Site Loader

Содержание

Как работает реле | Сила Тока .NET

Что такое реле?

Реле — электро-механическое устройство, предназначенное для замыкания и размыкания электроцепи при определенном входящем сигнале или напряжении.

Простыми словами: Подавая определенный ток на электроцепь с реле, оно замыкает (размыкает) другую электроцепь. Схема для наглядности:

Так же рассмотрим анимированный ролик работы реле в качестве включения электро духовки. Когда замыкается цепь 5V, релейный электромагнит притягивает якорь на пружине и замыкает цепь питания духовки.

Как выглядит реле

Обычно реле состоит из электромагнита (катушка с ферромагнитной серцевиной), пары контактов, и якоря, который соединяет контакты. Все это располагается в токо- не проводящем корпусе. На вид это пластиковый коробочек, размерами в основном 5см х 5см х 5см, имеющий минимум четыре выходящих контакта. Размеры могут быть как сильно больше, так и сильно меньше. Материал оболочки реле может быть и прозрачный и не прозрачный.

Прозрачный корпус лучше, тем, что вы безошибочно определите какие контакты за что отвечают. Т.е. детально рассмотрите строение реле и какие контакты за что отвечают.

 

Как обозначается реле

При обозначении на принципиальной схеме, реле имеет несколько обозначений, в зависимости от типа реле. Основные графические обозначения большинства типов реле.

Существует три большие группы релюшек.

  1. Нормально разомкнутые. В холостом состоянии такие реле размыкают цепь и при подаче управляющего сигнала (тока) замыкают цепь. Таких реле большинство.
  2. Нормально замкнутые. В холостом состоянии цепь замкнута, а при срабатывании, цепь размыкается. И у первой и во второй группы, обычно 4 выходящих контакта: 2 на управляющий сигнал и 2 на цепь, которую нужно замыкать (размыкать)
  3. Универсальные. С переключающимися контактами. Такое реле может работать и на замыкание и на размыкание.

Каждое реле, помимо типа, различается ещё и по отдельным параметрам.

  1. По входящему (управляющему) току (вольт).
  2. По силе тока, которую реле может пропускать в цепи (ампер).

Входящий (управляющий) ток, указывается либо на корпусе либо непосредственно на катушке, если корпус прозрачный. Сила тока указывается на корпусе в амперах.

Как подключить реле

Подключение реле следует проводить в зависимости от его типа. Тип, а так же какие контакты за что отвечают, указано на пластиковом корпусе. Если корпус прозрачный, и схемы подключения нет, первоначально смотрите на расположение катушки, выходящие контакты из катушки будут управляющими контактами. Далее, смотрите какие контакты с какими будут соединяться, если запитать катушку и она притянет к себе якорь. В любом случае, если вы покупаете новое реле в радиомагазине, продавец всегда расскажет и покажет, что к чему подсоединять. Если вы меняете реле, то посмотрите, как было подключено старое реле.

Как проверить реле

Для проверки реле на работоспособность, хорошо бы заиметь мультиметр или тестер с функцией прозвонки.

  1. Для начала прозвоните контакты входящего сигнала (катушка). Контакты управляющего сигнала должны звониться между собой с определенным сопротивлением. Примерные величины сопротивления обмотки катушки в оммах указаны в таблице, в зависимости от подаваемого на катушку напряжения:

Если сопротивление больше во много крат от рекомендуемого или вообще контакты катушки звонятся «на коротко», скорее всего катушка и реле в общем — неисправны.

Так же, хорошо подать управляющий ток на катушку реле и замерить мультиметром, замыкается ли цепь. Неисправность в таком случае может проявляться в обугливании замыкающих контактов. В таком случае следует заменить реле, так как оно рано или поздно все равно выйдет из строя.

Зачем нужно реле

Реле в основном примеряется в силовых платах или в исполняющих элементах. Реле само по себе в схему не ставится.

Рассмотрим применение реле управления  работы ТЭНа в кофейном автомате.

Есть две платы: плата процессора, в которой заложены все параметры (температура, рецептура, цены…) и силовая плата, которая на основании указаний от  процессора управляет моторами, ТЭНами, электро-клапанами. Тен нагревает воду в бойлере автомата. Допустим в меню заложена минимальная температура 90 градусов Цельсия. Обычно в бойлере установлено 2 термодатчика: аварийный, для предотвращения перегрева и основной.

Когда процессор кофейного автомата, через основной термодатчик, «видит» снижение температуры ниже заданной, он (процессор) посылает управляющий сигнал на реле управления теном на силовой плате. Реле замыкается и ТЭН нагревает воду в бойлере. Когда вода нагревается до положенных 90°С, процессор «видит» это через термодатчик и отключает реле, цепь размыкается  и ТЭН обесточивается.

Обычно процессор или мозг устройства работает при напряжении 1,5V — 5V. А исполнительные механизмы работают при напряжении 220 и более вольт. Реле используется, как посредник между платой процессора и силовой платой.

принцип работы прибора, особенности подсоединения к электроцепи

Реле нашли широкое применение не только в промышленности, но и в быту. Эти устройства предназначены для коммутирования электрических сетей и управления различными электроприборами. Если разобраться в их конструктивных особенностях, принципе работы, а также в схеме реле, то появится возможность самостоятельно решать различные практические задачи.

Принцип действия

Реле классифицируются по различным признакам. В соответствии с принципом работы, приборы могут быть электромагнитными, электронными, тепловыми и т. д. Так как в быту чаще всего используются устройства первых двух типов, то их и стоит рассмотреть подробнее.

Магнитное устройство

Реле этого типа имеют довольно простую конструкцию и привлекательную стоимость. При подаче тока на катушку в ее обмотке создается ЭДС. Это приводит к появлению в сердечнике магнитного поля, притягивающего якорь. Этот элемент конструкции соединен с подвижными контактами, которые и замыкают неподвижные. Если сила тока падает до определенной величины, пружина возвращает якорь в начальное положение и цепь размыкается.

Для обеспечения более высокой точности работы в конструкцию электромагнитного прибора часто вводятся резисторы. Также эти устройства оснащаются средствами защиты от перепадов напряжения и искрения.

Решить поставленные задачи можно с помощью конденсаторов. Среди преимуществ электромагнитных реле можно отметить невысокую стоимость, устойчивость к помехам, а также возможность коммутировать электроцепи с большими нагрузками, имея при этом компактные габариты.

Однако есть у прибора и некоторые недостатки:

  • Сравнительно невысокая скорость срабатывания. Это существенно ограничивает область применения реле в роли защитного устройства.
  • Поверхности контактов подвержены окислению и деформации под воздействием искр. В результате срок эксплуатации прибора сокращается.
  • Во время работы возникают помехи. Для защиты электронных блоков реле приходится экранировать.

Электронный прибор

Использование полупроводников при изготовлении реле позволяет избавиться от многих недостатков, свойственных электромагнитным моделям. Транзистор является тем элементом, который способен отлично справляться с ролью коммутатора. При подаче на переход база-эмиттер напряжения с определенными характеристиками через цепь коллектор-эмиттер начнет проходить электроток.

Его номинальное значение будет значительно выше в сравнении с цепью базы. Именно это свойство транзисторов используется для усиления сигналов. Если сравнивать электромагнитные и электронные реле, то вторые обладают следующими преимуществами:

  • Полупроводниковые переходы не теряют работоспособность с течением времени.
  • Обладают небольшими габаритами и весом.
  • Высокая скорость срабатывания.
  • Даже при сотнях тысяч переключений в секунду электронные приборы не выходят из строя.

К сожалению, здесь также не обошлось без недостатков. Среди них основным является неустойчивость к электромагнитным помехам. Некоторые устройства могут быть выведены из строя статическим зарядом.

Кроме этого, во время работы прибора выделяется большое количество тепловой энергии, которую необходимо отводить.

Особенности подключения

Существует много видов реле. Изучить схему подключения реле можно на примере промежуточного устройства. Оно нашло широкое применение в различных системах автоматики и управления. Подсоединить прибор к электроцепи можно параллельно либо последовательно. Чаще всего устройства оснащены несколькими парами контактов.

Следует помнить, что они могут быть двух типов:

  • Нормально открытые. Обозначаются литерами NO.
  • Нормально закрытые. Маркируются буквами NC.

За нормальное состояние прибора принимается отсутствие сигнала на обмотке. Так как у катушек нет определенной полярности, то контакты можно подсоединять в произвольном порядке. Прибор устанавливается между исполнительным механизмом либо устройством и источником задачи. Однако он может использоваться и в качестве контактора.

Это устройство оснащено четырьмя группами контактов. Три из них используются для управления нагрузкой, а одна необходима для удержания электротока на обмотке. Также можно подключить реле к датчику движения для автоматического управления системой освещения помещения.

Схема такого подсоединения довольно проста:

  • Катушка прибора соединяется с датчиком.
  • Силовой контакт подключается к системе источников света.

Следует помнить, что универсальной рекомендации по подключению приборов нет. Схемы подсоединения подбираются в соответствии с решаемыми задачами. Они во многом похожи, и если разобраться с одной из них, проблем при использовании других возникнуть не должно.

Принцип работы реле контроля напряжения

Реле напряжения — это устройства с автоматическим срабатыванием, которые защищают электрическую технику от возможного понижения / повышения напряжения (относительно номинального значения 230 В) в однофазных сетях. Есть приборы, предназначенные для тех же функций при трехфазном питании. При отклонении значений напряжений в любую сторону такое реле отключит нагрузку. Что, в свою очередь, исключит негативное влияние бросков напряжения на эксплуатируемое электрооборудование.

Причинами отклонений напряжения в сети могут быть такие факторы:

— При обрыве воздушной линии электропередач напряжение может достигать 380 В, что вызовет перегорание большинства бытовых электроприборов.

— Разрыв нулевого провода ветром либо по другим причинам приводит к возрастанию напряжения и выходу электроприборов из строя.

— Если объект (здание) находится на большом расстоянии от понижающего трансформатора, возрастают потери в соединительных проводах, что ведет к сильному понижению значений напряжения на входе в дом с последующей поломкой техники.

— Если в сеть включен потребитель значительной мощности, то эта фаза перегружена. В результате напряжение на ней падает ниже номинального, приводя к сгоранию электротехники.

Следует помнить, что реле напряжения работают в диапазоне напряжений 100 – 420 В. Поэтому они не в состоянии защитить электрические приборы от импульсных молниевых разрядов, достигающих несколько тысяч вольт.

Конструктивная схема всех типов реле напряжений состоит из 2-х основных частей – силовой и электронной. В составе электроники имеется микропроцессор, предназначенный непосредственно для контроля напряжения. Если его значение вышло за заданные границы, микропроцессор подает сигнал на силовую часть реле. А она оперативно (от долей до нескольких секунд) отключает напряжение от нагрузки. Эта характеристика реле напряжения называется его быстродействием.

Пределы срабатывания (по напряжению) у всех реле RBUZ составляют:

— Нижний 120 – 210 В.

— Верхний 220 – 280 В.

После стабилизации напряжения в сети у реле срабатывает таймер задержки подключения приборов (3 — 600 с). Это дополнительный фактор защиты компрессорного оборудования, которое чувствительно к частым повторным пускам. Для него рекомендуется устанавливать время задержки 120 — 180 с.

Настройка реле (пороги срабатывания, время задержки и т. д.) осуществляется при помощи трех кнопок (механических либо сенсорных).

У всех реле торговой марки RBUZ (кроме D16, D25-63) реализован алгоритм True RMS, который обеспечивает более точное измерение напряжения и отключение питания от нагрузки до того, как последняя получит повреждения. Благодаря True RMS уменьшается влияние сетевых помех на измерение напряжения, форма которого отлична от синусоиды.

Во всех моделях реле напряжения RBUZ (исключая D16, D25-63) имеется профессиональная модель времени отключения нагрузки. Она не отключает защищаемое оборудование при безопасных по величине и длительности отклонениях напряжения. За основу взята кривая «ITIC (CBEMA) Curve» (http://www. home.agilent.com/upload /cmc_upload/All/1.pdf?&cc=UA&lc=eng). Она называется графиком терпимости подключаемого оборудования и содержится в прошивке микропроцессора реле напряжения. В том случае, когда забросы напряжения, а также их продолжительность не больше, чем запас прочности подключаемой нагрузки, отсоединение питания с нее не делается.

Все реле контроля напряжения RBUZ снабжены энергонезависимой памятью, с помощью которой сохраняются все настройки параметров их работы и критические значения напряжения.

Также они (кроме линии D) имеют встроенную защиту от перегревов. А в линейке Dt применена интересная функция. С целью увеличения продолжительности ресурса ее контактной группы и снижения ее искрения нагрузку коммутируют в максимальной близости к моменту перехода синусоиды через нулевое значение.

 

Оцените новость:

Диаграммы работы (функции) реле времени

  B — Relpol S.A. Цикличная работа, управляемая контактом S Напряжение питания U должно подаваться на реле времени непрерывно. При включении контакта управления S, сразу срабатывает
исполнительное реле R. Каждое последующее включения контакта управления S,приводит к изменению состояние исполнительного реле на противоположное (свойство бистабильного реле).
  Bi — Relpol S.A. Симметричная цикличная работа, начинающаяся от срабатывания Включение напряжения питания U, начинает отсчёт установленного времени Т, с одновременным включением исполнительного реле R. После отсчёта времени Т, исполнительное реле R возвращается в начальное состояние и начинается повторный отсчёт времени Т. Цикличная работа реле длится до момента выключения напряжения питания U.
  Bp — Relpol S.A. Симметричная цикличная работа, начинающаяся от перерыва Включение напряжения питания U, начинает отсчёт установленного времени T. После отсчёта времени, наступает срабатывание исполнительного реле R и снова начинается отсчёт времени Т. Цикличная работа реле длится до момента выключения напряжения питания U.
  E — Relpol S.A. Задержка включения Включение напряжения питания U, начинает отсчёт установленного времени T — задержка включения исполнительного реле R. После отсчёта времени Т, исполнительное реле R срабатывает и находится в позиции работы до момента отключения напряжения питания U.
  E(r) — Relpol S.A. Задержка включения с функцией Сброс Включение напряжения питания U инициирует отсчет установленного времени T1. После отсчета времени T1 включается исполнительное реле R. Если контакт управления S будет замкнут в процессе отсчета времени T1, то отсчет времени будет остановлен. После размыкания контакта S отсчет времени T1 начинается с начала. После отсчета времени T1 включается исполнительное реле R и это состояние длится до момента отключения напряжения питания U или до момента, когда контакт управления будет снова замкнут.
  E(S) — Relpol S.A. Задержка включения, с остановкой отсчета времени контактом S Включение напряжения питания U инициирует отсчет установленного времени T1. Если в процессе отсчета времени T1 контакт управления S будет замкнут, то отсчет времени T1 будет остановлен на время замыкания контакта S. Размыкание контакта управления S запускает дальнейший отсчет времени T1. После выполнения отсчета времени T1 исполнительное реле R включается и остается в этом состоянии до момента отключения питания U. 
  ER — Relpol S.A. Задержка включения и задержка выключения управляемая контактом S. Независимые установки времени T1 и T2 Вход реле времени непрерывно запитывается напряжением U. Замыкание контакта управления S начинает отсчет времени T1, а после его отсчета включается исполнительное реле R. Размыкание контакта управления S начинает отсчет времени T2 — задержка выключения исполнительного реле R, а по истечении времени исполнительное реле R выключается. Если во время отсчета времени T2 контакт управления S будет замкнут, то отсчитанное время обнуляется, a исполнительное реле R остается включенным. Если контакт управления S замкнуть на время короче чем T1, то система не включит
исполнительного реле R.
  Es — Relpol S.A. Задержка включения управляемая контактом S Напряжение питания U должно подаваться на реле времени непрерывно. Если контакт управления S будет замкнут, начнётся отсчёт установленного времени Т. По истечении времени Т, включается реле R. Такое состояние удерживается до момента размыкания контакта управления S. Если контакт управления будет разомкнут, то реле R выключается. Когда контакт управления S будет разомкнут перед истечением времени Т, реле R не сработает и произойдет сброс отсчитанного времени Т.
  Esa — Relpol S.A. Задержка включения и выключения, управляемая контактом S Напряжение питания U должно подаваться на реле времени непрерывно.
Включение контакта управления S, начинает отсчёт установленного времени T — задержка включения исполнительного реле R. После отсчёта времени Т, исполнительное реле R включается. Выключение контакта управления S, вновь начинает отсчёт установленного времени Т — задержка выключения исполнительного реле R, по отсчёту этого времени исполнительное реле R возвращается в исходное состояние. Если во время отсчёта задержки включения исполнительного реле R , время включения управляющего контакта S будет меньше чем установленное время задержки T, то исполнительное реле R сработает по истечению установленной задержки T и будет находится во включенном состоянии на протяжении времени Т. Во время срабатывания исполнительного реле R, замыкание контакта управления S, не влияет на реализуемую функцию.
  Esf — Relpol S.A. Задержка включения управляемая контактом S, без продления периода времени T Напряжение питания U должно подаваться на реле времени непрерывно. Включение контакта управления S, начинает отсчёт установленного времени T — задержка включения исполнительного реле R. После отсчёта времени Т, исполнительное реле R включается и остается в этом состоянии до момента следующего включения котакта S, котрое приводит к немедленному выключению исполнительного реле R на период Т, а по отсчёту времени Т, исполнительное реле R опять включается. В период отсчёта времени Т, срабатывание управляющего контакта S не влияет на состояние исполнительного реле R. Следующее включение исполнительного реле R возможно только по завершению текущего цикла.
  Esp — Relpol S.A. Задержка включения — один цикл, запуск по замыканию контакта S. Напряжение питания U должно подаваться на реле времени непрерывно. Включение контакта управления S, начинает отсчёт времени T, а по его истечению, включается исполнительное реле R и остается в этом состоянии до момента отключения питания U. Когда исполнительное реле R включено, включение и выключение управляющего контакта S не изменяет его состояния.
  Est — Relpol S.A. Задержка включения, запуск по замыканию управляющего контакта S, с продлением времени T Напряжение питания U должно подаваться на реле времени непрерывно. Включение контакта управления S, начинает отсчёт времени T, a по его истечению, включается исполнительное реле R и остается в этим состоянии до очередного включения управляющего контакта S или до момента отключения напряжения питания U. Включение контакта управления S, в тракте отсчёта времени Т, приведёт к сбросу отсчитанного ранее периода времени и начнется отсчёт времени Т сначала.
  EWa — Relpol S.A. Задержка выключения и отсчёт времени выключения, запуск по размыканию управляющего контакта S. Независимые установки времени T1 и T2 Напряжение питания U должно подаваться на реле времени непрерывно. Включение контакта управления S, включает исполнительное реле R. Выключение контакта управления S, начинает отсчёт времени T1, а по его истечению исполнительное реле R возвращается в начальное состояние на время Т2. Следующее срабатывание исполнительного реле R наступит по истечению времени T2, когда в момент окончания отсчёта времени, контакт управления S будет замкнут. Во время отсчёта времени Т1 и Т2 состояние контакта управления S не имеет значения.
  EWf — Relpol S.A. Задержка включения и задержка выключения, управляемые контактом S. Независимые установки времени T1 и T2 Вход реле времени непрерывно запитывается напряжением U. Замыкание контакта управления S начинает отсчет времени T1. По истечении времени T1 реле R включается. Размыкание контакта управления S начинает отсчет времени T2 — задержка выключения исполнительного реле R. После отсчета времени T2 исполнительное реле R выключается.
  EWs — Relpol S.A. Задержка включения и включение на установленное время, запуск по замыканию управляющего контакта S. Независимые
установки времени T1 и T2
Напряжение питания U должно подаваться на реле времени непрерывно. Замыкание контакта управления S запускает отсчёт установленного времени Т1. По истечении времени Т1, исполнительное реле R включается и начинается отсчёт установленного времени Т2. По истечении времени Т2, исполнительное реле R выключается. В течение отсчёта времени, контакт управления S может замыкаться и размыкаться любое количество раз без влияния на исполнительное реле R. Только после окончания полного цикла, новое замыкание контакта S запустит отсчёт времени Т1, после которого наступит срабатывание реле R и отсчёт времени Т2.
  EWu — Relpol S.A. Задержка включения на установленное время. Независимые установки времени T1 и T2 Включение напряжения питания U начинает работу от отсчета времени T1, а по истечении времени исполнительное реле R включается на время T2 . После отсчета времени T2 исполнительное реле R выключается.
  Ii — Relpol S.A. Циклическая работа начинающаяся от включения. Независимые установки времени T1 и T2 Включение напряжения питания U, включает исполнительное реле R и начинается отсчёт установленного времени работы T1. По истечению времени T1, исполнительное реле R выключается и начинается отсчёт времени паузы T2. По истечении времени паузы T2, реле выхода R включается снова. Далее цикл повторяется до отключения напряжения питания U.
  Ip — Relpol S.A. Циклическая работа начинающаяся с отключения. Независимые установки времени T1 и T2. Включение напряжения питания U, начинает отсчёт установленного времени задержки T1. По истечению времени задержки T1 , срабатывает исполнительное реле R и начинается отсчёт времени T2. По истечении времени работы T2, исполнительное реле R снова включается. Далее цикл повторяется и длится до момента отключения напряжения питания U.
  NWu — Relpol S.A. Включение на установленное время — выключение на установленное время — постоянное включение, управляемые контактом S. Независимые установки времени T1 и T2 При включении напряжения питания U, когда управляющий контакт S закрыт, начинается исполнение функции — с включения исполнительного реле R на время T1, а по его окончанию, исполнительное реле R выключается на время Т2, а по его истечению исполнительное реле R включается окончательно. Во время работы реле, включение контакта управления S, приведет к Сброс и к началу работы согласно функции NWu. 
  Pi — Relpol S.A. Цикличная работа начинающаяся от срабатывания. Независимые установки времени T1 и T2 Включение напряжения питания U начинает циклическую работу от включения исполнительного реле R на время T1, после которого наступает
выключение исполнительного реле R на время T2. Циклическая работа длится до момента отключения напряжения питания U.
  Pi(S) — Relpol S.A. Цикличная работа начинающаяся от срабатывания. Независимые установки времени T1 и T2. С управлением по контакту S. Включение напряжения питания U начинает циклическую работу от включения исполнительного реле R на время T1, после которого наступает
выключение исполнительного реле R на время T2. Циклическая работа длится до момента отключения напряжения питания U. Замыкание контакта управления S мгновенно останавливает отсчет времени. Размыкание контакта управления S снова запускает отсчет времени.
  Pp — Relpol S.A. Цикличная работа начинающаяся от перерыва. Независимые установки времени T1 и T2 Включение напряжения питания U начинает циклическую работу от отсчета времени перерыва T1 — времени выключения исполнительного
реле R, после которого наступает включение исполнительного реле R на время T2. Циклическая работа длится до момента отключения напряжения питания U
  Pp(S) — Relpol S.A. Цикличная работа начинающаяся от перерыва. Независимые установки времени T1 и T2.  С управлением по контакту S. Включение напряжения питания U начинает циклическую работу от отсчета времени перерыва T1 — времени выключения исполнительного реле R, после которого наступает включение исполнительного реле R на время T2. Циклическая работа длится до момента отключения напряжения питания U. Замыкание контакта управления S мгновенно останавливает отсчет времени. Размыкание контакта управления S снова запускает отсчет времени.
  PWM — Relpol S.A. Широтно-импульсная модуляция Устанавливаем в реле время одиночного цикла Tz, которое доступно для установки. Установку выполняем потенциометром выбора диапазона времени. Затем устанавливаем время T — время включения исполнительного реле R, эту установку реализуем потенциометром точной установки времени. Возможное для установки время T, находится в пределах от 0,1 до 1,0 диапазона времени (цикла Tz). При включении питания U, сразу срабатывает исполнительное реле R и начинается отсчёт установленного времени T, а по его истечению исполнительное реле возвращается в исходное состояние на время оставшееся до заполнения установленного времени Tz. По истечении времени Tz, начинается очередной цикл, который длится до момента отключения питания U. В течении реализации функции PWM, есть возможность изменения времени включения исполнительного реле R и это изменение не влияет на время длительности цикла Tz. Измененное время включения исполнительного реле R, будет реализовываться со следующего раза после изменения цикла Tz.
  R — Relpol S.A. Задержка выключения управляемая контактом S Напряжение питания U должно подаваться на реле времени непрерывно. При включении управляющего контакта S, немедленно срабатывает исполнительное реле R. При выключение управляющего контакта S, начинается отсчёт установленного периода времени Т, после чего исполнительное реле R возвращается в исходное состояние. Если управляющий контакт S будет повторно включен, даже перед истечением времени T, то ранее отсчитанное время обнуляется, a исполнительное реле останется включенным. Задержка выключения исполнительного реле R начнется с момента очередного выключения управляющего контакта S
  Ra — Relpol S.A. Задержка выключения, управляемая контактом S, без продления периода времени T Напряжение питания U должно подаваться на реле времени непрерывно. При включении контакта управления S, сразу срабатывает исполнительное реле R. Выключение контакта управления S начинает отсчёт установленного времени задержки выключения исполнительного реле R. После отсчёта времени Т, исполнительное реле R возвращается в исходное состояние. Изменение состояния управляющего контакта S, во время отсчёта времени Т, не влияет на реализуемую функцию
  SD — Relpol S.A. Пуск звезда-треугольник При включение напряжения питания U наступает замыкание исполнительного контакта „звезда”  и начинается отсчёт установленного времени Т1. По истечению времени T1 контакт „звезда” размыкается и реле начинает отсчёт задержки T2. По истечению времени T2 включается контакт „треугольник”.
  T — Relpol S.A. Генерирование импульса 0,5 сек. по истечению времени T Включение напряжения питания U, начинает отсчёт времени T, после чего исполнительное реле включается на период 0,5 сек. (время срабатывания замыкающего контакта исполнительного реле)
  Wa — Relpol S.A. Включение на установленное время, запуск по размыканию управляющего контакта S Напряжение питания U должно подаваться на реле времени непрерывно. Включение контакта управления S, не вызовет отсчёт времени T и срабатывание исполнительного реле R. Только при выключении контакта управления S, происходит немедленное срабатывание исполнительного реле R и начинается отсчёт установленного времени T. После отсчёта времени Т, исполнительное реле возвращается в исходное состояние. Во время отсчёта времени Т, контакт S может замыкаться и размыкаться без влияния на исполнительное реле R. Только по истечению времени Т, включение и выключение S, вновь вызовет срабатывание исполнительного реле R и отсчёт времени Т.
  Wi — Relpol S.A. Включение на установленное время, управляемое включением контакта управления S, с функцией выключения исполнительного реле R перед истечением времени Т (свойство бистабильного реле). Напряжение питания U должно подаваться на реле времени непрерывно. Включение контакта управляения S, вызовет срабатывание исполнительное реле R и начинается отсчёт установленного времени T. После отсчёта времени Т, исполнительное реле возвращается в исходное состояние. Новое включение исполнительного реле R на время T, реализуется очередным включением управляющего котакта S. Если во время отсчёта времени Т, наступит снова срабатывание контакта S, то исполнительное реле R будет немедленно отключено, a отсчитанный период времени будет сброшен. Во время отсчёта времени Т, выключение контакта управления S, не влияет на реализуемую функцию.
  Ws — Relpol S.A. Однократное включение на установленное время, запуск по замыканию управляющего контакта S Напряжение питания U должно подаваться на реле времени непрерывно. При замыкании управляющего контакта S, сразу срабатывает исполнительное реле R и начинается отсчёт установленного времени T. После отсчёта времени Т, исполнительное реле выключается. Во время отсчёта времени Т, управляющий контакт S может размыкается и замыкается без влияние на реализуемую функцию. Только по истечению времени Т, включение  исполнительного контакта S , вновь вызовет срабатывание исполнительного реле и отсчёт времени T.
  Wst — Relpol S.A. Включение на установленное время, запускаемое включением контакта S, с продлением времени Т — задержка включения исполнительного реле R. Напряжение питания U должно подаваться на реле времени непрерывно. При включении контакта управляения S, сразу срабатывает исполнительное реле R и начинается отсчёт установленного времени T. После отсчёта времени Т, исполнительное реле возвращается в исходное состояние. Очередное включение контакта управляения S, приводит к немедленному срабатыванию исполнительного реле R на время Т. Замыкание управляющего контакта во время отсчёта времени Т, приведет к сбросу отсчитанного ранее периода времени и начнется отсчёт времени Т сначала.
  WsWa — Relpol S.A. Включение на установленные время Т1 и Т2, управляемое контактом S. Независимые установки времени T1 и T2 Напряжение питания U должно подаваться на реле времени непрерывно. Включение контакта управляения S, включает исполнительное
реле R на время T1, а по его истечению реле R возвращается в исходное состояние. Выключение контакта управления S, приведёт снова к включению исполнительного реле R на время Т2. Если в момент отсчёта времени Т1, управляющий контакт разомкнуть, то исполнительное реле R остаётся включённым на период времени T2. Если в момент отсчёта времени Т2, управляющий контакт S будет замкнуть, то исполнительное реле R остаётся включённым на период времени T1.
  Wt — Relpol S.A. Контроль очерёдности импульсов. Включение продлевается очередными импулсами / замыканиями контакта S. Независимые установки времени T1 и T2. Включение питания U приводит к включению исполнительного реле R и начинается отсчёт установленного времени T1. После отсчёта времени Т1, начнается отсчёт времени Т2, исполнительное реле R остается во включенном состоянии. Чтобы исполнительное реле R оставалось во включенном состоянии, во время отсчёта времени Т2 должно наступить замыкание управляющего контакта S, а затем его выключение (одиночный импульс), который приведет к обнулению уже отсчитанного времени и снова начнется отсчёт времени Т2. Если перед истечением времени Т2 не поступит одиночный импульс, то исполнительное реле R выключится, а его включение будет возможно только после снятия напряжения питания U и подаче его снова.
  Wu — Relpol S.A. Включение на установленное время При включении напряжения питания U, сразу срабатывает исполнительное реле R и начинается отсчёт установленного времени T. После отсчёта времени Т, исполнительное реле R возвращается в исходное состояние.
  Wu(r) — Relpol S.A. Включение на установленное время с функцией Сброс Включение напряжения питания U приводит к мгновенному включению исполнительного реле R на установленное время T1. Когда контакт управления S будет замкнут, отсчет времени T1 будет остановлен на время замыкания контакта S. После размыкания контакта S, время T1 снова отсчитывается с начала. После отсчета времени T1 исполнительное реле R выключается.
  Wu(S) — Relpol S.A. Включение на установленное время, с остановкой отсчета времени замыканием контакта S Включение напряжения питания U приводит к мгновенному включению исполнительного реле R на установленное время T1. Если контакт управления S будет замкнут, то отсчет времени T1 будет остановлен до момента, когда контакт управления будет разомкнут. Размыкание контакта S запускает дальнейший отсчет времени T1. После завершения отсчета времени T1 исполнительное реле R выключается.

Трехфазное реле напряжения DigiTOP VP-3F63A. Особенности. Цена.

VP-3F63A

 

 Универсальное реле напряжения DigiTOP VP-3F63A предназначено для защиты трехфазных и однофазных  электроустановок, электроприборов и т. п., от недопустимых колебаний напряжения в трехфазной сети, последствий обрыва нейтрали (нуля), перекоса и чередования фаз. Индикация фазных напряжений. Программируемое. Защита осуществляется путем отключения  потребителя от сети питания.

  Реле VP-3F63A выполнено в 7-ми модульном,  пластиковом корпусе для крепления на DIN-рейку. На передней панели расположены:  цифровые индикаторы напряжения по каждой фазе,  индикаторы фазных реле и кнопки  программирования.

 

Особенности реле напряжения VP-3F63A.

Установлены мощный силовые реле на 63А прямого включения  по каждой фазе.

2 режима работы для однофазный и трехфазных нагрузок.

Сохраняет работоспобность при напряжениях до 400В.

Программируемый верхний/нижний пороги напряжения.

Программируемое время автоматического повторного включения (АПВ).

Программируемый перекос фаз.

Индикация напряжения на каждой фазе.

Контроль  чередования  фаз (вкл/откл).

Контроль перекоса фаз (вкл/откл).

Защита от «обрыва нуля».

 

Работа реле.

  Схема подключения трехфазного реле напряжения DigiTOP VP-3F63A.

 Реле напряжения может работать в одном из двух режимов – «Синхронном» или «Асинхронном».  Настройки перекоса и порядка чередования фаз доступны только в режиме «Синхронный».

  При подаче трехфазного напряжения на реле напряжения DigiTOP VP-3F63A, на индикаторах отобразятся действующие значения напряжения по каждой фазе. Если значения мигают, это означает, что силовое реле на выходе прибора отключено.


Режимы работы.

 Синхронный режим  — предназначен для защиты трехфазных потребителей, с контролем порядка чередования фаз и контролем асимметрии фаз.

  Если на любом из индикаторов попеременно отображается напряжение и номер соответствующей фазы (“L1″, “L2″ или “L3″) это означает аварийную ситуацию на данной фазе.  Если нагрузка была подключена VP-3F63A  к сети и произошла авария на любой из фаз, нагрузка будет отключена через фиксированное время отключения. Когда напряжение по каждой фазе находится в установленном пользователем диапазоне, через заданное время задержки включения  произойдет синхронное  включение   силовых реле всех фаз и индикатор перестанет мигать. Если значение напряжения любой из фаз не в установленном диапазоне, реле не включатся, пока напряжение не придет в норму.
 При неправильном порядке чередования фаз на первом индикаторе попеременно отражается текущее значение напряжения и индикация фазы “L1″, а на двух других попеременно отображается “L2″ и “L3″. Исправить данную ошибку можно поменяв местами любые две фазы на входе прибора. Контроль порядка чередования фаз можно отключить.

Асинхронный режим  — используется для защиты однофазных потребителей в трехфазной сети.

 Если на любом из индикаторов попеременно отображается напряжение и номер соответствующей фазы (“L1″, “L2″ или “L3″) это означает аварийную ситуацию на данной фазе по причине выхода напряжения за установленные пределы отключения. Если нагрузка была подключена к сети, произойдет отключения реле аварийной фазы, через фиксированную задержку отключения, и нагрузка на аварийной фазе будет отключена от сети. Когда напряжение на любой из  фаз находится в выбранном диапазоне, через заданное пользователем  время задержки включения, произойдет включение силового реле рабочей фазы и индикатор перестанет мигать. Если значение напряжения любой из фаз не в установленном диапазоне, реле на данной фазе не включится, пока напряжение не придет в норму.

Светодиод «ON» показывает наличие напряжения на выходе прибора по соответствующей фазе.

 

Технические характеристики.

Наименование

Значение

Измеряемое напряжение  сети/напряжение питание , В

50-400

Диапазон регулирования порога срабатывания по максимальному напряжению питания, В

210-270

Диапазон регулирования порога срабатывания по минимальному напряжению питания, В

120-200

Время задержки отключения по минимальному напряжению, с

1

Время задержки отключения по минимальному напряжению, <120В, с

0,02

Время задержки отключения по максимальному напряжению, с

0,02

Диапазон регулирования времени повторного включения (АПВ), с

5 – 600 (шаг 5)

Диапазон регулирования перекоса фаз, В

20-99

Время задержки срабатывания по перекосу фаз, с

20

Погрешность вольтметра, %, не более

1

Максимальный коммутируемый ток выходных контактов, 250В, АС1, А

63

Степень защиты

IP20

Температура эксплуатации, °С

-25… +50

Габаритные размеры, B*H* L, мм

122,5х90х64

Гарантия, лет

2

 

Габаритные размеры.

 

Цена (Прайс).

Наименование

Цена

Заказать

Реле контроля напряжения DigiTOP VP-3F63A

5850-00

 

 

Реле контроля напряжения. Принцип работы и подключение

Для защиты дорогостоящей бытовой или электрической техники от скачков напряжения, в следствие которых возможна их поломка, используется реле контроля напряжения. Данное устройство обеспечивает номинальное напряжение электросети. Об особенностях конструкции и подключения реле контроля напряжения поговорим далее.

Оглавление:

  1. Устройство и принцип работы реле контроля напряжения
  2. Сфера использования и преимущества применения реле контроля напряжения
  3. Разновидности реле контроля фаз и напряжения
  4. Рекомендации по выбору реле контроля напряжения
  5. Реле контроля напряжения: подключение и монтаж

Устройство и принцип работы реле контроля напряжения

Принцип работы реле контроля напряжения состоит в том, чтобы не допустить перенапряжение или недостаточное напряжение электросети.

В ответе на вопрос, почему следует устанавливать реле контроля напряжения, выделим несколько причин:

  • во время обрыва воздушной линии на территории частного сектора, возможен скачок напряжения на 160 Вт больше обычного, в следствие этого некоторые легко уязвимые электроприборы с легкостью перегорают и требуют ремонта;
  • в непогоду или по другим причинам обрыв нейтрального провода ведет к возрастанию нагрузки и повреждению электротехники;
  • при расположении дома вдали трансформатора, напряжение падает до критически низкого уровня, это также отрицательно сказывается на работе электротехники;
  • во время включения мощного потребителя электричества, фаза перегружается, в результате из-за недостатка напряжения возможна поломка приборов.

Реле состоит из микросхемы, которая руководит его работой. Микросхема — определяет снижение или повышение напряжение, передает сигнал электромагнитному реле, и происходит мгновенное включение прибора, которых выравнивает напряжение.

Диапазон работы реле контроля напряжения составляет от 100 до 400 Вт. Во время грозы, разряды молнии превышают эти показатели, поэтому не рекомендуется надеяться на реле контроля напряжения, и включать электроприборы в непогоду. Для таких целей существуют ограничители напряжения.

Реле контроля напряжения состоит из двух частей:

  • электронной,
  • силовой.

Первая часть контролирует напряжение, а вторая — выполняет действия по распределению нагрузки.

Основная часть реле — это микропроцессор или компактор. Реле на основе микропроцессора, является лучшим, так как способно плавно регулировать изменения напряжения.

Основным свойством реле контроля напряжения является быстрое действие и срабатывание. Порог срабатывания зависит от настройки потенциометра.

Реле контроля напряжения отличается от стабилизаторов принципом действия. Во время скачков напряжения реле отключает те участки, на которых напряжение не достигает нормы. Стабилизаторы — регулируют и распределяют напряжение равномерно по всей сети.

Поэтому во время возникновения аварийных ситуаций более эффективным является использование реле контроля напряжения, которое отключит аварийные участки.

Сфера использования и преимущества применения реле контроля напряжения

Для избежания перегрузки электроприборов, таких как холодильник, бойлер, котел, во время понижения или повышения напряжения в электросети, используется реле контроля напряжения.

Реле контроля напряжения имеет широкую сферу использования, так как электрические приборы присутствуют практически повсюду, то и реле контроля напряжение необходимо в любом заведении.

Сфера использования реле контроля напряжения:

  • защита однофазной или трехфазной сети;
  • защита от возникновения обрыва, слипания, перекоса фазы;
  • предотвращение нарушения последовательной работы фаз;
  • защита электрического оборудования от поломок;
  • использование при защите приборов, которые имеют длительную переходную работу;
  • при использовании устройств с нагрузкой на электродвигатель;
  • специальные установки требующие качественного напряжения и наличия полных фаз;
  • используются для защиты бытовых и электрических приборов от перенапряжения в жилых домах и квартирах;
  • применяются в общественных заведениях: школах, супермаркетах, магазинах электроники, компьютерных залах, больницах, кинотеатрах, для защиты дорогостоящего оборудования от поломки;
  • в промышленных заведениях на фабриках и заводах, для предотвращения сбоя в работе оборудования.

Преимущества использования реле контроля напряжения:

  • высокий диапазон рабочей температуры от -20 до +40, позволяет использовать устройства, как снаружи так и внутри помещений;
  • разнообразие видов данных устройств позволяет выбрать реле контроля напряжения в соотношении с материальными предпочтениями;
  • реле контроля напряжения обеспечивает надежную защиту дорогостоящей техники от пере- или недонапряжения и предотвращает ее поломку;
  • широкий выбор моделей и производителей реле контроля напряжения открывает перед покупателем много возможностей по удовлетворению индивидуальных запросов;
  • легкость монтажа позволяет установить этот прибор самостоятельно, не прибегая к помощи электрика;
  • современные модели отличаются наличием оригинального дизайна, который с легкостью вписывается в общий интерьер помещения;
  • во время скачков напряжения отсутствует увеличение или снижение интенсивности света;
  • прибор автоматически отключает участки электросети, которые повреждены в случае аварии или плохой погоды.

Разновидности реле контроля фаз и напряжения

В соотношении с типом подключения выделяют реле:

  • вилко-розетчастой формы;
  • в виде удлинителя;
  • устанавливаемое на рейку.

1. Реле напряжения первого типа отличается наличием вилки, которая облегчает его установку. Такой прибор достаточно просто воткнуть в розетку. Он защищает только отдельные группы потребителей. Управление прибором осуществляет микроконтроллер. Он анализирует текущее питающее напряжение, а затем показывает это значение на цифровом экране. Регулирует и отключает нагрузку электромагнитное реле. Такие устройства имеют кнопки, которые позволяют отключать и регулировать пределы напряжения.

2. Удлинительное реле контроля напряжение схоже с предыдущим типом устройства. Отличаются они тем, что реле удлинитель имеет несколько розеток и позволяет произвести одновременную защиту двух и более устройств.

3. Реле, устанавливаемое на D I N рейку монтируется непосредственно в распределительный шкаф. Такие устройства позволяют произвести защиту от напряжения всего дома или квартиры. Они отличаются наличием дополнительных функций и настроек, работают при нескольких режимах.

В соотношении с типом нагрузки выделяют реле контроля напряжения:

  • однофазное,
  • трехфазное.

Чтобы защитить трехфазные двигатели и оборудование используют устройства первого типа. Они предназначены для защиты кондиционеров, холодильников, компрессоров, и других приборов с электроприводом.

В помещении, обеспечивающем контроль полнофазости рекомендуется также использовать трехфазные реле контроля. При наличии трехфазного входа в помещении возможна установка реле контроля трехфазного напряжения, но если одна из фаз пропадет, то две оставшиеся будут также отключены. Даже при малейших скачках или перекосах фаз реле будет мгновенно срабатывать. Например, в случае если напряжение на одной фазе составляет 220 Вт, а на второй 210 Вт, мгновенно будут обесточены все фазы. Хотя данное напряжение абсолютно нормально и не принесет вреда большинству электроприборов.

Поэтому, при наличии трех фаз на входе, лучше установить на каждую отдельную фазу отдельных однофазный реле. При выборе мощности реле контроля напряжения однофазного типа следует учитывать, что на устройстве указывается мощность, которую оно пропускает через себя, но не размыкает. Поэтому следует выбирать однофазное реле контроля на несколько десятков ампер выше, чем мощность электросети.

Рекомендации по выбору реле контроля напряжения

1. Чтобы реле контроля напряжения купить обратитесь в специализированный магазин, в котором предоставят гарантию и консультацию по безопасному использованию данного устройства.

2. Реле контроля напряжения цена зависит от таких факторов:

  • тип устройства: розетное — самое дешевое, удлинительное — средней стоимости, реечное — более дорогое;
  • производитель: отечественные реле дешевле, так как не требуют оплаты за транспортировку, в отличии от заграничных;
  • дополнительные функции — возможность ручной или автоматической регулировки предела мощности прибора;
  • дизайн — некоторые модели имеют привлекательный внешний вид, характеризуются наличием нескольких цветов, и стоят, соответственно, дороже.

3. При выборе однофазного реле следует правильно рассчитать мощность устройства. Бытовые реле характеризуются наличием силовых контактов, мощность которых не превышает 100 А. Рекомендуется увеличить размер необходимой мощности реле на 25 %, а затем исходя из полученного результата, выбирать устройство однофазного типа. Например, если мощность номинального аппарата 20 А, то мощность реле, необходимого для обеспечения нормальной работы электросети, составит 35, 30 А.

4. Трехфазные реле выбрать легче, так как они все выпускаются мощностью в 16 А.

5. Во время покупки реле обязательно ознакомьтесь с инструкцией по эксплуатации, потребуйте гарантийный талон на товар. Обратите внимание на технические характеристики прибора, материал, из которого выполнен корпус, максимальная и минимальная рабочая температура.

6. Перед установкой реле следует монтировать устройство автоматического выключения, которое способно выключить электросеть, в том случае если напряжение выше или ниже допустимой нормы.

7. Выбирайте устройство с наличием дисплея, который постоянно будет высвечивать значение напряжения.

8. При выборе розетных реле контроля напряжения, установите их на все дорогостоящие приборы, которые оснащены электродвигателем.

9. Материал корпуса должен быть негорючим, наиболее приемлемый вариант — поликарбонат.

10. Обратите внимание на наличие функции контроля времени срабатывания устройства.

11. Дополнительная защита прибора от перегрева, измерение точного значения мощности электросети — позволят реле контроля напряжения работать более качественно.

Реле контроля напряжения: подключение и монтаж

Перед тем как ознакомиться с правилами установки реле контроля напряжения, рассмотрим причины, по которым следует устанавливать данное устройство.

При заниженной мощности электросети, например, если постоянное значение мощности в доме составляет 160-190 Вт, то холодильник, срок эксплуатации которого составляет около десяти лет, проработает при таких условиях максимум три года. Установка реле контроля напряжения не поможет, так как данный прибор будет постоянно отключать электроснабжение, и холодильник будет периодически размораживаться. В данной ситуации необходима установка стабилизатора. Но, если в электросети постоянно происходят скачки напряжения, обрывы, тогда монтаж реле контроля напряжения вполне уместен.

Для подключения реле понадобится наличие:

  • прибора реле контроля напряжения,
  • небольшого провода, сечение которого составляет 0,4 0,6 см,
  • железной рейки для крепления автомата,
  • саморезов,
  • плоскогубцев,
  • индикатора,
  • отвертки.

Перед установкой реле контроля напряжения следует обесточить электросеть. Для этого выключите входные автоматы. Вблизи расположения автоматов установите рейку, при помощи отвертки и саморезов закрепите ее на стене. Реле закрепляется на рейке при помощи специальной конструкции защелок, которые располагаются сзади.

На входном автомате, с помощью индикатора, отыщите фазу (индикатор должен светится).

В месте входа фазного провода в помещение следует его разрезать. Один конец провода следует подключить к реле, на входной контакт, а второй конец подсоединяется к выходному контакту.

Далее возьмите отрезок провода и подсоедините его к нулевому проводу автомата, а второй конец провода подсоединяется к реле контроля напряжения, на нулевой контакт.

Включите электроснабжение и проверьте работоспособность устройства.

Схема реле контроля напряжения розетного типа самая простая. Такое устройство, после покупки просто втыкается в розетку, а в него уже устанавливается вилка определенного прибора.

Обязательным элементом защиты реле напряжения является установка вводного автомата. Он монтируется поблизости автомата и самого реле. Номинал данного устройства на один шаг меньше номинала реле.

При установке реле, мощность которого превышает 65 А, следует использовать устройство дополнительного пуска. Чтобы избежать частых срабатываний.

 

принцип работы, виды, схемы подключения

Устройство, срабатывающее по факту истечения назначенного временного интервала, называется реле времени – прибор нашёл широкое применение в электротехнике, электрике, электронике. Благодаря его использованию в схемных решениях удаётся реализовывать более гибкие функции управления различной техникой и аппаратами.

В зависимости от конструкции и принципа работы прибора можно организовать различные по сложности исполнения электрические схемы.

Предлагаем разобраться, какие существуют виды реле времени, в чем их специфика работы и применения. Теоретический материал дополнен практическими рекомендациями по подключению и настройке устройства временного управления.

Содержание статьи:

Принцип действия реле времени

Электронные приборы представлены конструктивным разнообразием, поэтому рассматривать принцип устройства реле времени следует с учётом каждой конструктивной вариации в отдельности.

Такой выглядит одна из многочисленных конструкций реле времени. По сути, прибор напоминает обычный коммутатор, действие которого, однако, привязано к циклу течения времени

С точки зрения исполняемых действий, на практике используются электромагнитные, пневматические, электронные конструкции и устройства на часовом механизме.

Вариант #1: электромагнитные приборы

Устройства, поддерживающие электромагнитный принцип действия, как правило, предназначены для работы исключительно в схемах с питанием от постоянного тока.

Конструкция электромагнитного реле времени РЭВ-814: 1 – узел неподвижных контактов; 2 – скоба; 3 – демпферный механизм из меди; 4 – угольник; 5 – сердечник обмотки главного контура; 6 – якорь; 7 – подвижные контакты якоря

Диапазон срабатывания по времени обычно составляет 0,07 – 0,11 сек по включению и 0,5 – 1,4 сек по отключению. Конструкция таких реле времени содержит две рабочих обмотки, одна из которых представляет собой короткозамкнутый контур в виде медного кольца.

Когда через основную обмотку проходит электрический ток, отмечается рост магнитного потока. Этим потоком формируется ток короткозамкнутой обмотки, за счёт чего рост магнитного потока основной обмотки ограничивается.

Как результат, формируется временная характеристика движения якоря исполнительного механизма или, иными словами, создаётся выдержка по времени на включение.

Усовершенствованная конструкция реле времени электромагнитного типа. Этой моделью прибора поддерживается коммутация четырёх независимых каналов нагрузки. Вместе с тем по токовым параметрам устройство выглядит слабее старых моделей (+)

Если прекращается подача тока в контур основной обмотки, благодаря эффекту индуктивности, некоторое время остаётся активным магнитное поле короткозамкнутой обмотки. Соответственно, в течение этого времени реле не отключается.

Вариант #2: пневматические устройства

Конструкции на базе пневматических систем – своего рода эксклюзивные устройства. Подобные устройства оснащены специальной механикой замедления – пневматическим демпферным механизмом.

Регулировать время выдержки пневматических реле можно путём уменьшения или увеличения проходного сечения трубки, через которую осуществляется подвод воздуха. Для этих целей конструкции пневматических реле снабжаются регулировочным винтом.

Одна из распространённых конструкций пневматических приборов. Достаточно простое надёжное исполнение. Параметры коммутируемого тока до 16 ампер. В качестве коммутатора используется мини-переключатель на два канала

Диапазон установки временной задержки пневматических реле составляет в среднем 1 – 60 сек. Однако есть экземпляры, перекрывающие этот диапазон практически вдвое. Правда, на практике отмечены небольшие погрешности (около 10%) в плане точности срабатывания по установленным значениям.

Вариант #3: модификации часового типа

Так называемые часовые реле времени нашли широкое применение в электрике. Этот вид приборов нередко используется в конструкциях , предназначенных для защиты цепей напряжением 500 – 10000 вольт. Диапазон выдержки составляет 0,1 – 20 сек.

Принцип действия часовых моделей построен на работе пружины, взводимой механическим приводом (анкером) электромагнита. Коммутация контактных групп часового реле времени выполняется по факту пройденного времени, значение которого ранее было установлено на шкале прибора.

Представитель достаточно древней серии приборов – реле времени с часовым механизмом. Между тем, этот вид устройств показал надёжную безотказную работу в самых разных условиях

Скорость хода механизма устройства напрямую связана с силой тока, протекающего в обмотке электромагнита. Этот фактор позволяет настраивать прибор под исполнение функций защиты. Особенность такой защиты выражается полной независимостью от влияния окружающей температуры.

Вариант #4: электронные реле

Последние несколько лет практически везде, где могут применяться реле времени, на смену устаревшим электромеханическим моделям пришли электронные версии.

Этот вид приборов обладает целым рядом преимуществ:

  • малые габариты корпуса;
  • высокая точность срабатывания;
  • удобный механизм настройки;
  • визуальное отображение информации.

Электронные версии действуют, как правило, на основе цифровых импульсных счётчиков. Многие современные приборы построены на высокопроизводительных микропроцессорах. Реле цифровые обычно рассчитаны на коммутацию мало-индуктивных либо неиндуктивных нагрузок.

Современная разработка – цифровое реле, призванное обеспечить коммутацию по времени. Привлекает удобством управления и контроля, гибкой настройкой и внешним видом

Для настройки реле времени цифрового типа достаточно задать нужные временные параметры с помощью функциональных клавиш, размещённых непосредственно на фронтальной панели корпуса.

Настройка обычно доступна в широких пределах по времени, позволяет охватывать не только секунды, минуты, часы, но также дни недели. Для примера можно рассмотреть модель недельного электронного реле – таймера.

Электронный таймер с функциями автоматических включений-отключений может удачно использоваться в схемах управления разными видами устройств. Так называемое «недельное» реле времени обеспечивает выполнение функций коммутации в соответствии с установленным промежутком времени в рамках недельного цикла. Такие устройства используются в системах .

Например, благодаря прибору открываются возможности:

  • коммутировать системы освещения в заданное время;
  • запускать или останавливать технологическое оборудование;
  • активировать/деактивировать охранные системы.

Прибор небольшой по размерам, имеет несколько функциональных клавиш управления. Применяя системную клавиатуру, пользователь может его легко настраивать (программировать).

Пользовательский функционал цифрового реле времени – панель управления с клавишами установки параметров. Плюс жидкокристаллический дисплей, где отображается вся необходимая информация

Режим программирования активируется нажатием и удержанием кнопки, обозначенной символом «P». Выполнить системный сброс помогает клавиша «Reset». Изменение настроек времени реле осуществляется клавишами установки минут, часов, дней недели при активном режиме программирования.

Стандартной схемой подключения реле времени предусматривается установка одного из двух режимов управления действиями – ручного или автоматического. Удобство настройки реле цифрового типа обеспечивает информационный жидкокристаллический дисплей.

Настройка электронно-механических аналоговых реле

Системы промышленной автоматики, а также различные бытовые модули часто оснащаются электромеханическими устройствами, конструкция которых предусматривает настройку при помощи потенциометров.

Электромеханический тип устройства отсчёта времени с регулировкой параметров потенциометрами. Существуют различные конфигурации подобных приборов, что делает возможным применять их в схемах разной сложности

На передней панели корпуса таких устройств располагается шток потенциометра (или несколько штоков), предназначенный под вращение лезвием отвёртки. По окружности штока (штоков) наносится размеченная шкала значений установки.

Прорезь на штоке под лезвие отвёртки является своеобразным указателем, изменяющим своё положение при вращении штока. Установкой этого указателя напротив определённых значений размеченной шкалы достигается настройка нужного параметра.

Многоканальный прибор электронно-механического типа. Настраивается легко и просто путём вращения потенциометров с помощью отвёртки. На фронтальной панели также имеется светодиодная индикация состояния

Приборы подобного типа (например, NTE8) нашли широкое применение в схемах управления вентиляционными системами, отопительными модулями, приборами искусственного освещения.

Регулировка приборов с цифровой шкалой

Пользование приборами с функциями механической настройки можно продемонстрировать на примере таймера бытового марки REV Ritter, предназначенного для включения в сетевую домашнюю розетку.

Так называемое «розеточное» реле, предназначенное для использования в бытовых условиях. Время действия, как правило, ограничивается суточным диапазоном. Этого времени вполне достаточно для бытового применения

При помощи можно управлять в заданном диапазоне времени практически любой бытовой техникой. Для применения этого суточного таймера достаточно включить устройство в розетку и настроить.

Настройка сопровождается следующими действиями:

  1. Поднять все сегменты, расположенные по окружности диска настройки.
  2. Опустить только те сегменты, которые соответствуют времени настройки.
  3. Поворотом диска настройки выставить указатель диска на текущее время.

Например, если были опущены сегменты между цифрами шкалы 18 и 20, после того, как реле начнёт отсчёт времени, нагрузка будет включена в 18 часов и отключена в 20 часов.

В целом, конструкция механического реле REV Ritter позволяет организовать до 48 включений за полные 24 часа.

Модификация «розеточного» реле времени: 1 – розетка подключения нагрузки; 2 – ручное управление; 3 – шкала, размеченная на 24 часа; 4 – программные сегменты; 5 – указатель текущего времени; 6 – вилка включения в розетку бытовой сети (+)

Вместе с тем, устройство поддерживает функцию внепрограммного включения нагрузки. Для этого имеется отдельная кнопка, расположенная на боковой стороне корпуса. Если пользователь активирует эту кнопку, нагрузка подключается к сети непосредственно, независимо от состояния контактов реле.

Подключение реле времени в схеме управления

Устройство необходимо подключать с учётом соответствия места установки тем условиям, какие заявлены в техническом паспорте прибора. Как правило, монтаж предполагает вертикальную установку прибора при допусках отклонения от вертикали не более чем на 10º.

Температурные границы помещения, где предполагается монтаж и эксплуатация реле времени, обычно не превышают диапазон -20°С + 50°С.

Уровень влажности воздуха в зоне инсталляции прибора не должен превышать значения 80%. Электрическую схему, куда устанавливается таймер, на время установки следует отключить от сетевого питания.

Классическая схема подключения реле времени, в данном случае, для прибора, коммутирующего два канала с нагрузкой. По такому же принципу подключаются устройства на разное число коммутаций (+)

Прибор любой конструкции традиционно имеет технический паспорт, где обозначена схема подключения. Многие таймеры электронно-механические и цифровые дополняются схемой, нанесённой непосредственно на корпусе и показывающей, как и в какой последовательности подключить реле времени.

Классический вариант подключения выглядит так:

  1. Подключение лини напряжения на клеммы питания прибора.
  2. Фазная линия через автоматический выключатель соединяется с входным контактом нагрузки реле.
  3. Выходной контакт нагрузки реле подключается непосредственно к фазной линии нагрузки.

По сути, схема подключения для основной массы приборов выстраивается по идентичному принципу: подключение питания на сам прибор и включение нагрузки через группу коммутируемых контактов.

В зависимости от типа реле (однофазные, трёхфазные), а также от конструктивных особенностей, этих контактных групп может быть несколько.

Простой вариант реле времени можно сделать собственноручно. Схемы различных самоделок описаны в .

Выводы и полезное видео по теме

В видео-ролике рассматривается возможность использования модульного устройства, где присутствуют два независимых коммутирующих по времени устройства. Схема предусматривает включение двух приборов бытовой техники, настройку их работы во временных интервалах и другие функции.

Конечно же, все существующие модификации реле времени не охватить одним скромным обзором. Для рассмотрения всего ассортимента приборов потребуется написать целую книгу. Собственно, справочники по таймерам разных видов доступны, и при желании отыскать необходимые сведения можно всегда.

Есть, что дополнить, или возникли вопросы по работе, выбору, подключению и настройке реле времени? Можете оставлять комментарии к публикации и участвовать в обсуждениях. Форма для связи находится в нижнем блоке.

Электромеханическое реле: принцип работы, конструкция, основы

За последние два десятилетия мир стал свидетелем усиления конкуренции. Это развитие побудило дизайнеров внедрять инновации в продукты. Один из способов, используемых этими дизайнерами для внедрения инноваций, — это автоматизация работы продуктов. Прилагая эти усилия, эти разработчики либо выбирают устройства автоматизации, которые уже доступны на рынке, либо проектируют новые такие устройства для автоматизации операций, выполняемых продуктами.Многие из этих автоматических устройств зависят от подключения и отключения электрических цепей путем включения и выключения для управления операциями. Большая часть этого вида автоматизации, включающая включение и отключение электрических цепей, осуществляется с помощью электромеханических реле. Следовательно, действительно важно знать, что такое реле, как оно работает и области применения.

Начнем с его определения.

Что такое электромеханическое реле?

Электромеханическое реле представляет собой дистанционно управляемый переключатель, который размыкает и замыкает свои контакты в результате входного сигнала, подаваемого на его катушку.Он может переключать несколько цепей по отдельности, одновременно или последовательно.

Электромеханическое реле используется как интерфейс между цепью управления и нагрузкой. Для включения реле требуется относительно небольшое количество энергии, но реле может управлять тем, что потребляет гораздо больше энергии.

Катушка, которая управляет реле, требует низкого напряжения для переключения контактов. Выходные контакты реле могут быть подключены к нагрузкам большой мощности, таким как контакторы, устройства защиты и т. Д.

Другие определения электромеханического реле на рынке автоматизации:

  • Электромагнитное реле
  • Вспомогательное реле
  • Миниатюрное реле
  • Силовое реле
  • Съемное реле
  • Электрическое реле
  • Управляющее реле

Электромеханическое реле может использоваться для многих целей. Основные цели:

  • Коммутация больших электрических нагрузок с помощью цепи управления низкого напряжения.
  • Снижение более высокого напряжения до уровня управляющего напряжения.
  • Гальваническая развязка цепи нагрузки и цепи управления.
  • Преобразование одного входа в несколько выходов.

Конструкция электромеханического реле

Основные компоненты электромеханического реле:

Арматура

Якорь реле — это подвижная часть магнитной системы, которая замыкает и размыкает магнитную цепь и действует через привод или подвижные контакты реле.

Контакты

Контакты перемещаются магнитной системой для переключения цепи нагрузки. Контакты несут основную энергию.

Соединительные штифты

Штыри соединяют контактную систему с нагрузкой или релейными гнездами.

Катушка

Катушка реле создает магнитное поле, приводящее в действие якорь и контакты. Может поставляться с переменным или постоянным током.

Печатная плата

Печатная плата реле состоит из схемы защиты и индикатора состояния.

Как работает электромеханическое реле?

Электромеханическое реле работает по принципу электромагнита. Электрический ток в катушке создает магнитный поток через ферромагнитный сердечник. Возникающая сила действует на якорь, который переводит контакты в рабочее положение из положения холостого хода с помощью механической трансмиссии. Якорь возвращается в состояние холостого хода за счет так называемого обесточивания катушки.

Реле

имеет простой принцип работы. Вы можете посмотреть видео ниже для лучшего понимания.

Выходные контакты электромеханических реле

Электромеханическое реле имеет механические контакты, которые выполнены в виде нормально разомкнутых, нормально замкнутых или переключающих контактов.

1-Нормально открытый контакт

Контакт называется замыкающим, нормально разомкнутым или рабочим контактом, если он открыт, когда катушка обесточена.Он закрывается, когда катушка заряжается током.

2-нормально замкнутый контакт

Контакт, размыкающий цепь при срабатывании катушки, называется размыкающим, нормально замкнутым или размыкающим контактом.

3-переключающий контакт

Комбинация нормально закрытого и нормально открытого контакта называется переключающим, переключающим или переключающим контактом. Корни нормально разомкнутого и нормально замкнутого контактов соединены.Таким образом, переключающий контакт имеет три соединения.

Типы контактов электромеханических реле

1-Стандартный контакт

Стандартный контакт состоит из пары контактных таблеток и, в зависимости от материала контакта, преимущественно используется для реле управления и питания.

2-двойной контакт

Двойной контакт имеет две пары контактных таблеток. В результате надежность контакта увеличивается до 100 раз.Он используется в реле сигнализации и управления.

3-контактный контакт перед запуском

Предварительный контакт состоит из контакта, снабженного высокотермостойким контактным материалом, и последующего замыкающего контакта, состоящего из другого контактного материала, обладающего хорошей электропроводностью при номинальной нагрузке. Этот контакт в основном используется для переключения больших пусковых токов.

Контактные формы реле

3-контактные, 4-контактные и 5-контактные реле

Реле

также доступны с различными конфигурациями контактов, такими как 3-, 4- и 5-контактные реле.Принцип действия этих реле показан на рисунке ниже:

Применение электромеханических реле

Электромеханические управляющие реле широко используются в большинстве приложений и устройств, использующих электричество, таких как:

  • Бытовые электроприборы: Холодильники, стиральные машины
  • Промышленное оборудование: Промышленные роботы, режущие станки, конвейеры
  • Заводы: Химические заводы, трансформаторные подстанции, электростанции
  • Научное оборудование: Лаборатории
  • Торговые автоматы и развлекательное оборудование
  • Коммуникационное и измерительное оборудование
  • Устройства открытого типа: Копировальные аппараты
  • Автомобильная электрика
  • Панели управления и автоматизации

Преимущества электромеханических реле

Электромеханические реле имеют много преимуществ в схемах управления.Вот некоторые из них:

  • Контакты могут переключать переменный или постоянный ток.
  • Небольшие размеры и простая конструкция.
  • Низкая начальная стоимость.
  • Легко монтируется.
  • Очень низкое падение напряжения на контакте, поэтому радиатор не требуется.
  • Высокая устойчивость к скачкам напряжения.
  • Нет тока утечки в закрытом состоянии через открытые контакты.

Недостатки электромеханических реле У электромеханических реле

есть недостатки.Вот некоторые из них:

  • Контакты изнашиваются и поэтому имеют ограниченный срок службы в зависимости от нагрузок.
  • Низкая скорость работы.
  • Низкое напряжение изоляции.
  • Изменение характеристик вследствие старения.
  • Короткий срок службы контактов при использовании в приложениях с быстрым переключением или высоких нагрузках.
  • Низкая производительность при переключении больших пусковых токов.

Что вызывает выход из строя электромеханического реле?

Наиболее частые отказы электромеханических реле:

Перекрытие

Неисправность, при которой разряд между противоположными проводниками вызывает короткое замыкание.Это часто происходит с контактами, используемыми со средней и большой мощностью.

Заедание

Сварка, фиксация или приклеивание затрудняют размыкание контактов.

Контактный износ

Износ контактов вызван механическими причинами, например износом при многократной эксплуатации.

Контактная эрозия

Расширение контактов из-за электрических, термических, химических и других причин во время повторяющейся операции.

Активация

Отказ, при котором контактные поверхности загрязняются и легко происходит разряд.

Контактная пленка

Пленки оксидов, сульфидов и других металлов образуются на контактных поверхностях или прикрепляются к ним и вызывают сопротивление границ.

Эффект окантовки

Магнитные характеристики обусловлены формой вокруг непосредственно противоположных магнитных поверхностей.

Гудение

Шум из-за механической вибрации, вызванной полюсами переменного тока или волновыми приводами выпрямителя с недостаточным сглаживанием.

Замачивание

Устранение разницы из-за эффекта магнитной истории путем подачи тока насыщения на рабочую катушку во время измерения напряжения (или тока), которое должно срабатывать и должно отпускаться, или во время тестирования.

Продолжить чтение

Что такое защитные реле? | Типы и работа

Что такое защитное реле?

Реле защиты было изобретено более 160 лет назад.За последние 60 лет он претерпел значительные изменения, наиболее очевидным из которых является его уменьшение в размерах.

Защитное реле — это коммутационное устройство, которое обнаруживает неисправность и инициирует срабатывание автоматического выключателя, чтобы изолировать неисправный элемент от остальной системы.

Это компактные и автономные устройства, которые могут обнаруживать ненормальные условия. Защитные реле обнаруживают ненормальные условия в электрических цепях, постоянно измеряя электрические величины, которые различаются в нормальных условиях и в условиях неисправности.

Электрическими величинами, которые могут измениться при возникновении неисправности, являются напряжение, ток, частота и фазовый угол. Посредством изменений одной или нескольких из этих величин неисправности сигнализируют о своем присутствии, типе и местонахождении на реле защиты .

Обнаружив неисправность, реле замыкает цепь отключения выключателя. Это приводит к размыканию выключателя и отключению неисправной цепи.

Релейная защита используется на электрических подстанциях для подачи сигнала тревоги или для быстрого отключения любого элемента энергосистемы, когда этот элемент работает ненормально.

Ненормальное поведение элемента может вызвать повреждение или помешать эффективной работе остальной системы. Релейная защита сводит к минимуму повреждение оборудования и перерывы в работе при возникновении электрического сбоя. Наряду с другим оборудованием, реле помогают свести к минимуму поломки и улучшить обслуживание

Схема защитных реле включает в себя защитные трансформаторы тока, трансформаторы напряжения, защитные реле, реле с выдержкой времени, вспомогательные реле, вторичные цепи, цепи отключения и т. Д.

(Связанные компоненты из WIN SOURCE)

Каждый компонент играет свою роль, что очень важно для работы схемы в целом. Релейная защита — это совместная работа всех этих компонентов. Релейная защита также обеспечивает индикацию места и типа неисправности.

Считать зоны защиты в энергосистеме для более подробной информации

Схема реле

Типичная схема реле показана на рисунке ниже. На этой схеме для простоты показана одна фаза трехфазной системы.

Типовая схема реле

Релейные цепи можно разделить на три части, а именно.

  • Первая часть — это первичная обмотка трансформатора тока (ТТ), которая подключена последовательно с защищаемой линией.
  • Вторая часть состоит из вторичной обмотки трансформатора тока и автоматического выключателя, а также катушки управления реле.
  • Третья часть — это цепь отключения, которая может быть как переменного, так и постоянного тока. Он состоит из источника питания, катушки отключения выключателя и неподвижных контактов реле.

Защитное реле срабатывает

Работа электрического реле, основанная на приведенной выше схеме, объясняется ниже.

Защитное реле срабатывает

Когда короткое замыкание происходит в точке F на линии передачи, ток, протекающий в линии, возрастает до огромного значения.

Это приводит к протеканию сильного тока через катушку реле, заставляя реле срабатывать, замыкая свои контакты.

В свою очередь, замыкает цепь отключения выключателя, размыкая выключатель и изолируя неисправную секцию от остальной системы.

Таким образом, реле обеспечивает безопасность оборудования цепи от повреждений и нормальную работу исправной части системы.

Требования к реле защиты

Основная функция релейной защиты состоит в том, чтобы вызвать немедленное отключение переднего обслуживания любого элемента энергосистемы, когда он начинает работать ненормально или мешает эффективной работе остальной системы.

Для того, чтобы система защитных реле могла удовлетворительно выполнять эту функцию, она должна иметь следующие характеристики:

  1. селективность
  2. скорость
  3. чувствительность
  4. надежность
  5. простота
  6. эконом

Подробнее о каждом из них читайте в разделе «Основные характеристики и функциональные требования к релейной защите».

Основные типы реле защиты

Большинство реле, эксплуатируемых сегодня в энергосистеме, относятся к электромеханическому типу.

Они работают по следующим двум основным принципам работы:

  1. Электромагнитное притяжение
  2. Электромагнитная индукция

Реле электромагнитного притяжения работают за счет притяжения якоря к полюсам электромагнита или плунжера, втянутого в соленоид.Такие реле могут срабатывать от постоянного тока. или переменного тока количества.

Реле электромагнитной индукции работают по принципу асинхронного двигателя и широко используются для защитных реле, связанных с переменным током. количества. Они не используются с величинами постоянного тока из-за принципа действия.

Функции реле защиты

Различные функции реле защиты:

  1. Оперативное удаление компонента, который ведет себя ненормально, путем замыкания цепи отключения автоматического выключателя или подачи сигнала тревоги.
  2. Отсоедините ненормально работающую часть, чтобы избежать повреждения или вмешательства в эффективную работу остальной системы.
  3. Предотвратите последующие неисправности, отсоединив неисправно работающую часть.
  4. Отсоедините неисправную деталь как можно быстрее, чтобы минимизировать повреждение самой неисправной детали. Например, если в машине имеется неисправность обмотки, и если она сохраняется в течение длительного времени, существует вероятность повреждения всей обмотки.В отличие от этого, если его быстро отключить, то могут быть повреждены только несколько катушек, а не вся обмотка.
  5. Ограничить распространение эффекта отказа, вызывающего наименьшие помехи для остальной части исправной системы. Таким образом, отключение неисправной части позволяет локализовать последствия неисправности.
  6. Для повышения производительности системы, надежности системы, стабильности системы и непрерывности обслуживания.

Неисправности нельзя полностью избежать, но их можно свести к минимуму.

Таким образом, реле защиты играет важную роль в обнаружении неисправностей, минимизируя последствия неисправностей и минимизируя ущерб из-за неисправностей.

Работа реле, типы, символы и характеристики

Реле необходимы для систем автоматизации и управления нагрузками. Кроме того, реле — лучший способ гальванической развязки между частями цепи с высоким и низким напряжением. Существуют сотни различных типов реле. Давайте сначала узнаем, как работает реле.

Базовая работа реле

Контакты

Прежде чем перейти к различным типам реле, я сначала объясню, что и как работает основное реле. Каждое реле имеет внутри две механические части.

Первый — это контакт (ы) реле. Контакты работают аналогично контактам простого переключателя или кнопки. Вы должны рассматривать контакты как пару металлов, как показано на следующей схеме:

Контактный номер и NC

Два терминала работают как переключатель.Когда контакты находятся «в контакте», ток течет от клеммы 1 к клемме 2. Есть два типа контактов: нормально разомкнутые и нормально замкнутые.

NO обозначает нормально открытый контакт, а NC обозначает нормально закрытый контакт. Нормально открытый — это контакт, подобный показанному на предыдущем рисунке. Когда контакт неподвижен, через него не течет ток (потому что это ОТКРЫТЫЙ контур).

С другой стороны, нормально замкнутый контакт позволяет току течь, когда контакт неподвижен.Ниже показаны оба этих контакта:

Вы можете заметить, что нормально замкнутый контакт перевернут по сравнению с нормально разомкнутым контактом. Это сделано специально. Таким образом, оба контакта (NO и NC) изменят состояние, если к левому металлическому направлению будет приложена сила с ВВЕРХ на ВНИЗ.

Следующая анимация показывает, как замыкающий контакт работает при включении лампочки:

Что касается контактов NC, он работает прямо противоположно контактам NO. Посмотрите следующую анимацию:

Комбинация контактов

Реле может иметь комбинацию вышеуказанных контактов.Посмотрите на следующую иллюстрацию

В этом случае есть третий терминал, называемый «ОБЩИЙ». НО и НЗ контакты относятся к ОБЩЕЙ клемме. Между NC и NO контакта нет контакта в любое время!

Следующая анимация показывает, как работает эта пара:

А кто определяет НОРМАЛЬНОЕ состояние?

Хорошо, у нас есть НОРМАЛЬНО открытый и НОРМАЛЬНЫЙ замкнутый контакт. Но какое состояние считается НОРМАЛЬНЫМ? Подойдя на шаг ближе к срабатыванию реле, находим пружину.

Эта пружина определяет НОРМАЛЬНОЕ положение ОБЩИХ контактов. Если вы увидите 3 приведенных выше анимации, вы заметите, что один раз сила F применяется к ОБЩЕМУ терминалу, а в другой раз сила не применяется. Что ж, на самом деле это неправильно.

Действительно, существует другая сила, которая притягивает контакт к ВВЕРХ, и эта сила применяется ВСЕГДА. Эта сила исходит от пружины. Посмотрите следующее изображение:

Теперь вы можете видеть, кто все время тянет ОБЩИЙ терминал ВВЕРХ.Таким образом, пружина определяет, что является НОРМАЛЬНЫМ состоянием, и, таким образом, определяет, какой контакт является НОРМАЛЬНО ОТКРЫТЫМ, а какой — НОРМАЛЬНО ЗАКРЫТЫМ.

Другими словами, НОРМАЛЬНОЕ состояние определяется как состояние, при котором на ОБЩИЙ вывод НЕТ силы, кроме той, которая действует от пружины.

Последняя часть — КТО двигает общий контакт реле?

Это последняя часть работы реле. Устройство, которое заставляет терминал двигаться, на самом деле является электромагнитом! Катушка размещается прямо под контактом.

Когда через эту катушку проходит ток, создается магнетизм. Этот магнетизм может преодолеть силу пружины и притягивать контакт к себе, тем самым изменяя его положение! И из-за того, что контакт обычно представляет собой небольшой кусок металла, который не может быть притянут электромагнитом, к общему контакту присоединяется другой кусок металла.

Этот кусок металла называется «Арматура». Ниже приводится (наконец) полная иллюстрация основного реле:

А теперь представьте, что кто-то хочет управлять нагрузкой 220 Вольт 1 кВт с помощью команды, поступающей от батареи 5 Вольт.Для этого приложения следует использовать реле нагрузки.

На катушку реле подается напряжение 5 Вольт. Контакты этого реле (NO) будут подключены последовательно с питанием нагрузки.

Таким образом, нагрузка сработает только при срабатывании реле. Наш друг ниже заведет электрическую духовку голыми руками !!!

Заглянем внутрь реле

Я использовал восьмеричное реле. Эти реле легко открываются (винтами или зажимами), и они достаточно большие, чтобы иметь хороший обзор.Итак, вот реле разомкнуто:

Вы можете четко видеть общий контакт, нормально разомкнутые и нормально замкнутые контакты, а также электромагнитную катушку и пружину возврата в нормальное состояние. Якорь — это толстый металл, на котором закреплены общие контакты.

Типы реле

Существует так много различных типов реле, что мне было бы буквально невозможно добавить их в эту статью.

Поэтому я разделю типы реле на следующие категории:

1.Включение / выключение операции
2. Катушка
3. Контакты

Категория 1. Включение / выключение операции

Реле нормальные

В этой категории есть два основных типа реле. Первый тип — это обычное реле включения / выключения. Это реле меняет состояние, пока электромагнит активирован, и возвращается в состояние релаксации, когда электромагнит больше не приводится в действие.

Это наиболее распространенный тип реле, широко используемый в автоматизации.

Переключающие реле

Реле этого типа работает как триггер.Когда катушка срабатывает один раз, реле изменит состояние и останется в этом состоянии, даже если катушка больше не сработает.

Он снова изменит состояние только при следующем импульсе, который приведёт в действие катушку. Это очень удобно в современном домашнем освещении.

Имея это реле вместо переключателя, вы можете включать и выключать свет одной кнопкой. Вы нажимаете кнопку один раз, и свет включается. При следующем нажатии кнопки свет выключается.

Реле фиксации

Этот тип реле работает точно так же, как триггер R-S.У него две разные катушки вместо одной. Когда срабатывает первая катушка, реле переходит в положение SET и остается там, независимо от того, остается ли эта катушка включенной. Он изменит состояние (в положение СБРОС) только в том случае, если сработает другая катушка.

Этот тип реле широко используется в приложениях, где состояние реле необходимо сохранять как есть, даже после сбоя питания или перезапуска.

Защитные реле

Я разделю этот тип реле на два подтипа.Первый подтип — это реле защиты от утечки тока, а другой тип — реле защиты от перегрузки.

а. Реле защитные — токовые

Эти реле знают почти все. На самом деле у них нет электромагнитной катушки. Вместо этого они все время остаются вооруженными. Два электромагнита размещены друг напротив друга. Между ними — арматура. Этот якорь намагничивается от обоих электромагнитов.

Первый электромагнит включен последовательно с фазой, а другой — последовательно с нейтралью.Если ток, протекающий через оба электромагнита, одинаков, то якорь сохраняется в равновесии.

Но если ток, протекающий через второй электромагнит, меньше тока, протекающего через первый электромагнит, то якорь тянется к первому электромагниту, который имеет большую магнитную силу! И как это могло случиться? Легко, если какое-то количество тока течет на землю установки.

Эти реле могут (и ДОЛЖНЫ) быть найдены в любой домашней электроустановке сразу после главного выключателя.Посмотрите на следующую иллюстрацию:

Лампочка включается, потому что магнитная мощность обеих катушек одинакова. Теперь посмотрим, что произойдет, если «каким-то образом» ток в нейтрали будет меньше тока в фазе.

Магнитная мощность электромагнитов не равна, поэтому реле отключит питание и наш друг будет спасен. Из соображений безопасности, если это произойдет, реле можно восстановить только механически, если кто-то снова потянет рычаг реле вверх:

г.Реле защиты от перегрузки

Очень распространенные реле в двигателях, а также во всех электрических установках. Эти реле не возбуждают электромагнитную катушку для перемещения якоря. Вместо этого у них есть биметаллическая полоса, внутри которой течет ток.

Материал и толщина этой полосы тщательно подбираются, чтобы она могла нагреваться (и, таким образом, изгибаться) выше заданного значения тока.

Когда биметаллическая полоса изгибается, реле отключает подачу питания.По соображениям безопасности реле можно восстановить только механически, переместив рычаг вручную.

Это основная идея рисунка реле защиты от перегрузки ниже

Если одна линия перегружена, биметаллическая полоса перегревается и, следовательно, изгибается, нарушая таким образом контакт. показано на рисунке ниже

Следует также отметить, что существует еще один вид реле защиты от перегрузки, называемый «электромагнитное реле».Он работает точно так же, как реле защиты от перегрузки, но имеет внутри еще один электромагнит.

Если на этот электромагнит подается питание, то реле будет вынуждено разорвать соединение, как если бы оно было перегрето. Эта функция позволяет проверять наличие неисправностей и останавливать двигатель, чтобы избежать других проблем, даже если сам двигатель не перегрет.

Реле температуры

Эти реле работают аналогично реле защиты от перегрузки, описанных выше. Основное отличие состоит в том, что биметаллическая полоса нагревается не током, протекающим внутри ленты, а внешним фактором.

Этим фактором может быть окружающий воздух, температура воды, температура холодильника с другой жидкостью и т. Д. Вы можете знать эти реле под другим названием… термостаты, широко используемые в системах отопления.

Еще одно отличие от реле защиты состоит в том, что реле температуры обычно не нуждаются во внешнем механическом движении для восстановления своего состояния. Процесс происходит автоматически в зависимости от температуры биметаллической полосы.

Герконовые реле

Герконовое реле можно представить себе как реле без электромагнита.Якорь герконового реле приводится в действие от любого другого внешнего магнитного поля. Герконовые реле можно найти в системах контроля дверей.

Постоянный магнит прикреплен к двери, а герконовое реле находится прямо над магнитом. Если дверь открывается, состояние геркона меняется. Другое распространенное применение герконовых реле — измерители скорости велосипедов.

Постоянный магнит прикреплен к колесу велосипеда, а герконовое реле закреплено на «вилке» велосипеда.Каждый раз, когда колесо вращается и магнит проходит перед герконовым реле, он посылает импульс на микроконтроллер.

Другие реле

Существует много других типов реле, таких как таймеры и функциональные реле, но они используют какие-то схемы для выполнения различных действий. Я не буду вдаваться в эти категории, поскольку эта статья интересует только те реле, которые не используют никаких других схем, а только механические варианты.

Категория 2. Срабатывание катушки

Другой тип категоризации реле — катушка.В этой категории я разделяю реле в зависимости от того, как на их катушку подается питание для приведения в действие якоря. Итак, имеем:

Реле AC / DC

Катушка может работать как с переменным, так и с постоянным напряжением.

Реле нейтрали

У этих реле самая обычная катушка. Якорь срабатывает, когда через катушку проходит ток, независимо от полярности.

Реле смещения

Это разновидность реле нейтрали. Эти реле имеют точно такую ​​же катушку, что и реле нейтрали, но они несут на якоре постоянный магнит.Поляризация магнитного поля катушки зависит от полярности питания.

Следовательно, якорь приводится в действие только в том случае, если полярность магнитного поля катушек противоположна полярности магнитного поля постоянного магнита. Таким образом, реле срабатывает, только если катушка правильно смещена.

Реле поляризованные

Реле этого типа работают точно так же, как реле со смещением. Единственное отличие состоит в том, что эти реле не имеют постоянного магнита, вместо этого они имеют диод, подключенный последовательно к катушке.Если диод правильно смещен, катушка будет иметь питание, и якорь будет активирован.

Разница, которая отличает эти два типа реле, заключается в том, что реле с смещением позволяют току проходить через катушку, даже если реле имеет обратное смещение! Очень важно, если кто-то хочет соединить катушки двух или более реле последовательно.

Твердотельные реле (SSR)

Это современный тип реле. Эти реле не имеют катушки или какой-либо другой движущейся части, поэтому их называют твердотельными.Они используются для быстрого переключения (до нескольких сотен Гц) и для управления нагрузками во взрывоопасных или суровых условиях.

Они имеют значительно больший срок службы, чем обычные реле, поскольку их контакты не подвержены коррозии из-за влажности, пыли или других причин. Собственно контактов у них нет! Вместо этого для имитации контактов используется полевой транзистор или симистор. Главный минус — цена…

Категория 3. Контакты

Третья и последняя категория — это контакты реле.

Реле различаются по 3 основным характеристикам:

1. Максимальное напряжение: эта характеристика определяется зазором между контактами, а также сплавом, из которого сделан контакт. Чем больше зазор, тем выше напряжение, которое может отключить реле.

2. Максимальный ток: эта характеристика определяется толщиной контактов, а также сплавом, из которого они изготовлены. Чем толще контакты, тем выше ток, с которым может справиться реле.

3. Частота коммутации: эта характеристика определяется механической конструкцией реле. Чем легче конструкция, тем быстрее происходит переключение.

4. Количество контактов:… Просто количество контактов.

Что касается номера контактов, то реле (как и переключатели) имеют какую-то кодировку. Общая кодовая форма такова:

xPyT

Буква «P» означает «ПОЛЮСА». «X» — это количество «ПОЛЮСОВ» реле.Таким образом, если реле имеет 1 контактную пару (ПОЛЮС), код будет SP, как для однополюсного. Для двух контактных пар это будет DP, как для двухполюсного. Над 2 контактными парами x обозначает количество полюсов, например, для 3 полюсов это будет 3P и т.д. и т. Д.

«T» означает «БРОСИТЬ», а «y» — это количество «БРОСОВ». ‘Y’ может быть одинарным или двойным. Single Throw (ST) означает, что имеется только один нормально разомкнутый или нормально замкнутый контакт. Двойной бросок (DT) означает, что реле имеет пары контактов NO / NC.

Обозначения реле

Количество символов реле не ограничено.Каждый производитель может сделать свой собственный символ для конкретного реле, которое имеет разные внутренние соединения и характеристики, выполняя определенную задачу. Я проиллюстрирую самые основные типы реле:

Характеристики реле

Реле характеризуют следующие характеристики:

Напряжение катушки: это напряжение, при котором катушка может приводить в действие якорь. Это значение должно также указывать, является ли ток переменным или постоянным током

.

Ток катушки: это значение указывает ток, который катушка будет потреблять, когда она запитана с указанным напряжением катушки.Очень важная характеристика, которую следует учитывать при разработке драйвера реле. Ток, который проходит через драйвер, должен быть достаточным для приведения в действие якоря.

Напряжение выключения: Эта характеристика показывает минимальное напряжение, при котором якорь притягивается электромагнитом. Если напряжение упадет ниже этого значения, пружина преодолеет магнитную силу, и реле изменит состояние.

Количество / тип контактов: Это SPST? ДПСТ? DPDT? Или что?

Мощность контактов: эта характеристика указывает максимальную мощность, с которой могут справиться контакты.Некоторые производители будут использовать напряжение и амперы, другие — напряжение и киловатты, а третьи укажут все три значения.

Рабочая температура: Температура, при которой реле может работать без проблем

Частота коммутации: максимальная частота отключения

Пакет: И последнее, но не менее важное — это пакет. Некоторые корпуса (например, восьмеричный тип) поставляются с соответствующим основанием, в то время как некоторые другие непосредственно припаяны / подключены к печатной плате / электрическому шкафу.

Если вам понравилась эта статья, подпишитесь на наш канал YouTube с видеоуроками по ПЛК и SCADA.

Вы также можете подписаться на нас в Facebook и Twitter, чтобы получать ежедневные обновления.

Читать дальше:

▷ Основы и принцип работы реле обратной мощности

A.N, один из членов сообщества, вернет нас к основам с этой статьей о реле обратной мощности.

Так вы думаете, что знаете все по этой теме? Если нет, прочтите все, чтобы быть в курсе последних событий.И если да, все равно прочтите это, чтобы проверить, действительно ли вы это делаете!


Что такое реле обратной мощности?

Рисунок 1: Параллельное подключение генератора и электросети | изображение: 2.bp.blogspot.com

Реле обратной мощности — это направленное защитное реле, которое предотвращает прохождение мощности в обратном направлении. Реле используется в установках, где генератор работает параллельно с электросетью или другим генератором, чтобы предотвратить обратный ток энергии от шины или другого генератора к активному генератору, когда его выход выходит из строя.

Реле контролирует мощность от генератора и в случае, если выходная мощность генератора падает ниже заданного значения, оно быстро отключает катушку генератора, чтобы предотвратить попадание энергии в катушку статора.

Выходной сигнал генератора может выйти из строя из-за проблем с первичным двигателем, — турбиной или двигателем, который приводит в действие генератор, проблемами с регулятором скорости или разными частотами во время синхронизации.
Когда первичный двигатель выходит из строя, генератор прекращает выработку энергии и вместо этого может начать получать энергию из других параллельных источников и начать движение.Реле обратной мощности определяет любое обратное направление потока мощности и отключает генератор, чтобы избежать возможных повреждений.

Реле обратной мощности Устройство и работа

Реле изготовлено из легкого немагнитного алюминиевого диска между двумя электромагнитами с мягким ламинированным железным сердечником и закреплено на шпинделе, работающем на подшипниках с низким коэффициентом трения. Верхний электромагнит намотан катушкой напряжения, которая затем питается от одной фазы и искусственной нейтрали выхода генератора.Другой магнит имеет катушку тока, питающуюся от трансформатора тока, подключенного к той же фазе, что и напряжение в верхнем электромагните.

Катушка напряжения имеет высокую индуктивность, сконструированную таким образом, что напряжение отстает от тока в катушке примерно на 90 градусов. Эта задержка гарантирует, что магнитное поле, создаваемое током в верхней катушке, отстает от магнитного поля, создаваемого током в нижнем электромагните.

Два магнитных поля, которые находятся в противофазе, создают вихревой ток в алюминиевом диске, и это создает крутящий момент, который пытается вращать диск.

В нормальных условиях, когда мощность течет должным образом, размыкающие контакты реле разомкнуты, и диск упирается. Если начинает течь обратная мощность, диск вращается в противоположном направлении, движется от упора к контактам отключения, которые активируют цепь отключения.

Рисунок 2: Конструкция реле обратной мощности | изображение: brighthubengineering.com

Большинство реле обратной мощности имеют регулируемые настройки, позволяющие заказчику выполнять настройки в соответствии с установленным оборудованием.Точка срабатывания обычно регулируется в пределах от 2 до 20 процентов входного тока, а время задержки регулируется от 0 до 20 секунд.

5-секундная задержка времени часто используется, чтобы избежать отключения цепи во время синхронизации. В большинстве практических приложений настройки обратной мощности составляют от 8 до 15 процентов для дизельных двигателей и от 2 до 6 процентов для турбинных двигателей.

Преимущества реле обратной мощности

  • Предотвращает прохождение мощности в обратном направлении и повреждение статора генератора
  • Предотвращает повреждение тягача
  • Предотвращает возгорание или взрывы, которые могут быть вызваны несгоревшим топливом в генераторе
Сводка

Когда мощность поступает в генератор, он начинает работать как синхронный двигатель, и турбины или первичный двигатель становятся активной нагрузкой.Это может повредить первичный двигатель и поэтому нежелательно. Важно обнаружить состояние обратной мощности и отключить питание как можно быстрее, и даже если газовые турбины и дизельные двигатели могут не сразу выйти из строя, всегда существует риск взрыва или пожара из-за несгоревшего топлива.

Реле обратной мощности помогает контролировать мощность в генераторе, обнаруживает состояние обратной мощности, и реле немедленно отключает подключение к параллельной электросети или другому источнику питания, тем самым защищая генератор от повреждений.
Надеюсь, это помогло. Спасибо, что прочитали меня,
A.N.
Итак, что вы думаете об этом, возвращаясь к основам реле обратной мощности? Есть ли у вас какие-либо вопросы или информация, которую можно добавить? Расскажите нам в комментарии ниже!

что такое реле? реле, работающие и используемые с микроконтроллерами

Реле представляет собой электромеханический переключатель с электрическим управлением. Он используется для изоляции двух цепей с разными рабочими напряжениями. Например, мы хотим изолировать источник питания переменного тока 220 вольт от источника постоянного тока 5 вольт, в этом случае для их разделения используется реле.Этот тип реле называется электромагнитным реле (ЭМИ).

Применение реле

Во многих промышленных приложениях и в диспетчерских, где нам необходимо управлять несколькими цепями с помощью одного сигнала для этой цели, реле — лучшее устройство, которое можно использовать, поскольку благодаря своей коммутационной способности оно может использоваться в различных цепях. По сути, это электрический рабочий выключатель. В большинстве случаев они используются для переключения состояния цепи. Он также используется в качестве защиты или изоляции.Иногда его также используют для задержки по времени. Они также используются в проектах микроконтроллеров pic .

Компоненты электромагнитного РЕЛЕ

Есть три наиболее важных части:

  1. Электромагнит

В электромагните есть катушка проводов, намотанных на железный сердечник. Он становится активным, когда в катушке присутствует ток или напряжение.

  1. Контакты

Есть два контакта NO (нормально открытый) и NC (нормально закрытый).Когда в катушке нет тока или напряжения, будет следовать нормально замкнутый путь, но когда напряжение или ток проходят через катушку, он будет следовать нормально замкнутому пути.

  1. Пружина

Используется для замыкания нормально замкнутого и нормально разомкнутого контакта при прохождении тока через катушку.

РАБОТА РЕЛЕ

Цепь переключения реле (катушка) на основе постоянного или переменного напряжения. Например, когда на катушку подается 6 В, ток начинает течь через нее, возбуждается и переключается с нормально замкнутого контакта на нормально разомкнутый.Перед подачей питания используется нормально замкнутый контур, но после переключения будет следовать нормально разомкнутый контур. Реле

На рисунках 1 и 2 выше показаны контакты, которые разомкнуты, а 3 и 4 — катушка. Когда катушка находится под напряжением, она замыкается и меняет свое состояние. Как показано на рисунке ниже:

ТИПЫ РЕЛЕ

Реле подразделяются на три основные категории. Это:

  1. Общего назначения (в котором выполняется простое переключение).
  2. Устройство управления (используется в больших масштабах, например, в промышленности, когда мы имеем дело с большими двигателями с высокими характеристиками).
  3. Reed (этот тип реле очень быстродействующий и чувствительный. Отсутствует какая-либо влажность и т. Д.).

Другие типы реле, также известные как твердотельное реле , в которых напряжение постоянного тока используется в качестве входа.

Интерфейс реле с микроконтроллером

Микроконтроллер не имеет значительного тока для работы реле. Для включения катушки реле требуется ток не менее 10 мА. Но выходная пинта микроконтроллера может обеспечить максимальный ток до 1-2 мА.Для решения этой проблемы между микроконтроллером и реле используются схем драйвера реле .

Твердотельное реле

Твердотельное реле также используется в промышленных приложениях. Твердотельное реле не имеет катушки, контакта и пружины. Он в основном состоит из полупроводниковых материалов. Его скорость переключения намного выше, чем у электромеханических реле, потому что внутри них не происходит механических движений. Его срок службы также больше, чем у ЭМИ. Они могут напрямую взаимодействовать с микроконтроллерами из-за очень низкого требования к входному току.Поэтому твердотельные реле — идеальный выбор для микроконтроллеров и цифровых схем. Они также поставляются с опциями управления фазой. На рынке доступны твердотельные реле различных номиналов тока и напряжения. Как и 143058CP SSR, имеют управляющее напряжение 4-32 В постоянного тока и контактный ток 3 Ампера.

Реле работает и его важность в электрическом поле

Привет, друзья! Как у вас все?

В области электричества вы много раз слышали слово «Реле». В этой статье мы рассмотрим все детали, такие как Что такое реле ?, Конструкция реле, Работа реле, Работа реле, Применение реле, и т. Д.


Что такое реле? | Реле рабочее и его типы

Реле — это электромагнитный переключатель, работающий от относительно небольшого тока, который может включать или выключать гораздо больший ток.

Основная часть реле — это электромагнит, катушка с проволокой, которая работает как магнит, когда через нее протекает ток.

Реле

обычно используются там, где необходимо управлять цепью отдельным сигналом малой мощности.


Конструкция реле

Почти все реле работают по одному и тому же принципу, но на рынке доступны реле разных типов. Я собираюсь дать вам базовый пример простого стеклянного реле.

Как вы видели на изображении выше, основные части реле —

Катушка ⇒ Катушка — это проволока, намотанная на металл, и когда через нее проходит достаточное количество электроэнергии, она действует как магнит.

Подвижный якорь ⇒ В реле есть подвижная часть, которая размыкает и замыкает контакты. Присоединенная пружина удерживает якорь в исходном положении в нормальном состоянии.

Контакты переключателя ⇒ Реле является переключателем, должны быть контакты, которые обычно используются для управления другой цепью. В основном это два контакта: нормально разомкнутый и нормально замкнутый.

Корпус реле ⇒ Сборка якоря с магнитной катушкой производится с помощью пружины.Пружина изолирована от якоря литым блоком, а контакты переключателя обычно привариваются точечной сваркой к клеммной перемычке.


Реле срабатывания (реле срабатывает)

Реле — это электромагнитный переключатель, пользователь может включить или выключить его в зависимости от логики.

Реле имеет электромагнитную катушку, есть два основных условия, например,

.

⇒ Когда энергия течет через эту катушку, она создает магнитное поле, которое притягивает якорь и замыкает контакт.

⇒ Когда на электромагнитную катушку не подается питание, якорь остается на своем месте и размыкает контакт.

На изображении выше мы видим, что реле находится в нормальном состоянии слева, а контакты разомкнуты в этом состоянии. В то время как на правой стороне реле находится под напряжением и контакты замкнуты. Также светится светодиод, что указывает на то, что реле находится под напряжением.


Реле полярности и вбрасывания

Реле работает как выключатель.В реле есть две основные концепции: полюс и бросок , где полюс похож на выключатель, а ход — это количество соединений.

Нормально открытый контакт ⇒ Нормально открытый контакт также называется нормально разомкнутым контактом . Он замыкает цепь, когда реле активировано или запитано, и отключает цепь, когда реле находится в нормальном состоянии.

Нормально замкнутый контакт ⇒ Нормально открытый контакт также называется нормально замкнутым контактом . Он отключает цепь, когда реле активировано или запитано, и замыкает цепь, когда реле находится в нормальном состоянии.

Общий контакт ⇒ Общий контакт есть только тогда, когда реле имеет двойной ход. В этом типе реле вы найдете как нормально открытый, так и нормально закрытый контакт с одной общей клеммой.

Общий контакт соединен с нормально замкнутым контактом во время нормального состояния реле, и когда реле находится под напряжением, общий контакт тормозит контакт с нормально замкнутым контактом и замыкает контакт с нормально разомкнутым контактом.

Реле может использоваться с несколькими цепями с помощью всего одного сигнала, для этого реле должно быть несколько полюсов, например,

Каждый из этих типов реле имеет две клеммы для катушки. Но кроме катушки, у него есть другие клеммы для переключения контактов.

Однополюсный однопроходный (SPST) ⇒ За исключением клемм катушки, у SPST есть еще две клеммы.

Однополюсный двухходовой (SPDT) ⇒ За исключением клемм катушки, SPDT имеет еще три клеммы.Есть дополнительный общий контакт с нормально разомкнутыми и нормально замкнутыми контактами.

Двухполюсный односторонний (DPST) ⇒ За исключением клемм катушки, DPST имеет еще четыре клеммы. Здесь два полюса, поэтому этот тип реле может управлять двумя разными электрическими цепями.

Double Pole Double Throw (DPDT) ⇒ За исключением клемм катушки, DPDT имеет еще шесть клемм. Здесь два полюса и дополнительно общий контакт в каждом полюсе с нормально разомкнутыми и нормально замкнутыми контактами.


Типы реле

До сих пор мы видим общее переключающее реле, но на рынке вы найдете другие варианты реле, такие как

⇒ Реле высокого напряжения

⇒ Твердотельное реле

⇒ Тепловое реле перегрузки

⇒ Реле дифференциальной защиты

⇒ Реле максимального тока

⇒ Реле защиты частоты

⇒ Реле с выдержкой времени

Вы найдете различные типы реле, доступные на рынке, щелкнув здесь .


Применение реле

⇒ Реле обычно используются для изоляции цепи низкого напряжения от цепи высокого напряжения.

⇒ Реле используются для управления несколькими цепями.

⇒ Реле на базе микропроцессоров используются для защиты цепей с большой нагрузкой.

⇒ Реле перегрузки используются для защиты двигателей, автоматических выключателей от сильноточных и электрических повреждений.


Надеюсь, вам понравился этот блог о работе реле.Исследуйте другие блоги, например,


Вы можете прочитать больше статей о контрольно-измерительных приборах и найти книги, которые расширят ваши знания в области контрольно-измерительных приборов ⇒

Основной принцип работы реле

Реле

— это переключатель, который обнаруживает неисправность в системе, и как только неисправность обнаруживается реле, оно выдает команду отключения на автоматический выключатель, CB, чтобы изолировать неисправный участок сети от исправного участка.

Реле обнаруживает ненормальное состояние, непрерывно отслеживая электрические величины, которые отличаются для исправного и неисправного состояния.Электрические величины, которые могут измениться во время неисправности, — это напряжение, ток, частота и фазовый угол. Если одна или несколько из вышеперечисленных электрических величин изменяются, это сигнализирует реле о наличии, типе и местонахождении неисправности. После обнаружения состояния неисправности, реле срабатывания, его контакт изменится с нормально разомкнутого на нормально замкнутый или наоборот. Таким образом, мы можем подключить определенный вид релейного контакта к цепи отключения выключателя. Таким образом, всякий раз, когда срабатывает реле, срабатывает выключатель.

Вы можете прочитать, Почему вторичный КТ никогда не должен оставаться открытым?

Упрощенная схема реле показана на рисунке ниже. На рисунке ниже для простоты показана одна из трехфазных систем.

Как показано на рисунке выше, вторичная обмотка ТТ трансформатора тока напрямую подключена к катушке реле. В нормальных условиях тока через катушку реле недостаточно, чтобы подтянуть плунжер и замкнуть цепь катушки отключения выключателя. Обратите внимание, что катушка отключения автоматического выключателя несет полную ответственность за отключение автоматического выключателя.При выходе из строя катушки отключения выключателя отключение выключателя не произойдет. По этой причине в выключателе обычно предусмотрены две катушки отключения, чтобы обеспечить надежную работу выключателя. В CB предусмотрены не только две катушки отключения, но и реле контроля катушки отключения. В случае неисправности, то есть в случае обрыва цепи в катушке отключения, реле контроля катушки отключения будет помечено, чтобы привлечь внимание оператора.

В случае неисправности ток через вторичную обмотку ТТ возрастет, что приведет к увеличению тока через катушку реле.Если случается, что ток через катушку реле превышает установленное значение или значение срабатывания, тогда катушка будет создавать достаточное магнитное притяжение к плунжеру, и, таким образом, плунжер замыкает цепь отключения выключателя. Как только цепь отключения выключателя замкнута, ток начнет течь в катушке отключения, которая, в свою очередь, потянет за рычаг, чтобы отключить автоматический выключатель CB.

На приведенном выше рисунке показано, что катушка реле непосредственно тянет за плунжер для замыкания цепи катушки отключения выключателя, но на практике катушка реле при поднятии меняет состояние своего контакта.Допустим, нормально открытый контакт реле (NO) подключен к цепи катушки отключения выключателя. Поэтому, когда катушка реле находится в обесточенном состоянии, цепь катушки отключения выключателя не замкнута и, следовательно, выключения выключателя не происходит. Во время состояния неисправности, когда ток через катушку реле превышает значение срабатывания, катушка реле срабатывает, что, в свою очередь, заставляет ее контакт переключиться, т.е. нормально разомкнутый контакт изменится на нормально замкнутый (NC), тем самым замкнув цепь катушки отключения. Разрушителя.

Поскольку цепь катушки отключения выключателя замкнута, ток будет течь через катушку отключения, вызывая отключение выключателя.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *