Разложение воды электричеством | Русская Физика
56. Разложение воды электричеством
Прибор для разложения воды состоит из трёх колб, две из которых – закрытые, а одна – открытая. Все три колбы заполнены водой и сообщаются между собой в нижней части.
В закрытых колбах размещены электроды. Один из них соединён с отрицательной клеммой внешнего источника электрического тока и называется катодом, а другой соединён с положительной клеммой и называется анодом.
Внешний электрический источник нагнетает электроны на катод и создаёт на нём избыточное электрическое давление. С анода источник электроны отбирает, и там – пониженное электронное давление.
Постепенно повышенное давление электронов катода распространяется на всю катодную колбу, а пониженное распространяется на всю анодную колбу.
И только в направлении от катода в сторону анода электронное давление будет плавно уменьшаться от катодного до анодного. В этом направлении в воде образуется, своего рода, канал с таким плавно изменяющимся электронным давлением.
Сразу скажем, что в процессе разложения воды в катодной колбе собирается водород, а в анодной – кислород.
Прежде чем рассматривать физику разложения, ещё раз представим себе молекулу воды. Она состоит из атома кислорода и примкнувшей к нему молекулы водорода: O(Hm. У атома кислорода контурного жёлоба нет, и поэтому он сам и молекула воды, которую он образует, электрический ток не проводят. Контурный жёлоб есть только у молекулы водорода, но эта молекула располагается с одной стороны атома кислорода и охватывается его стволом.
Разложение молекул воды начинается на катоде.
Под напором избыточного давления электроны переходят с катода на те молекулы воды, которые примыкают к нему своей водородной стороной. При достижении порогового значения избыточного давления электроны, как клин, отделяют в каждой такой молекуле воды молекулу водорода от атома кислорода.
Отрыв происходит так резко, что атом кислорода разворачивается и своим теперь уже открытым жёлобом оказывается направленным в противоположную сторону от катода.
На его открытом жёлобе будет уже повышенное давление электронов.
Среди примыкавших к оторванным атомам кислорода молекул воды окажутся и те, которые будут повёрнуты к ним своими водородными сторонами.
С ними произойдёт то же самое, что и с теми, которые примыкали к катоду, тоесть при пороговом избыточном давлении электроны, как клин, отделят в них молекулы водорода от атомов кислорода.
При этом часть электронов с предыдущего атома кислорода переместится на вновь разорванную молекулу воды.
В этот момент каждая оторванная молекула водорода оказывается между двух атомов кислорода и прилипает к тому из них, в сторону которого она получила толчок во время отрыва.
Таким образом молекула водорода перескакивает с одного атома кислорода на другой в сторону катода.
Если мы начнём рассматривать процесс дальше, то заметим, что и все другие оторванные молекулы водорода будут перескакивать с атома на атом кислорода в сторону катода. Такой процесс будет продолжаться на всём протяжении канала от катода до анода.
Это произойдёт и с теми молекулами воды, которые примыкают к аноду. Электронные клинья оторвут от них молекулы водорода, и те, сорвавшись, уйдут в направлении к катоду.
С освободившихся атомов кислорода избыточные электроны перейдут на анод.
Как видим, на всём протяжении канала от катода до анода молекулы водорода перепрыгивают с одной молекулы воды на другую в сторону катода.
В результате на катоде появляются свободные молекулы водорода, а на аноде – свободные атомы кислорода.
Собираясь в пузырьки, они поднимаются вверх и скапливаются над водой. Атомы кислорода при этом объединяются в молекулярные пары O2.
Так как электроны перескакивают только на те молекулы воды, которые повёрнуты к ним своими водородными сторонами, можно подумать, что прочие молекулы воды распадаться не будут. Но учитывая то, что в процессе разложения происходят интенсивные движения частиц, затрагиваемые ими молекулы воды будут случайным образом разворачиваться и принимать подходящие положения.
Итак, в процессе электрического разложения воды происходят два вида перескоков с молекулы на молекулу:
- электроны перескакивают в направлении от катода к аноду;
- молекулы водорода перескакивают в направлении от анода к катоду.
Расщепление воды с эффективностью 100%: полдела сделано / Хабр
Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии — водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз — очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.
Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции — восстановления — в видимом (солнечном) свете с энергетической эффективностью 100%, значительно превзойдя предыдущий рекорд 58,5%.
Осталось усовершенствовать полуреакцию окисления.
Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения — и выдают электроны.
В полуреакции окисления производятся четыре отдельных атома водорода и молекула О2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H2, производя полезную форму водорода — газ H2,
Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.
На такой эффективности каждый наностержень генерирует около 100 молекул H2 в секунду.
Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.
К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.
Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.
Научная работа опубликована в журнале Nano Letters (зеркало).
ЭЛЕКТРОЛИЗ ВОДЫ — КАК ОН ЕСТЬ: hajoh — LiveJournal
По материалам книги Позднякова Э.А. http://predmet.ru/zagadki-nauki.pdfЕще раз про Н2О
Как уже говорилось, впервые химический состав воды был определен французским химиком Лавуазье в 1784 году. Лавуазье вместе с военным инженером Мёнье, прогоняя пары воды над раскаленным листом железа, обнаружил, что вода разлагается, выделяя при этом водород и кислород. Да, конечно, для своего времени, для эпохи «упорядочения вещей», эти выводы имели большое значение. В самом деле, ведь до этого открытия вода считалась совершенно однородным веществом. Нельзя, однако, не отметить и другого: открытие это сыграло и свою вполне очевидную отрицательную роль, так как надолго отвлекло внимание других ученых от поисков в этой области и утвердило в умах многих поколений непогрешимость данного вывода, освященного к тому же авторитетом ученого.
Но, что условия, при которых он проводился, были настолько несовершенны, были «грязны».
Чего стоит одно только наличие железа, над которым пропускались пары воды. Оно способно внести такие моменты в опыт, которые даже трудно учесть наперед. Лавуазье с партнером зафиксировали в своем опыте то, что было наиболее очевидным: выделение двух газов — водорода и кислорода, а что было сверх того, на это они и вовсе не обратили внимание, скорее всего по той причине, что это «сверх того» не было столь очевидным, как выделение двух газов.
Поскольку до этого открытия общим мнением, господствовавшим в науке, было мнение, что вода является однородным веществом, факт открытия ее неоднородного состава можно назвать революционным. Чего еще можно было требовать от первооткрывателей! К тому же очевидность результатов опыта была слишком подкупающей.
Старый взгляд на воду был отброшен и заменен новым представлением о воде как соединении двух элементов — водорода и кислорода, которое быстро утвердилось в науке. Этому способствовало в значительной мере развитие электрохимии.
ЭЛЕКТРОЛИЗ по Дэви
Рядом ученых (Никольсон, Кавендиш и др.) был проведен опыт по электрохимическому разложению воды (подобное определение данного процесса совершенно ошибочно). Под словом «разложение» надо понимать электролиз воды как сложный окислительно-восстановительный процесс, но отнюдь не как простое разложение воды на составляющие элементы.
Итак, при разложении, т.е. электролизе воды выделялись водород и кислород, что, казалось бы, внешним образом подтверждало вывод Лавуазье. Однако при этом «черный ящик» стал неожиданно выдавать дополнительную информацию, которой прежде не было. В процессе электролиза обнаружилось два странных явления: во-первых, обе составные части воды выделялись не вместе, а отдельно друг от друга — кислород у одного электрода, водород — у другого; во-вторых, наблюдалось образование кислоты у кислородного полюса и щелочи у водородного. Это «странное» разложение воды озадачило ученых; притом их больше беспокоила вторая «странность», т.е. появление кислоты и щелочи.
То обстоятельство, что при пропускании через воду электрического тока выделялись водород и кислород, вполне устраивало ученых, ибо как бы подтверждало ставшее уже господствующим мнение о составе воды. Вопрос же о том, каким образом эти составные части выделялись, при каких сопутствующих обстоятельствах, хотя и занимал ученых того времени, но все же не в такой степени: их внимание было направлено главным образом на вторую «странность», ибо она наводила тень сомнения на открытую формулу воды. Неизбежно встал вопрос о том, что является причиной образования кислоты и щелочи при электролизе воды.
За решение этой загадки взялся выдающийся английский химик Гемфри Дэви (1778—1829). Дэви рядом опытов, казалось бы, подтвердил предполагаемый всеми учеными того времени факт, что образование кислоты и щелочи при электролизе воды — явление случайное, не связанное с самой водой, состоящей, как это и было определено Лавуазье, из водорода и кислорода. Но, каким образом Дэви удалось это «доказать».
Дэви проделал многочисленные опыты по «разложению» электричеством тщательно очищенной воды в различных сосудах: агатовых, стеклянных, сделанных из плавикового шпата, сернокислого барита и т.п., чтобы максимально уменьшить влияние материала сосудов на результаты опытов. Во всех без исключения опытах при электролизе воды он получал у анода сильную кислоту, у катода щелочь. Он связывал это с тем, что чистая вода отчасти все же разлагала материал сосудов, что и явилось причиной образования кислоты и щелочи. Важным, однако, следствием опытов было то, что количество образующихся у электродов кислоты и щелочи стояло в прямой зависимости от продолжительности опытов, а именно: чем продолжительнее они были, тем больше образовывалось кислоты и щелочи и тем сильнее была их концентрация.
В опытах Дэви по электролизу различных растворов солей получалась аналогичная картина: у анода шло образование кислоты с выделением кислорода, у катода — образование щелочи с выделением водорода или чистого аммиака. Сами эти процессы должны были бы подтолкнуть по аналогии к выводам относительно общих закономерностей, относящихся к процессу электролиза.
Ведь хорошо известно, что при электролизе различных веществ у электродов происходят окислительно-восстановительные процессы, но отнюдь не простое разложение веществ. Более того, только при наличии окислительно-восстановительного процесса может идти и сам электролиз.
При этом реакция окисления происходит у одного электрода, а реакция восстановления у другого. Поэтому было бы самой грубой ошибкой рассматривать электролиз как простой процесс разложения веществ на составляющие их элементы, будь то вода, соль или кислота. Окисление у одного полюса происходит при одновременном восстановлении у другого, и наоборот. Эти положения суть святая святых электрохимических процессов, полностью согласующихся со вторым началом термодинамики. Действительно, если мы возьмем примеры с электролизом солей, то легко видеть, что у анода происходила реакция восстановления с выделением кислорода (продуктом этой реакции, скапливающимся у анода, во всех случаях выступала какая-нибудь кислота). У катода происходила реакция окисления с выделением водорода или металла (продуктом этой реакции, скапливающимся у катода, всегда была какая-нибудь щелочь).
Но именно эта совершенно очевидная вещь отвергалась. Мысль о ней не допускалась или ею попроступренебрегали. Притом делали это не какие-то дилетанты, а профессионалы высокого класса. Для них, сдается, каким-то символом веры, своего рода «священной коровой» стал факт, что вода состоит из двух элементов — водорода и кислорода, и они направляли все свои недюжинные способности именно на подтверждение данного факта, но отнюдь не на проверку его истинности. То, что оба газа выделялись при электролизе, хотя и у разных электродов, как бы подтверждало эту веру, даже вопреки всем законам электролиза и термодинамики. При этом никого нисколько не смущало, что вода вот так легко может разделяться на составные части, будто два склеенных куска дерева, опущенных в воду.
Для того чтобы избежать всяких побочных влияний, Дэви провел ряд опытов в золотых сосудах с хорошо очищенной водой. На протяжении четырнадцати часов, в течение которых продолжался опыт, количество кислоты в анодном сосуде постоянно возрастало. Дэви обнаружил, что она по своим свойствам ничем не отличалась от азотной кислоты, которая точно таким же образом образовывалась в опытах, проводимых им прежде в стеклянных сосудах. В катодном же сосуде образовывалась летучая щелочь, количество которой скоро доходило до определенного предела. Она обнаруживала свойство аммиака (Nh4).
Дэви повторил свой опыт и продолжал его без перерыва трое суток. К концу этого времени, как он сам свидетельствует, вода в сосудах была разложена и выпарилась больше чем на половину своего первоначального объема. В результате, в анодном сосуде образовалась сильная азотная кислота, количество же щелочи оставалось примерно на том же уровне, как и в предыдущем опыте. Дэви посчитал, что последнее было связано с ее постоянным испарением.
Вода «под пыткой» у Дэви
А действительно ли в опытах Дэви все было так безукоризненно чисто и хорошо? Рассмотрим опыт Дэви по электролизу воды под колоколом воздушного насоса. Почему в этом опыте образовалось лишь небольшое количество кислоты в анодном сосуде и не было вовсе обнаружено щелочи в сосуде катодном? Действительно ли, как думал Дэви, это было связано с отсутствием воздуха, выкачанного из-под колокола? Отчасти да, но совершенно в другом смысле, нежели он предполагал. Начать с того, что Дэви допустил серьезную ошибку в своем первоначальном предположении, что причиной образования кислоты и щелочи являлся азот воздуха. Образование кислоты и щелочи к азоту воздуха никакого отношения иметь не могло по той простой причине, что азот в обычных условиях химически не активен, не растворяется в воде и не вступает в реакции ни с кислородом, ни с водородом. Один этот факт должен был бы натолкнуть на поиски иных источников образования кислоты и щелочи. Позже, правда, высказывалось предположение, что образование кислоты и щелочи в опытах было, возможно, вызвано присутствием в воздухе некоторого количества аммонийных солей. Этим объяснением и удовлетворились. Однако вряд ли можно всерьез принимать данное объяснение, так как, во-первых, оно было сделано постфактум и, во- вторых, даже если бы какое-то количество таких солей и впрямь присутствовало, то оно настолько должно было быть мало, что не могло оказывать постоянного и закономерного образования кислоты и щелочи в каждом опыте, количество которых стояло, как говорилось, лишь в прямой зависимости от продолжительности проводимых опытов.
Иллюстрация восстановительного действия водорода.
Если, взять два электрода, один из которых представляет полированную серебряную пластинку, а другой — обычную швейную иглу, поместить их под колокол, и в сильно разреженном воздухе пропускать электрический ток так, чтобы электрический разряд переходил с кончика иглы на полированную пластинку, то напротив кончика иглы пластинка заметно изменится — она окислится и потускнеет, и тем больше, чем дольше будет пропускаться электрический ток. Если же после этого воздух заменить разреженным водородом, то при всех прочих равных и неизменных условиях, дальнейшее пропускание тока приведет к тому, что окись на пластинке будет постепенно сходить, и полировка по большей части восстановится, что хорошо иллюстрирует восстанавливающие свойства водорода.
Второй пример из области живой природы. Клод Бернар приводит такой опыт: он смешивал один объем воздуха с двумя объемами водорода и помещал в эту атмосферу семена. При всех прочих благоприятных условиях (влага, тепло и проч.) прорастания семян не происходило, хотя напряжение кислорода при этом было вполне достаточным для жизнедеятельности. Очевидно, что негативный результат был обязан опять-таки действию водорода, оказывавшего сильное восстанавливающее действие, препятствуя течению окислительно-восстановительного процесса, а вместе с ним и образованию его необходимых продуктов — кислоты и щелочи.
Третье: из физической химии хорошо известно, что азотная кислота является легко восстанавливающимся веществом. Она, например, восстанавливается водородом до свободного азота:
2N03 + 12Н + 10е—> N2 + 6Н20
Это свойство азотной кислоты специально используется в некоторых гальванических элементах для предотвращения поляризации. В этих случаях азотную кислоту добавляют в катодное отделение, где выделяется водород.
Аналогичные процессы происходили и под колоколом в опытах Дэви. Когда он во втором опыте заменил воздух водородом, то тем самым создал там мощную восстановительную среду, действие которой не преминуло сказаться на результатах: в анодном сосуде естественно не было (и не могло быть) обнаружено кислоты, в катодном — щелочи. Все было естественно и закономерно. Но факт остается фактом: опыты Дэви убедили всех окончательно, что вода состоит из двух простых элементов — водорода и кислорода.
Однако предположим, что вода действительно состоит из водорода и кислорода. Тогда естественно было бы предполагать, что, коль скоро вода с такой легкостью разлагается на свои составные части, она должна столь же легко образовываться в результате их синтеза. Ничего подобного, однако, не происходит. Как известно, смесь двух газов в пропорции один к двум (один объем кислорода и два объема водорода) дает так называемый гремучий газ, но отнюдь не воду. Попытки образования воды из водорода и кислорода имели успех только в присутствии катализатора (кстати, в роли катализатора может при этом выступать и железо, то самое железо, над которым Лавуазье пропускал пары воды и извлекал свои исторические выводы).
Можно сказать, что большинство опытов по определению химического состава воды было направлено не столько на объективные поиски, сколько на подгонку их результатов к уже имеющемуся выводу, который стал поистине символом веры. «Черный ящик» давал в основном ту информацию, которую от него ожидали и которую часто заведомо предопределяли направленным действием на его входы.
Разложение воды электрическим током « Учи физику!
Когда ток проходит через металлы, они не изменяются, кроме тех случаев, когда по тонкой проволоке пропускается ток большой силы. Тогда проволока раскаляется и может даже расплавиться. Жидкости проводят электрический ток не так, как металл. Жидкости разлагаются электрическим током, и вы можете легко произвести опыт разложения воды.
Достаньте два обрезка тонкой платиновой проволоки. Расплющите их немного и припаяйте к концам медных проволок. Платиновые проволоки воткните в пробку на небольшом расстоянии друг от друга так, чтобы места спаек с медными проволоками оказались в пробке. Этой пробкой заткните стеклянную воронку, как показано на рис. 123, и залейте еще сверху сургучом или стеарином, чтобы не просачивалась вода.
Воронку укрепите на подставке, налейте в нее воды и прибавьте немного серной кислоты. Теперь соедините медные проволоки с батареей из 2—4 элементов, и вы увидите, что платиновые проволоки покроются пузырьками, которые начнут отрываться и всплывать на поверхность. Вместо оторвавшихся пузырьков появятся новые, и, наконец, вода как будто «закипит». Это ток разлагает воду на составные части.
Налейте в две пробирки воды, подкисленной серной кислотой, заткните одну из пробирок пальцем и опустите ее в воронку отверстием вниз. Когда отверстие пробирки будет в воде, отнимите палец. Вода из пробирки не потечет, — вы, наверное, помните, каким физическим законом объясняется это явление. Наденьте теперь пробирку на одну из платиновых проволок; маленькие пузырьки газа, поднимаясь кверху, будут скопляться у дна и постепенно вытеснят воздух из пробирки. Когда пробирка наполнится газом, снимите ее и быстро заткните пальцем, чтобы не выпустить газа. Таким же образом можно собрать газ с другой проволоки.
Кислород не горит, но зато прекрасно поддерживает горение. Дерево гораздо сильнее разгорается в кислороде, чем в воздухе. Вы можете это сейчас же проверить. Опустите в пробирку, наполненную кислородом, тлеющую спичку, и она вспыхнет ярким пламенем.
В конце книги вы прочтете о том, как получить водород и кислород химическим способом и произвести с ними мною интересных опытов.
Б. Донат
“Физика в играх”
Вода горит! А также ЭГЭ и волны-убийцы / Хабр
Водяная спичка — устройство для поджигания воды и проведения интересных опытов с взрывами.Предполагаю, что подобная буря в стакане, в масштабах планеты является источником возникновения интересных явлений — волн-убийц и цунами неизвестного происхождения, которые появляются буквально из ниоткуда, обрушиваются на судно и так же бесследно исчезают. На данный момент отсутствует внятное объяснение причин возникновения таких волн.
Возможно, все происходит так…
Анимация “Водяной”
При попадании молнии на поверхность Мирового океана, происходит водородный взрыв, а при удачном сочетании глубины воды и рельефа дна, направления удара и величины напряжения, продолжительности импульса и длительности его фронта — формируется огромная одиночная волна в результате импульсного электролиза поверхностного слоя воды, рассматриваемого в этой статье. Не последнюю роль в явлении играет резонанс.
В районе Бермудского треугольника эти условия выполняются наиболее часто, поэтому он получил свою печальную известность.
Примерно одна миллионная из 250 миллионов молний, ежегодно бьющих по поверхности Мирового океана, рождает супер-волну.
Белая волна — насыщенная газами вода, в которую попадают экипажи низколетящих летательных аппаратов, не является вымыслом и она присутствует в опытах. Вписывается в эту теорию и возникающий при ударе молнии электромагнитный импульс (ЭМИ), выводящий из строя навигационное оборудование.
В отличие от других экзотических способов поджигания воды, рассматриваемый вариант прост и имеет 100% повторяемость. Опыт показывает огромную скорость и производительность электролиза воды при коротком импульсном воздействии, а также позволяет безопасно исследовать электрогидравлический эффект и молнию в лабораторных условиях. Прибор можно использовать для изучения условий формирования блуждающих волн. В дальнейшем станет реальностью создание автоматических устройств, которые сгенерируют встречную волну для гашения разрушительных цунами и волн-убийц в охраняемых прибрежных зонах.
Предположение проверено и подтверждено на небольшом макете. GIF-анимация “Водяной” — формы волн: “одиночная башня”, “белая стена”, а также чудо-юдо с глазами и другие красивые элементы из воды, полученные при начальном для возникновения эффекта напряжении 145 вольт, показаны в тексте выше.
Любой желающий может повторить опыт и проверить предположение.
При нахождении электрода на поверхности жидкости, легко достигается эффект горения воды.
Анимация “Вода горит”
Огниво для воды.
Более года назад вышла статья “Импульсный электролиз на Google Science Fair”, где в опытах по поджиганию воды использовался батарейный вариант импульсного электролизера. С тех пор утекло много соленой воды и был создан новый вариант устройства под названием водяная спичка (ВС). Батарейный вариант из прошлой статьи будет ВС-1, сегодняшний сетевой — ВС-2.
Ключевыми особенностями устройств являются:
— тонкий электрод — чем тоньше, тем лучше;
— работа на поверхности жидкости или в глубине, при помощи изолированного по длине катода;
— импульсный режим работы;
— короткое время импульса и длительная пауза;
— крутой фронт импульса;
— вода с большой соленостью в качестве рабочей жидкости.
Водород выделяется из воды при импульсном воздействии на поверхностный слой с использованием тонкого катода (отрицательный электрод, если кто не знает, да и сам постоянно забываю) и мгновенно сгорает в присутствии кислорода. Процесс выделения/сгорания очень быстрый, поэтому имеет взрывообразный характер. К счастью жителей планеты, процесс является затухающим — сколько водорода выделяется за время импульса, столько и сгорает. Устройство использует соленую воду, так как пресная требует большие напряжения для создания аналогичных размеров водородного пламени.
Работа прибора основана на электрогидравлическом эффекте (ЭГЭ), открытом великим российским ученым Юткиным. Чтобы никому не было обидно, можно утверждать, что в других странах этот эффект действовал задолго до его открытия в виде обыкновенной молнии. Но даже обычная молния до сих пор изучена не полностью — эльфы, джеты, спрайты, а также космические лучи для запуска процесса подтверждают это.
В устройствах, работающих на эффекте ЭГЭ, требуется высокое напряжение, разрядники, а также другие большие и опасные штучки. Но соленая вода и современные комплектующие позволяют собрать прибор на базе ручки от старого паяльника, используя относительно низкое рабочее напряжение. Хотя не обошлось без микроконтроллера, схема доступна для повторения любым радиолюбителем.
В предыдущем эксперименте с поджиганием воды моя роль сводилась к созданию импульсного электролизера. Результаты опытов оказались интересными, но дочка вместо исследования ЭГЭ готовится к ЕГЭ — это новомодное увлечение все больше и больше поглощает умы и время подрастающей молодежи, а также деньги их родителей. Поэтому, экспериментальных данных в этом рассказе будет мало, желающие почитать подробности могут это сделать в предыдущей статье. Я свой интерес удовлетворил созданием более мощного устройства и коротким фильмом.
Теория ЭГЭ.
Юткин в своих опытах использовал напряжение всего лишь 20…50 кВ и более, а емкость до 1 мкФ. Теория была опубликована в работе “Электрогидравлический эффект и его применение в промышленности”, в формате djVu находится тут.
То, что творится при ударе молнии в воду с ее напряжением в миллионы и миллиарды вольт трудно себе представить, так как энергия, запасенная в конденсаторе, и выделяющаяся при его разряде пропорциональна квадрату напряжения и определяется по формуле: W=СU^2/2.
По сравнению с разрядниками Юткина и тем более молнией, ВС-2 является детской игрушкой, но она позволяет исследовать явление в безопасных режимах в стакане на столе. Вышеприведенную формулу для расчета энергии можно использовать лишь частично, так как ВС-2 управляет количеством энергии, поступающей на катод, и разряд конденсатора производится не полностью.
По теории ЭГЭ считается, что причиной роста давления жидкости является расширение паровоздушной смеси, образовавшейся в результате мгновенного вскипания жидкости в канале стримера из-за его огромной температуры.
Но по результатам предыдущих опытов с ВС-1 можно сделать вывод, что источником роста давления является огромная скорость электролиза, а следовательно — выделение водорода и его последующее горение с большой скоростью (взрыв) в присутствии растворенного в воде кислорода.
То есть, при разряде происходит практически мгновенное разложение молекул воды на атомы водорода — топливо и кислорода — окислитель, и последующий взрыв гремучей смеси в зоне катода (кислород растворен в воде и пополняется из зоны анода).
Скорее всего, наблюдаемое кипение жидкости происходит в результате кавитации, после произошедшего взрыва водорода.
Чем больше плотность тока (определяется напряжением и диаметром катода), и чем короче фронт импульса, тем большее число молекул воды участвует в процессе электролиза и тем больше водорода выделяется при каждом импульсе.
Можно сделать вывод, что в ЭГЭ первичным является высокоскоростной электролиз, который порождает все последующие эффекты.
Гром — звук от молнии, является результатом взрыва водорода при разложении молекул воды, находящихся в атмосфере. Но если в атмосфере вследствие низкой плотности и высокой сжимаемости воздуха слышен лишь взрыв, то в воде образуются волны.
Каждый взрыв индивидуален. Сложный характер движения жидкости иллюстрирует фотография с “чудом-юдом”, где видна траектория движения разгоряченного после взрыва конца электрода.
Исследование импульсного электролиза на границе воздух-жидкость, а также с использованием тонкого закрытого электрода, погруженного в жидкость, позволит изучить явление более подробно. Данные опыты являются началом экспериментов, которые желательно продолжить с использованием современных научных приборов, более совершенной измерительной и записывающей техникой. Желательно провести измерение уровня ЭМИ. В некоторых фрагментах видео (особенно при использовании быстродействующего транзистора) заметно “захлебывание” звукового тракта камеры, чем это вызвано — воздействием ЭМИ на микрофон или его перегрузкой из-за резкого звука, непонятно.
Создание ВС-2.
За основу электрической схемы ВС-2 был взят импульсный электролизер ВС-1 из предыдущей разработки.
Трансформатор, показанный на схеме, любой доступный и он находится вне платы ВС-2. Можно его не использовать, если производится питание от электрической сети. Но при этом существует риск поражения электрическим током.
В качестве задающего генератора использован микроконтроллер PIC12F675, который формирует необходимую длительность импульсов.
Излишки напряжения (предполагалась работа до 800 В) гасятся на балластном резисторе, который выполнен из сборки полуваттных резисторов. Экономичность генератора импульсов и большая скважность работы способствуют низкому уровню мощности, выделяемой на данном резисторе. Последовательное соединение и большое количество резисторов препятствуют их пробою на предельных напряжениях.
Данный вариант блока питания был выбран из-за простоты, надежности, а также в связи с тем, что предполагалась работа не от сети 220 В, где можно получить на накопительных конденсаторах лишь 311 В, а от разделительного повышающего трансформатора, позволяющего значительно поднять напряжение. Из того, что имелось в наличии собрана схема из трех трансформаторов и получено переменное напряжение 544 В, из которого после выпрямления и фильтрации получается 769 В постоянного напряжения. Это уже что-то, по сравнению с 145 В, использованных в ВС-1.
Из предыдущих опытов стало понятно, что одним из факторов, влияющих на производительность установки, является минимальная длительность фронта импульса, поэтому схемотехника устройства направлена на увеличение крутизны:
— короткая длина электродов и проводов, размещение силовых элементов в непосредственной близости от электродов для уменьшения индуктивности силовой части схемы;
— мощный драйвер MOSFET TC4452, управляющий силовым транзистором;
— новейший супер-пупер транзистор в качестве скоростного ключа: CREE Z-FET™ MOSFET на карбиде кремния (SiC) CMF10120D с параметрами Qg = 47 nC, максимальным напряжением 1200 В, сопротивлением RDS(on) = 160 mΩ и импульсным током 49 А.
При отладке на макете (работа на длинных проводах) все работало отлично. После установки на ручку паяльника и сокращении длины проводников до электродов, первый экземпляр ключа не выдержал работы на высоком напряжении 769 вольт и был заменен на его брата-близнеца. При его высокой стоимости это было шоком. Разработка силовой электроники, это затратная область деятельности.
Второй экземпляр также не смог долго продержаться. Скорее всего, происходит выброс напряжения при отключении импульса, и транзистор вылетает по превышению максимального напряжения, пополняя список жертв эксперимента. Результат контрольного измерения — пробой по всем выводам. В следующий раз, при наличии большого количества транзисторов, можно поискать область безопасной работы между 311 и 769 В.
При работе устройства пробой транзистора наблюдается так: длительность импульса уже не ограничена контроллером, и на электроде, при касании поверхности воды происходит выделение значительной энергии. Электрод не выдерживает и немного сгорает, разбрызгивая частички меди — работает предохранителем. Фрагмент виден в середине фильма “Вода горит!” (ниже по курсу).
Помимо сокращения длительности фронта, другой путь увеличения добычи водорода, а следовательно высоты пламени — увеличение напряжения на электродах. Предполагалась получение напряжения импульса до 800 В, поэтому пришлось использовать пару конденсаторов. Два последовательно соединенных конденсатора 47 мкФ х 450 В дают результирующую емкость 23,5 мкФ х 900 В.
Богатырские накопительные конденсаторы, используемые в схеме, как и Илья Муромец лежали очень долго, поэтому была проведена их формовка. Для этого, на протяжении двух суток последовательно соединенные конденсаторы находились под выпрямленным сетевым напряжением 220 В. В первые сутки напряжение на них менялось следующим образом:
С1 — 241, 235, 216, 203, 196, 190, 187, 184, 179, 175, 172, 165, 162, 155, 154 В.
С2 — 065, 072, 104, 120, 127, 134, 139, 141, 145, 148, 154, 160, 159, 153, 153 В.
Суммарное напряжение на конденсаторах зависит от величины сетевого напряжения в соответствии с формулой U=220х1,414=311 В. На вторые сутки разница напряжений не превышала 1 вольта, что является показателем окончания процесса формовки.
Ручка ВС-2 взята от паяльника ЭПСН 220 В, 40 Вт. В ней имеются углубления и упоры, которые позволяют надежно зафиксировать печатную плату с элементами.
При работе устройства происходит значительный разброс капель соленой воды, поэтому компоненты устройства расположены внутри защитной пластиковой бутылки.
Как было доказано в опытах с ВС-1, высота факела пламени зависит от толщины электрода. Электроды ВС-2 изготовлены из медной проволоки диаметром 1,7 мм. Анод должен значительно превышать по размеру катод.
Тонкий медный катод диаметром 0,07 мм (меньше найти не удалось) припаян к концу несущего электрода. При уменьшении диаметра необходимо подобрать параметры импульса (напряжение, длительность, пауза), чтобы электрод практически не разрушался при коротком импульсном воздействии.
Как следует из экспериментов с ВС-1, при взрыве водорода образуется воронка и происходит колебание поверхности жидкости. При последующих импульсах волны набегают на электрод, и поверхностный взрыв превращается в подводный — происходит “захлебывание” электрода, и уменьшение высоты пламени водорода. Удержать электрод точно на поверхности в условиях сильного шторма при помощи одной руки (вторая управляет процессом фотосъемки) становится затруднительно. Чтобы облегчить задачу, в программе ВС-2 длительность импульса уменьшена вдвое — до 100 мксек, а продолжительность паузы между импульсами увеличена втрое — до 300 мсек по сравнению с программой работы ВС-1.
Программа работы ВС-2.
start:
HIGH GPIO.2 ‘ включение ключа
PAUSEUS 100 ‘ длительность импульса 100 мксек
LOW GPIO.2 ‘ отключение ключа
PAUSE 300 ‘ продолжительность паузы 300 мсек
GOTO start
Если разрешить включение подтягивающих резисторов и установить миниатюрный выключатель между выводами контроллера 7 и 8, то можно сделать две частоты выходных импульсов:
@ DEVICE INTRC_OSC_NOCLKOUT, MCLR_OFF, WDT_ON, CPD_OFF, PWRT_ON, PROTECT_ON, BOD_ON ‘ BANDGAP0_ON
‘ генератор внутренний, 4МГц, GP4 и GP5 фунцционируют как порты ввода-вывода
‘ MCLR внутренне подключен к питанию, GP3 работает как канал порта ввода
‘ сторожевой таймер WDT включен
‘ CPD защита памяти данных EEPROM отключена
‘ PROTECT защита памяти программ включена
‘ ON=enabled — включен=разрешено, OFF=disabled — отключен=запрещено
INCLUDE «modedefs.bas»
DEFINE NO_CLRWDT 1 ‘ не вставлять CLRWDT
DEFINE OSC 4
‘ Настройка контроллера
OPTION_REG = %01111111 ‘ разрешим включение подтягивающие резисторы, предделитель подключаем к WDT,
‘ коэффициент деления для WDT=1:128 (при F=4 МГц время отключения около 2,8 сек)
ANSEL = 0 ‘ цифровой режим работы аналоговых входов
CMCON = %00000111 ‘ отключение компаратора
‘ Текст программы
start: ‘
CLEARWDT
HIGH GPIO.2
PAUSEUS 100 ‘ 100 мксек
LOW GPIO.2
IF GPIO.0 = 0 THEN
PAUSE 100 ‘ 100 мсек
ELSE
PAUSE 300 ‘ 300 мсек
ENDIF
GOTO start
END
Фото и видео
Брызги воды разлетаются от электрода на расстояние более метра, поэтому съемку пришлось проводить на большом удалении.
Необходимо использовать защитное стекло на объектив и желательно прикрыть фотоаппарат, так как соленая вода для электроники, это не очень хорошо.
В идеале желательно использовать высокоскоростную камеру, но за неимением таковой, съемка велась на зеркалку Nikon D7000 с объективом 18-105 мм.
Фотографирование лучше проводить в ручном режиме, так как при маленьком времени импульса автоматика не справляется.
Перед съемкой как можно точнее сфокусировать закрепленный на штативе аппарат на место предполагаемых взрывов с помощью дополнительного высококонтрастного объекта, так как поймать фокусировку по воде трудно. По пробным съемкам выставить время выдержки.
Теперь можно рассчитать вероятность получения удачного снимка:
— время импульса — 100 мксек;
— пауза между импульсами — 0,3 сек;
— скорострельность аппарата в непрерывном высокоскоростном режиме — 6 кадров в секунду;
— выдержка, выставленная для снимка — 1/100 сек.
То есть вероятность крайне низкая.
Скорость выделения водорода огромная, поэтому получить четкое изображение факела пламени с такой выдержкой нереально. Уменьшая выдержку для получения красивого снимка столба пламени, мы делаем еще меньшую вероятность попадания вспышки в кадр. Как вариант, можно попробовать приспособления для автоматической синхронизации, но эти устройства отсутствуют.
Все вспышки, пойманные за время съемки, а также другие фотографии, относящиеся к этому проекту, можно посмотреть в альбоме. При анализе снимков видно, что каждый удар индивидуален, хотя электрод расположен почти одинаково. Поэтому формирование высокой волны на море, при ударе молнии, имеет даже меньшую вероятность, чем получение удачного снимка.
С видео все проще, но рассмотреть место взрыва подробно становится затруднительным.
Видео “Вода горит!” Показаны три фрагмента работы.
1. Скоростной транзистор CMF10120D при работе с напряжением 311 В.
2. CMF10120D в момент, когда он пробит при работе с напряжением 769 В.
3. Устаревший транзистор 2SK1358 при работе с напряжением 311 В.
Гифка “водяной” вначале статьи, была сделана из старых кадров с участием ВС-1. Для модели ВС-2 закрытый электрод не изготавливался, так как будет очень большой разброс капель.
Эффективность процесса.
Одним из самых интересных вопросов — КПД при получении водорода, хотя он сразу и сгорает.
К полезной части, для оценки КПД, относятся электромагнитный импульс излучений в различных диапазонах спектра, колебание поверхности жидкости, выброс капель, звуковая волна — но это трудно оценить в виде цифр. Наиболее простым способом определения выработки является визуальная оценка объема водорода по кадрам видеосъемки или фотографиям области пламени.
Для четкого определения границ необходимо поснимать взрывы заранее известного объема водорода, а затем анализировать вспышки при проведении импульсного электролиза поверхностного слоя. Хотя опытные химики и взрывники наверняка и без предварительных взрывов смогут определить границы водорода, участвующего в процессе.
Так как разряд заряженного конденсатора при импульсе происходит не полностью, то формулу по расчету его энергии использовать некорректно.
Затраты энергии считаются по анализу осциллограммы на небольшом резисторе, включенном в цепь электрода или на токоограничительном резисторе блока питания.
При предварительных испытаниях устройства, когда супер-транзистор недолго работал при высоком напряжении, высота пламени водорода достигала трех сантиметров, но на видео это не успело попасть, и объем остался неизвестен. После выхода из строя двух современных ключей, за неимением лучшего, был установлен транзистор 2SK1358, который не отличается выдающимися параметрами, что заметно даже по характеру звука в фильме “Вода горит”. Поэтому для установки ВС-2 объем водорода не определялся, а дальнейшая работа производилась на “пониженном” напряжении 311 В. В предыдущих опытах с ВС-1 выработка определялась по размеру пламени, потребление — по падению напряжения на резисторе в цепи электрода.
Характер взрыва водорода в смеси с кислородом и чистого можно посмотреть в фильме, найденном на youtube.
Продолжение работ.
Работа по импульсному электролизу перспективна и интересна людям, у некоторых имеется желание повторить и продолжить опыты. Был замечен интерес к ней со стороны людей, уже занимающихся подобными исследованиями, что очень похвально. Результатов пока не видно, но это дело времени.
В Интернете выложено большое число видео с процессом электролиза. Как правило, электролиз проводят при неотключаемом напряжении — постоянном или переменном. При этом остро встает проблема сохранности электрода, который изготавливают из материалов, устойчивых к высокой температуре.
В случае же импульсного воздействия, как правило, производится полный разряд накопившего энергию конденсатора на водную среду, высоковольтный ключ/разрядник производит лишь включение цепи.
Фишкой установок ВС-1 и 2 является то, что можно ограничить длительность импульса до минимально возможной. При этом, благодаря маленькому диаметру электрода, плотность тока в импульсе достигает огромных величин, но короткое время воздействия не позволяет разрушить даже тонкую медную проволоку. При достаточно высокой частоте следования импульсов можно добиться визуального эффекта непрерывного горения водорода на поверхности воды.
По результатам эксперимента можно сделать вывод, что для начальных опытов достаточно выпрямленного сетевого напряжения, желательно — гальванически развязанного от сети при помощи трансформатора. Потребление энергии устройством небольшое, так как ВС-2 работает в импульсном режиме с большой скважностью.
Схему можно упростить, что уменьшит размеры устройства. Накопительный конденсатор достаточно использовать один, емкостью 10…47 мкФ на напряжение 450 В. Составной балластный резистор можно изготовить из трех-четырех последовательно соединенных резисторов.
При доработке устройства можно ввести регулировку длительности импульса, паузы, напряжения на накопительном конденсаторе, предусмотреть режим одиночных импульсов.
Изучайте, исследуйте, это действительно интересно, и выкладывайте свои результаты.
Интересный фильм “Повелители молний” был снят автором Антоном Войцеховским в рублике «ЕХперименты». В фильме, в частности, упоминается испытательный полигон ВНИЦ ВЭИ, расположенный в городе Истра. На базе этого научного заведения можно начать исследования условий возникновения волн-убийц при попадании молнии в морскую воду. Продолжить опыты можно уже на море, создав там мощную установку для получения молниеносного напряжения.
Ссылки.
1. Альбом с фотографиями.
2. ВС-2. Электрическая схема.
3. ВС-2. Печатная плата.
4. ВС-2. Программа работы.
5. ВС-2. Повышающий трансформатор, оказался практически невостребованным.
Количество молний.
Общее количество молний 1,4 миллиарда в год.
350 миллионов — 25 % молний ударяет в земной шар.
Приблизительно 250 миллионов (точнее 248,5 миллионов) — 71 % молний приходится на поверхность Мирового океана.
Количество волн-убийц.
Спутники зафиксировали за три недели по всему земному шару более 10 одиночных гигантских волн, высота которых превышала 25 метров.
За год количество волн составит 173 штуки.
Итого: На 250 миллионов молний приходится 173 больших волны. Грубо можно сказать, что примерно каждая миллионная молния рождает огромную волну.
P.S.
Выступление на конференции «ХТЯиШМ–20» с обобщением результата работ.
Как оказалось «Молнии играют роль в образовании горного ландшафта».
А отсекать глыбы вполне может и ЭГЭ, что демонстрировал Юткин, в результате попадания молнии в воду, содержащуюся в каналах или пустотах горного массива.
Вода, разложение электролитическое — Справочник химика 21
При этом водород необходимо отделить от диоксида углерода и других продуктов конверсии. Эту проблему еще нельзя считать разрещенной. Одним из основных методов получения водорода в недалеком будущем рассматривается электролиз на атомных электростанциях. Кроме водорода выделяется и кислород, который также может быть использован в промыщленности и быту. Кроме электролитического рассматриваются термохимические и фотохимические методы получения водорода. Термохимический метод получения может быть особенно перспективен при разработке термоядерных энергоустановок. Однако для применения этого метода необходимо рещить задачу разделения водорода и кислорода. Большой интерес вызывает фотохимический способ разложения воды с использованием биологических катализаторов. [c.392]Развитие отечественной электрохимии началось с выдающихся исследований В. В. Петрова по электролитическому разложению воды и других жидкостей (1801 г.). Он же впервые получил металлы электролизом их окислов. Вскоре (1805 г.) Ф. Ф. Гротгус разработал теорию электропроводности растворов (переход протонов от ионов к молекулам воды). Наряду с этим он заметил, что … расщепление молекул. .. происходит до всякого действия электрического тока (1818 г.). В этом предположении содержится предвидение основных идей теории электролитической диссоциации. [c.7]
Получение водорода (потребляемого в больших количествах при синтезе аммиака) осуществляется во многих случаях путем электролитического разложения воды. Ввиду очень малой электропроводности воды, для уменьшения расхода электроэнергии электролизу подвергают не чистую воду, а раствор такого электролита, ионы которого, отличные от и ОН», разряжаются много труднее, чем ионы Н+ и 0Н . В результате этот электролит практически полностью сохраняется, а вода разлагается на водород и кислород. К таким электролитам принадлежат, в частности, едкий натр, серная кислота. [c.447]
Изучение водородного перенапряжения позволяет выяснить механизм этой реакции и представляет большой интерес с теоретической точки зрения. Установленные при этом закономерности можно частично распространить и на другие электрохимические реакции, что значительно повышает теоретическую значимость работ по водородному перенапряжению. Изучение водородного перенапряжения имеет также большое практическое значение, потому что современная промышленная электрохимия является преимущественно электрохимией водных растворов, и процессы электролитического разложения воды могут накладываться на любые катодные и анодные реакции. Водородное перенапряжение составляет значительную долю напряжения на ваннах по электролизу воды и растворов хлоридов. Знание природы водородного перенапряжения позволяет уменьшить его, а следовательно, снизить расход электроэнергии и улучшить экономические показатели этих процессов. В других случаях (электролитическое выделение металлов, катодное восстановление неорганических и органических веществ, эксплуатация химических источников тока) знание природы водородного перенапряжения позволяет успешно решать обратную задачу — нахождение рациональных путей его повышения. Все эти причины обусловили то, что изучение процесса катодного выделения водорода и природы водородного перенапряжения всегда находилось и находится в центре внимания электрохимиков. [c.397]
Воды разложилось 2100 — 1575 = 525 (г), или 525 18 = = 29,17 моля (18 — грамм-моль Н2О). При этом, согласно уравнению электролитического разложения воды, выделяется 29,17 моля, или 58,34 г (2 29,17) водорода и 14,585 лю 7Я, или 466,72 г (32 14,585) кислорода. [c.159]
Одним из путей утилизации стоков ЭЛОУ может быть их использование в качестве сырья для получения активного хлора путем электролитического разложения хлористого натрия. Электролиз растворов поваренной соли известен давно, а полученный активный хлор применяется для обеззараживания воды, отбеливания тканей, бумаги и т.д. Для электролиза используют растворы поваренной соли, морскую воду и подземные высокоминерализованные воды. [c.96]
Аналогично, электролизом растворов ряда солей, щелочей и кислот получают кислород и водород вследствие электролитического разложения воды, хотя для реакции [c.300]
Слабые и сильные электролиты. Кислоты, основания и соли являются электролитами, т. е., будучи растворенными в каком-нибудь растворителе с высокой диэлектрической постоянной, и прежде всего, следовательно, в воде, они проводят электрический ток, сами одновременно подвергаясь разложению (электролитическое разложение). Некоторые из названных веществ обнаруживают электропроводность также в расплавленном, а иные даже и в твердом состоянии. [c.86]
В обычной речной воде тяжелая вода содержится в количестве около 1 5000. Немного более ее в морской воде. Для разделения обоих изотопных вод пользуются обычно тем, что при электролизе водных растворов скорость разложения НаО примерно в 5 раз больше скорости разложения ОдО. Поэтому при электролизе остаток постепенно обогащается тяжелой водой. Такое обогащение впервые наблюдали Юри и Осборн (1932) в старом электролите долго работавших технических электролизеров для получения водорода. Содержание 0 0 в нем обычно составляет /гвоо — /зооо- Из такого электролита Льюис и Макдональд (1933) получили первую порцию чистой тяжелой воды. Сейчас электролитическое обогащение тяжелой водой осуществлено в ряде лабораторий, в том числе у автора этой книги при ближайшем участии В. А. Александровича [c.46]
Рассчитайте теоретическое значение напряжения разложения электролита процесса хромирования [сернокислый раствор оксида хрома (VI) СгОз1, пользуясь термодинамическими функциями компонентов электрохимической реакции (не учитывать побочный процесс электролитического разложения воды). [c.201]
Азот для синтеза аммиака получают при разделении воздуха методом глубокого охлаждения. Водород получают различными методами конверсией метана, содержащегося в природном газе, попутных нефтяных газах, газах нефтепереработки и остаточных газах производства ацетилена методом термоокислительного пиролиза конверсией окиси углерода глубоким охлаждением коксового газа электролитическим разложением воды газификацией твердого и жидкого топлива. [c.33]
В то время как относительное различие в массе изотопов для всех элементов, кроме самых легких, невелико, основные изотопы водорода различаются по массе в два раза. Это обусловливает относительно большее различие их свойств и облегчает их разделение. Влияние различия изотопов более сильно проявляется в физических свойствах, но обусловливает также и некоторое различие химических свойств. Так, при электролизе несколько легче подвергаются разложению молекулы воды, содержащие легкий изотоп, а молекулы, содержащие тяжелый изотоп, постепенно накапл
Опыты по химии. Разложение воды электрическим током
Для просмотра онлайн кликните на видео ⤵
Разложение воды и ультразвук — Decomposition of water and ultrasound Подробнее
ННО 1. Разложение воды на водород и кислород при минимальных нагрузках Подробнее
Тайна выделения водорода из воды, которая противоречит законам физики. У физиков шок от увиденного. Подробнее
Вольтролиз. Разложение воды на водород и кислород минимальным током. Подробнее
Самый простой способ получения водорода в больших количествах для двигателя на воде Подробнее
Добыча водорода из воды,что то пошло не так.. Подробнее
Магнитный электролиз (Magnetic electrolysis) © SEVER-S Подробнее
интересные опыты с водой и высоким напряжением Подробнее
🔥 ЭЛЕКТРОЛИЗ ВОДЫ. ЛУЧШИЕ ЭЛЕКТРОДЫ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И КИСЛОРОДА. Подробнее
Высоковольтный электрический разряд переменного тока в воде Electric discharge in water Подробнее
Электролиз с получением чистого водорода, химическая сепарация водорода и кислорода. Подробнее
Adam’s cache. Опыт с водой и током. Подробнее
Химия 47. Химический источник тока. Электролиз — Академия занимательных наук Подробнее
Что будет если пропустить электрический ток через воду. Разложение воды. Подробнее
Расщепление воды по патенту Стенли Мейера Подробнее
Опыты по химии. Электролиз раствора сульфата натрия Подробнее
Опыты по химии. Очистка воды перегонкой Подробнее
Опыты по химии. Взаимодействие воды с оксидами Подробнее
Электропроводность воды — Lenntech
Определение и описаниеЭлектропроводность вещества определяется как « способность или мощность проводить или передавать тепло, электричество или звук ». Его единицы — Сименс на метр [См / м] в СИ и миллимош на сантиметр [ммхо / см] в обычных единицах США. Его символ — k или s.
Электропроводность (EC)
Электрический ток возникает в результате движения электрически заряженных частиц в ответ на силы, которые действуют на них из приложенного электрического поля.В большинстве твердых материалов ток возникает из-за потока электронов, который называется электронной проводимостью. Во всех проводниках, полупроводниках и многих изолированных материалах существует только электронная проводимость, а электрическая проводимость сильно зависит от количества электронов, доступных для участия в процессе проводимости. Большинство металлов являются чрезвычайно хорошими проводниками электричества из-за большого количества свободных электронов, которые могут быть возбуждены в пустом и доступном энергетическом состоянии.
В воде и ионных материалах или жидкостях может происходить чистое движение заряженных ионов. Это явление вызывает электрический ток и называется ионной проводимостью.
Электропроводность определяется как отношение плотности тока (Дж) к напряженности электрического поля (e) и является противоположностью удельного сопротивления (r, [Вт * м]):
s = J / e = 1 / r
Серебро имеет самую высокую проводимость среди всех металлов: 63 x 10 6 См / м.
Проводимость воды
Чистая вода не является хорошим проводником электричества.Обычная дистиллированная вода в равновесии с углекислым газом воздуха имеет удельную проводимость примерно 10 x 10 -6 Вт -1 * м -1 (20 дСм / м). Поскольку электрический ток переносится ионами в растворе, проводимость увеличивается с увеличением концентрации ионов.
Таким образом, проводимость увеличивается по мере растворения в воде ионных частиц.
Типичная проводимость воды:
Сверхчистая вода 5,5 · 10 -6 См / м
Питьевая вода 0.005 — 0,05 См / м
Морская вода 5 См / м
Электропроводность и TDS
TDS или общее количество растворенных твердых веществ — это мера общего количества ионов в растворе. ЕС фактически является мерой ионной активности раствора с точки зрения его способности передавать ток. В разбавленном растворе TDS и EC достаточно сопоставимы. TDS пробы воды на основе измеренного значения EC можно рассчитать с помощью следующего уравнения:
TDS (мг / л) = 0,5 x EC (dS / м или ммхо / см) или = 0.5 * 1000 x EC (мСм / см)
Вышеуказанное соотношение также можно использовать для проверки приемлемости химических анализов воды. Это не касается сточных вод.
По мере того, как раствор становится более концентрированным (TDS> 1000 мг / л, EC> 2000 мс / см), близость ионов раствора друг к другу снижает их активность и, следовательно, их способность передавать ток, хотя физическое количество растворенных твердых веществ не влияет. При высоких значениях TDS отношение TDS / EC увеличивается, и соотношение стремится к TDS = 0.9 х EC.
В этих случаях вышеупомянутая взаимосвязь не должна использоваться, и каждый образец должен характеризоваться отдельно.
Для воды для сельскохозяйственных целей и орошения значения EC и TDS связаны друг с другом и могут быть преобразованы с точностью около 10% с помощью следующего уравнения:
TDS (мг / л) = 640 x EC (ds / м или ммхо / см).
В процессе обратного осмоса вода нагнетается через полугерметичную мембрану, оставляя примеси.Этот процесс позволяет удалить 95-99% TDS, обеспечивая чистую или сверхчистую воду.
Используйте калькуляторы Lenntech для расчета содержания TDS на основе анализа воды и для преобразования TDS в EC или наоборот.
.Виды защиты от поражения электрическим током
Цель состоит в том, чтобы гарантировать, что опасные токоведущие части не должны быть доступны, а доступные токопроводящие части не должны быть опасными . Должны быть реализованы различные защитные меры. Защитные меры являются результатом их подходящего сочетания.
Необходимо учитывать различные параметры: температуру окружающей среды, климатические условия, наличие воды, механические нагрузки, возможности людей и зону контакта людей.
Базовая защита
Базовая защита включает одно или несколько положений, которые в нормальных условиях предотвращают контакт с токоведущими частями. В частности:
Защита посредством изоляции токоведущих частей
Эта защита состоит из изоляции, соответствующей соответствующим стандартам (см. , рис. F4). Краски, лаки и лаки не обеспечивают должной защиты.
Рис. F4 — Собственная защита от прямого прикосновения за счет изоляции трехфазного кабеля с внешней оболочкой
Защита с помощью ограждений или ограждений
Эта мера широко используется, поскольку многие компоненты и материалы устанавливаются в шкафы, узлы, панели управления и распределительные щиты (см. рис. F5).
Чтобы это оборудование считалось обеспечивающим эффективную защиту от опасностей прямого прикосновения, оно должно обладать степенью защиты не ниже IP 2X или IP XXB (см. Защита, обеспечиваемая для закрытого оборудования: коды IP и IK).
Кроме того, проем в корпусе (дверь, передняя панель, ящик и т. Д.) Должен быть только съемным, открытым или выдвинутым:
- С помощью ключа или инструмента, предназначенного для этой цели, или
- После полной изоляции токоведущих частей в корпусе, или
- С автоматической вставкой другого экрана, снимаемый только с помощью ключа или инструмента.Металлический корпус и съемный металлический экран должны быть соединены с проводом защитного заземления установки.
Рис. F5 — Пример изоляции корпусом
Прочие меры защиты
- Защита с помощью препятствий или размещения вне досягаемости рук.
- Эта защита предназначена для мест, к которым имеют доступ только опытные или проинструктированные лица. Монтаж этой защитной меры подробно описан в IEC 60364-4-41.См. Раздел «Досягаемость или расположение препятствий вне руки».
- Защита с помощью сверхнизкого напряжения (ELV) или путем ограничения энергии разряда.
- Эти меры используются только в цепях с низким энергопотреблением и в особых обстоятельствах, как описано в разделе «Сверхнизкое напряжение» (ПЗН).
Защита от неисправностей
Защита от повреждений может быть достигнута путем автоматического отключения питания, если открытые токопроводящие части оборудования должным образом заземлены.
Существуют два уровня защитных мер:
- Заземление всех открытых токопроводящих частей электрооборудования в установке и построение сети уравнивания потенциалов (см. Проводник защитного заземления (PE))
- Автоматическое отключение источника питания соответствующей секции установки таким образом, чтобы соблюдались требования по напряжению прикосновения / временной безопасности для любого уровня напряжения прикосновения Uc [1] (см. Рис. F6)
Рис. F6 — Изображение опасного напряжения прикосновения Uc
Чем выше значение Uc, тем выше скорость отключения питания, необходимая для обеспечения защиты (см. Рис. F7). Наивысшее значение Uc, которое можно допускать бесконечно без опасности для человека, составляет 50 В переменного тока.
При постоянном токе максимальное значение Uc, которое может выдерживаться бесконечно без опасности, составляет 120 В.
Напоминание о теоретических пределах времени отключения (IEC 60364-4-41)
Рис.F7 — Максимальное время отключения (в секундах) для конечных цепей, не превышающее 63 А с одной или несколькими розетками, и 32 А для питания только фиксированного подключенного оборудования, потребляющего ток
Uo (В переменного тока) | 50 120 | 230 | Uo> 400 | | |
---|---|---|---|---|---|
TN | 0,8 | 0,4 | 0,2 | 0,1 | |
ТТ | 0.3 | 0,2 | 0,07 | 0,04 |
Нота:
- в системах TN , время отключения не более 5 с разрешено для распределительных цепей, а для цепей, не охваченных Рис. F7
- в системах TT , время отключения не более 1 с разрешено для цепей распределения и для цепей, не охваченных Рис. F7
- ^ Напряжение прикосновения Uc — это напряжение, существующее (в результате нарушения изоляции) между открытой проводящей частью и любым проводящим элементом в пределах досягаемости, имеющим другой (обычно заземляющий) потенциал.
Удар электрическим током — канал улучшения здоровья
Человеческое тело проводит электричество. Если какая-либо часть тела получит удар электрическим током, электричество будет проходить через ткани без каких-либо препятствий.В зависимости от продолжительности и силы шока травмы могут включать:
- Ожоги кожи
- Ожоги внутренних тканей
- Электрические помехи или повреждение (или и то, и другое) сердца, из-за которых сердце может останавливаться или биться хаотично.
Симптомы поражения электрическим током
Типичные симптомы поражения электрическим током включают:- Без сознания
- Затруднения с дыханием или полное его отсутствие
- Слабый, неустойчивый пульс или его отсутствие
- Ожоги, особенно ожоги на входе и выходе (когда электричество проникает в тело и выходит из него)
- Внезапная остановка сердца.
Причины поражения электрическим током
Некоторые из причин поражения электрическим током включают:- Неисправная техника
- Поврежденные или изношенные шнуры или удлинители
- Электрические приборы, контактирующие с водой
- Неправильная или изношенная бытовая электропроводка
- Линии электропередач отключены
- Удар молнии.
Как помочь пострадавшему от поражения электрическим током
Первое, что необходимо сделать, это отключить питание. Даже не трогайте жертву, пока не убедитесь, что питание отключено. Будьте особенно осторожны во влажных помещениях, например в ванных комнатах, поскольку вода проводит электричество. Для полной уверенности может быть безопаснее отключить подачу электричества в здание.Первая помощь при поражении электрическим током включает:
- Проверьте реакцию и дыхание человека.Возможно, потребуется начать сердечно-легочную реанимацию (СЛР).
- Позвоните в скорую помощь Triple Zero (000). Если вы не уверены в методах реанимации, дозвонщик скорой помощи даст вам простые инструкции по телефону, чтобы вы могли увеличить шансы человека на выживание до прибытия машины скорой помощи.
- Если их дыхание ровное и они отзывчивые, займитесь их травмами. Охладите ожоги прохладной проточной водой в течение 20 минут и накройте непрозрачной повязкой, если она есть.Простая пищевая пленка, которую можно найти на большинстве кухонь, очень подходит для прикрытия ожогов, если она не наложена плотно. Никогда не наносите мази или масла на ожоги. Если человек упал с высоты, постарайтесь не перемещать его без надобности, если у него есть травмы позвоночника. Перемещайте их только в том случае, если существует вероятность дальнейшей опасности со стороны окружающей среды (например, падающих предметов).
- Говорите с человеком спокойно и уверенно.
Обрыв ЛЭП
Иногда в автомобильных авариях отключаются линии электропередач.Линии электропередач могут нависать над транспортными средствами. Шины действуют как изоляция, поэтому убедите всех, кто находится в машине, оставаться там, где они будут защищены от поражения электрическим током. Не приближайтесь к месту происшествия, пока соответствующие власти не объявят его безопасным. Отойдите подальше и постарайтесь убедить посторонних держаться на расстоянии не менее шести метров. Даже если линии или провода не двигаются, они могут оставаться под напряжением. Со всеми проводами следует обращаться как с живыми. Если человек вынужден выйти из автомобиля из-за опасности, например возгорания, попросите его держать ноги близко друг к другу и прыгать, а не ходить.Это может снизить вероятность поражения электрическим током, если провода находятся на земле. Рекомендуйте это действие только в том случае, если человек определенно не может оставаться в автомобиле.
Советы по безопасности дома
Вы можете снизить риск поражения электрическим током в своем доме, приняв несколько мер предосторожности, в том числе:- Всегда нанимайте дипломированного электрика для выполнения всех электромонтажных работ.
- Не используйте удлинители или приспособления, если шнуры повреждены или изношены.
- Не вынимайте вилку из розетки, потянув за шнур — вместо этого потяните за вилку.
- Держите электроприборы вдали от влажных помещений.
- Поручите электрику установить предохранительные выключатели.
- Купить переносные силовые щиты со встроенными выключателями безопасности.
- Вставляйте предохранительные вилки в неиспользуемые розетки, чтобы дети не вставляли в них предметы.
Как работает предохранительный выключатель
Защитный выключатель или устройство остаточного тока спроектировано для спасения жизней путем контроля потока мощности и обеспечения равномерного потока.Это отличается от автоматического выключателя, который предназначен для защиты бытовой электропроводки от скачков напряжения. Защитный выключатель предназначен для отключения источника питания в случае протекания тока на землю. Он может обеспечить защиту от опасного поражения электрическим током в ситуациях, когда человек соприкасается с электрической цепью под напряжением и обеспечивает путь к земле. Типичными примерами этого являются использование неисправных электрических проводов и неисправных приборов. Эти переключатели срабатывают за одну тридцать тысячную долю секунды.
Куда обратиться за помощью
- В экстренных случаях звоните по телефону Triple Zero (000)
Что нужно помнить
- Тело человека проводит электричество.
- Отключите источник питания, прежде чем пытаться помочь человеку, пострадавшему от поражения электрическим током.
- Будьте особенно осторожны во влажных помещениях и возле вышедших из строя линий электропередач.
- Всегда нанимайте лицензированного электрика для выполнения всех электромонтажных работ в доме.
Контент-партнер
Эта страница была подготовлена после консультаций и одобрена: Скорая помощь Виктория
Последнее обновление: Август 2014 г.
Контент страницы в настоящее время проверяется.Контент на этом веб-сайте предоставляется только в информационных целях. Информация о терапии, услуге, продукте или лечении никоим образом не поддерживает и не поддерживает такую терапию, услугу, продукт или лечение и не предназначена для замены совета вашего врача или другого зарегистрированного медицинского работника. Информация и материалы, содержащиеся на этом веб-сайте, не предназначены для использования в качестве исчерпывающего руководства по всем аспектам терапии, продукта или лечения, описанных на веб-сайте.Всем пользователям рекомендуется всегда обращаться за советом к зарегистрированному специалисту в области здравоохранения для постановки диагноза и ответов на свои медицинские вопросы, а также для выяснения того, подходит ли конкретная терапия, услуга, продукт или лечение, описанные на веб-сайте, в их обстоятельствах. Штат Виктория и Департамент здравоохранения и социальных служб не несут ответственности за использование любыми пользователями материалов, содержащихся на этом веб-сайте.
.Симптомы, первая помощь, долгосрочные последствия
Поражение электрическим током происходит, когда электрический ток проходит через ваше тело. Это может вызвать ожог как внутренних, так и внешних тканей и вызвать повреждение органов.
Ряд вещей может вызвать поражение электрическим током, в том числе:
- линии электропередач
- молнии
- электрическое оборудование
- электрическое оружие, такое как электрошокеры
- бытовые приборы
- электрические розетки
при ударах от бытовых приборов обычно менее серьезны, они могут быстро стать более серьезными, если ребенок грызет электрический шнур, когда мы вставляем рот в розетку.
Помимо источника электрического шока, на степень его серьезности влияет несколько других факторов, в том числе:
- напряжение
- продолжительность контакта с источником
- общее состояние здоровья
- путь электричества через ваше тело
- тип тока (переменный ток часто более вреден, чем постоянный, потому что он вызывает мышечные спазмы, затрудняющие падение источника электричества)
Если вы или кто-то еще был поражен электрическим током, вам может не потребоваться экстренная помощь, но вам все равно следует как можно скорее обратиться к врачу.Внутренние повреждения от поражения электрическим током часто трудно обнаружить без тщательного медицинского осмотра.
Прочтите, чтобы узнать больше о поражении электрическим током, в том числе в случаях, когда это требует неотложной медицинской помощи.
Симптомы поражения электрическим током зависят от его степени тяжести.
Возможные симптомы поражения электрическим током включают:
- потеря сознания
- мышечные спазмы
- онемение или покалывание
- проблемы с дыханием
- головная боль
- проблемы со зрением или слухом
- ожоги сердца
- судороги
Поражение электрическим током также может вызвать синдром купе.Это происходит, когда из-за повреждения мышц конечности отекают. В свою очередь, это может вызвать сдавливание артерий, что приведет к серьезным проблемам со здоровьем. Синдром купе может быть незаметен сразу после разряда, поэтому следите за руками и ногами после разряда.
Если вы или кто-то еще были поражены электрическим током, ваша немедленная реакция может иметь большое значение для минимизации последствий поражения электрическим током.
Если вас ударили током
Если вы получили удар электрическим током, вам может быть трудно что-либо сделать.Но попробуйте начать со следующего, если вы думаете, что были сильно шокированы:
- Отключите источник электричества как можно скорее.
- Если есть возможность, позвоните в службу 911 или в местную службу экстренной помощи. Если не можете, попросите кого-нибудь рядом с вами позвонить.
- Не двигайтесь, если вам не нужно отходить от источника электричества.
Если шок кажется незначительным:
- Обратитесь к врачу как можно скорее, даже если у вас нет каких-либо заметных симптомов. Помните, что некоторые внутренние повреждения сначала сложно обнаружить.
- Тем временем закройте любые ожоги стерильной марлей. Не используйте лейкопластырь или что-нибудь еще, что может прилипнуть к ожогу.
Если кто-то еще был шокирован
Если кто-то еще получил шок, помните несколько вещей, чтобы помочь ему и обезопасить себя:
- Не трогайте кого-то, кто был потрясен контакт с источником электричества.
- Не трогайте кого-то, кто был потрясен, если он не находится в опасности дальнейшего потрясения.
- По возможности отключите подачу электроэнергии. Если вы не можете, переместите источник электричества подальше от человека, используя непроводящий предмет. И дерево, и резина — хорошие варианты. Только убедитесь, что вы не используете ничего влажного или металлического.
- Держитесь на расстоянии не менее 20 футов, если они были поражены током высоковольтных линий электропередач, которые все еще включены.
- Позвоните в службу 911 или в местную службу экстренной помощи, если человек был поражен молнией или если он соприкоснулся с высоковольтным электричеством, например, с линиями электропередач.
- Позвоните в службу 911 или в местную службу экстренной помощи, если у человека проблемы с дыханием, он теряет сознание, имеет судороги, мышечную боль или онемение или ощущает симптомы сердечной недостаточности, включая учащенное сердцебиение.
- Проверьте дыхание и пульс человека. При необходимости начните СЛР до прибытия неотложной помощи.
- Если у человека наблюдаются признаки шока, например, рвота, он теряет сознание или становится очень бледным, слегка приподнимите его ноги и ступни, если это не вызывает слишком сильной боли.
- По возможности прикрывайте ожоги стерильной марлей. Не используйте пластыри или что-нибудь еще, что может прилипнуть к ожогу.
- Держите человека в тепле.
Даже если травмы кажутся незначительными, крайне важно обратиться к врачу после поражения электрическим током, чтобы проверить наличие внутренних повреждений.
В зависимости от травм, потенциальное лечение электрическим током включает:
- лечение ожога, включая наложение мази с антибиотиком и стерильных повязок
- обезболивающее
- внутривенное введение жидкости
- прививка от столбняка, в зависимости от источника шока и как это произошло
В случае сильного шока врач может порекомендовать остаться в больнице на день или два, чтобы они могли наблюдать за вами на предмет проблем с сердцем или серьезных травм.
Некоторые поражения электрическим током могут иметь длительное воздействие на ваше здоровье. Например, серьезные ожоги могут оставить стойкие рубцы. А если электрический ток проходит через ваши глаза, у вас может остаться катаракта.
Некоторые сотрясения также могут вызывать постоянную боль, покалывание, онемение и мышечную слабость из-за внутренних травм.
Если ребенок получил травму губы или ожог в результате жевания пуповины, у него также может возникнуть сильное кровотечение, когда струп со временем отпадет. Это нормально из-за большого количества артерий в губе.
Поражение электрическим током может быть очень серьезным, поэтому важно как можно скорее обратиться за помощью. Если шок кажется серьезным, позвоните в службу 911 или на местный номер службы экстренной помощи. Даже если шок кажется незначительным, лучше всего обратиться к врачу, чтобы убедиться, что нет менее заметных повреждений.
.