Элементарный учебник физики Т2
Элементарный учебник физики Т2
ОглавлениеИЗ ПРЕДИСЛОВИЯ К ПЕРВОМУ ИЗДАНИЮГлава I. Электрические заряды § 1. Электрическое взаимодействие. § 2. Проводники и диэлектрики. § 3. Разделение тел на проводники и диэлектрики § 4. Положительные и отрицательные заряды § 5. Что происходит при электризации? § 6. Электронная теория. § 7. Электризация трением. § 8. Электризация через влияние. § 9. Электризация под действием света. § 10. Закон Кулона. § 11. Единица заряда. Глава II. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ § 12. Действие электрического заряда на окружающие тела. § 13. Понятие об электрическом поле. § 14. Напряженность электрического поля. § 16. Электрическое поле в диэлектриках и в проводниках. § 17. Графическое изображение полей. § 18. Основные особенности электрических карт. § 19. Применение метода линий поля к задачам электростатики. § 20. Работа при перемещении заряда в электрическом поле. § 21. Разность потенциалов (электрическое напряжение). § 22. Эквипотенциальные поверхности. § 23. В чем смысл введения разности потенциалов? § 24. Условия равновесия зарядов в проводниках. § 25. Электрометр. § 26. В чем различие между электрометром и электроскопом? § 28. Измерение разности потенциалов в воздухе. Электрический зонд. § 29. Электрическое поле Земли. § 30. Простейшие электрические поля. § 31. Распределение зарядов в проводнике. Клетка Фарадея. § 32. Поверхностная плотность заряда. § 33. Конденсаторы. § 34. Различные типы конденсаторов. § 35. Параллельное и последовательное соединение конденсаторов. § 36. Диэлектрическая проницаемость. § 37. Почему электрическое поле ослабляется внутри диэлектрика? § 38. Энергия заряженных тел. Энергия электрического поля. Глава III. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК § 39. Электрический ток и электродвижущая сила. § 41. Направление тока. § 42. Сила тока. § 43. «Скорость электрического тока» и скорость движения носителей заряда. § 44. Гальванометр. § 45. Распределение напряжения в проводнике с током. § 46. Закон Ома. § 47. Сопротивление проводов. § 48. Зависимость сопротивления от температуры. § 49. Сверхпроводимость. § 50. Последовательное и параллельное соединение проводников. § 51. Реостаты. § 52. Распределение напряжения в цепи. § 53. Вольтметр. § 54. Каким должно быть сопротивление вольтметра и амперметра? Глава IV. ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА § 56. Нагревание током. Закон Джоуля-Ленца. § 57. Работа, совершаемая электрическим током. § 58. Мощность электрического тока. § 59. Контактная сварка. § 60. Электрические нагревательные приборы. Электрические печи. § 61. Понятие о расчете нагревательных приборов. § 62. Лампы накаливания. § 63. Короткое замыкание. § 64. Электрическая проводка. Глава V. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ЭЛЕКТРОЛИТЫ § 65. Первый закон Фарадея. § 66. Второй закон Фарадея. § 68. Движение ионов в электролитах. § 69. Элементарный электрический заряд. § 70. Первичные и вторичные процессы при электролизе. § 71. Электролитическая диссоциация. § 72. Градуировка амперметров при помощи электролиза. § 73. Технические применения электролиза. Глава VI. ХИМИЧЕСКИЕ И ТЕПЛОВЫЕ ГЕНЕРАТОРЫ ТОКА § 74. Введение. Открытие Вольты. § 75. Правило Вольты. Гальванический элемент. § 76. Как возникают э. д. с. и ток в гальваническом элементе? § 77. Поляризация электродов. § 78. Деполяризация в гальванических элементах. § 79. Аккумуляторы. § 80. Закон Ома для замкнутой цепи. § 81. Напряжение на зажимах источника тока и э. д. с. § 83. Термоэлементы. § 84. Термоэлементы в качестве генераторов. § 85. Измерение температуры с помощью термоэлементов. Глава VII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ МЕТАЛЛЫ § 86. Электронная проводимость металлов. § 87. Строение металлов. § 88. Причина электрического сопротивления. § 89. Работа выхода. § 90. Испускание электронов накаленными телами. Глава VIII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ГАЗЫ § 91. Самостоятельная и несамостоятельная проводимость газов. § 92. Несамостоятельная проводимость газа. § 94. Молния. § 95. Коронный разряд. § 96. Применения коронного разряда. § 97. Громоотвод. § 98. Электрическая дуга. § 99. Применения дугового разряда. § 100. Тлеющий разряд. § 101. Что происходит при тлеющем разряде? § 102. Катодные лучи. § 103. Природа катодных лучей. § 104. Каналовые лучи. § 105. Электронная проводимость в высоком вакууме. § 106. Электронные лампы. § 107. Электроннолучевая трубка. Глава IX. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ПОЛУПРОВОДНИКИ § 108. Природа электрического тока в полупроводниках. § 110. Полупроводниковые выпрямители. § 111. Полупроводниковые фотоэлементы. Глава X. ОСНОВНЫЕ МАГНИТНЫЕ ЯВЛЕНИЯ § 112. Естественные и искусственные магниты. § 113. Полюсы магнита и его нейтральная зона. § 114. Магнитное действие электрического тока. § 115. Магнитные действия токов и постоянных магнитов. § 116. Происхождение магнитного поля постоянных магнитов. § 117. Гипотеза Ампера об элементарных электрических токах. Глава XI. МАГНИТНОЕ ПОЛЕ § 118. Магнитное поле и его проявления. Магнитная индукция. § 119. Магнитный момент. Единица магнитной индукции. § 120. Измерение магнитной индукции поля с помощью магнитной стрелки. § 122. Линии магнитного поля. § 123. Приборы для измерения магнитной индукции. Глава XII. МАГНИТНЫЕ ПОЛЯ ЭЛЕКТРИЧЕСКИХ ТОКОВ § 124. Магнитное поле прямолинейного проводника и кругового витка с током. § 125. Магнитное поле соленоида. Эквивалентность соленоида и полосового магнита. § 126. Магнитное поле внутри соленоида. Напряженность магнитного поля. § 127. Магнитное поле движущихся зарядов. Глава XIII. МАГНИТНОЕ ПОЛЕ ЗЕМЛИ § 128. Магнитное поле Земли. § 129. Элементы земного магнетизма. § 130. Магнитные аномалии и магнитная разведка полезных ископаемых. Глава XIV. СИЛЫ, ДЕЙСТВУЮЩИЕ В МАГНИТНОМ ПОЛЕ НА ПРОВОДНИКИ С ТОКОМ § 132. Введение. § 133. Действие магнитного поля на прямолинейный проводник с током. Правило левой руки. § 134. Действие магнитного поля на виток или соленоид с током. § 135. Гальванометр, основанный на взаимодействии магнитного поля и тока. § 136. Сила Лоренца. § 137. Сила Лоренца и полярные сияния. Глава XV. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ § 138. Условия возникновения индукционного тока. § 139. Направление индукционного тока. § 140. Основной закон электромагнитной индукции. § 141. Электродвижущая сила индукции. § 142. Электромагнитная индукция и сила Лоренца. § 143. Индукционные токи в массивных проводниках. Токи Фуко. Глава XVI. МАГНИТНЫЕ СВОЙСТВА ТЕЛ § 144. Магнитная проницаемость железа. § 145. Магнитная проницаемость различных веществ. Вещества парамагнитные и диамагнитные. § 146. Движение парамагнитных и диамагнитных тел в магнитном поле. Опыты Фарадея. § 147. Молекулярная теория магнетизма. § 148. Магнитная защита. § 149. Особенности ферромагнитных тел. § 150. Основы теории ферромагнетизма. Глава XVII. ПЕРЕМЕННЫЙ ТОК § 152. Опытное исследование формы переменного тока. Осциллограф. § 153. Амплитуда, частота и фаза синусоидального переменного тока и напряжения. § 154. Сила переменного тока. § 155. Амперметры и вольтметры переменного тока. § 156. Самоиндукция. § 157. Индуктивность катушки. § 158. Прохождение переменного тока через конденсатор и катушку с большой индуктивностью. § 159. Закон Ома для переменного тока. Емкостное и индуктивное сопротивления. § 160. Сложение токов при параллельном включении сопротивлений в цепь переменного тока. § 161. Сложение напряжений при последовательном соединении сопротивлений в цепи переменного тока. § 162. Сдвиг фаз между током и напряжением. § 163. Мощность переменного тока. § 164. Трансформаторы. § 165. Централизованное производство и распределение электрической энергии. § 166. Выпрямление переменного тока. Глава XVIII. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ: ГЕНЕРАТОРЫ, ДВИГАТЕЛИ, ЭЛЕКТРОМАГНИТЫ § 167. Генераторы переменного тока. § 168. Генераторы постоянного тока. § 169. Генераторы с независимым возбуждением и с самовозбуждением. § 170. Трехфазный ток. § 171. Трехфазный электродвигатель. § 172. Электродвигатели постоянного тока. § 173. Основные рабочие характеристики и особенности двигателей постоянного тока с параллельным и последовательным возбуждением. § 174. Коэффициент полезного действия генератора и двигателя. § 175. Обратимость электрических генераторов постоянного тока. § 176. Электромагниты. § 177. Применение электромагнитов. § 178. Реле и их применения в технике и автоматике. Ответы и решения к упражнениям Приложения Предметный указатель Таблицы |
Эбонит это проводник или диэлектрик: проводит ли эбонит ток
Эбонит – один из наиболее востребованных поделочных и конструкционных материалов. Он изготавливается из натурального каучука путем вулканизации в присутствии небольшого количества серы. Эбонит достаточно часто используют как заменитель кости, рога и поделочных камней, и применяют для изготовления ножей, мундштуков, различных сувениров, а также браслетов, колец и т.д.
Благодаря такому широкому применению этого материала в бытовых целях, очень важно знать, можно ли использовать материал в электричестве и проводит ли эбонит электрический ток. Этот вопрос мы и рассмотрим далее.
В нашем интернет-магазине вы сможете купить эбонит с доставкой по Москве по доступным ценам. Мы предоставляем скидки на оптовые партии.
Эбонит – это проводник или диэлектрик?
Как известно, все материалы делятся на проводники, полупроводники и диэлектрики. При этом такое деление является достаточно условным, так как возможность протекания электрического в телах зависит не только от вида вещества, но и от условий окружающей среды, агрегатного состояния, наличия примесей и множества других факторов.
Поэтому чаще всего деление веществ на проводники и диэлектрики принято проводить по величине удельного электрического сопротивления:
Полупроводники занимают среднее положение между этими двумя классами и обладают удельным электрическим сопротивлением, равным 10−5 – 108 Ом·м. Однако такое разделение не позволяет точно определить, проводит при данных условиях материал электрический ток или нет.
Понять является ли то или иное вещество проводником, изучив его физические свойства и поведение в электрическом поле. Поэтому, чтобы определить, проводит ли эбонит электрический ток или нет, рассмотрим физические свойства эбонита, а также его поведение в электростатическом поле.
Как определить, проводит ли ток эбонит?
Согласно справочной литературы эбонит обладает следующими физико-механическими свойствами:
Нас будет интересовать именно удельное сопротивление, так как оно определяет способность эбонита пропускать через себя электрический ток, то есть его электропроводность.
Электропроводность эбонита обратно пропорциональна его удельному электрическому сопротивлению и имеет значения порядка 10–15 –10–14 См. Следовательно, эбонит практически не проводит ток и является диэлектриком с высокими электроизоляционными свойствами.
Также это утверждение можно проверить опытным путем, включив эбонитовое изделие в электрическую цепь. В результате этого эксперимента цепь окажется разомкнутой и ток в ней протекать не будет.
Кроме того, эбонит в электростатических полях поляризуется, что говорит о его принадлежности к диэлектрикам. Это явление подтверждается опытами Фарадея и Франклина. В бытовых условиях также можно проверить данное утверждение. Достаточно потереть изделие из эбонита о кусок шерстяной ткани. В результате трения на поверхности эбонита накапливается отрицательный заряд, то есть происходит поляризация материала. Следовательно, эбонит – диэлектрик, а значит, он не проводит электричество.
Таким образом, проверить, проводит ли эбонит электричество, можно даже в домашних условиях. Для этого достаточно внимательно изучить физические свойства материала и провести опыт с поляризацией тела. Если вещество поляризуется (накапливает на поверхности статический заряд) и обладает высоким удельным электрическим сопротивлением, то оно является диэлектриком, в противном случае – проводником.
проводящие среды и диэлектрические среды
Проводники и диэлектрики
Мы различаем следующие типы материи с относительно подвижности электрических зарядов и их поведения в наличие электрического поля:
- проводниковых сред, в которых имеются свободные электрические заряды, т. приводится в направленное движение
- диэлектрики, в которых отсутствуют свободные электрические заряды. Следовательно, наличие электрического поля в такой среде не вызывает движения электрических зарядов.
Проводящая среда и электропроводность σ
В проводящих средах некоторые электроны чрезвычайно подвижны и могут свободно перемещаться по проводящий объем. Эти электроны называются электронами проводимости или свободными электроны.
Свойство электропроводности проводящей среды определяется как коэффициент пропорциональности σ, характеризующий связь между плотностью тока и электрическое поле , отношения известны как закон Ома, .
Электрический ток, возникающий в результате смещения свободных электрических зарядов, называется ток проводимости.
Идеальный дирижер…
Идеальный проводник — это гипотетический материал, не оказывающий сопротивления потоку электрический ток. Это предельный случай, когда электропроводность σ равна бесконечный.
Диэлектрическая среда и относительная диэлектрическая проницаемость ε
rДиэлектрическая среда характеризуется следующие свойства:
электроны атомов прочно связаны с ядром и в эффект, свободных электронов не существует; следовательно, диэлектрики очень хорошие электрические изоляторы.
Значение удельного сопротивления ρ = 1/σ находится между 10 17 и 10 19 Ом·м
- в наличие электрического поля:
- атомы деформируются в результате действия электрического поля на облака электронов и ядра, и
- произвольная ориентация молекул (групп атомов) изменяется действием электрического поля на положительные и отрицательные ионы
Это явление называется «диэлектрическим поляризация».
Объемная плотность моментов электрических диполей определяет поле поляризации . Электрический поток плотность, вторая величина, характеризующая электрическое поле внутри вещества, определяется соотношением , где ε 0 — диэлектрическая проницаемость вакуума.
Если среда характеризуется линейной поляризацией, то эта поляризация пропорциональна к напряженности электрического поля . В этом случае связь между величинами и является линейной, , где ε – диэлектрическая проницаемость материала.
На практике мы используем относительную диэлектрическую проницаемость ε r как отношение между диэлектрической проницаемостью материала и вакуума ε r = ε / ε 0 . Эту величину также называют диэлектрической проницаемостью материал.
Идеальный диэлектрик…
Идеальный диэлектрик — это гипотетический материал, который не пропускает заряд. через (предельный случай, когда проводимость σ равна нулю).
Электрический ток смещения
Явление поляризации в электрических полях переменного тока отвечает за существование переменного тока, называемого электрический ток смещения.
Если электрическое поле изменяется во времени, например, в синусоидальном режиме, колебательный движение диполей появляется из-за их тенденции выравниваться на электрическое поле. Хотя эти колебания локальны и, таким образом, не являются реальными миграция диполей, это локальное движение сравнимо с переменным током, называемым электрический ток смещения.
Этот ток пропорционален произведению ω.ε между пульсациями поля ω =2πf и диэлектрической проницаемости ε .
Реальная среда в электрических полях переменного тока
Граница между диэлектриком и проводником поведение среды в переменных электрических полях не является абсолютным, т.к. материя может быть более или менее проводящей, более или менее диэлектрик.
Действительно, данное тело является более или менее проводящим и более или менее диэлектрическим в зависимости от к частоте. Соотношение σ/ωε ( ω пульсация, ω =2 π f ) показывает относительную значимость:
переменного тока ток проводимости:
т.е. проводящего характера среды ( σ ),
и ток смещения:
т.е. его диэлектрических свойств (ω.ε )
Таким образом, в переменном электрическом поле имеем:
хороший проводник для σ/ω. ε >> 1 ,
и хороший диэлектрик для σ/ω.ε << 1 .
Диэлектрик | Определение, свойства и поляризация
- Развлечения и поп-культура
- География и путешествия
- Здоровье и медицина
- Образ жизни и социальные проблемы
- Литература
- Философия и религия
- Политика, право и правительство
- Наука
- Спорт и отдых
- Технология
- Изобразительное искусство
- Всемирная история
- В этот день в истории
- Викторины
- Подкасты
- Словарь
- Биографии
- Резюме
- Популярные вопросы
- Инфографика
- Демистификация
- Списки
- #WTFact
- Товарищи
- Галереи изображений
- Прожектор
- Форум
- Один хороший факт
- Развлечения и поп-культура
- География и путешествия
- Здоровье и медицина
- Образ жизни и социальные вопросы
- Литература
- Философия и религия
- Политика, право и правительство
- Наука
- Спорт и отдых
- Технология
- Изобразительное искусство
- Всемирная история
- Britannica объясняет
В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы. - Britannica Classics
Посмотрите эти ретро-видео из архивов Encyclopedia Britannica. - Demystified Videos
В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы. - #WTFact Видео
В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти. - На этот раз в истории
В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
- Студенческий портал
Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д. - Портал COVID-19
Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня. - 100 женщин
Britannica празднует столетие принятия Девятнадцатой поправки, уделяя особое внимание суфражисткам и историческим политикам.