Site Loader

Самодельный блок питания на LM2576

Добавил: Chip,Дата: 16 Фев 2014

Блок питания на LM2576-ADJ своими руками

Ранее мы размещали схемы зарядных устройств на 6В и на 12В, собранных на микросхеме LM317. Сегодня предлагаем вариант лабораторного блока питания В. Болдырева на микросхеме LM2576-ADJ. Блок питания обеспечивает плавную регулировку напряжения от 1,2 до 34 вольт при токе нагрузки до 3А.

Принципиальная схема блока питания на микросхеме LM 2576-ADJ

Это стандартная схема включения микросхемы LM 2576-ADJ. Конденсаторы С1 и С4 керамические 0,1 — 1 мкф, С2 — С3 электролитические 1000 мкф х 63В, можно установить один на 2000 — 4000мкф. С5 — С6 1000 мкф х 40в, тоже можно заменить одним конденсатором на 1000 — 2000 мкф.

Печатная плата блока питания

Размеры платы 61 х 89 мм.

Изготовление дросселя L1.

В описаниях блоков питания на микросхеме LM 2576-ADJ указывается только индуктивность этого дросселя от 100 до 330 микрогенри, а вот описания самого дросселя (на чем мотать, каким проводом, сколько витков) информации почти нигде нет.

В качестве сердечника для дросселя использовано кольцо дросселя групповой стабилизации от неисправного компьютерного блока питания вот такого вида:

Обмотка была намотана шестью отрезками провода ПЭВ-0,35 длиной 2,5 метра, концы отрезков проводов были зачищенны и спаяны между собой с обоих концов.

Собранная плата блока питания

 

Трансформатор для блока питания использовал типа ТПП-268-220-50 исходя не из каких-то стратегических соображений, просто он идеально устанавливался в корпус блока питания.

Испытания блока питания проводил под нагрузкой 2А, в течении 2 часов. Просадка напряжения при такой нагрузке составила 0,2 вольта, что считаю вполне нормально. Радиатор микросхемы был чуть теплый.

Корпус остался прежний (когда-то это были электронные часы) замене подверглись внутренности и лицевая панель.

Цифровой вольтметр расположенный над выходными разъемами был установлен просто как дублирующий стрелочный для того, что бы заполнить свободное место.

В. Болдырев (сайт:fototank.ru)

P.S. В нашем «Магазине Мастера» вы можете приобрести готовые модули стабилизаторов, усилителей, индикаторов напряжения и тока, а также различные радиолюбительские наборы для самостоятельной сборки на LM2596, XL4015E1.

Модули-преобразователи можно использовать в автомобиле с 24В питанием (КАМАЗ) для подключения приборов на 12В (автомагнитол, радиостанций).

 Наш «Магазин Мастера«



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Повышающий преобразователь 30В на ULN8163.
  • Преобразователь напряжения с +8-24в на +30В

    Подробнее…

  • Высоковольтный источник с батарейным питанием.
  • В радиолюбительской практике, а так же, при ремонте аппаратуры, может пригодиться портативный высоковольтный источник тока, с батарейным питанием. Такой прибор может быть полезным при проверке обратного напряжения диода, напряжения стабилиза­ции высоковольтного стабилитрона, напря­жения зажигания неоновых ламп, а так же, для испытания высоковольтных транзисторов. Подробнее…

  • Ремонт модуля S20609 в инверторных сварках
  • В некоторых моделях сварочных инверторов, например Helper Prestige, ProfHelper, BestWeld и др., принадлежащих к условному семейству TECNICA устанавливают залитый эпоксидным компаундом субмодуль блока управления S20609.

    О его ремонте и пойдёт речь в статье, ниже…

    Подробнее…

Популярность: 32 169 просм.

Блок питания на LM2576 / Силовая электроника / Сообщество EasyElectronics.ru

Здраствуйте. Это моя первая статья. Очень нравиться даный сайт, и очень захотелось внести свою лепту.
Даная статья должа помочь начинающиму радиолюбителю, такому как я, в самостоятельной сборке блока питания. Я давно нахожусь в поисках «идеального» блока питания, который бы имел минимум деталей, малое значение просаживания напряжения при нагрузке, широкие значения входного напряжения (не влияя на выходное).
По началу я занялся сборкой БП на стабилизаторе LM317 и подобных. Но ток больше 1 А не возмеш, да и просадка была (возможно трансформатор виноват), для умощьнения добавлял транзистор. Но всеранво это не то, так как требовалось делать отводы трансформатора или выходила эдакая печка.
Загорелся сборкой на шим контролере. Желение подкрепило чтение статьи даного сайта о сборке преобраователя 5В — 12В. Для шима на 220В — «требуемое напряжение» я еще не дорос. А читая коментарии к статье 5В — 12В увидел совет по использованию LM2576. Схема взята с даташита.

Так как я студент, хотелось удешевить цену БП но не работоспособность конструкции. До этой сборки было собрано н-ное количество компьютерных БП, с котрых и были взяты детали.
Собрав макет приступил к тестированию. При нагрузке лампочкой 4В 3Вт напряжение просаживалось на 0,6В — недело. Сначало подумал на дросель — было взято кольцо с компьтерного БП 30х10х15 намотано 60 витков проводомм 0,7. Но напряжение также просаживалось но уже на 0,3В. Далее последовала замена диодного моста на мост собраный из диодов Шотки выпаяных с тогоже БП. ВО! в даном случае просадка равна 0,1В при нагрузке уже в 2,7А. Конденсаторы использовал из того же БП с low ERS.
Блок питания собирал для питания автомагнитолы поэтому использовал трансформатор ТН-36 — удобно получить 12В 3А.

Фото готовой конструкции.

Шумы. Подключив осцилограф к выходу — шумы на уровне 0.1В. При подключении БП к магнитоле в колонках я ничего не услышал.

Вод собственно и вся конструкция. В дальнейшем хочу собрать 2х канальный БП с контролером и экранчиком для отображения тока и напряжения.

PS: Подскажите как добавить файл схемы. А то так плохо разсматреть.
PSS: Приветствуються коментарии и вопросы.

Лабораторный блок питания на LM2576-ADJ » RADIOSHEM.NET

Лабораторный блок питания на LM2576-ADJ

Конструкция обеспечивает плавную регулировку напряжения от 1,2 до 34 вольт

при токе нагрузки до 3А.


Трансформатор для блока питания использовал типа ТПП-268-220-50 исходя не из каких-то стратегических соображений, просто он идеально устанавливался в корпус блока питания.

Принципиальная схема блока питания на микросхеме LM 2576-ADJ:

Это стандартная схема включения микросхемы LM 2576-ADJ, немного адаптированная под те детали которые были у меня под рукой. Конденсаторы С1 и С4 керамические 0,1 — 1 мкф, С2 — С3 электролитические 1000 мкф х 63В, можно установить один на 2000 — 4000мкф, но у меня в наличии были такие, а размеры корпуса позволяли все это туда установить. С5 — С6 1000 мкф х 40в, тоже можно заменить одним конденсатором на 1000 — 2000 мкф.

Особо хочу остановиться на изготовлении дросселя L1.

В описаниях блоков питания на микросхеме LM 2576-ADJ указывается только индуктивность этого дросселя от 100 до 330 микрогенри, а вот описания самого дросселя (на чем мотать, каким проводом, сколько витков) информации почти нигде нет.

В моем распоряжении не было прибора измеряющего индуктивность, поэтому принял решение изготавливать дроссель опять таки из того что есть под рукой.

В качестве сердечника для дросселя использовал кольцо дросселя групповой стабилизации от неисправного компьютерного блока питания вот такого вида:

После демонтажа дросселя и удалении обмоток кольцо выглядит вот так:

Обмотка была намотана шестью отрезками провода ПЭВ-0,35 длиной 2,5 метра, концы отрезков проводов были зачищенны и спаяны между собой с обоих концов.

Собранная плата блока питания выглядит вот так:

Испытания блока питания проводил под нагрузкой 2А, в течении 2 часов. Просадка напряжения при такой нагрузке составила 0,2 вольта, что считаю вполне нормально. Радиатор микросхемы был чуть теплый (я боялся что маловат будет).

Печатная плата блока питания выглядит вот так:

Размеры платы 61 х 89 мм. В. Болдырев

Импульсные стабилизаторы напряжения на ИМС LM2576 и LM2596 (1,5-50 В)

Регуляторы серии LM2576 это монолитные интегральные схемы, которые обеспечивают все активные функции понижающего импульсного стабилизатора, поддерживающие максимальный ток 3А в линии нагрузки. Эти устройства доступны в версиях как с фиксированными, так и с изменяемыми выходными напряжениями, требуют минимальное количество внешних компонентов, просты в использовании, работают на частоте встроенного генератора 52 кГц.

Полезным бонусом является введённая в LM2576 схема защиты, срабатывающая при превышении тока нагрузки сверх положенных 3А.

Для наших регулируемых целей подойдут микросхемы с маркировкой LM2576ADJ (с максимальным входным напряжением 40 Вольт), либо LM2576HV-ADJ (с максимальным входным напряжением 55 Вольт).

Принципиальная схема регулируемого блока питания взята прямиком из datasheet-а на микросхему.


Рис. 1

В сети эта же схема повсеместно гуляет и для устройств, построенных на микросхеме LM2596, работающей с большей частотой встроенного генератора, и, соответственно, с уменьшенными значениями индуктивностей.
Это не совсем правильно! У LM2596 схема включения согласно технической документации построена несколько иначе, чем у LM2576. Поэтому будьте бдительны — есть нюансы.

На схеме я умышленно не стал рисовать трансформатор и диодный мост, чтобы не ограничивать выбор радиолюбителя только силовыми низкочастотными трансформаторами. Данный регулируемый стабилизатор с не меньшим успехом можно совокупить и с импульсным источником напряжения, к примеру, таким, как приведён на странице по ссылке   ссылка на страницу.

В качестве L1 производитель рекомендует промышленный дроссель на жёлтом кольце PE-92108 (Рис.2 слева), но не кто не мешает вооружиться и дроссельком отечественного производителя (КИГ), намотанном на цилиндрическом магнитопроводе (Рис.2 справа).


Рис. 2

На мой непредвзятый взгляд купить готовый дроссель проще, чем искать подходящий сердечник для самостоятельной намотки. Однако для желающих самолично вырастить дубраву из жёлудя, вполне подойдут кольца, выдернутые из блока питания ПК, либо AMIDON-овские из карбонильного железа жёлто-белого цвета (материал 26), либо сине-зелёные (материал 52).
Главное, чтобы полученное моточное изделие обладало индуктивностью 150мкГн и пропускало токи — не менее 3А. Намоточный провод должен иметь диаметр 1мм.

В качестве иллюстрации к нашей повести приведу пример радиолюбительской реализации регулируемого блока питания на LM2576, позаимствованный с сайта www.komitart.ru (Рис. 3).


Рис. 3

И для кучи пример преобразователя напряжения с сайта http://320volt.com (Рис. 4).


Рис. 4

Что тут скажешь?
Отечественный радиолюбитель явно сэкономил на размере кольца, да и количество витков — немного из другой оперы.
В буржуйском варианте всё отлично! Особенно порадовала обширная «земля», которая является хорошим подспорьем, как для овощеводов Якутии, так и для всех тех, кто ведёт суровую борьбу против высокочастотных наводок и помех в устройствах со значительными величинами протекающих импульсных токов.

К сожалению, оба ваятеля проигнорировали выходной фильтр L2-C1 (Рис.1), который производитель микросхемы обозначил как необязательный (опционный) причиндал. А зря!

Если стабилизированный источник планируется использовать для запитывания не только моторов, лампочек и светодиодов, то значение уровня пульсаций выходного напряжения является не менее важным, чем параметр стабильности выходного напряжения. Тут-то и должна вступить в действие опционная LC-цепочка, позволяя снизить величину этих пульсаций в десяток-другой раз.

Теперь, что касается импульсных регулируемых стабилизаторов напряжения на микрсхеме LM2596.

Максимальное входное напряжение для этих микросхем ограничено значением 40В, соответственно максимальное стабилизированное напряжение на выходе составляет величину 37В, максимальный ток нагрузки — 3А.
Казалось бы — всё хуже, чем у LM2576HV. И на кой оно нам надо?
А тут всё дело в в том, что микросхемы серии LM2596 работают на частоте встроенного генератора не 52, а 150кГц, позволяя использовать компоненты фильтра меньших номиналов, а соответственно, и меньших размеров.
Приведём схему включения LM2596 согласно datasheet-а.


Рис. 5

Cin — 470 μF, 50-V, Aluminum Electrolytic Nichicon PL Series
Cout — 330 μF, 35-V Aluminum Electrolytic, Nichicon PL Series
D1 — 5A, 40V Schottky Rectifier, 1N5825
L1 — 47 μH,
R1 — 1 kΩ, 1%

Всё достаточно близко к схеме включения M2576, представленной на Рис.1. И разница в значении R1 1 кОм, против 1,2 кОм, скорее всего ни на что не повлияет. По большому счёту — всё различие только в компенсационном конденсаторе Cff, обеспечивающем, по убеждению производителя, дополнительную стабильность работы устройства.
Значение номинала этого конденсатора находится в диапазоне 390pF-33nF в зависимости от выходного напряжения. Если стабилизатор предполагается делать регулируемым, его значение следует выбрать в диапазоне 1-1,5 nF.

При разработке конструктива и печатных плат стабилизаторов на микросхемах LM2576 и LM2596 переменный резистор R2, регулирующий выходное напряжение, следует располагать в непосредственной близости к печатной плате (длина соединительных проводов не должна превышать 3-5 см).

 

Простой импульсный лабораторный БП на основе микросхем LM2576T-ADJ и LM2596T-ADJ | hardware

В статье описаны простые импульсные регулируемые стабилизаторы напряжения (понижающие, step-down) на 1.2 .. 40В, с током защиты . Они основаны на микросхемах LM2576T-ADJ и LM2596T-ADJ компании National Semiconductor.

[EK-2596Kit]

Схема электрическая принципиальная EK-2596Kit

Модуль может работать в режиме стабилизатора тока, что может использоваться для заряда аккумуляторов стабильным током, питания различных нагрузок, питания мощного светодиода или группы светодиодов.

Для включения модуля стабилизатором тока необходимо параллельно резистору R1 установить резистор, номинал которого вычисляется по формуле: R=1.23/I

Технические характеристики

Параметр Значение
Входное напряжение, не более 40В
Выходное напряжение 1…40В
Выходной ток во всем диапазоне напряжений, не более
Срабатывание защиты по выходному току
Частота преобразования 150 кГц
Размеры: Д, Ш, В 49х27х25мм
Масса 30 г

Перечень элементов стабилизатора напряжения

Позиция Номинал Количество
C1 470 мкФ х 50В 1 шт.
C2 470 мкФ х 50В 1 шт.
R1 1.2 кОм 1 шт.
D1 1N5822 1 шт.
IC1 LM2596T-ADJ 1 шт.
L1 120 uH 1 шт.
  Печатная плата 1 шт.
  PLS-06R 1 шт.

Работа устройства и рекомендации

Модуль является более миниатюрным аналогом модуля EK-2576 за счет большей частоты преобразования. И имеет меньшую амплитуду пульсаций на выходе.

Регулируемый импульсный стабилизатор напряжения предназначен как для установки в радиолюбительские устройства с фиксированным выходным напряжением так для лабораторного блока питания с регулируемым выходным напряжением. Так как стабилизатор работает в импульсном режиме, он имеет высокий КПД и, в отличие от линейных стабилизаторов, не нуждается в большом теплоотводе. Как правило, достаточно радиатора 100 см2. Устройство имеет тепловую защиту и защиту по выходному току = 3А. Внимание! Выходное напряжение не может превышать напряжение на входе. Для того чтобы начать эксплуатировать стабилизатор необходимо припаять переменный резистор = 47 Ком (для установки в устройства с фиксированным выходным напряжением — постоянный резистор) резистор не следует устанавливать на длинные провода.

Выводы модуля:

1 и 2 — контакты подключения подстроечного/переменного резистора.
3 — выход плюс.
4 — выход минус.
5 — питание минус.
6 — питание плюс.

Внимание! При подключении соблюдайте полярность! 

Габаритный чертеж и расположение элементов на печатной плате EK-2596Kit

Лабораторный блок питания с цифровой индикацией выходного напряжения. (EK2596 + SVH0001) 

Включение модуля стабилизатором тока для питания группы 3W светодиодов 

[EK-2576 Kit]

Схема электрическая принципиальная регулируемого импульсного стабилизатора

Технические характеристики

Параметр Значение
Входное напряжение, не более 40 В
Выходное напряжение 1…40 В
Выходной ток во всем диапазоне напряжений, не более 3 А
Срабатывание защиты по выходному току 3 А
Частота преобразования 52 КГц

Перечень элементов стабилизатора напряжения

Позиция Номинал Количество
C1 2200 мкФ х 50 В 1 шт.
C2 2200 мкФ х 50 В 1 шт.
R1 1.2 КОм 1 шт.
D1 1N5822 1 шт.
DA1 LM2576T-ADJ 1 шт.
L1 100 uH 1 шт.
  Печатная плата 1 шт.

Порядок работы устройства и рекомендации

Регулируемый импульсный стабилизатор напряжения предназначен как для установки в радиолюбительские устройства с фиксированным выходным напряжением так для лабораторного блока питания с регулируемым выходным напряжением. Так как стабилизатор работает в импульсном режиме, он имеет высокий КПД и, в отличие от линейных стабилизаторов, не нуждается в большом теплоотводе. Как правило, достаточно радиатора 100 см2. Устройство имеет тепловую защиту и защиту по выходному току = 3А. Выходное напряжение не может превышать напряжение на входе. Для того чтобы начать эксплуатировать стабилизатор необходимо припаять переменный резистор = 47 Ком (для установки в устройства с фиксированным выходным напряжением — постоянный резистор) резистор не следует устанавливать на длинные провода.

Подключение стабилизатора:

1. Подключить питание на входа «+Вход» и «-Вход»
2. Подключить переменный резистор на контакты «R» и «R»
3. Подключить нагрузку на выхода «+Вых» и «-Вых»

Для конструирования лабораторного блока питания с регулируемым выходным напряжением рекомендуется использовать цифровой встраиваемый вольтметр EK-2501.

Внимание! При подключении соблюдайте полярность!

Лабораторный блок питания с цифровой индикацией выходного напряжения

Расположение элементов на печатной плате

[Ссылки]

1. LM2596 — SIMPLE SWITCHER Power Converter 150 KHz 3A Step-Down Voltage Regulator.
2. Утилита для разработки стабилизаторов напряжения (и не только их) — WEBENCH® Power & LED Designer.
3. MAX710, MAX711 — 3.3V/5V or Adjustable, Step-Up/Down DC-DC Converters (автопереключение преобразования напряжения Step-Up/Down, вх. напряжение +1.8 V..+11 V, выходное напряжение 5 V/250 mA при вх.=1.8 V, 5 V/500 mA при вх.=3.6 V, не нужны внешние FET транзисторы, в режиме Shutdown отключение от вх. напряжения, потребление от вх. 200 μA без нагрузки (вх.=4 V), 7 μA в режиме Standby, 0.2 μA в выкл. режиме, режимы Low-Noise и High-Efficiency).
4. MC34063AB — MC34063AC, MC34063EB — MC34063EC, DC/DC converter control circuits (выходной ток ключа 1.5 A, 2% точность, типичный ток потребления 2.5 mA, вх. напряжение 3..40 V, частота преобразования до 100 кГц, ограничение выходного тока).
5. Высокоэффективный понижающий преобразователь с использованием синхронного контроллера LT1773.

Простые устройства — Стабилизатор напряжения на LM2576

Стабилизатор из этой кучки деталей

Здравствуйте, уважаемые!

Вам хочется сделать стабилизатор напряжения на LM2576, но нет времени/желания разводить плату? Смеётся

Посмотрите мой вариант схемы и разводки платы, возможно это то что вам нужно.

{ads2}

 Можно конечно было бы сделать и меньше, но:

  • во-первых, на плате имеется два посадочных места диаметром 13 мм для входных электролитов
  • во-вторых, два аналогичных места для выходных электролитов
  • в-третьих, для тех, кто переживает, что вдруг что-то случится с драгоценной аппаратурой, питаемой о данного стабилизатора в случае повышения выходного напряжения на плате, предусмотрена возможность защиты от перенапряжения на выходе в виде мощного симистора в корпусе ТО220, который замыкает входное питание и сжигает предохранитель, который нужно разместить на питающем стабилизатор проводе. Место для предохранителя не предусмотрено, т.к. в продаже имеется довольно много предохранителей, устанавливаемых прямо в разрыв провода.

Схема стабилизатора:

Принципиальная схема

После двухдневного неспешного обдумывания получилась вот такая разводка:

Печатная плата

Электролиты диаметром 13мм

LM2576 в ТО220 у края платы что удобно, если захотите посадить шим на радиатор.

Выпрямитель классический 3 амперный SR360 (MBR360, 1N5822) в DO201.

Дроссель любой более-менее пригодный, я намотал на порошковом торике типоразмера примерно Т60 около 50..60 витков.Индкутивность примерно от 50 до 500 мкГн, самое оптимальное 100…200 мкГн.

Симистор ставится если необходима защита от перенапряжения, при этом обязательно предусмотрите на входе стабилизатора плавкий предохранитель !

{ads1}

Все остальные детали SMD, при этом размеры платы составляют 20х30мм.

Конденсатор С5 не обязателен, нужен для компенсации цепи ОС  в случае, если стабилизатор будет возбуждаться (очень редкий случай), номинал от 10 до 100 нФ. Резистор R3 также не обязателен, номинал от 1 до 100 кОм, нужен, если вам попадётся фантастически чувствительный симистор, я использовал ВТА140.

Напряжение срабатывания защиты полностью соответствует номиналу стабилитрона D2, в моём случае 7,5в, выходное напряжение стабилизатора при номиналах  резисторов делителя R1 и R2, указанных на схеме, равно 7,3в, выходное напряжение считается по формуле Uвых  = 1,23*(1+(R1\R2)), т.е. 1,23*(1+(3300\680) = 7,36в

{ads2} 

Резистор R2 = 1,23в / ток делителя, который выбирайте сами, при 680 Ω ток равен 1,8мА.

Резистор R1 = R2((Uвых\1,23в)-1), т.е если хотите сделать стабилизатор на 3,15в, то R1 = 680((3,15в\1,23в)-1)= 1061 Ω

Не забываем, что при срабатывании защиты симистор производит короткое замыкание входа, рассеивая при этом не только энергию, получаемую от  блока питания, но и накопленную в C1 и C2, поэтому симистор должен выдерживать возникающий ток замыкания, а на входе нужно ставить предохранитель, который на плате не предусмотрен для экономии места.

.Печатная платаПечатная платаПечатная платаПечатная плата

Печатная плата

{ads1}

Вложения:
ФайлОписаниеРазмер файла:
Скачать этот файл (LM2576_v2.0+BTA140.rar)LM2576_v2.0+BTA140.rarСхема и рисунок платы стабилизатора9 Кб

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *