Забытая реальность — Разложение воды под действием звука описано ещё в «Юном технике»
— У ада и небес есть свои границы, защита, охрана, воины, ворота. Зачем им все это?— Людей боятся, вот и окопались как могли…
«Непонятное устройство, стоявшее на столе Кили, имело сверху нечто вроде помеси форсунки и воронки. Кили некоторое время дул в него, а затем вылил туда порядка 18 литров воды. Через некоторое время манометр показал давление в 680 атмосфер, и Кили объявил, что вода дезинтегрировалась, а в генератор поступил так называемый «эфирный пар», способный приводить в действие любые механизмы. В доказательство Кили запустил находившийся тут же небольшой «вечный двигатель».»
«В 1884 году Кили продемонстрировал эфирную пушку, которая при немалом скоплении народа бесшумно выстрелила на 270 метров 140-граммовым ядрышком. В 1890-е Кили больше внимания стал уделять энергии, извлекаемой из чистых вибраций. без всякого эфирного пара. Последним его шоу (1897 год) стал вибрационный двигатель, имевший мощность 10 лошадиных сил при массе 91 килограмм.»
«Дезинтегратор состоял из перестраиваемого резонатора, внутренности которого Кили держал в секрете, системы камертонов, воронки для воды и приёмного устройства для звука. На демонстрациях изобретатель шумел в «микрофон», заливал воду в воронку, камертоны вибрировали, внутри резонатора что-то происходило, и подсоединённый к нему электродвигатель начинал работать.»
«камертоны вибрировали, внутри резонатора что-то происходило»
dmitrijan:Разложение воды под действием звука описано ещё в «Юном технике». Как вариант получаем пар или смесь газов. Проблема лишь в отделении водорода от кислорода, рванёт запросто.
При этом можно снимать немалый заряд за счёт распада воды. Вообще-то такие элементы делают — туда нужно влить воду, спирт или даже бензин и получить электричество. Капризное устройство однако.
Собственно просто и банально.
Хотя приспособить эти устройства пока не придумали особо куда. Можно получать водородо-кислород для двигателя. Можно увлажнять комнату, можно сушить бельё, можно греть еду.
Собственно СВЧ печка этим и занимается, за счёт разложения жидкости нагревает еду.
Ну можно облака разгонять и дождик конденсировать и лить на головы врагов или на поля.
Собственно, так или иначе этот эффект используют нынче. Хотя самое большое распространение этот эффект нашёл в нагреве еды.
Ну можно гранит или чего там на надо, сверлить.
В целом технология недалеко ушла от забивания клина и поливания оного водой, чтобы тот разбух и разломил, только технологичней.
Вода весьма хороший абразив, особенно если усилить это свойство за счёт её «вскипания». Будет резать не хуже алмазной крошки, даже лучше.
elektromexanik: И опять резонансные явления. Только их надо рассматривать немного шире. Именно как работу с эфиром.
dmitrijan: Проблема лишь достаточной точности подачи рабочего инструмента, но она решается, за счёт УЗ форсунок, которые сразу подают воду нужного вида на обрабатываемый материал.
Ну и как побочный эффект, можно крошить материал, который будет распадаться, подавая тот же УЗ на кромку. Без всякого механического воздействия материал теряет атомарные связи и распадается. Хотя зона воздействия очень узкая, потому распылить камень не получится, а вот сделать дырку, сдув «пыль», легко. Как горячим ножом резать масло.
Пока проблема в материале рабочих кромок, но технически всё это решаемо даже на уровне современной техники.
Только пропадёт антураж. Не будет романтики звука тр-ррррр, и общности людей, что хотят этот перфоратор засунуть его владельцу куда нить и поглубже.
Нечто типа «карандаша», который при надавливании на стену, выдавливает в ней отверстие.
Там даже звук неслышен.
По сути «шуруп» просто вдавливается в стену через такое устройство, которое делает материал податливым рядом с ним, а после, когда его отводят, бетон опять твердеет. Шуруп так и застревает в «камне».
Технология мало отличается от прохождения ростка через камень.
С одной стороны мы трудно и нудно ломаем тот же асфальт, прикладывая массу усилий. А с другой стороны, слабый росток может взломать нам покрытие дороги, не особо напрягаясь.
Мы забиваем гвозди так:
Быстро и сильно.
Слабый росток ломает асфальт так:
Естественно есть несколько путей решения. Можно применять силу, можно применять «хитрость».
Если мы ломимся через камень напрямую, то росток поступает философски – он ищет щель или трещинку, и начинает её расширять, постепенно ломая монолит, пробивая себе дорогу. В сути это работа клина, за счёт расширения жидкости, просачивающейся в трещину.
Т.е. если камень не имеет достаточных трещинок для просачивания жидкости, то такой камень росток не взломает. Но если накернить дырочку и пустить росток, то тогда лишь дело времени.
В сути данную технологию можно легко перенять, адаптировав, ускорив процесс сжатия-расширения жидкости многократно, например, за счёт УЗ, и тогда то, что росток делает за недели, можно сделать за секунды.
Хотя нынче данная технология применяется, но с понятной нам стороны:
По сути, отбойный молоток и делает возвратно-поступательные движения, что значительно ускоряют процесс. Однако для этого нужен крепкий наконечник.
Но вода тоже довольно твёрдая при определённых условиях. Ведь если просто в воду войти – она мягкая, а если с разбегу, то весьма твёрдая. Т.е. вместо долота можно использовать воду, но под значительной скоростью.
dmitry_9_9_9: Фукусима, прорастающие растения сквозь асфальт
elektromexanik: Такие на треногах устанавливают.
dmitrijan: И эта технология используется и водой режут.
Однако и тут есть недостатки.
Резка водой не совсем отбойный молоток.
Осталось пойти дальше и совместить технологии, и можно при помощи воды и без всякой такой-то матери вдавливать те же крепежи прямо в стену без всякого тр-рррр шума.
В сути все компоненты технологии уже есть в наличии и даже изготавливаются серийно.
elektromexanik: Тогда вода для передачи колебаний совместно стене и детали?
dmitrijan: С другой стороны, конечно, применение такой технологии напоминает не прорубание, а смягчение материала, в который проходит рабочий инструмент. Но зато можно прямо на камне выдавливать иероглифы, как вариант, пугая учёных потомков росписями тинэйджеров на стенах зданий.
Вода передаёт колебания — она отличный несжимаемый проводник колебаний. Лучший и самый доступный в нашей физике.
Причём настолько текуча, что может плотно прилегать к обрабатываемому материалу по всей обрабатываемой поверхности, оставляя за собой отполированные плоскости без каких либо следов инструмента.
Т.е. после такой обработки даже полировать не нужно и удалять мелкие дефекты и трещины, их просто не будет.
Собственно и эта технология применяется, когда на вибростолах равномерно перемешивают материал, а полотно дороги становится на порядок прочнее после такой обработки. Да и детали делают с такой «закалкой», кромки тех же шестерёнок после УВЧ значительно превосходят по износостойкости своих собратьев.
elektromexanik: Осталось сделать способ просто совмещения двух материалов. Тогда можно будет обойтись и без сварки и без клепки и прочих традиционных способов соединения.
dmitrijan: Так делают же, для металлов и камня есть такие УВЧ, когда материал сжимают и он даже не спекается, а происходит диффузия.
Так делают без склейки разные штучки, где может быть зона разных металлов с разными свойствами в одном флаконе.
Даже детали варят так.
elektromexanik: Видимо дороговата пока технология.
dmitrijan: У любой технологии своя ниша, своё применение. Если сказано, что применять для металлов, значит для металлов.
С металлом проще, у него компоненты внутри материала. Так закаливают зубья шестерни.
Причём такой ремонт можно производить, даже не снимая.
elektromexanik: Индукционный нагрев. А как с непроводящими материалами?
dmitrijan
Соответственно для других материалов используем либо другие частоты, либо материал воздействия, типа катализатора или переходника, который преобразует воздействие.
Вода, как переходник при передаче ВЧ весьма подходит.
Т.е. если на камень мы не можем непосредственно воздействовать схожим образом, то нам ничего не мешает предварительно «смочить» нужное место, а потом оказать воздействие.
elektromexanik: Принципиальных противоречий вроде нет.
dmitrijan: Масло же мы используем, как посредник. Да и в химических реакциях есть элементы, что в реакции не участвуют, но без них реакция не получится.
Как пример. Индукционные плиты. Они могут нагревать металлы, но не еду. Как мы поступаем? Мы на индуктор ставим сковородку, на которой уже нагреваем еду.
Т.е. сковорода в данном процессе является обычным катализатором нагрева.
Индуктор ведь, в сути, тот же вибрирующий инструмент, который воздействует на материалы на определённых частотах.
Принцип отбойного молотка или клиньев меняется мало.
Даже отопление делают.
elektromexanik: Но культура производства…
Губит людей не пиво, а разгильдяйство!
dmitrijan: Причём схемка проста и легко повторима.
Характерные ряды элементов и выносной рабочий элемент, который, собственно, может быть на некотором расстоянии от самого аппарата, и представляет собой совсем простое устройство.
И сводится…
Ой, палочка с катушечкой на проводе!
elektromexanik: Ну так это только исполнительный элемент.
dmitrijan: Причём не обязательно объёмной, а может быть плоской и даже в корпусе.
Причём если промышленно для индукционных плит индукторы мотают как тот же бифиляр.
Это для наглядности свидетелям секты всё украдено и Теслы.
Так мотают и весьма, весьма витиеватые конструкции.
elektromexanik: Хотя те катушки пока остаются некой заковыристой загадкой.
dmitrijan: Т.е. ничто нам не мешает намотать индуктор хоть плоским, хоть круглым, хоть длинным. Ничего особо от этого не поменяется.
elektromexanik: Мешает только отсутствие понимание, что собственно изменяется при смене формы катушки.
Кроме формы поля.
dmitrijan: Мотать на круглое проще и технологичней, но если намотать ан плоское, то компактней.
Получаем такую длинную плоскую палку с намоткой.
Хотя мотают даже так:
И даже так:
elektromexanik: С бифилярной намоткой есть некоторая неопределённость. У Тесла это две секции которые включены последовательно и суммарная индуктивность значительно возрастает вместе с межвитковой ёмкостью. А вот встречное включение или намотка сложенным вдвое проводом вообще обнуляет классический параметр индуктивности.
dmitrijan: Хотя такая круглая удобней, но плоская лучше работает.
Есть безындукционная намотка, когда ЭДС самоиндукции нивелируется, аля лапша.
elektromexanik: А есть литцендрат, который увеличивает добротность контура.
dmitrijan: Знаменитая лапша, позволившая победить в линиях связи противную ЭДС самоиндукции.
elektromexanik: Витая пара ещё круче.
dmitrijan: Собственно такой же принцип можно применять в катушках и трансформаторах, избавившись от паразитной ЭДС самоиндукции.
Витая пара следствие лапши.
elektromexanik: Это что же получается, все кому не лень теперь смогут бесплатную розетку себе сделать? А на работу кто ходить будет?
dmitrijan: Неее, безплатной розетки не будет по любому. Но жаждущие халявы всё так же будут вздыхать про упущенную выгоду шкуры неубитого ими медведя.
elektromexanik: Как то сурово очень ))
dmitrijan: Зато каждый может осуществить и инструкция есть в картинках.
Хотя трудности могут возникнуть на шаге 2.
Но потенциально каждый, имеющий смартфон и достав инструкцию из инета, может осуществить.
elektromexanik: Вон француз то, прямо в огороде вечный двигатель собрал и даже секретов нет никаких. Вот почему никто не кинулся повторить?
Крутится на его участке и никто его не угнетает кроме жены…
http://vitanar.narod.ru/revolucio/revol
dmitrijan: Дык скрывает, озорник!
elektromexanik: Или тогда не будет повода покричать, что, скрывают, преследуют, мировая закулиса и прочий бред.
dmitrijan: Народ же не очень-то рвётся же вон и тесла мобили скупать, спасая экологию.
elektromexanik: Вон в музее тоже стоит себе, посетителей развлекает.
Ну и Тестатика тихо и мирно работает аж с 80 годов.
http://friends.kz/uploads/posts/200
dmitrijan: Там износ рабочих поверхностей сильный.
elektromexanik: Главное что работает и никому реально это не нужно.
dmitrijan: Ну это пока не переведут всех, а до этого будут в комментах причитать, что им никто не делает и не уговаривает. Потом будут вещать, что это вредно и что у них старческое слабоумие проявилось именно поэтому, что их облучают. Ноги трясутся, руки не держат, глаза не видят – это не возраст, а происки врагов.
На заре электрификации, как-то был случай: уговорили одну помещицу провести себе электричество и повесить лампочку. Потом посмотрели счёт за энергию, и удивились, слишком мало, решили проверить. Так бабулька входит в дом, включает лампочку, доходит до стола со свечками, зажигает свечку, гасит электролампочку.
А сколько народу причитает, что в их время планшетов небыло, а нужно читать экологически чистые книги? А им когда-то говорили, что читать под одеялом с фонариком вредно. И т.д. А поколение планшетов будет уверять, что вредно носить виртуальные очки, нужно пользоваться планшетом.
Одно время уверяли, что наушники тычки жутко сажают слух, не то что большие. Кто-то скажет, что мониторы сажают зрение. Жить вообще смертельно опасно!
Комментировали: elektromexanik, dmitrijan
Сложил воедино: Владимир Мамзерев. 25.05.2017
Источник: pro-vladimir.livejournal.com
Ультразвуковое устройство получение водорода | Проект Заряд
Полезная модель относится к электрохимии а конкретнее, к водородной энергетике и может быть полезно использована для получения топливной смеси с высоким содержанием водорода из любых водных растворов.
Известны устройства прямого электрохимического разложения (диссоциации) воды и водных растворов на водород и кислород путем пропускания через воду электрического тока. Их главное достоинство-простота реализации. Главные недостатки известного водородного генератора–устройства-прототипа –низкая производительность, значительные энергозатраты и низкий к.п.д. Теоретический расчет требуемой электроэнергии для выработки 1 м3 водорода из воды составляет 2,94 квт–час, что пока затрудняет использование данного способа получения водорода в качестве экологически чистого топлива на транспорте.
Наиболее близким устройством (прототипом) по конструкции и того же назначения к заявленной полезной модели по совокупности признаков является известный электролизер- простейший водородный генератор, содержащий полую камеру с водным раствором(водой), электроды, размещенные в нем, и присоединенный к ним источник электроэнергии (кн. «Химическая энциклопедия”,т.1,м.,1988г., с.401)
Сущность работы прототипа – известного водородного генератора состоит в электролитической диссоциации воды и водных растворов под действием электрического тока на Н2 и О2 .
Недостаток прототипа состоит в низкой производительности водорода и значительных затратах электроэнергии.
Целью данного изобретения является модернизация устройства для улучшения его энергетической эффективности
Технический результат, данной полезной модели состоит в техническом и энергетическом усовершенствовании известного устройства, необходимом для достижения поставленной цели.
Указанный технический результат достигается тем, что известное устройство, содержащее полую камеру с водным раствором, электроды, размещенные в воде, присоединенный к ним источник электроэнергии, дополнено капиллярами, размешенными вертикально в воде, с верхними торцами выше уровня воды, причем электроды выполнены плоскими, один из которых размещены под капиллярами, а второй электрод выполнен сетчатым и размещен над ними, причем источник электроэнергии выполнен высоковольтным ирегулируемым по амплитуде и частоте, причем зазор между торцами капилляров и вторым электродом и параметры электроэнергии, подаваемой на электроды выбирают по условию обеспечения максимальной производительности по водороду, причем регуляторами производительности является регулятор напряжения упомянутого источника и регулятор зазора между капиллярами и вторым электродом, причем устройство дополнено также двумя ультразвуковыми генераторами, один из которых размещен под нижним торцом этих капилляров ивторой — выше их верхнего торца, причем устройство дополнено также электронным диссоциатором молекул активированного водного тумана содержащим пару электродов, размещённых над поверхностью жидкости, с их плоскостями, перпендикулярно поверхности жидкости, и электрически присоединённых к дополнительному электронному генератору высоковольтных высокочастотных импульсов с регулируемой частотой и скважностью, в диапазоне частот, перекрывающим резонансные частоты возбуждения испаренных молекул жидкости и ее ионов.
ОПИСАНИЕ УСТРОЙСТВА В СТАТИКЕ
Устройство для получения водорода из воды (фиг.1) состоит из диэлектрической емкости 1, с налитой в нее водного раствора жидкости 2, из тонко пористого капиллярного материала 3, частично погруженного в эту жидкость и предварительно смоченного в ней.В состав данного устройства входят также высоковольтные металлические электроды 4,5, размещенные по торцам капилляров 3, и электрически присоединенные к выводам высоковольтного регулируемого источника знакопостоянного электрического поля 10, причем один из электродов 5 выполнен в виде дырчато-игольчатой пластины, и размещен подвижно над торцом капилляров 3 , например, параллельно ему на расстоянии, достаточном для предотвращения электрического пробоя на смоченный фитиль 3. Другой высоковольтный электрод 4 размещен в жидкости параллельно нижнему торцу капиллярного, например, пористого материала 3 Устройство дополнено двумя ультразвуковыми генераторами 6, один из которых размещен в жидкости 2 , почти на дне емкости 1, а второй размещен над уровнем жидкости, например на сетчатом электроде 5.
Устройство содержит также электронный диссоциатор молекул активированного водного тумана, состоящий из двух электродов 7,8, размещённых над поверхностью жидкости, с их плоскостями, перпендикулярно поверхности жидкости, и электрически присоединённых к дополнительному электронному генератору 9 высоковольтных высокочастотных импульсов с регулируемой частотой и скважностью, в диапазоне частот, перекрывающим резонансные частоты возбуждения испаренных молекул жидкости и ее ионов. Устройство дополнено также колоколом 12, размещенным над емкостью 1 — сборным газовым коллектором 12, в центре которого размещен выводной патрубок для вывода топливного газа и Н2 к потребителям. По существу, узел устройства, содержащий электроды 4,5 с блоков высокого напряжения 10и капиллярный узел 3 4, 5, 6, является комбинированным устройством электроосмотического насоса и электростатического испарителя жидкости 2 из емкости 1.. Блок 10 позволяет регулировать скважность импульсов и напряженность знакопостоянного электрического поля от 0 до 30 кВ/см. Электрод 5 выполнен металлическим дырчатым или сетчатым для обеспечения возможности беспрепятственного пропускания через себя образуемого водяного тумана и топливного газа с торца капилляров 3. В устройстве имеются регуляторы и приспособления для изменения частоты импульсов и их амплитуды и скважности, а также для изменения расстояния и положения электрода 5 относительно поверхности капиллярного испарителя 3(на фиг. 1 они не показаны).
ОПИСАНИЕ УСТРОЙСТВА РАБОТЫ УСТРОЙСТВА (РИС.1)
Вначале наливают в емкость 1 водный раствор, например активированную воду или водо-топливную смесь(эмульсию)2, предварительно смачивают ею капилляр 3-пористый испаритель. Затем включают высоковольтный источник напряжения 10 и подают высоковольтную разность потенциалов к капиллярному испарителю 3, через электроды 4,5, причем размещают дырчатый электрод 5 выше поверхности торца капилляров 3 на расстояние, достаточное для предотвращения электрического пробоя между электродами 4,5. В результате, вдоль волокон капилляров 3 под действием электроосмотических а по сути — электростатических сил продольного электрического поля водные кластеры частично разрываются исортируясь по размерам, всасываются в капилляры 3 . Причем дипольные поляризованные молекулы жидкости разворачиваются вдоль вектора электрического поля и двигаются из емкости в направлении верхнего торца капилляров 3 к противоположному электрическому потенциалу электрода 5 (электроосмос). Затем они, под действием электростатических сил, срываются этими электрическими силами поля с поверхности торца капилляра 3 – по сути электроосмотического испарителя и превращаются в частично диссоциированный поляризованный наэлектризованный водяной туман. Этот водяной туман выше электрода 5 затем интенсивно обрабатывают также импульсным поперечным высокочастотным электрическим полем, создаваемым между поперечными электродами 7,8 электронным генератором высокой частоты 9. В процессе интенсивного столкновения испаренных дипольных молекул и водных кластеров над жидкостью между собою с молекулами воздуха и озона, электронами в зоне ионизации между электродами 7,8.происходит дополнительная интенсивная диссоциация (радиолиз) активированного водяного тумана с образованием топливного горючего газа. Далее этот полученный топливный газ поступает самостоятельно вверх в газосборный колокол 12 и далее через выводной патрубок 13 подается потребителям, для приготовления синтетической топливной смеси, например во впускной тракт двигателей внутреннего сгорания и подачи его в камеры сгорания двигателя автотранспорта. В состав этого горючего газа входят молекулы водорода (Н2), кислорода (О2),водяного пара, тумана (Н2О), а также активированные органические молекулы испаренных в составе прочего — углеводородных добавок. Экспериментально ранее показана работоспобность данного устройства и выяснено, что интенсивность процесса испарения и диссоциации молекул водных растворов, существенно зависят и изменяются в зависимости от параметров электрического поля источников9,10.(напряженности, мощности), от расстояния между электродами 4, 5 ,от площади капиллярного испарителя 3, от вида жидкости, размеров капилляров и качества капиллярного материала 3. Имеющиеся в устройстве регуляторы позволяют оптимизировать производительность топливного газа в зависимости от вида и параметров водного раствора и конкретной конструкции данного электролизера. Поскольку в данном устройстве водный раствор жидкости интенсивно испаряется и частично диссоциирует на Н2 и О2,под действием капиллярного электроосмоса, и ультразвука, а затем дополнительно активно диссоциирует вследствие интенсивных соударений молекул испаренного водного раствора посредством дополнительного поперечного резонансного электрического поля, то такое устройство получения водорода и топливного газа потребляет мало электроэнергии и поэтому существенно в десятки сотни раз экономичнее известных электролизных водородных генераторов.
ФОРМУЛА ИЗОБРЕТЕНИЯ.
Ультразвуковое устройство для получения водорода из любого водного раствора, содержащее емкость с водным раствором, металлические электроды, размещенные в ней, и присоединенный к ним источник электроэнергии, отличающееся тем, что оно дополнено капиллярами, размещенными вертикально в этой камере, с их верхними торцами выше уровня водного раствора, причем один из двух электродов размещен в жидкости под капиллярами, а второй электрод выполнен подвижным исетчатым и размещен над ними, причем источник электроэнергии выполнен высоковольтным и регулируемым по амплитуде и частоте, причем устройство дополнено также двумя ультразвуковыми генераторами, один из которых размещен под нижним торцом этих капилляров и второй размещен выше их верхнего торца, причем устройство дополнено также резонансным электронным диссоциатором молекул активированного водного тумана, содержащим пару электродов, размещённых над поверхностью жидкости, с их плоскостями, перпендикулярно поверхности жидкости, и электрически присоединённых к дополнительному электронному генератору высоковольтных высокочастотных импульсов с регулируемой частотой и скважностью, в диапазоне частот, содержащим резонансные частоты возбуждения испаренных молекул жидкости и ее ионов.
Ящик пандоры – Новая технология расщепления воды
Разработана новая технология расщепления воды работающая от электрического потенциала пальчиковой батарейки
В самом ближайшем времени люди в разных странах получат возможность приобретать электрические автомобили от компании Toyota и других автопроизводителей, источниками энергии в которых являются водородные топливные элементы. Такие автомобили рекламируются как абсолютноэкологически чистые транспортные средства, не выбрасывающие в окружающую среду никаких вредных веществ. Но на самом деле, все такие автомобили будут пока использовать водород, получаемый из природного газа, одного из видов ископаемого топлива.
Конечно, водород можно получать и другими способами, самым распространенным из которых является электролиз, расщепление воды на водород и кислород при помощи электрического тока. Но, к сожалению, такой процесс или требует использования дорогостоящих катализаторов из платины и других драгоценных металлов, или имеет отрицательный энергетический баланс, когда количество затрачиваемой на электроэнергии существенно превышает количество химической энергии, заключенной в самом водороде.
Но в скором времени такая ситуация может измениться коренным образом благодаря работе ученых из Стэнфордского университета. Группа профессора Хонгджи Дэй (Hongjie Dai) разработала достаточно недорогое устройство электролиза, которому для работы вполне достаточно электрического потенциала, создаваемого пальчиковой батарейкой типоразмера AAA. Естественно, ключевым моментом новой технологии стал новый катализатор, который не содержит ни платины, ни иридия, а состоит из соединений никеля и железа, элементов, которые находятся в изобилии на Земле.
«В течение нескольких десятилетий ученые занимались поисками дешевого эффективного катализатора, при помощи которого процесс электролиза может идти при комнатной температуре и при низком электрическом напряжении» — рассказывает профессор Дэй, — «В конце концов, нам удалось наткнуться на сложное соединение никеля и железа, которое работает столь же эффективно, как и патина. И это стало для нас полной неожиданностью».
Основное открытие было сделано Мингом Гонгом (Ming Gong), аспирантом профессора Дэя. «Минг обнаружил никель-железное/никель-оксидное соединение, которое в роли катализатора выступает эффективней чистого никеля, чистого железа или чистых оксидов этих металлов» — рассказывает профессор Дэй, — «Это соединение очень эффективно разлагает воду на кислород и водород, хотя мы еще не полностью понимаем, какие именно процессы принимают в этом участие»
Электроды из нового катализатора достаточно стабильны, но все же они очень медленно разлагаются в течение длительного времени. Имеющиеся опытные образцы способны непрерывно работать лишь в течение нескольких дней. А для масштабного применения таких катализаторов требуется срок непрерывной работы, исчисляющийся месяцами и годами.
«Результаты наших последних исследований позволят на надеяться на получение больших сроков службы электродов из нового катализатора» — рассказывает профессор Дэй, — «И после этого нашу технологию можно будет широко использовать для прямого получения водорода при помощи энергии солнечных лучей, энергии ветра и энергии из других возобновляемых источников».
Взято: www.rostov-rod-vzv.com
* Дополнительная информация:
Наступает эра свободных источников энергии [Возрождение Руси]
«Представления о природе Вселенной, если они правильные, могут стать ключом к невиданному прогрессу цивилизации, и, если они неправильные — привести к гибели и цивилизации, и жизни на Земле…» — Николай Левашов. Теория Вселенной и объективная реальность
Современная наука со скрипом признала, что она имеет некоторое представление приблизительно о 10% окружающей нас материи. Всё остальное она назвала Тёмной Материей, и делает вид, что всё обстоит прекрасно, именно так, как и должно быть. Это всё равно, что пытаться описать айсберг, не имея никакого представления о его подводной части…
* О Сущности, Разуме и многом другом… http://www.levashov.info — официальный сайт удивительного человека, русского учёного, целителя, писателя — академика Николая Левашова
Ультразвуковое устройство и технология разложения воды и получения водорода
Предложен новый оригинальный ультразвуковой электроосмотический водородный генератор, содержащий полую камеру с водным раствором, и размещенные в нем вертикальными капиллярами, с их верхними торцами выше уровня воды, и электроды по торцам этих капилляров, присоединенные к источнику электроэнергии, причем устройство дополнено ультразвуковыми генераторами, размещенными по торцам капилляров и электронным диссоциатором водяного тумана, размещенного над уровнем жидкости, и выполненного в виде двух электродов, присоединенных к электронному генератору высокочастотного импульсного электромагнитного излучения.
Полезная модель относится к электрохимии а конкретнее, к водородной энергетике и может быть полезно использована для получения топливной смеси с высоким содержанием водорода из любых водных растворов.
Известны устройства прямого электрохимического разложения (диссоциации) воды и водных растворов на водород и кислород путем пропускания через воду электрического тока. Их главное достоинство — простота реализации. Главные недостатки известного водородного генератора-устройства-прототипа — низкая производительность, значительные энергозатраты и низкий к.п.д. Теоретический расчет требуемой электроэнергии для выработки 1 м3 водорода из воды составляет 2,94 квт-час, что пока затрудняет использование данного способа получения водорода в качестве экологически чистого топлива на транспорте. (кн. «Химическая энциклопедия», т.1, м., 1988 г., с.401)
Наиболее близким устройством (прототипом) по конструкции и того же назначения к заявленной полезной модели по совокупности признаков является известный электролизер — простейший водородный генератор, содержащий полую камеру с водным раствором(водой), электроды, размещенные в нем, и присоединенный к ним источник электроэнергии (кн. «Химическая энциклопедия», т.1, м., 1988 г., с.401)
Сущность работы прототипа — известного водородного генератора состоит в электролитической диссоциации воды и водных растворов под действием электрического тока на Н2 и О2.
Недостаток прототипа состоит в низкой производительности водорода и значительных затратах электроэнергии.
Целью данного изобретения является модернизация устройства для улучшения его энергетической эффективности.
Технический результат, данной полезной модели состоит в техническом и энергетическом усовершенствовании известного устройства, необходимом для достижения поставленной цели.
Указанный технический результат достигается тем, что известное устройство, содержащее полую камеру с водным раствором, электроды, размещенные в воде, присоединенный к ним источник электроэнергии, дополнено капиллярами, размешенными вертикально в воде, с верхними торцами выше уровня воды, причем электроды выполнены плоскими, один из которых размещены под капиллярами, а второй электрод выполнен сетчатым и размещен над ними, причем источник электроэнергии выполнен высоковольтным и регулируемым по амплитуде и частоте, причем зазор между торцами капилляров и вторым электродом и параметры электроэнергии, подаваемой на электроды выбирают по условию обеспечения максимальной производительности по водороду, причем регуляторами производительности является регулятор напряжения упомянутого источника и регулятор зазора между капиллярами и вторым электродом, причем устройство дополнено также двумя ультразвуковыми генераторами, один из которых размещен под нижним торцом этих капилляров и второй — выше их верхнего торца, причем устройство дополнено также электронным диссоциатором молекул активированного водного тумана содержащим пару электродов, размещенных над поверхностью жидкости, с их плоскостями, перпендикулярно поверхности жидкости, и электрически присоединенных к дополнительному электронному генератору высоковольтных высокочастотных импульсов с регулируемой частотой и скважностью, в диапазоне частот, перекрывающим резонансные частоты возбуждения испаренных молекул жидкости и ее ионов.
ОПИСАНИЕ УСТРОЙСТВА В СТАТИКЕ
Устройство для получения водорода из воды (фиг.1) состоит из диэлектрической емкости 1, с налитой в нее водного раствора жидкости 2, из тонко пористого капиллярного материала 3, частично погруженного в эту жидкость и предварительно смоченного в ней. В состав данного устройства входят также высоковольтные металлические электроды 4, 5, размещенные по торцам капилляров 3, и электрически присоединенные к выводам высоковольтного регулируемого источника знакопостоянного электрического поля 10, причем один из электродов 5 выполнен в виде дырчато-игольчатой пластины, и размещен подвижно над торцом капилляров 3, например, параллельно ему на расстоянии. достаточном для предотвращения электрического пробоя на смоченный фитиль 3. Другой высоковольтный электрод 4 размещен в жидкости параллельно нижнему торцу капиллярного, например, пористого материала 3 Устройство дополнено двумя ультразвуковыми генераторами 6, один из которых размещен в жидкости 2, почти на дне емкости 1, а второй размещен над уровнем жидкости, например на сетчатом электроде 5.
Устройство содержит также электронный диссоциатор молекул активированного водного тумана, состоящий из двух электродов 7, 8, размещенных над поверхностью жидкости, с их плоскостями, перпендикулярно поверхности жидкости, и электрически присоединенных к дополнительному электронному генератору 9 высоковольтных высокочастотных импульсов с регулируемой частотой и скважностью, в диапазоне частот, перекрывающим резонансные частоты возбуждения испаренных молекул жидкости и ее ионов. Устройство дополнено также колоколом 12, размещенным над емкостью 1 — сборным газовым коллектором 12, в центре которого размещен выводной патрубок для вывода топливного газа и Н2 к потребителям. По существу, узел устройства, содержащий электроды 4, 5 с блоков высокого напряжения 10 и капиллярный узел 3 4, 5, 6, является комбинированным устройством электроосмотического насоса и электростатического испарителя жидкости 2 из емкости 1.. Блок 10 позволяет регулировать скважность
импульсов и напряженность знакопостоянного электрического поля от 0 до 30 кВ/см.
Электрод 5 выполнен металлическим дырчатым или сетчатым для обеспечения возможности беспрепятственного пропускания через себя образуемого водяного тумана и топливного газа с торца капилляров 3. В устройстве имеются регуляторы и приспособления для изменения частоты импульсов и их амплитуды и скважности, а также для изменения расстояния и положения электрода 5 относительно поверхности капиллярного испарителя 3(на фиг.1 они не показаны).
ОПИСАНИЕ УСТРОЙСТВА РАБОТЫ УСТРОЙСТ
Звукохимия — Википедия
Материал из Википедии — свободной энциклопедии
Звукохимия (сонохимия) — раздел химии, который изучает взаимодействие мощных акустических волн и возникающие при этом химические и физико-химические эффекты. Звукохимия исследует кинетику и механизм звукохимических реакций, происходящих в объёме звукового поля. К области звукохимии также относятся некоторые физико-химические процессы в звуковом поле: сонолюминесценция, диспергирование вещества при действии звука, эмульгирование и другие коллоидно-химические процессы.
Основное внимание сонохимия уделяет исследованию химических реакций, возникающих под действием акустических колебаний — звукохимическим реакциям.
Как правило, звукохимические процессы исследуют в ультразвуковом диапазоне (от 20 кГц до нескольких МГц). Звуковые колебания в килогерцовом диапазоне и инфразвуковой диапазон изучаются значительно реже.
Звукохимия исследует процессы кавитации.
Впервые влияние звуковых волн на протекание химических процессов было открыто в 1927 г. Ричардом и Лумисом, обнаружившими, что под действием ультразвука происходит разложение иодида калия в водном растворе с выделением иода. В дальнейшем были открыты следующие звукохимические реакции:
Классификация звукохимических реакций[править | править код]
В зависимости от механизма первичных и вторичных элементарных процессов, звукохимические реакции можно условно разделить на следующие классы:
- Окислительно-восстановительные реакции в воде, протекающие в жидкой фазе между растворенными веществами и продуктами ультразвукового расщепления молекул воды, возникающими в кавитационном пузырьке и переходящими в раствор (механизм действия ультразвука является косвенным, и во многом он аналогичен радиолизу водных систем).
- Реакции внутри пузырька между растворенными газами и веществами с высокой упругостью пара (например, синтез оксидов азота при воздействии ультразвука на воду, в которой растворен воздух). Механизм этих реакций во многом аналогичен радиолизу в газовой фазе.
- Цепные реакции в растворе, инициирующиеся не радикальными продуктами расщепления воды, а другим веществом, расщепляющимся в кавитационном пузырьке (например, реакция изомеризации малеиновой кислоты в фумаровую, инициируемая бромом или алкилбромидами).
- Реакции с участием макромолекул (например, деструкция полимерных молекул и инициированная ею полимеризация).
- Инициирование ультразвуком взрыва в жидких или твердых взрывчатых веществах (например, в нитриде иода, тетранитрометане, тринитротолуоле).
- Звукохимические реакции в неводных системах. Некоторые из этих реакций: пиролиз и окисление насыщенных углеводородов, окисление алифатических альдегидов и спиртов, Расщепление и димеризация алкилгалогенидов, реакции галоидопроизводных с металлами (реакция Вюрца), алкилирование ароматических соединений, получение тиоамидов и тиокарбаматов, синтез металлоорганических соединений, реакция Ульмана, реакции циклоприсоединения, реакции обмена галоида, получение и реакции перфторалкильных соединений, карбеновые синтезы, синтез нитрилов и др.
Для изучения звукохимических реакций применяют следующие методы:
- Маргулис М.А. Основы звукохимии. Химические реакции в акустических полях. — М.: Высшая школе, 1984. — 272 с. — 300 экз.
3 Применение ультразвуковых колебаний для ускорения процессов в жидких средах
Многие вещества в домашнем хозяйстве используются в виде эмульсий, например, различные майонезы, маргарины, кетчупы и т.п. Дробление жировых частиц молока до микроскопических размеров, т.е. получение мелкодисперсной жировой эмульсии, почти на треть повышает питательную ценность молока. Введение в тесто жировых эмульсий вместо жира улучшает качество хлебобулочных изделий. Жировые эмульсии могут использоваться для смазки форм и листов в хлебопечении, сохраняя до 90 % используемого в настоящее время жира [24]. В парфюмерном производстве очень эффективным является использование ароматических эмульсий эфирных масел. Получение лечебных эмульсий, заключающееся в равномерном распределении лекарственного жидкого препарата в воде, является в обычных условиях сложной задачей.Устойчивость эмульсий, полученных с применением ультразвука, много выше, чем полученных обычным способом. Ещё одним важнейшим достоинством является сверхтонкое дробление лекарственного препарата (до 0,1–0,05 мкм), изменяющее его свойства настолько, что становится возможным неспецифический путь введения в организм. Например, камфорная эмульсия пригодна для внутривенного введения, а кукурузное масло для парентерального питания. Приготовленная с помощью ультразвука эмульсия оливкового масла в воде (в качестве эмульгатора использован лицитин) оказывается лишенной токсических свойств и способности вызывать жировую эмболию. При приготовлении лекарственных эмульсий с помощью фитомиксера необходимо учитывать, что для каждого вещества существует предельная концентрация получаемой эмульсии.
Максимальная концентрация эмульсий, получаемых с помощью ультразвука без применения стабилизирующих веществ, обычно не превышает 15 % (максимальная концентрация эмульсий, получаемых механическим взбиванием, меньше 15 %). Применение стабилизаторов (эмульгаторов) позволяет получать эмульсии с концентрацией более 50 %. Эта зависимость характерна в основном для эмульсий типа вода – масло, которые менее устойчивы. Полученные с помощью ультразвука эмульсии масел в воде сохраняют свою стабильность в течение нескольких месяцев и без эмульгаторов. При получении эмульсий эфирных масел (розового, укропного, мятного, пихтового, бархатцев и т.п.) эмульгаторы не используются, так как в составе масляной фазы имеется достаточное количество эмульгирующих природных компонентов – спиртов.
При получении лечебных масел (касторового, рыбьего жира, персикового, абрикосового, вазелинового, шиповникового и других) применение стабилизирующего вещества (например, поливинилового спирта в количествах, менее 1 %) позволяет получать более устойчивые эмульсии, чем без стабилизаторов. При использовании касторового масла за 1 мин обработки удается получить устойчивые эмульсии с концентрацией до 10 % без применения стабилизаторов. Эмульсия с концентрацией более 10 % получается грубодисперсной и расслаивается в течение нескольких часов.
Эмульсия касторового масла приготавливается с целью корригирования вкусовых качеств масла для внутреннего применения в педиатрической практике. Полученная в результате УЗ обработки эмульсия приятна на вкус, по виду напоминает молоко и устойчива в течение нескольких часов. Аналогичные результаты получаются при приготовлении эмульсии рыбьего жира. Эмульсия полностью утрачивает неприятный вкус и запах рыбьего жира. Приготовление эмульсий облепихового и шиповникового масел для внутреннего и наружного потребления в объемах 200–300 мл осуществляется в течение 1–2 мин.
В домашних условиях и аптеках можно приготавливать также:
– жидкость Шинкаренко (4,5 части рыбьего жира, 4,5 части воды, 1 часть поли-винилового спирта ) для наружного применения, хорошо распределяющуюся по поверхности мокнущих ожоговых ран;
– водновазелиновую эмульсию, стабилизированную поливиниловым спиртом (4:4:2), используемую как наружное защитное средство;
– для внутреннего и наружного потребления можно получать эмульсии мугроля, альбихтола, сульфиднострептоцидовую, стрептоцидовую, синтомициновую, нафталанской нефти, лечебных грязей и др.
При приготовлении эмульсий лечебных масел необходимо учитывать следующее.
1. Устойчивость эмульсий убывает в следующей последовательности: эфирные масла – рыбий жир – касторовое масло – вазелиновое масло.
2. Эмульсии эфирных и лечебных масел наиболее устойчивы при их получении при 40–45 оС.
3. С помощью ультразвука трудно получить эмульсии высокой концентрации из очень вязких жидкостей: ланолина, глицерина и т.п.
4. При приготовлении эмульсий инструмент колебательной системы рекомендуется располагать ближе к границе раздела масло – вода.
5. Во избежание загрязнений трудноудаляемыми маслами рекомендуется приготавливать эмульсии в стеклянной посуде (например, стандартных стеклянных банках, стаканах и т.п.).
Эмульгирование с помощью ультразвука является наиболее эффективным способом получения эмульсий, и в том числе эмульсий из животных и растительных жиров [25]. Анализ возможностей получения и применения эмульсий позволяет рекомендовать их для производства колбасных изделий, вводя жировые эмульсии в фарш колбасных изделий вместо жира-сырца. Добавление в фарш эмульсии свиного жира позволяет увеличить его водосвязывающую способность, а, следовательно, повысить выход продукции и улучшить её качество. Используемые в этом случае эмульсии являются высококонцентрированными и поэтому при их получении необходимо использовать мощные стабилизирующие вещества с длинными молекулами, придающими эмульсиям высокую устойчивость. Наиболее доступным и эффективным эмульгирующим и стабилизирующим веществом является желатин. Разрушение в результате УЗ воздействия структуры раствора желатина способствует эффективной стабилизации эмульсии, т.к. отдельные капельки жира попадают внутрь ячеек сплошной сетки. Благодаря способности обломков структуры желатина к быстрому сращиванию, мельчайшие капельки жира остаются внутри ячеек восстановленной сетки и после снятия ультразвукового воздействия.
Технология получения жировых эмульсий заключается в последовательном получении с помощью УЗ аппарата раствора желатина и постепенном введении в раствор эмульгируемого расплавленного жира [26]. Максимальная эмульгирующая эффективность наблюдается при содержании желатина от 0,25 % до 1,0 %. Дальнейшее увеличение концентрации желатина не дает существенного эффекта, поэтому применение желатина в концентрациях более 0,75–1,0 нецелесообразно. При отсутствии желатинового раствора можно использовать в качестве стабилизатора эмульсий бульоны, получаемые при выварке кости или варке ветчинных изделий. Еще одним из самых доступных стабилизаторов является обезжиренное порошковое молоко. В этом случае для приготовления эмульсии свиного жира с концентрацией до 30 % необходима концентрация порошкового молока до 10 %. Получаемая при этом эмульсия является однородной и устойчивой в течение длительного времени.
Известно, что введение жировых эмульсий при производстве сосисок позволяет резко сократить выдержку мяса в рассоле, снизить затраты труда и использовать в производстве сборный и костный жиры. По данным, приведенным в той же работе, питание больных колбасными изделиями, содержащими жировые эмульсии, дает положительные результаты при лечении заболеваний печени и желчного пузыря. Кроме того, при введении в фарш высокодисперсной жировой эмульсии можно получать высококачественный готовый продукт из дефростированного мяса без предварительной выдержки в посоле.
Эмульгирующее действие ультразвука используется также для получения ароматических эмульсий в пищевой промышленности. В настоящее время широко используются маслянистые экстракты пряностей вместо порошкообразных специй. Высокая ароматичность экстрактов позволяет вводить их в количестве, в 20–30 раз меньшем, чем при использовании натуральных пряностей. Водные эмульсии получают из экстракта (например, душистого перца) при требующихся соотношениях воды и экстракта. Получаемые эмульсии сохраняют стабильность в течение неcкольких недель и даже месяцев.
При приготовлении эмульсий из экстрактов специй не следует предпринимать специальных мер охлаждения обрабатываемой жидкости, т.к. интенсивность запаха душистого перца не уменьшается при нагревании эмульсии до 100 oС и даже при её кипячении.
Введение жировых эмульсий вместо жира в хлебобулочные изделия (5 % подсолнечного масла) повышает их качество. Так, удельный объем хлеба увеличивается в этом случае в 1,3 раза, пористость в 1,1 раза, сжимаемость в 1,11 раза.
Во всех перечисленных случаях применение эмульсий, полученных с помощью ультразвука, дает положительные результаты.
Ультразвук в водоподготовке
Ультразвук в системах водоснабжения применяется для обнаружения трещин и других повреждений на трубопроводах и технологическом оборудовании с помощью методов ультразвуковой дефектоскопии, находит также применение в контрольно-измерительных приборах для определения уровня жидкости в резервуарах и для установления скорости течения воды в напорных и безнапорных каналах (ультразвуковые водосчетчики). Ультразвуковая обработка оборудования используется для удаления минеральных отложений. В водоподготовке ультразвук применяется для обеззараживания питьевой воды и удаления из нее примесей и загрязнений.
Подписаться на статьи можно на главной странице сайта.
По своей физической сущности ультразвук представляет собой упругие волны наподобие обычных звуковых волн, но с большими частотами от 15 кгц до 106 кгц. Такие частоты колебаний придают ультразвуку уникальные возможности по своему распространению и затуханию в воде. Это проявляется в дисперсии звука, а также в образовании зон разряжений и уплотнений. Эти зоны образуют своеобразную дифракционную решетку, на которой происходит дифракция световых волн в оптически прозрачных средах, например, чистой воде.
Другая особенность ультразвука – большая интенсивность колебаний при небольших амплитудах. Это приводит к высокой плотности потока энергии, которая вызывает в воде явление кавитации – рост пузырьков газа в воде. В этих пузырьках возникают области высоких давлений и локальных разряжений. Кавитация в воде наступает уже при частоте колебаний 20 кгц и плотности потока энергии 0,3 Вт/см2. При больших частотах – 100–10 000 кгц и интенсивности в несколько Вт/см2 происходит образование фонтана или тумана.
Ультразвук получают с помощью генераторов, которые можно условно разбить на две группы. К первой группе относятся механические излучатели, однако они обладают невысоким КПД и широким спектром излучаемых частот, что сильно ограничивает область их использования. Ко второй, основной группе ультразвуковых генераторов относятся все виды преобразователей, которые тем или иным способом преобразуют электрические колебания в механические.
Для получения низкочастотных колебаний используются электрические излучатели, работающие на основе эффекта магнитострикции с сердечниками из никеля, ферритов и других сплавов. Магнитострикционные излучатели представляют собой цилиндрические или кольцевые сердечники с обмоткой, на которую подается переменный электрический ток определенной частоты. Получение ультразвука средней и высокой частот производится главным образом за счет пьезоэффекта при использовании кристаллов кварца, ниобата лития и дигидрофостфата калия. Такие излучатели представляют собой пластины из этих материалов, к которой подведены электрические провода для подачи переменного электрического тока. Во всех видах излучателей для увеличения интенсивности излучения применяют ультразвуковую фокусировку, а для увеличения амплитуды – концентраторы ультразвукового излучения.
Очистка воды от примесей
На кавитации, вызываемой ультразвуковым воздействием, основан метод удаления из воды примесей железа, марганца, а также растворенных газов. В нем применяется механический ультразвуковой генератор, выполненный в виде эжектора. При протекании воды через этот эжектор образуется паровоздушная смесь со скоростью распространения, превышающей звуковой барьер. Это вызывает кавитацию и приводит к дроблению воды до субмикронных размеров с резким уменьшением, вплоть до 1 мин, времени окисления кислородом воздуха двухвалентного железа (Fe +2) до трехвалентного (Fe +3). При этом также окисляются примеси марганца. Это связано с тем, что скорость распространения звуковых волн в водновоздушной среде сильно падает и достигает минимума при 27 м/с (около 97 км/ч). Поэтому сверхзвуковые скорости в эжекторе, разработанном фирмой «Тензор» (Дубна, Московская обл.), могут быть достигнуты при невысоких давлениях в водонапорной линии, которые обычно составляют всего 2,5–3,0 атм.
Ультразвуковое обеззараживание
Одним из способов обеззараживания воды в процессе водоочистки и обработки стоков является ультразвуковая обработка, которая основана также на использовании кавитации, вызванной ультразвуком. Образование высоких давлений при протекании кавитации приводят к разрыву оболочек клеток микроорганизмов и их дальнейшей гибели. Важной особенностью ультразвукового обеззараживания питьевой воды является то, что бактерицидное действие ультразвука чрезвычайно сильно зависит от интенсивности колебаний. Для полного уничтожения патогенной микрофлоры, включая ряд споров и грибков, необходимы достаточно большие дозы поглощенной энергии. В ряде случаев это очень затруднительно, и поэтому для широкого практического применения используется комбинированное воздействие на воду, включающее ультразвуковое и УФ облучение. Примером может служить серия установок «Лазурь–М» производства компании «Сварог» (Москва), в которой использовано УФ излучение с максимумами 253,7 и 185 нм совместно с ультразвуковым воздействием. Эти установки выпускаются в модульном исполнении производительностью от 0,5 до 50 м3/ч и используются как в отдельных коттеджей, так и в населенных пунктах и на промышленных предприятиях.
Разрушение органических загрязнений воды
Недавно в университете Purdue (США) был разработан эффективный метод использования ультразвука для очистки воды, который заключается в разрушение примесей органического происхождения под действием кавитации, сопровождающейся сонолюминесценцией. Суть этого явления заключается в том, что в лопающемся пузырьке при высоких температурах и давлении находится газ, который светится. Этого излучения в сочетании с температурным и манометрическим воздействием оказывается достаточно для разрушения примесей органического происхождения. Предполагается, что ультразвуковые технологии в будущем будут удачной альтернативой традиционным методам, использующим хлор и озон. Дело в том, что под воздействием этих соединений происходит обеззараживание и очистка воды, но также образуются различные органические соединения, обладающие токсичностью. Ожидается, что в результате такой обработки органические примеси распадаются на относительно безвредные компоненты. Разработчики считают несомненными преимуществами этого метода отсутствие химических реагентов и легкость его применения на практике.
Рис. 1 Ультразвуковые преобразователи, применяющиеся в составе ультразвуковых водосчетчиков.
Рис. 2 Ультразвуковой противонакипной аппарат «ЗЕВСОНИК В-2»
Рис. 3 Установка для обеззараживания воды комбинированным воздействием ультразвука и ультрафиолетового облучения «Лазурь М 250».
Статья из журнала «Аква-Терм» ноябрь-декабрь, № 6 (88), 2015. Рубрика «Водоснабжение и водоподготовка»
Опубликовано: 04 декабря 2015 г.
вернуться назад