поверхности, а перпендикулярно.
Но в процессе выяснилось, что индикатор хоть применен и относительно неплохой, но ориентирован он именно на то, что смотреть будут спереди или спереди-снизу.
Под большими углами, а тем более при взгляде сверху или сбоку изображение пропадает или начинает инвертироваться.
Собственно потому я решил наконец-то попробовать дисплей изготовленный по технологии VATN. Вообще хотелось OLED, к я уже делал в этом обзоре, но 2004 купить почти нереально, а как потом выяснилось, VATN также мало где продают в онлайне.
В итоге пришлось идти в наш оффлайновый магазин, и покупать там.
На выбор было три модели, с синим, зеленым и белым шрифтом, мне больше понравился с белым, модель — Wh3004A-SLL-CTV, цена около 15-16 долларов, ссылка. Производитель WINSTAR.
На первый взгляд индикаторы мало отличаются друг от друга, по крайней мере размер платы полностью идентичен — 98х60 мм.
Снизу есть небольшая разница, но на вид несущественная.
Новый индикатор примерно на 0.5мм тоньше.
Общий принцип подключения практически одинаков, за исключением нескольких нюансов, о которых я расскажу ниже.
Для начала отличие в том, что дисплеям VATN для регулировки контрастности надо отрицательное напряжение, потому на плате смонтирован преобразователь напряжения на базе известной 7660, обзор которой я также делал.
Рядом есть место для подстроечного резистора. Средний вывод идет на контакт регулировки контраста, два других на + 5 и — 5 Вольт соответственно.
Сначала я хотел установить подстроечный резистор, отдав полностью регулировку плате индикатора, но потом решил не выкусывать лишний контакт разъема и просто включил резистор так, чтобы один контакт шел на стандартный вывод регулировки контрастности (номер 3 на общем разъеме), а второй на выход отрицательных 5 Вольт.
Отрегулировал изображение, выпаял подстроечный резистор, получилось что надо было постоянный резистор с сопротивлением 2.6 кОм, ближайший под рукой был 2.49кОм, его и запаял уже "стационарно".
Но это оказалось не все.
А теперь Внимание, 15 контакт разъема у привычных индикаторов это плюсовой вывод подсветки, здесь это выход отрицательного напряжения и ни в коем случае нельзя просто менять индикатор один на другой, в итоге вы просто спалите его.
Я же сделал немного по другому, из 16 контактов запаял только 14.
Контакт 16 это минус подсветки, а плюс подключен ко входным +5 Вольт, потому просто кинул перемычку между минусом подсветки и общим проводом платы индикатора.
А здесь внимание второй раз!
Изначально я думал просто оставить 16 контакт на месте, так как у обычного индикатора туда выведен минус подсветки, рассудив что какая разница где подключать к общему проводу. И оно бы нормально работало, если бы не одно НО.
У платы прибора индикатор питается от + 5 Вольт, а подсветка от -5 Вольт. Потому подключив таким образом новый индикатор я буквально через 10-20 секунд случайно заметил что у него начала дико греться подсветка. Подключившись тестером, выяснил, что на подсветку шло не 5, а 10 Вольт (+5 и -5).
Потому с данным прибором пришлось минус подсветки подключить к общему контакту платы.
Меняем индикатор и пробуем.
Ну что сказать, это конечно не OLED, но и далеко не обычный ЖК.
Из минусов, он больше ориентирован на то, что на него будут смотреть как угодно, только не снизу, в таком варианте от вспышки он "слепнет".
Попутно измерил ток потребления со старым индикатором и новым.
1. старый — 48мА все вместе или 12 мА только индикатор.
2. новый — 153 мА или 120 мА только индикатор.
Да, для батарейного вариант куда выгоднее обычный ЖК индикатор.
Если смотреть сверху, т.е. как я и планировал, то видимость хорошая, но начинают вылазить неактивные пиксели.
От последнего можно легко избавиться, но тогда при прямом взгляде показывает тускло, я выставил нечто среднее.
Углы обзора конечно на голову выше, чем у обычного ЖК, изображение читается даже при почти взгляде параллельно экрану.
Но вылез интересный эффект (последнее фото). Если плавно поворачивать экран от себя, то в какой-то момент (примерно при 30 градусов поворота) изображение бледнеет, пытается инвертироваться, а при дальнейшем повороте почти резко опять становится нормальным. Потому для вертикальной у
Китайский RCL- metr +ESR+определитель выводов полупроводниковых приборов
Всем привет!Этот прибор представляет собой полуфабрикат, который вам надо достроить. Впрочем усилия
невелики. Характеристик я коснусь позже.Управление одной кнопкой.При включении устройство проверяет батарею и приступает к работе. После отображения результата устройство переходит в спячку выключая дисплей.
Первое, что надо сделать поместить в подходящий корпус, я нашел старый корпус от самодельных
часов, лишнии кнопки не удалял. Для питания использовал платку со стабилизатором КРЕН9Г на 9 вольт (http://katod-anod.ru/articles/35)+ блок питания от калькулятора, кроны слишком дорогие батарейки, но можно вставить и крону.
Далее чтобы прибор не погиб раньше времени от разряда конденсатора сделал следующее:
кнопка одной группой контактов шунтирует вход, второй обратной нажимается кнопка измерение.
В ненажатом виде, при исправных щупах, прибор показывает почти нулевое сопротивление,
что является проверкой измерительной цепи.
Что может прибор:
Измерение емкости 30пФ-20000мкФ:
Сравнивая показания этих 3-х приборов, можно сказать, что конечно прибор имеет погрешность.
Но показания его при замере больших емкостей даже точнее показаний китайского измерителя
RCL XС4070L. На показания ESR тоже можно ориентироваться, проверено при ремонте, когда
были выявлены дефектные конденсаторы. Измерения малых емкостей не использую.
Измерение индуктивностей погрешность до 20% :0-200mH
Резисторы: 0.5 Ω -20MΩ погрешность до 10%
Практически еще полезная опция определение цоколевки полупроводниковых приборов, типа и падения напряжения на p-n переходах.
Показывает анод-катод и падение напряжения.
Элементы подключаются между любыми 3-мя выводами.
Вывод: Плюсом данного устройства является его цена и точность часто достаточная для оценки работоспособности элементов.
4. Цифровой измеритель RCL. | Техническая библиотека lib.qrz.ru
ЦИФРОВОЙ ИЗМЕРИТЕЛЬ RCL
Измеритель имеет следующие диапазоны измерений: 200 пФ, мкГн, Ом, 2, 20, 200 нФ, мГн, кОм, 2, 20 мкФ, Гн. Погрешность измерений ±(0,5% + 1 единица младшего разряда) при измерении емкостей и сопротивлений и ±(2% + 1 единица младшего разряда) при измерении индуктивности. Прибор питается от батареи, составленной из 8 аккумуляторов Д-0,125 и потребляет ток менее 20 мА. Прибор сохраняет свою точность при снижении напряжения питания до 8 В, поэтому его можно питать от батареи 7Д-0,125, но ее емкость не будет использоваться полностью.
Принцип измерений в описываемом приборе заключается в следующем. Напряжение треугольной формы прикладывается к
измеряемой емкости, при этом ток через нее имеет форму меандра и его амплитуда пропорциональна измеряемой емкости. При измерении индуктивности через нее пропускается ток треугольной формы, падение напряжения на индуктивности имеет форму меандра и пропорционально ее величине. Измеряемая емкость и эталонные резисторы подключаются в соответствии с рис. 20,а, а измеряемая индуктивность — по схеме рис. 20,6. При измерении сопротивлений используется соединение по
схеме рис. 20,а, но эталонными становятся емкости, а измеряемое сопротивление устанавливается на место эталонного.
Схема измерителя приведена на рис. 21. Все микросхемы прибора, кроме DD9, питаются от батареи GB1 непосредственно. Для симметричной работы операционных усилителей при помощи резисторов R 12 и R 13 и ОУ DA3 создана искусственная средняя точка, относительно которой указаны напряжения на схеме.
Задающий генератор прибора собран на элементах DD1.1 и DD1.2 и работает на частоте 1 МГц. Цепочкой декадных делителей DD2 -DD5 эта частота делится до 100 кГц — 100 Гц. Использованные в делителе микросхемы К176ИЕ4 при включении могут делить частоту с неправильным коэффициентом деления, поэтому для их начальной установки применена цепочка C22R26. Сигналы с выходов микросхем DD2 — DD5 через переключатель SA1.1 подается на микросхему DD6. В ней частота делится на 10 и с выхода Р микросхемы сигнал в форме меандра с частотой 100 кГц — 10 Гц подается через повторитель на элементах DD1.3, DD8.1, DD8.2 на вход формирователя напряжения треугольной формы. Микросхема DD6 типа
К561ИЕ8 имеет внутреннюю цепь коррекции, обеспечивающую правильный коэффициент деления, поэтому подача на него импульса начальной установки не требуется. Повторитель на ключах микросхемы К561КТЗ обладает существенно меньшим выходным сопротивлением по сравнению со стандартными выходами микросхем этой серии, что исключает необходимость подбора входных резисторов формирователя напряжения треугольной формы.
Формирователь собран по схеме интегратора на ОУ DA1. Сопротивления резисторов R5 — R7 и емкости конденсаторов С6 и С7 выбраны так, чтобы амплитуда напряжения треугольной формы составляла 4 В от пика до пика (±2 В), а наклон «пилы» на частоте 100 кГц был 0,75 В/мкс. Для симметрирования выходного напряжения в интегратор введена нелинейная отрицательная обратная связь через выпрямительный мост VD6, в диагональ которого включены диоды VD4 и VD5, через которые пропущен при помощи резисторов R3 и R4 небольшой ток. При подходе выходного напряжения интегратора к +2 или -2 В диоды моста открываются и замыкается цепь отрицательной обратной связи. В результате вершины напряжения треугольной формы незначительно ограничиваются, что не влияет на точность измерений, поскольку важной является линейность напряжения только вблизи нулевого значения.
Напряжение треугольной формы с выхода ОУ DA1 подается через секцию переключателя SA2.1 на измеряемую емкость и эталонные резисторы R10, R11 или через эталонные резисторы R8, R9 на измеряемую индуктивность или через эталонные конденсаторы С3, С4 на измеряемое сопротивление, в результате чего образуется одна из схем рис. 20.
При измерении емкостей и сопротивлений напряжение на выходе цепи рис. 20,а имеет форму меандра с плавными переходами между
положительными и отрицательными горизонтальными участками. При измерении индуктивностей за счет их всегда реально существующего активного сопротивления горизонтальные участки напряжения получают наклон (рис. 22, ограничение вершин треугольного напряжения и плавные переходы условно не показаны).
Через буферный ОУ DA2 сигнал поступает на синхронный выпрямитель, собранный на ключах DD8.3, DD8.4 и конденсаторах С16 и С17. Ключи управляются выходными им-
пульсами счетчика DD6 и открываются на 1/10 периода выходного сигнала ОУ DA2 в середине горизонтальных участков, ключ DD8.4 в середине положительной полуволны, DD8.3 — отрицательной. Конденсаторы С 17 и С 18 запоминают напряжения на время разомкнутого состояния ключей, с них сигнал подается на измерительный вход АЦП.
Систематическая погрешность прибора при измерении емкостей и сопротивлений, возникающая из-за того, что последовательно с измеряемой или эталонной емкостью включен эталонный или измеряемый резистор, ничтожна, поскольку к моменту открытия ключей DD8.3 или DD8.4 процесс установления величины тока через конденсатор полностью заканчивается. При измерении индуктивностей собственное сопротивление катушек индуктивности играет двоякую роль. С одной стороны, оно несколько уменьшает показания прибора, поскольку включено последовательно с резисторами R8 или R9 и уменьшает величину тока треугольной формы, текущего через измеряемую индуктивность. С другой стороны, оно увеличивает показания за счет наклона горизонтальных участков сигнала на выходе DA2. Указанные эффекты не компенсируют друг друга и заметно снижают точность измерений.
Максимальное значение напряжения на конденсаторах С16 и С17, соответствующее предельному значению каждого диапазона, составляет ±50мВ, полное напряжение, подаваемое на вход АЦП — 300 мВ. Двухполупериодный характер выпрямления обеспечивает неизменность выходного напряжения выпрямителя при уходе нуля операционных усилителей DA1 и DA2.
Включение микросхемы DD10 имеет некоторые особенности. Опорное напряжение, определяемое максимальным входным сигналом, составляет 150 мВ. Оно снимается с делителя R 19 — R22. Нестабильность напряжения источника питания не играет никакой роли, поскольку как выходное напряжение синхронного выпрямителя, так и опорное напряжение пропорциональны напряжению питания, а АЦП измеряет их отношение. Также не сказывается уход частоты генератора DD1.1, DD1.2, поскольку важна крутизна треугольных импульсов на выходе микросхемы DA2, а не их частота.
Исходная частота работы АЦП выбрана равной 40 кГц. Она получается из сигнала с частотой 1 МГц делением на 25 при помощи микросхемы DD7 и элемента совпадения на диодах VD1 — VD3, резисторе R2 и конденсаторе С2. Амплитуда импульсов на входе RCr микросхемы DD10 должна соответствовать напряжению внутреннего источника питания цифровой части микросхемы -Uц , составляющего по абсолютной величине около 5 В. Оно приводится к необходимой величине при помощи делителя R23, R24.
Управление местоположением запятой индикатора HG1 при отсчете показаний осуществляет микросхема DD9. Запятая Н4 используется для индикации разряда батареи питания.
Резисторы R5 — R11 следует подобрать с точностью 0,2%. В описываемой конструкции использовались резисторы типа С2-29В мощностью 0,125 Вт, остальные резисторы — МЛТ, подстроечный -СПЗ-19а. Резистор R5 состоит из параллельно соединенных точного резистора 10 кОм и МЛТ-0,25 1 МОм 10%. Выдерживать номиналы резисторов R12, R13, R19, R21, R22 не обязательно, но они должны быть стабильными. При этом резисторы R12 и R13 должны быть равны друг другу с точностью 0,5%, а на входы образцового напряжения микросхемы DD10 должно подаваться 150 мВ. Диоды могут быть использованы практически любые маломощные кремниевые, в том числе и для замены моста VD6.
Микросхемы КР544УД2 могут быть заменены на К544УД2, вместо КР140УД14А можно использовать практически любой ОУ, работающий при напряжении питания ±5В, например КР140УД6. Микросхему К176ИЕ1 можно заменить при изменении схемы на К176ИЕ2 или на К561 ИЕ10. Микросхемы серии К561 можно заменить на микросхемы серии КР1561, К561ИЕ8 и на К176ИЕ8, а при изменении рисунка печатной платы — на микросхемы серии 564.
Если батарею питания разделить на две по 5 В, можно исключить ОУ DA3, при этом питание необходимо будет отключать двумя секциями переключателя SA2.
Конденсаторы С1, С3, С4, С6 следует подобрать с ТКЕ не хуже М75. Остальные конденсаторы могут иметь больший ТКЕ, в основном применены конденсаторы типов КМ-5 и КМ-6 (конденсаторы 0,47 мкФ — КМ-66, в качестве С9 — С13 можно использовать конденсаторы емкостью 0,047 мкФ и выше). Конденсаторы С7 и С20 должны быть с хорошим диэлектриком, были использованы конденсаторы К73-17 и К73-11 на напряжение 160 В. Полярные конденсаторы — К53-18 или любые другие.
Все детали измерителя, кроме эталонных элементов и батареи питания, расположены на двусторонней печатной плате размерами 65х130мм, на рис. 23,а приведено расположение деталей и проводников на стороне установки микросхем, на рис 23,6 — проводников на другой ее стороне.
Переключатели SA1 (ПГ2-12-6П8Н) и SA2 (ПГ2-10-6П4Н) установлены под микросхемами DD10, DD6, DD1, DD8 на кронштейне, изготовленном из латуни толщиной 1 мм. Входные гнезда XS1 и XS2 для вилок диаметром 1,6 мм установлены на боковой стенке корпуса. Переключатели снабжены такими же ручками — барабанами, как и в предыдущих конструкциях, изоляции ручек от оси переключателей не
требуется. Эталонные элементы установлены при помощи трубчатых контактов на стеклотекстолитовой плате с размерами 20 х 65 мм, закрепленной с одной стороны на кронштейне переключателей, с другой стороны — к основной печатной плате через дистанционную втулку высотой 7 мм. В средней части вторая плата прикреплена к одному из винтов переключателя. Такое крепление платы позволяет произвести почти полный монтаж цепей переключателей и эталонных элементов до установки переключателей на основную плату.
Платы измерителя установлены в пластмассовый корпус с габаритами 136 х 72 х 34 мм.
Аккумуляторная батарея изготовлена из элементов двух батарей 7Д-0,125. Аккумуляторы, соединенные между собой приваренной никелевой лентой, сложены двумя «лесенками» по четыре элемента, обмотаны поливинилхлоридной изоляционной лентой и уложены в корпус измерителя под индикатором HG1.
Измеритель целесообразно собирать и настраивать в следующем порядке. Вначале на плату следует установить все детали, за
исключением кронштейна с переключателями и платы с эталонными элементами. Подать напряжение питания 10 В и подбором элементов R1 и С1 установить частоту генератора на элементах DD1.1 и DD1.2, равной 1 МГц с точностью не хуже 2%. Частоту удобно контролировать на выходах счетчиков DD2 — DD5. По осциллографу можно установить частоту генератора, добиваясь неподвижного изображения импульсов 100 Гц с выхода микросхемы DD3 при синхронизации развертки осциллографа от сети.
Установить кронштейн с переключателями и резисторами R5 -R11, произвести весь проводной монтаж. Подобрать емкость конденсатора С7 так, чтобы ограничение треугольного напряжения на диапазоне 20 мкФ при увеличении напряжения питания начиналось при 10…11 В. Подобрать конденсатор, емкость которого известна с точностью не хуже 0,2%, и номиналом 0,15…0,19 мкФ. На диапазоне 200 нФ резистором R20 добиться показаний измерителя, соответствующих емкости конденсатора.
Вывод 3 секции переключателя SA1.5 отключить от резистора R 10 и подключить к резистору R11. Подобрать конденсатор С6 такой емкости, чтобы показания при измерении эталонной емкости на диапазонах 200 нФ и 20 нФ (он превратился в 200 нФ) совпадали. Восстановить подключение вывода 3 переключателя.
Используя точные резисторы с допуском 0,1…0,2% в качестве измеряемых, подобрать емкость конденсатора С3 для получения соответствия показаний прибора номиналам резисторов на диапазонах 2 кОм — 200 кОм. Конденсаторы СЗ и С6 удобно подбирать из нескольких меньшей емкости, полезно подключение подстроечных конденсаторов.
При наличии эталонного конденсатора емкостью 150… 190 пФ можно уточнить величину сопротивления резистора, подключенного параллельно R5, для получения максимальной точности показаний на диапазоне 200 пФ.
На рис. 21 показан конденсатор С4, обеспечивающий диапазоны измерения сопротивлений 2 и 20 МОм, однако пользоваться этими диапазонами неудобно, поскольку требуется тщательное экранирование измеряемого резистора и прибора в целом, а точность измерений невысока. Без ущерба для пользования прибором его можно исключить, а также исключить секцию переключателя SA1.4, что позволит уменьшить число галет переключателя SA1 и использовать в качестве него переключатель ПГ2-11-6П6Н.
При отсутствии измеряемой емкости на диапазонах 200 пФ и 2 нФ за счет емкости монтажа прибор должен показывать около 2 пФ. При измерениях эту величину следует вычитать из получаемого результата.
В режиме измерения индуктивностей в случае использования точных резисторов прибор настройки не требует.
Следует также подобрать номиналы резисторов R14 и R18 так, чтобы запятая Н4 включалась при снижении напряжения питания ниже 8 В.
Прибор можно использовать в качестве генератора однополярных прямоугольных импульсов с амплитудой 10 В и частотой 10 Гц… 100 кГц или треугольных симметричных импульсов с той же частотой в двух верхних по схеме положениях переключателя SA2.
В выключенном состоянии батарея питания подключена к входным гнездам, что позволяет контролировать ее напряжение и заряжать аккумуляторы.
Прибор обладает не очень привычным свойством — при значительном превышении измеряемой величиной установленного диапазона, коротком замыкании контролируемого конденсатора или обрыве резистора или индуктивности он может показать некоторое конечное значение измеряемой величины. Поэтому при неизвестном даже приближенно номинале проверяемого элемента измерение следует начинать с наибольшего предела измерения, уточняя измеряемую величину при переходе с диапазона на диапазон.
Этот недостаток устраняется путем несложной доработки, схема которой приведена на рис. 24. Резистор R18 цепи индикации падения напряжения батареи питания отключен от источника -5 В и
подсоединен к коллектору транзистора VT1. Сопротивление резистора R28 мало по сравнению с R18 и при закрытом транзисторе VT1 не влияет на работу цепи. При отсутствии перегрузки амплитуда переменного напряжения на выходе ОУ DA2 измерителя не превышает 150 мВ, транзистор VT1 закрыт. Если перегрузка невелика, она индицируется как обычно — гашением всех
разрядов, кроме старшего. При большой перегрузке пики напряжения на выходе ОУ DA2 открывают транзистор VT1 и он заряжает конденсатор С23. Напряжение на коллекторе VT1 становится близким к напряжению общего провода, срабатывает индикация разряда батареи — включается десятичная точка Н4 младшего знака индикатора.
Для большей заметности перегрузки к выходу 10 DD9 можно подключить не только точку Н4, но и сегменты 1А, ID, IE, IF, 1G индикатора (выводы 2, 3, 30, 32, 33), в этом случае при перегрузке в
старшем разряде будет индицироваться буква Е или цифра 8. Еще интереснее индикацию разряда можно сделать, если выход 10 микросхемы DD9 подключить к общему электроду индикатора HG1 (выводы 1 и 34), отключив его от выхода F микросхемы. В этом случае при перегрузке или снижении напряжения батареи ниже 8 В все сегменты индикатора инвертируются и считывание показаний становится практически невозможным
Доработку можно провести объемным монтажом, рядом с ОУ DA1 и DA2 достаточно свободного места. Транзистор КТ3107И заменим на любой кремниевый маломощный структуры р-n-р.
При измерении емкостей полярных конденсаторов серий ЭТО, К51 и К52 последовательно с конденсатором следует включать батарею напряжением не менее 2,5 В, плюсом батареи к плюсу конденсатора. Все остальные типы конденсаторов можно проверять без дополнительного источника.
ИЗМЕРИТЕЛЬ RCL | Техника и Программы
Этот прибор измерительной лаборатории с достаточной для радиолюбительской практики точностью позволяет измерять: сопротивление резисторов—от 10 Ом до 10 МОм, емкость конденсаторов — от 10 пФ до 10 мкФ, индуктивность катушек и дросселей— от 10 ..20 мкГн до 8… 10 мГн. Метод измерения — мостовой. Индикация балансировки измерйтельного моста — звуковая с помощью головных телефонов. Точность измерений во многом зависит от тщательности подбора образцовых деталей и градуировки шкалы.
Принципиальная схема прибора изображена на рис. 53. Измеритель состоит из простейшего реохордного измерительного^ моста, генератора электрических колебаний звуковой частоты и усилителя тока. Питается прибор постоянным ♦напряжением 9 В, снимаемым с нерегулируемого выхода блока питания лаборатории. Прибор можно питать и от автономного источника, например батареи «Крона», аккумуляторной батареи 7Д-0,115 или двух соединенных последовательно батарей 3336J1. Прибор сохраняет работоспособность при снижении напряжения питания до 3… 4,5 В, однако громкость сигнала в телефонах, особенно при измерении небольших емкостей, в этом случае заметно падает.
Генератор, питающий измерительный мост, представляет собой симметричный мультивибратор на транзисторах VT1 и VT2. Конденсаторы С1 и С2 создают между коллекторными и базовыми цепями транзисторов положительную -обратную связь по переменному току, благодаря чему мультивибратор самовозбуждается и генерирует электрические колебания, близкие по форме к прямоугольным. Резисторы и конденсаторы мультивибратора подобраны таким образом, что он генерирует колебания частотой около 1000 Гц. Напряжение такой частоты воспроизводится телефонами (или динамической головкой) примерно как звук «си» второй октавы.
Рис. 53. Принципиальная схема измерителя RCL
Электрические ’колебания мультивибратора усиливаются усилителем на транзисторе VT3 и с его нагрузочного резистора R5 поступают в диагональ питания измерительного моста. Переменный резистор R5 выполняет функции реохорда. Плечо сравнения образуют образцовые резисторы R6—R8, конденсаторы СЗ—С5 и катушки индуктивности L1 и L2, поочередно включаемые з мост переключателем SA1. Измеряемый резистор Rx или катушку индуктивности Lx подсоединяют к зажимам ХТ1, ХТ2, а конденсатор Сх — к зажимам ХТ2, ХТЗ. Головные телефоны BF1 включают в измерительную диагональ моста через гнезда XS1 и XS2 При любом виде измерений мост балансируют реохордом R5, добиваясь полного пропадания или наименьшей громкости звука в телефонах. Сопротивление RXJ емкость Сх или индуктивность Lx отсчитывают по шкале реохорда в относительных единицах.
Множители возле переключателя вида и пределов измерений SA1 показывают, на сколько ом, микрогенри. или ликофарад надо умножить отсчитанное по шкале показание, чтобы определить измеряемое сопротивление резистора, емкость конденсатора или индуктивность катушки. Так, например, если при балансе моста считанное со шкалы реохорда показание равно 0,5, а переключатель SA1 находится в положении «ХЮ4 пФ», то емкость измеряемого конденсатора Сх равна 5000 пФ (0,005 мкФ).
Резистор R6 ограничивает коллекторный τόκ транзистора VT3, возрастающий при измерении индуктивности, и тем самым предотвращает возможный тепловой пробой транзистора.
Конструкция и детали. Внешний вид и конструкция прибора показаны на рис. 54. Большая часть деталей размещена на монтажной плате из гетинакса, закрепленной в корпусе на П-образных кронштейнах высотой 35 мм. Под монтажной платой можно установить батарею автономного питания прибора. Переключатель SA1, выключатель питания Q1 и колодка с гнездами XS1, XS2 для подключения головных телефонов закреплены непосредственно на передней стенке корпуса.
Разметка отверстий в передней стенке корпуса показана на рис. 55. Прямоугольное отверстие размерами 30X15 мм в нижней части стенки, предназначено для выступающих вперед зажимов ХТ1—ХТЗ. Такое же отверстие в правой части стенки является «окном» шкалы, круглое отверстие под ним предназначено для валика переменного резистора R5. Отверстие диаметром 12,5 мм предназначено для выключателя питания, функции которого выполняет тумблер ТВ2-1, отверстие диаметром 10,5 мм — для галетного переключателя SA1 на 11 положений (используется только восемь) и одно направление. Пять отверстий диаметром 3,2 мм с зенковкой служат для винтов крепления гнездовой колодки, полочки с зажимами ХТ1—ХТЗ и кронштейна резистора R5, четыре отверстия диаметром 2,2 мм (также с зенковкой) — для заклепок крепления уголков, к которым привинчивают крышку.
Надписи, поясняющие назначение ручек управления, зажимов и гнезд, выполнены на плотной бумаге, которая затем накрывается пластиной из прозрачного органического стекла толщиной 2 мм. Для крепления этой накладки к корпусу использованы гайки выключателя питания Q1, переключателя SA1 и
Рис. 54. Внешний вид и конструкция измерителя RCL
три винта М2Х4, ввинченные в резьбовые отверстия в накладке с внутренней стороны корпуса.
Конструкция зажимов для подключения к прибору резисторов, конденсаторов и катушек индуктивности, параметры которых надо измерить, показана на рис. 56. Каждый зажим состоит из деталей 2 и 3, закрепленных на гетинахсовой плате 1 заклепками 4 Соединительные провода припаивают к монтажным лепесткам 5. Детали зажимов изготавливают из твердой латуни или бронзы толщиной 0,4… 0,5 мм. При работе с прибором нажимают на верхнюю часть детали 2 до совмещения отверстия в ней с отверстиями в нижней части этой же детали и детали 3 и вставляют в них вывод измеряемой детали. Необхо
Рис. 55. Разметка передней стенки корпуса
Рис. 56. Устройство колодки с зажимами для подсоединения выводов радиодеталей:
1—плата; 2, 3 — пружинящие контакты; 4 —заклепки; 5 — монтажный лепесток; 6 — -уголок
Рис. 57. Устройство шкального механизма:
лей желательно проверить на измерительном приборе заводского изготовления.
Образцовая катушка L1, индуктивность которой должна быть равна 100 мкГн, содержит 96 витков провода ПЭВ-1 0,2, намотанного виток к витку на цилиндрическом каркасе внешним диаметром 17,5 мм, или 80 витков такого же провода, намотанного на каркасе диаметром 20 мм. В качестве каркаса можно использовать картонные гильзы патронов для охотничьих ружей 20или 12-го калибра. Каркас катушки насажен на кружок, выпиленный из гетинакса и приклеенный к монтажной плате клеем БФ-2.
Индуктивность образцовой катушки L2 в десять раз больше (1 мГн). Она содержит 210 витков провода ПЭВ-1 0,12, намотанного на унифицированном трехсекционном полистироловом каркасе, и помещена в карбонильный броневой магнитопровод СБ-12а. Ее индуктивность подгоняют подстроечником, входящим в комплект магнитопровода. Последний приклеен к монтажной плате клеем БФ-2.
Индуктивность обеих катушек желательно подогнать до установки в измеритель. Лучше всего это сделать с помощью прибора заводского изготовления. Следует отметить, что если первую катушку изготовить точно по описанию, та она будет иметь близкую к необходимой индуктивность и по ней в собранном измерителе можно будет подогнать индуктивность второй катушки.
Налаживание прибора, градуировка шкалы. Если в измерителе использованы предварительно проверенные и отобранные транзисторы, резисторы и конденсаторы, мультивибратор и усилитель должны нормально работать без какого-либо налаживания. В этом нетрудно убедиться, соединив проволочной перемычкой зажимы ХТ1 и ХТ2 или ХТ2 и ХТЗ. В телефонах должен появиться звук, громкость которого изменяется при перемещении движка реохорда из одного крайнего положения в другое. Если звука нет, значит, допущена ошибка в монтаже мультивибратора или неправильно подключен источник питания.
Желательную высоту (тон) звука в телефонах можно подобрать изменением емкости конденсатора С1 или С2. С уменьшением их емкости высота звука повышается, а с увеличением — понижается.
Рис. 59. Шкала измерителя RCL
Поскольку шкала прибора общая для всех видов и пределов измерений, ее можно отградуировать на одном из пределов’ с помощью магазина сопротивлений. Допустим, что шкала прибора градуируется на поддиапазоне, соответствующем образцовому резистору R8 (10 кОм). Переключатель SA1 в этом случае устанавливают в положение «ХЮ4 Ом», а к зажимам ХТ1 и ХТ2 подключают резистор сопротивлением 10 кОм. После этого мост балансируют, добиваясь пропадания звука в телефонах, и на шкале реохорда напротив стрелки делают исходную риску с отметкой 1. Она будет соответствовать сопротивлению 104 Ом, т. е. 10 кОм. Далее к прибору поочередно подключают резисторы сопротивлением 9, 8, 7 кОм и т. д. и делают на шкале отметки, соответствующие долям единицы. В дальнейшем отметка 0,9 на шкале реохорда при измерении сопротивлений этого поддиапазона будет соответствовать сопротивлению 9 кОм (0,9-104 Ом = 9000 Ом=9 кОм), отметка 0,8 — сопротивлению 8 кОм (0,8· 104 0м = 8000 Ом=8 кОм) и т. д. Далее к прибору подключают резисторы сопротивлением 15, 20, 25 кОм и т. д. и на шкале реохорда делают соответствующие отметки (1,5; 2; 2,5 и т. д). В результате получится шкала, образец которой показан на рис. 59.
Отградуировть шкалу можно также с помощью набора резисторов с допускаемым отклонением от номиналов не более ±5%. Соединяя резисторы параллельно или последовательно, можно получать практически любые значения «образцовых» резисторов.
Отградуированная таким способом шкала пригодна для других видов и пределов измерений только в том случае, если соответствующие им образцовые резисторы, конденсаторы и катушки индуктивности будут иметь параметры, указанные на принципиальной схеме прибора.
Пользуясь прибором, надо помнить, что при измерении емкости оксидных конденсаторов (вывод их положительной обкладки подключают к зажиму ХТЗ) баланс моста ощущается не так четко, как при измерении сопротивлений, поэтому и точность измерений в этом случае меньше. Объясняется такое явление утечкой тока, свойственной оксидным конденсаторам.
Источник: Борисов В. Г., Фролов В. В., Измерительная лаборатория начинающего радиолюбителя.— 3-е изд., стереотип. — М.: Радио и связь, 1995.— 144 с., ил.— (Массовая радиобиблиотека; Вып. 1213).
главная основы элементы примеры расчетов любительская технология общая схемотехника радиоприем конструкции для дома и быта связная аппаратура телевидение справочные данные измерения обзор радиолюбительских схем в журналах обратная связь
Реклама
|
ИЗМЕРИТЕЛЬ RCL На этой страничке рассмотрим схему простого измерителя RCL. В свое время промышленностью выпускался комплект измерительной аппаратуры «Спутник радиолюбителя». Вот из этого комплекта предлагаю Вашему вниманию схему мостового измерителя: С помощью этой приставки можно измерять индуктивности катушек от 20 до 500 Миллигенри, емкости конденсаторов от 20 Пф до 0,05 Микрофарад и сопротивление резисторов от 20 Ом до 500 Килоом. На вход измерителя подается сигнал от генератора ЗЧ с частотой 1 — 4 килогерца, амплитудой 0,5 — 0,7 вольта. Каскад на транзисторе VT1 служит для согласования генератора с мостом и питается от источника, напряжением 4,5 вольта. Потребляемый ток не превышает 5 — 8 миллиампер. Диод VD1 служит для защиты транзистора при неправильной полярности источника питания (его может и не быть). Непосредственно измерительный мост состоит из резисторов R3 — R5, образцовых элементов (катушка, резисторы и конденсаторы) и измеряемого элемента. В качестве индикатора нулевых биений служат высокоомные (!) головные телефоны. Измеряемый элемент подключается согласно обозначенным клеммам. При помощи переменного резистора R5 производится балансировка моста, после чего производим отсчет непосредственно по шкале резистора. Точность измерений моста может колебаться от 5 до 20 % и зависит от точности образцовых элементов L1, R6-R9, C3-C5. После сборки прибор нужно откалибровать при помощи набора резисторов известного номинала. Для примера, устанавливаем переключатель S1 в положение «100 К» (в плече моста подключен резистор R6). Берем резистор с номиналом 20 Килоом, балансируем мост и на шкале напротив движка ставим отметку «0,2», далее берем резистор на 30 Килоом и также ставим отметку, и так далее… Максимальное сопротивление, которое можно измерить на этом диапазоне равно 500 Килоом. На остальных диапазонах калибровка не производится. Для измерения ВСЕХ величин (R, L, C) используется одна шкала. Если у вас имеется цифровой частотомер, вы можете собрать несложную приставку для измерения емкости, схема которой показана ниже: Приставка предназначена для использования с частотомером на ТТЛ микросхемах (155 серия). Из частотомера нам потребуется только блок счетчиков. С пятиразрядным счетчиком при помощи такой приставки можно измерять конденсаторы с емкостью от 0,1 до 999,99 микрофарад. Точность измерения зависит от точности калибровки, плюс-минус 2 единицы в младшем разряде счетчика. Приставка выдает серию импульсов, которая зависит от емкости измеряемого конденсатора. Некоторые особенности конструкции: Транзистор VT2 и диод Д9 обязательно должны быть германиевыми! Светодиод служит индикатором утечки конденсатора (после зарядки конденсатора в течении 2-3 секунд светодиод не должен светиться!). Переключатель показан в положении «Зарядка». После сборки приставку следует подвергнуть калибровке. Для этого подключаем конденсатор известной величины и подбираем емкости конденсаторов С1 и С2. ВАЖНОЕ ЗАМЕЧАНИЕ! При измерении емкости алюминиевых электролитических конденсаторов (типа К50…) показания будут соответствовать действительности только после предварительной «тренировки» (переключатель в режиме «Заряд») в течении не менее 5-10 минут! Происходит это из за не совершенности конструкции конденсаторов — во время хранения в разряженном состоянии емкость у этих конденсаторов падает, а ток утечки - возрастает…
|