Твердотельное реле: принцип работы, схема подключения
ТТР (Твердотельное реле) (англ. SolidStateRelay (SSR) – полупроводниковое устройство, рассчитанное на управление изменений электрического тока. Главное назначение устройства – изоляция между цепями напряжения.
ТТР – регулятор мощности напряжения, обеспечивает правильную функциональность электрических систем различного оборудования, контролирует и управляет включением и выключением приборов.
Принцип действия
Схема всех SSR практически одинаковая, даже если есть разница, она никак не влияет на принцип действия.
Схема SSR постоянного тока
Принцип действия механизма заключается в замыкании и размыкания контактов, которые передают напряжение. Выполняется это с помощью активатора, то есть твердотельного прибора.В зависимости от характера тока (переменного или постоянного) используется тип силового элемента (полупроводниковый прибор). Для постоянного тока используются транзисторы, для переменного – симисторы и тиристоры. Транзистор пропускает постоянный ток. Симистор проводит ток в двух направлениях, а тиристор может проводить напряжение и в 1ом и в 2х направлениях.
Схема твердотельного реле переменного тока
Схема цепей
На вход поступает электрический сигнал, дальше он подаётся на оптический светодиод. Оптическая развязка обеспечивает изоляцию между входной, промежуточной и выходной цепью. В работу включается триггерная цепь. Она управляет переключением выхода ТТР. Переключающая цепь передает напряжение на нагрузку, которая представлена транзистором, тиристором или симистором. Защитная цепь нужна для надежной работы ТТР при различных нагрузках.
Для предотвращения сгорания контактов устройства, рекомендуется установка предохранителя.
Виды устройства
SSR различаются по следующим свойствам.
- Характер тока в сети
- Однофазное реле способно коммутировать электрический ток от 10 до 120 А или от 100 до 500 А. Управление проводится через фазу с помощью аналогового сигнала (непрерывный по времени) и переменного резистора (элемент электрической цепи). Как правило, корпус однофазного SSR стандартный, модульный (завершенная конструкция).
Однофазное реле используется в бытовых приборах.
Рекомендация. Установка однофазного ТТР в электрическую систему обезопасит домашнюю технику от поломки.
- Трехфазное релекоммутирует электричество на трёх фазах сразу. Диапазон напряжения 10 – 120 А. Отдельными характеристиками обладает реверсивное трехфазное ТТР. Выделяется надёжной коммутацией цепей. Сфера использования – непостоянная работа двигателя.
Чтобы не происходило перенапряжение, используется варистор (полупроводниковый резистор)или предохранитель. Трёхфазное SSR имеет долгий срок использования в сравнении с однофазным устройством.
- Способ управления
- Коммутация постоянного тока. Применяется при постоянном напряжении от 3 до 32 вольт. Отличаются высокой надежностью работы. Поддержка температур от -30 до +70 соблюдается практически у всех моделей.
- Коммутация переменного тока. SSR переменного тока характеризуется маленьким соотношением электромагнитных помех, бесшумностью, экономным энергопотреблением и оперативной работой. Диапазон напряжения от 90 до 250 вольт.
- Реле, управляемое вручную. Оно позволяет управлять настройками.
Коммутация – процесс переключение и отключение напряжения. Происходит моментально при замыкании и размыкании цепей.
- Тип коммуникации
- Конструкция с фазовым регулятором мощности. Тип коммуникации – изменения на выходе нагрузки с управлением мощности, нагреванием (уровень освещения).
- Прибор, контролируемый нулевым регулятором мощности. Область использования –коммутация ёмкостных (конденсатных) резистивных (лампы и нагреватели) слабо индуктивных приборов. SSR с нулем необходимы для коммутации индуктивных (трансформаторы, двигатели) и резистивных нагрузок при необходимости мгновенного действия.
- По конструкции
- Устанавливаемые на одну рейку.
- Монтируемые на планки переходного типа.
Сферы применения
Твердотельное реле 12в
SSR не заменит полностью электромагнитный аналог, но во многих областях превосходит его в применении.
Сфера применения достаточно обширная. Его устанавливают в том оборудования, где нужно надежное и длительное использование системы.
- Для поддержания постоянной температуры в технологическом процессе.
- Регулятор мощности тока.
- При замене пyскателя реверсивного типа.
- Электрический двигатель.
- Датчик движения.
- Датчик освещения.
- Диммер (выключатель с регулировкой яркости лампы).
- Производственные станки.
- Регулятор температуры камеры.
Далеко не весь список использования.
Преимущества использования
Твердотельное реле применяется в различных электрических цепях- низковольтных, высоковольтных. От простейшего бытового прибора, которое имеется в каждом доме до крупного промышленного объекта.
- Компактный размер даёт возможность использования в ограниченных пространством условиях, и перемещать его.
- Более точный и стабильный регулятор температуры по сравнению с электромагнитным устройством.
- Скорость быстрого включения в работу без потребности долгого запуска.
- Экономия электроэнергии из-за использования полупроводников вместо электромагнитного разнесения.
- Надёжность работы. Реле может выполнить более миллиарда срабатываний.
- Долгий срок эксплуатации без необходимости прохождения постоянного технического обслуживания.
- Отсутствие источников искр.
- Включение в цепь без помех из-за герметичной конструкции.
- Бесшумность работы.
- Не происходит дребезжания благодаря быстрому старту.
- Широкая сфера применения. ТТР используется для регулятора работы многих устройств.
Как выбрать полупроводниковое устройство?
Покупая твердотельное реле нужно обратить внимание на его основные характеристики:
- Вид SSR.
- Материал корпуса.
- Тип включения – быстрый или постепенный.
- Производитель.
- Наличие крепежей.
- Уровень потребления электроэнергии.
- Размер ТТР.
- Необходимо учесть коммутируемый регулятор напряжение.
Важно! Реле должно иметь большой запас мощности напряжения для его надежного и продолжительного использования. Иначе при скачке напряжения произойдёт поломка.
Выполняя работы по проведению электрической системы помещения и устанавливая оборудование, вне зависимости от его масштабов, важно чтобы всё работало надежно и исправно. Осуществлению этого способствует полупроводниковое устройство. При верном подборе типа SSR и правильной установке, оно будет долговечно.
принцип работы, виды, схема подключения
Сегодня твердотельные реле переменного тока однофазные нашли широкое применение в промышленности. Эти приборы обладают небольшими габаритами и отличаются высокой надежностью. Твердотельные реле (ТТР) легко подключить, и с этой работой справится даже начинающий электрик. Единственным фактором, сдерживающим широкое распространение этих устройств в быту, является более высокая стоимость в сравнении с классическими электромеханическими приборами.
Принцип работы
Твердотельное реле предназначено для управления электроцепями. В отличие от классических реле, они не имеют подвижных контактов, а коммутация происходит с помощью полупроводниковых приборов. Большинство моделей ТТР имеют похожую схемотехнику, а внесенные производителями изменения практически не влияют на принцип их работы.
Структура прибора содержит:
- Вход.
- Оптические развязки.
- Триггерные цепи.
- Цепи защиты и коммутации.
Роль входа выполняет первичная электроцепь, содержащая последовательно подключенное сопротивление на постоянном изоляторе. Входная цепь принимает сигнал и передает команды на цепь коммутации.
Задача триггерной цепи состоит в обработке входного сигнала и последующего переключения выходного. Она может входить в состав оптической развязки либо является отдельным элементом конструкции.
Для подачи питающего напряжения на нагрузку в устройстве присутствует коммутационная цепь. В ее состав входят полупроводниковые приборы — симистор, транзистор и диод.
Принцип работы твердотельного реле заключается в управлении контактами, передающими напряжение на реле. Для приведения контактов в действие необходим активатор. Если устройство предназначено для работы в трехфазной цепи, то его роль выполняет тиристор либо симистор. В твердотельном реле постоянного тока в качестве активатора используется транзистор.
Область применения и преимущества
В сравнении с классическими реле ТТР имеют много достоинств. Если не относительно высокая стоимость этих приборов, они значительно шире использовались бы в быту. Среди их основных преимуществ можно отметить:
- Низкий показатель электропотребления.
- Отличаются высоким быстродействием.
- Отсутствие шума во время работы.
- После подключения к цепи ТТР не создают электромагнитные помехи.
- Длительный срок эксплуатации.
Эти приборы нашли широкое применение в промышленности. Они используются для управления электромоторами, регулирования уровня освещения и т. д.
Основные виды
Эти приборы принято классифицировать по нескольким показателям. В первую очередь речь идет о типе контролирующего напряжения — постоянного и переменного тока. Устройства постоянного тока предназначены для работы в электроцепях с напряжением 3−32 В. Они отличаются высокой надежностью, оснащаются светодиодной индикацией, а диапазон рабочих температур составляет от -30 до 60 градусов. Также существуют приборы с ручным управлением, которые можно настроить на нужный тип работы.
В соответствии с видом нагрузки ТТР бывают однофазными и трехфазными. Приборы, предназначенные для трехфазных цепей, способны контролировать ток в диапазоне 10−120 А сразу на всех фазах. Среди этих устройств особое место занимают реверсивные реле, отличающиеся бесконтактной коммутацией. Они часто используются в сочетании со специальными приборами, обеспечивающими надежную защиту от ложных срабатываний.
Реле твердотельное однофазное позволяет коммутировать электроток при его переходе через нулевую отметку, а рабочий диапазон токов составляет 10−500 А.
Особенности подключения
С этой работой может справиться практически каждый домашний мастер. Чтобы прибор начал функционировать, на входные клеммы достаточно подать питающее напряжение, соблюдая полярность. В качестве примера можно рассмотреть подключение твердотельного реле к системе освещения:
- В точке монтажа ТТР нужно сделать разрыв фазного проводника.
- Устройство подключается в разрыв клеммами для коммутации.
- На управляющие контакты в соответствии с полярностью подается питающее напряжение.
Следует обратить внимание на то, что управляющая цепь подключается через пусковую кнопку. Достаточно кратковременной подачи напряжения для открытия полупроводникового элемента конструкции и последующего замыкания цепи. Чаще всего твердотельные реле монтируются на DIN-линейку.
При выборе прибора необходимо ориентироваться технические характеристики цепи питания, а также условия эксплуатации реле. Подключение ТТР к цепи не должно вызвать серьезных проблем.
Твердотельные реле устройство и принцип работы.
Рис. 2 Схема однофазного выпрямителя
ЧТО ТАКОЕ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ? Применение преобразователей энергии в электроприводе обусловлено в основном необходимостью регулирования скорости вращения электродвигателей. У большинства первичных
ПодробнееИЛТ1-1-12, ИЛТ модули управления тиристорами
ИЛТ, ИЛТ модули управления тиристорами Схемы преобразователей на тиристорах требуют управления мощным сигналом, изолированным от схемы управления. Модули ИЛТ и ИЛТ с выходом на высоковольтном транзисторе
ПодробнееИЛТ Драйвер управления тиристором
ИЛТ Драйвер управления тиристором Схемы преобразователей на тиристорах требуют изолированного управления. Логические изоляторы потенциала типа ИЛТ совместно с диодным распределителем допускают простое
ПодробнееЛекция 8 ВЫПРЯМИТЕЛИ (ПРОДОЛЖЕНИЕ) План
75 Лекция 8 ВЫПРЯМИТЕЛИ (ПРОДОЛЖЕНИЕ) План 1. Введение 2. Однополупериодный управляемый выпрямитель 3. Двухполупериодные управляемые выпрямители 4. Сглаживающие фильтры 5. Потери и КПД выпрямителей 6.
ПодробнееЛекция 2 ЦЕПИ С ДИОДАМИ И ИХ ПРИМЕНЕНИЕ
109 Лекция ЦЕПИ С ДИОДАМИ И ИХ ПРИМЕНЕНИЕ План 1. Анализ цепей с диодами.. Источники вторичного электропитания. 3. Выпрямители. 4. Сглаживающие фильтры. 5. Стабилизаторы напряжения. 6. Выводы. 1. Анализ
Подробнее2.9 Блок контроля первичных цепей SB71
2.9 Блок контроля первичных цепей SB71 Блок предназначен для формирования контрольных сигналов, пропорциональных действующему значению первичного напряжения питания и напряжения на конденсаторах сетевого
Подробнее1211ЕУ1/1А ДВУХТАKТНЫЙ KОНТРОЛЛЕР ЭПРА
ЕУ/А ОСОБЕННОСТИ w Двухтактный выход с паузой между импульсами w Вход переключения частоты w Kомпактный корпус w Минимальное количество навесных элементов w Малая потребляемая мощность w Возможность применения
Подробнее1211ЕУ1/1А ДВУХТАKТНЫЙ KОНТРОЛЛЕР ЭПРА
_DS_ru.qxd.0.0 :9 Page ЕУ/А ОСОБЕННОСТИ Двухтактный выход с паузой между импульсами Вход переключения частоты Kомпактный корпус Минимальное количество навесных элементов Малая потребляемая мощность Возможность
ПодробнееДрайвер шагового двигателя ADR810/ADR812
Драйвер шагового двигателя ADR810/ADR812 ИНСТРУКЦИЯ по эксплуатации Апрель-2010 1 СОДЕРЖАНИЕ 1. НАЗНАЧЕНИЕ УСТРОЙСТВА…3 2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ…3 3. ЧЕРТЕЖ КОРПУСА…3 4. КРАТКИЙ ПЕРЕЧЕНЬ ТОГО,
ПодробнееИнвертор реактивной мощности
Инвертор реактивной мощности Устройство предназначено для питания бытовых потребителей переменным током. Номинальное напряжение 220 В, мощность потребления 1-5 квт. Устройство может использоваться с любыми
Подробнее1. Назначение и устройство выпрямителей
Тема 16. Выпрямители 1. Назначение и устройство выпрямителей Выпрямители это устройства, служащие для преобразования переменного тока в постоянный. На рис. 1 представлена структурная схема выпрямителя,
ПодробнееВыбор. Аналоговые контроллеры мощности ACI
Назначение Аналоговый контроллер мощности ACI предназначен для высокоточного управления температурой нагревательных элементов и трансформаторами. Благодаря встроенному микропроцессору контроллер может
Подробнее2.7 Блок вращения анода RВ07
2.7 Блок вращения анода RВ07 Для уменьшения удельной плотности потока тепловой мощности, воздействующего на анод рентгеновской трубки в месте фокусировки электронного пучка, в флюорографах применяются
ПодробнееДИОДНЫЙ МОСТ ОДНОФАЗНЫЙ ТРЕХФАЗНЫЙ
Диодные мосты Диодные мосты однофазные KBPC Диодные мосты однофазные QL Диодные мосты трёхфазные SQL Диодные мосты однофазные MDQ Диодные мосты трёхфазные MDS Диодные мосты однофазные DF10M Однофазный
Подробнее15.4. СГЛАЖИВАЮЩИЕ ФИЛЬТРЫ
15.4. СГЛАЖИВАЮЩИЕ ФИЛЬТРЫ Сглаживающие фильтры предназначены для уменьшения пульсаций выпрямленного напряжения. Их основным параметром является коэффициент сглаживания равный отношению коэффициента пульсаций
ПодробнееИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ
95 Лекция 0 ИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ План. Введение. Понижающие импульсные регуляторы 3. Повышающие импульсные регуляторы 4. Инвертирующий импульсный регулятор 5. Потери и КПД импульсных регуляторов
ПодробнееСодержание. 00_cont.indd :41:48
Содержание Об авторе 13 Об изображении на обложке 13 Введение 15 На кого рассчитана эта книга 15 Идея книги 15 Современная электроника 16 Структура книги 16 Условные обозначения 19 Файлы примеров 19 Ждем
ПодробнееRU (11) (51) МПК H03K 17/00 ( )
РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК H03K 17/00 (2006.01) 168 443 (13) U1 R U 1 6 8 4 4 3 U 1 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22)
ПодробнееКорректоры напряжения AVR-8 AVR-40
Корректоры напряжения AVR-8 AVR-40 1 ОБЩЕЕ ОПИСАНИЕ Корректоры напряжения AVR8/AVR40 являются электронными приборами, позволяющими генератору переменного тока поддерживать установленное выходное напряжение.
ПодробнееУниверсальный блок управления Джинн
Универсальный пульт управления Универсальный блок управления Джинн Назначение Универсальный пульт управления предназначен для управления четырьмя устройствами типа: насосы, обогреватели, кондиционеры,
ПодробнееПЭР УЛ ПЗ
Государственное бюджетное образовательное учреждение начального профессионального образования Профессиональное училище 1 30.4 Помощник машиниста электровоза Слесарь по ремонту подвижного состава К защите
ПодробнееВВЕДЕНИЕ В Р-КАНАЛЬНЫЕ МОП ПТ
1 S. CLEMENTE AN-940B ВВЕДЕНИЕ В Р-КАНАЛЬНЫЕ МОП ПТ Ознакомление с семейством Р-канальных МОП ПТ фирмы International Rectifier дает разработчику еще одну возможность, которая может упростить схемотехнику,
ПодробнееЛекция 12 ИНВЕРТОРЫ. План
5 Лекция 2 ИНВЕРТОРЫ План. Введение 2. Двухтактный инвертор 3. Мостовой инвертор 4. Способы формирования напряжения синусоидальной формы 5. Трехфазные инверторы 6. Выводы. Введение Инверторы устройства,
Подробнее10.2. ЭЛЕКТРОННЫЕ КЛЮЧИ
10.2. ЭЛЕКТРОННЫЕ КЛЮЧИ Общие сведения. Электронный ключ это устройство, которое может находиться в одном из двух устойчивых состояний: замкнутом или разомкнутом. Переход из одного состояния в другое в
Подробнее10. Измерения импульсных сигналов.
0. Измерения импульсных сигналов. Необходимость измерения параметров импульсных сигналов возникает, когда требуется получить визуальную оценку сигнала в виде осциллограмм или показаний измерительных приборов,
Подробнееруководство по эксплуатации
ИСТОЧНИК ПИТАНИЯ СТАБИЛИЗИРОВАННЫЙ ИПС-500-220В/220В-2А-D ИПС-500-220В/110В-4А-D ИПС-500-220В/60В-8А-D ИПС-500-220В/48В-10А-D ИПС-500-220В/24В-15А-D AC(DC)/DC руководство по эксплуатации СОДЕРЖАНИЕ 1.
ПодробнееКОНТРОЛЬНАЯ ЛАМПА ГЕНЕРАТОРА
КОНТРОЛЬНАЯ ЛАМПА ГЕНЕРАТОРА «Что означает красная лампочка с изображением аккумулятора, загорающаяся на приборной панели моего автомобиля?» В общем случае это значит, что напряжение на выходе генератора
ПодробнееФОТОВОЛЬТАИЧЕСКИЙ ОПТРОН К294ПП1АП.
ФОТОВОЛЬТАИЧЕСКИЙ ОПТРОН К294ПП1АП. Стремление к микро миниатюризации функциональных элементов электрических цепей привело к созданию нового класса оптоэлектронных интегральных микросхем, так называемых
ПодробнееИНСТРУКЦИЯ ПОДКЛЮЧЕНИЯ СЧЕТЧИКА СИД-1
ИНСТРУКЦИЯ ПОДКЛЮЧЕНИЯ СЧЕТЧИКА СИД-1 Перед подключением убедитесь в полном комплекте кабелей поставляемых в составе счетчика. На обратной стороне верхней крышки находится этикетка с информацией подключаемых
ПодробнееЛекция 9 СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ
84 Лекция 9 СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ План 1. Введение 2. Параметрические стабилизаторы 3. Компенсационные стабилизаторы 4. Интегральные стабилизаторы напряжения 5. Выводы 1. Введение Для работы электронных
Подробнеесхема подключения, устройство, характеристики и управление
На чтение 9 мин Просмотров 347 Опубликовано Обновлено
Для контроля различного электронного оборудования требуется прибор, отличающийся миниатюрными размерами и высокой степенью надежности. К таким устройствам относятся твердотельные реле постоянного и переменного тока. Они нашли свое применение в бытовых и промышленных условиях. Реле можно самостоятельно собрать и установить своими руками без особых трудностей. Единственный критерий, препятствующий широкому распространению устройства – его стоимость. Прежде чем использовать твердотельное реле, нужно разобраться с его параметрами, принципом работы, конструкцией.
Принцип работы
Устройство твердотельного релеТвердотельное реле – это модульный полупроводниковый прибор, используемый для замыкания и размыкания электрических сетей. Он представлен в виде транзисторов, симисторов, тиристоров. Твердотельные реле также называются SSR (solid state relay).
Основные компоненты, из которых состоит реле:
- входной узел;
- предохранители;
- триггерная цепь;
- развязка;
- узел переключения;
- защитная цепь;
- выходной узел.
Большая часть твердотельных реле применяется для автоматики, подключенной к электросети 20-480 Вольт.
Принцип действия устройства прост. В корпус реле входят два контакта и два управляющих провода. Их число может изменяться в зависимости от фаз, которые были подключены. Под действием напряжения происходит переключение основной нагрузки.
Работая с реле, нужно учитывать, что под высокими напряжениями есть риск появления небольших токов утечки, которые могут навредить технике. Это связано с тем, что в реле остается небольшое сопротивление.
Известные модели
Расшифровка маркировкиОсновные характеристики зависят от многих факторов. К популярным отечественным моделям, произведенным фирмами КИПпрбор, Протон, Cosmo, относятся:
- ТМ-О. Устройства со встраиваемой схемой «ноль», через которую проходит переход фазы.
- ТС. Модели, которые выключаются в любой момент времени.
- Наиболее популярные и используемые – ТМВ, ТСБ, ТСМ, ТМБ, ТСА. Они обладают выходной RC цепью.
- Тс/ТМ – силовые. Токи достигают значений 25 мА.
- ТСА, ТМА – применяются в чувствительных приборах.
- ТСБ, ТМБ – низковольтные модели. Напряжение не превышает 30 В.
- ТСВ, ТМВ – высоковольтные. Напряжение достигает 280 В.
К иностранным аналогам относятся изделия, произведенные фирмами Carlo Gavazzi, Gefran, CPC.
Расшифровка
Модели SSR, TSR (однофазные и трехфазные соответственно) являются самыми популярными. Их сопротивление равно 50 Мом и более при напряжении 500 В.
Записывается обозначение как SSR -40 D A H. SSR или TSR обозначает число фаз. 40 – нагрузка в Амперах. Буквой обозначается сигнал на входе (L 4-20 мА, D – 3-32 В при постоянном токе, V – переменное сопротивление, A – 80-250 В при переменном токе). Следующая буква – входное напряжение (А – переменное, D – постоянное). Последняя буква – диапазон выходных напряжений (Н – 90-480 В, нет буквы – 24-380 В).
Особенности работы с устройством
Реле однофазное 220ВПри работе с твердотельным реле 220в (управление 220), нужно придерживаться следующих правил:
- Соединение должно осуществляться винтовым способом. Оно является достаточно надежным. Спайка частей не нужна, скрутка запрещена.
- Нельзя допускать попадания пыли, воды и металлических предметов на реле. Они приводят к выходу из строя компонента.
- Нельзя прикладывать недопустимые внешние воздействия на корпус. К ним относятся заливание жидкостью, удары, вибрации, падения.
- Не трогать прибор во время работы. Корпус нагревается, из-за чего человек может получить ожог.
- Не устанавливать реле рядом с легковоспламеняемыми предметами.
- Перед подключением цепи следует убедиться в корректности собранных соединений.
- При нагреве корпуса выше 60 градусов требуется установка дополнительного охлаждения с помощью радиаторов.
- Нельзя допускать появления короткого замыкания на выходе.
При соблюдении требований к эксплуатации реле будет выполнять свою работу надежно и качественно весь заявленный срок.
Преимущества и недостатки
Твердотельные реле имеют ряд положительных качеств перед электромеханическими аналогами. К ним относятся:
- Долговечность. Полупроводниковый прибор способен выдержать до десятков тысяч циклов включения и выключения.
- Создается качественное подключение.
- Грамотный контроль нагрузки.
- Высокое быстродействие.
- Отсутствие электромагнитных помех в замкнутой сети.
- Быстрое срабатывание.
- Бесшумность работы.
- Миниатюрные размеры.
- Отсутствие дребезгов контактов.
- Высокая производительность.
- Возможность плавного перехода между сетями постоянного и переменного тока. Зависит от мощности и типа прибора.
- Широкая область применения.
- Выдерживает перегрузки в 2000.
- Защита от резких и больших скачков напряжения и тока.
Есть и ряд минусов, из-за которых электромеханическое реле может быть выгоднее в применении. В первую очередь это высокая стоимость изделия и сложность его покупки. Приобрести твердотельные реле можно только в профессиональном специализированном магазине электронных компонентов. Сложности возникают и при первичной коммутации – могут появиться высокие скачки тока. Возникающие в процессе работы микротоки также негативно сказываются на реле.
На работу устройства накладываются и эксплуатационные требования – в помещении должен быть нормальный уровень пыли и влажности. Оптимальные значения можно найти в документации к реле.
Твердотельные реле не могут работать с приборами, напряжение которых превышает 0,5 кВ. Повышение рекомендуемых значений может привести к расплавлению контактов.
Области применения
Область примененияНесмотря на высокую цену, твердотельные реле активно применяются в различных сферах. Они успешно справляются со следующими задачами:
- Регулирование температуры с помощью тэна.
- Поддержка нужной температуры в технологических процессах.
- Коммутация управляющих цепей.
- Замена пускателей бесконтактного типа.
- Управление электрическими двигателями.
- Контроль нагрева трансформаторов.
- Регулирование уровня подсветки.
В каждом случае используется определенный тип реле.
Классификация твердотельных реле
Трехфазное релеПолупроводниковые твердотельные реле можно классифицировать по разным показателям. По особенностям контролирующего и коммутируемого напряжения выделяют:
- Твердотельные реле постоянного тока. Их используют в цепях постоянного электричества с мощностью от 3 до 32 Ватт. Отличаются высокими удельными характеристиками, наличием светодиодной индикации, надежностью. Рабочий температурный диапазон достаточно широк и составляет от -30 до +70 градусов.
- Реле переменного тока. Они отличаются низким уровнем электромагнитных помех, отсутствием шумов, малым потреблением электроэнергии. Диапазон рабочих мощностей составляет от 90 до 250 Вт.
- Реле с ручным управлением. С помощью таких устройств можно самостоятельно регулировать режим работы.
По типу напряжения выделяются однофазные и трехфазные реле. Однофазные приборы используются в сетях с силой тока от 100 до 120 А или от 100 до 500 А. В них управление осуществляется за счет получения аналогового сигнала и переменного резистора. Трехфазные реле используются для коммутации на трех фазах одновременно. Сила тока 10-120 А. Трехфазные модели служат дольше однофазных.
В отдельную группу из трехфазных твердотельных реле выделяют устройства реверсивного типа. Они отличаются маркировкой и бесконтактным соединением. Основной функцией является надежная коммутация каждой цепи по отдельности. Они защищают цепь от ложных срабатываний. Основное применение нашли в асинхронных двигателях. Для работы с реле необходима установка предохранителя или варистора.
По методу коммутации реле классифицируются так:
- устройства емкостного или редуктивного типа, а также приборы слабой индукции;
- со случайным или мгновенным срабатыванием;
- с фазным управлением.
По конструкции можно выделить модели, устанавливающиеся на дин рейку и на специальную планку переходного типа.
Советы по выбору
Предохранитель от повышения нагрузокКупить твердотельные реле можно только в специализированном магазине электронной техники. Опытные специалисты помогут подобрать лучшее устройство для определенных целей. На стоимость изделия влияют следующие факторы:
- тип реле;
- наличие фиксирующих механизмов;
- материал корпуса;
- время включения;
- фирма-изготовитель и страна производства;
- мощность;
- необходимая энергия;
- габариты.
При покупке важно учесть, что должен быть запас по мощности, превышающий рабочую в несколько раз. Это убережет реле от поломок. Также дополнительно используются специальные предохранители. К самым надежным относятся:
- G R – используются в широком диапазоне нагрузок, отличаются высоким быстродействием.
- G S – работают во всем диапазоне токов. Надежно защищают устройство от превышения нагрузки электросети.
- A R – защищают компоненты полупроводникового устройства от короткого замыкания.
Такие приборы обеспечивают высокую защиту от поломок. Их стоимость сопоставима с ценой самого реле. Меньшими защитными свойствами и, соответственно, меньшей стоимостью обладают предохранители классов B, C, D.
Для надежной и стабильной работы реле нужно подобрать охлаждающий радиатор. Особенно это актуально при превышении температуры выше 60 градусов. Запас тока для обычного реле должен превышать рабочие токи в 3-4 раза. При работе с асинхронными двигателями этот показатель должен увеличиться до 8-9 раз.
Схемы подключения
Существуют различные способы подключения твердотельных полупроводников. Они зависят от особенностей подключаемой нагрузки. Дополнительно в схему могут включаться различные элементы управления.
К наиболее используемым схемам относятся:
- Нормально-открытая. Нагрузка находится под напряжением при наличии управляющего сигнала.
- Нормально-закрытая. Нагрузка находится под напряжением при отсутствии управляющего сигнала.
- Управляющее и нагрузочное напряжение равны. Используется для работы в сетях постоянного и переменного тока.
- Трехфазное. Может подсоединяться по-разному – «звезда», «треугольник», звезда с нейтралью».
- Реверсивное. Разновидность трехфазного реле. Включает в себя 2 контура управления.
Прежде чем собирать схему, ее нужно нарисовать на бумаге.
Подключение к сети производится через пускатели или контакты. При использовании трехфазного реле все 3 фазы должны быть подключены к соответствующим клеммам, расположенным сверху прибора. Маркируются верхние фазные контакты буквами A, B C, ноль – N.
На устройстве есть и нижние клеммы, маркирующиеся цифрами 1, 2, 3. Подключаются они по следующему алгоритму:
- 1 – к выходу катушки в контакторе.
- 3 – на любую фазу, которая проходит в обход реле.
- 2 – к нулю сети.
Силовые элементы подключаются следующим образом: фазы под напряжением нужно подсоединить к соответствующим клеммам на контакторе; нагрузочные проводники – на выход контактора; нули объединяются на общей шине в распределительной коробке.
Настройка реле будет рассмотрена на примере VP 380 А:
- Устройство включить в сеть.
- Посмотреть на дисплей. При отсутствии напряжения будут мигать цифры. Появление черточек сигнализирует об изменении чередования фаз или отсутствии одной из них.
В нормальном состоянии электросети примерно через 15 секунд должны замкнуться контакты 1 и 3, подающие питание на катушку и в сеть.
Если подключение выполнено неверно, экран будет мигать. Тогда нужно проверить его правильность. Выставить необходимые настройки можно с помощью кнопок на корпусе. Кнопки с треугольниками отвечают за выставление нужных пределов.
устройство, принцип работы, схемы подключения
Твердотельное реле – это реле, принцип действия которого построен на полупроводниковых радиоэлементах, таких как симисторы и мощные транзисторы.
Твердотелки – надо ли их использовать?
Для начала рассмотрим также целесообразность применения таких реле. Например, реальный случай:
У нас на предприятии на одном станке стоят соленоидные клапаны с питанием 24VDC 2А. Эти два клапана соединены параллельно, и включаются-выключаются с частотой примерно 1 раз в секунду. Питание идёт через реле. И, несмотря на то, что номинальный ток реле 10А индуктивной нагрузки, приходилось менять его каждый месяц-два. Поставили мы твердотелку – и забыли, работает без шума и проблем уже два года.
Другой случай, когда такие реле не нужны:
Простейший контроллер температуры, точность поддержания не существенна. Нагрузка – ТЭНы, работают в воде круглосуточно. Чаще, чем раз в год, один из ТЭНов замыкает или коротит на корпус. Здесь большая вероятность того, что ТТР выгорит, так как они очень чувствительны к перегрузкам.
О перегрузках и защите твердотельных реле будет подробно сказано ниже, а в данном случае целесообразно применить обычный контактор, который прекрасно справляется с перегрузкой и стоит в 10 раз дешевле.
Поэтому, за модой гнаться не стоит, а лучше применить трезвый расчет. Расчет по току и по финансам.
Если кому-то придёт в голову, можно кнопкой звонка или герконом запускать двигатель мощностью 10 кВт! Но не так всё просто, подробности будут ниже.
Определение
Твердотельное реле — устройство электронного типа, один из видов реле, в котором нет движущихся элементов. Изделие применяется для подачи тока или разрыва цепи путем внешнего управления (действием небольшого напряжения).
Твердотельное реле (сокращено — ТТР) имеет внутри датчик, реагирующий на подачу управляющего сигнала. Кроме того, в составе изделия имеется твердотельная электроника, в том числе включающая цепочка, способная коммутировать большие I.
Устройство может устанавливаться в цепях переменного и постоянного тока, часто применяется как обычное реле. Главная разница в том, что в ТТР нет механических контактов.
Капиталим принтер
rednetproЗагрузка
30.05.2021
3110
22Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Подписаться
Приветствую !
время работы принтера превысило пару лет и некоторые начальные к…
Показания к применению
Твердотельные реле рекомендуются к применению в случаях, когда стандартные устройства не справляются с обязательствами. К примеру, когда в процессе коммутации они плавятся или сгорают.
С помощью ТТР гарантируется надежность цепи и своевременная подача напряжения к нагрузке. В отличие от простых устройств, для ТТР не проблема справиться с нагрузкой индукционного характера.
Кроме того, твердотельное устройство стоит использовать при дефиците места в процессе монтажа и при высоких требованиях надежности цепи.
Различия схем включения реле
По виду подключения твердотельные реле можно разделить на следующие категории:
По управлению (виду входного управляющего сигнала):
- постоянное напряжение (встречается чаще всего),
- переменное напряжение,
- постоянный ток 4-20 мА,
- переменный резистор.
По виду коммутируемого тока
- твердотельные реле переменного тока
- твердотельные реле постоянного тока
По количеству фаз
- одна фаза
- три фазы (как правило, фактически это две фазы)
В любом случае, для выбора ТТР и его схемы включения нужно руководствоваться мануалами на данное реле.
Кстати, рекомендую мою статью про трехфазное и однофазное напряжение. Терминология и отличия разжеваны не пальцах)))
Виды твердотельных реле
Выглядеть ТТР могут по-разному. Ниже на фото слаботочные реле
Такие релe используются в печатных платах и предназначены для коммутации (переключения) малого тока и напряжения.
На ТТР строят также сразу готовые модули входов-выходов, которые используются в промышленной автоматике
А вот так выглядят реле, используемые в силовой электронике, то есть в электронике, которая коммутирует большую силу тока. Такие реле используется в промышленности в блоках управления станков ЧПУ и других промышленных установках
Слева однофазное реле, справа трехфазное.
Если через коммутируемые контакты силовых реле будет проходить приличный ток, то корпус реле будет очень сильно греться. Поэтому, чтобы реле не перегревались и не выходили из строя, их ставят на радиаторы, которые рассеивают тепло в окружающее пространство.
Где используются?
Твердотельные реле — уникальные устройства, которые после монтажа не требуют особого обслуживания. Здесь работает принцип «установил и забыл». К примеру, в простых моделях очистка контактной группы осуществляется с определенной периодичностью — как правило, через определенное число циклов. Если изделие работает редко, это не вызывает проблем.
Но как быть с аппаратурой, для работы которой требуется частое срабатывание — один раз в секунду или даже чаще? Пример такой техники — станок с клапанами соленоидного типа.
Подача напряжения происходит через реле, которому приходится разрывать до десяти ампер индуктивного I. Если поставить контактное устройство, его замену придется осуществлять раз в 1-2 месяца. Если поставить твердотельный аналог, об этом можно забыть на долгие годы.
Несмотря на надежность работы, ТТР требуют периодического осмотра. Базовые рекомендации в этом вопросе дает производитель изделия. Как правило, речь идет о проверке факта замыкания контактов, целостности корпуса и изоляции.
Виды твердотельных реле
ТТР условно разделяются по двум критериям — принципу действия и конструктивным особенностям. Чтобы упростить классификацию, выделим следующие варианты:
- По виду сигнала управления — переменный или постоянный I.
- По типу основного (коммутируемого) напряжения — постоянное или переменное.
- По числу фаз (для переменного напряжения) — одна, три.
- По наличию реверса — предусмотрен, не предусмотрен.
- По тонкостям конструкции — на ДИН-рейке или на поверхности.
Схема
Посмотрим схему этого очень полезного и нужного устройства.
Основу схемы составляют силовой симистор Т1 — BT138-800 на 16 Ампер и управляющий им оптрон МОС3063. На схеме выделены чёрным цветом проводники, которые нужно проложить медным проводом повышенного сечения, в зависимости от планируемой нагрузки.
Управление светодиодом оптрона мне удобнее запитать от 220 Вольт, а можно от 12 или 5 Вольт, кому как нужно.
Для управления от 5 Вольт, нужно гасящий резистор 630 Ом поменять на 360 Ом, остальное всё одинаково.
Номиналы деталей рассчитаны на МОС3063, если примените другой оптрон, то номиналы нужно пересчитать.
Варистор R7 защищает схему от бросков напряжения.
Цепочку индикаторного светодиода можно совсем убрать, но с ней получается нагляднее, что аппарат работает.
Резисторы R4, R5 и конденсаторы C3, C4 служат для предотвращения выхода из строя симистора, их номиналы рассчитаны на ток не выше 10 Ампер. Если потребуется реле на большую нагрузку, то номиналы нужно пересчитывать.
Радиатор охлаждения для симистора впрямую зависит от нагрузки на него. При мощности триста Ватт, радиатор не нужен вовсе, и соответственно – чем больше нагрузка, тем больше площадь радиатора. Чем меньше будет симистор перегреваться, тем дольше проработает и поэтому даже кулер охлаждения не будет лишним.
Если вы планируете управлять повышенной мощностью, то наилучшим выходом будет поставить симистор большей мощности, например, ВТА41, который рассчитан на 40 Ампер, или подобный ему. Номиналы деталей подойдут без пересчёта.
Простой ЧПУ выжигатель на 3d принтере.
LoloXYЗагрузка
15.05.2021
4058
12Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Подписаться
Нихромовый ЧПУ выжигатель.
Изначально хотел изготовить по шаблону ЧПУ выжигат…
Простое полупроводниковое реле своими руками
Как мы видим, полупроводниковая технология является основой для любого полупроводникового реле.
Основные параметры CPC1035:
- Напряжение переключения (напряжение блокировки) — 0 … 350 В;
- Максимальная токовая нагрузка (ток нагрузки) составляет 100 мА;
- Макс. Сопротивление по сопротивлению — 35 Ом;
- Размер управляющего тока 2 … 50 мА (постоянный ток управления).
Такие низкоэнергетические и миниатюрные реле активно используются в датчиках безопасности.
Здесь, например, реле COSMO тип CPC1008 на панели датчика движения «Фотон-Ш», Он подключен к петле безопасности приемных и контрольных устройств (например, PPKOP «гранит») или к линии, которая подключена к центральной станции управления (CMS).
Серия твердотельных реле CPC10xx также в датчике безопасности «Астра-621»,
Это многофункциональный датчик. Он контролирует движение в защищенном пространстве из-за пироэлектрического датчика и управление прерыванием окон из-за чувствительного микрофона. На печатной плате имеется два полупроводниковых реле CPC1016N.
Один срабатывает, когда движение обнаружено в области защиты, а другое срабатывает, когда окна прерываются.
Если вы посмотрите внимательно, вы увидите, что полупроводниковое реле на печатной плате определено как DA4 и DA5.
Как известно, аббревиатура DA Обычно они показывают аналоговые схемы на схемах. Поэтому разумно понимать, что полупроводниковое реле не является отдельным электронным компонентом, а по существу специальным микрочипом, подобным ИК-приемнику.
Твердотельные реле имеют основное предназначение — обеспечение изоляции между цепями, имеющими разное напряжение; работать они могут в самых разных приборах — от домашней техники до крупных производственных систем.
Твердотельные реле, в зависимости от своей конструкции, обеспечивают бесконтактную коммутацию цепей переменного или постоянного тока различного напряжения.
Схемы с управлением от транзистора
Здесь транзистор может быть выходом любого полупроводникового прибора – датчика приближения, контроллера, и т.п.
Управление транзистором PNP, НО реле
Скажу, что со схемами управления, которые я взял из фирменных инструкций, полная путаница. Можете сами разобраться, а я расскажу своё мнение.
Управление транзистором PNP, НО реле
Под “нормально открытым контактом” (читали, что это, ссылку я давал выше?) подразумевается, что без управляющего напряжения (на базе транзистора) твердотельное реле не пропускает ток. Напряжение между входными контактами 3 и 4 близко к нулю, реле выключено. При подаче входного управляющего напряжения на базу транзистора (например, +5В), транзистор открывается и плюс подается на вход 3. Реле открывается, нагрузка получает питание.
Управление транзистором NPN, НЗ реле
Управление транзистором NPN, НЗ реле
Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, нагрузка под напряжением.
Управление транзистором NPN, НО реле
Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, близкое к нулю, и нагрузка без напряжения.
Управление резистором
Плавно подходим к переменному току.
Управление переменным резистором
Не путать переменный ток и переменный резистор! В данном случае твердотельное реле фактически является диммером, который изменяет скважность выходного напряжения для нагрузки, которая приспособлена для этого. Такие реле – только с коммутацией переменного тока, и включаются/выключаются 100 раз в секунду.
Преимущества и недостатки ТТР
Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.
Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек
К таким достоинствам относят:
- Низкое потребление электроэнергии (на 90% меньше).
- Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
- Высокая скорость запуска и отключения
- Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
- Не предполагается техническое обслуживание.
- Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
- Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
- Отсутствие электромагнитных помех при срабатывании.
- Исключается порча контактов вследствие их механического удара.
- Отсутствие прямого физического контакта между цепями управления и коммутации.
- Возможность регулирования нагрузки.
- Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
- Возможность использования во взрывоопасных средах.
Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.
Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)
ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.
К минусам относят:
- Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
- Высокая стоимость.
- Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
- Ограничения по использованию в условиях повышенной влажности.
- Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
- Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
- Возможность расплавления устройства от нагрева при коротком замыкании.
- Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.
Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.
Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.
GCODE: Плюшки от Павлушки
xedosЗагрузка
19.04.2016
79157
175Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Подписаться
Добрый день уважаемые читатели!
Сегодня хотелось бы рассказать о GCODE….
Фото твердотельного реле
Источник: https://electrikmaster.ru/
Напоследок – защита при КЗ
Производители рекомендуют использовать специальные предохранители для твердотельных приборов:
- gR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов(более быстродействующие , чем gS)
- gS – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов, при повышенной загрузке линии.
- aR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов от короткого замыкания.
Подробнее про предохранители я писал в статье Предохранитель и автоматический выключатель: что лучше?
Такие предохранители стоят дорого (сравнимы со стоимостью самого твердотельного реле), поэтому в большинстве случаев можно использовать защитные автоматы класса В. Чем же они хороши и как они спасут наши твердотельные реле от выгорания при КЗ?
Напомню, в 99% везде встречаются автоматы класса С. Класс D ставят в качестве вводных рубильников и при больших пусковых токах (мощные двигатели, трансформаторы). А класс В – самый чувствительный, срабатывает раньше всех.
Рекомендую почитать мою жарко-летнюю статью по выбору и замене защитных автоматов.
Кстати, гуру электрики и электропроводки, cs-cs.net, предлагает дома ставить автоматы только В класса. И некоторые производители – рекомендуют ставить В класс на электроплиты, водонагреватели – туда, где нет двигателей и пусковых токов.
Почему – поясню на графике.
Кривые отключения или токо-временные характеристики
Подробно про выбор защитного автомата рассказано в другой статье.
Но мы вернёмся к нашему трехфазному твердотельному реле Fotek TSR-40AA-H на 40А, про которое я писал выше. Чтобы его гарантированно защитить от КЗ, надо обязательно поставить вот такой автомат:
Автомат с характеристикой В6 (обведено красным)
Он мгновенно сработает при токе 20…30 Ампер и спасет твердотелку. А от перегруза надо будет поставить мотор-автомат на ток 4-6,3 А. И это всё будет питать двигатель на 2,2 кВт, лучше меньше. Либо ТЭН, тогда мотор-автомат не нужен.
Пишите в комментариях, у кого какой опыт по применению!
Полезные файлы, возможно, написано информативнее, чем у меня:
• Твердотельные реле Фотек
/ Твердотельные реле Фотек. Руководство пользователя. Рассмотрена вся линейка Fotek, даны рекомендации по применению и схемы включения., pdf, 757.78 kB, скачан: 3759 раз./
• Твердотельные реле – устройство и принцип работы
/ Подробно изложено, как устроены и работают твердотельные реле, приведены схемы включения, и т.п. Автор, отзовись!, pdf, 414.19 kB, скачан: 4219 раз./
Где купить твердотельные реле
Если вы живете в крупном городе, то лучше конечно поехать в ближайший магазин – и через час реле можно устанавливать. Но, например, у меня в Таганроге такие реле – только под заказ, и купить их можно только через фирмы в Ростове.
Поэтому, на сегодняшний день лучший вариант – покупать твердотельные реле в интернете, через АлиЭкспресс. Цены примерно те же, но минус в том, что доставка может быть около месяца.
Пишите в комментариях, у кого какие вопросы, отзывы и опыт по применению!
Понравилось? Поставьте оценку, и почитайте другие статьи блога!
(
21
оценок, среднее:
4,76
из 5)
Загрузка…
Внимание! Автор блога не гарантирует, что всё написанное на этой странице – истина.
За ваши действия и за вашу безопасность ответственны только вы!
Твердотельные реле серий SSR и TSR
Сегодня в продаже встречаются модели TSR и SSR. Рассмотрим их подробнее.
Особенности
Изделия имеют сопротивление изоляции от 50 Мом и более при проверке мегаомметром на напряжение 500 Вольт. Изоляция на входе и выходе отличается прочностью, равной 2 500 Вольт. Мощность управления небольшая — 12 Вольт*7,5А.
Стоит выделить минимальное излучение ЭМ помех, что гарантируется коммутацией при переходе через ноль, а также высокий параметр перегрузки по I. Допускается превышение номинального I в десять крат на время до одного периода.
Расшифровка
Название изделия имеет следующий вид — SSR (1) — 40 (2) D (3) A (4) — Н (5). Цифры в скобках соответствуют номеру расшифровки:
- SSR или TSR — твердотельное реле (однофазное или трехфазное соответственно).
- Нагрузочный I. Цифра соответствует параметру тока. В нашем случае — 40 А.
- Сигнал на входе. Здесь возможны следующие варианты:
- L — от 4 до 20 мА (линейное ТТР).
- D — от 3 до 32 В постоянного I (включения и отключения).
- V — переменное сопротивление.
- A — от 80 до 250 Вольт переменного I (включения и отключения).
- Напряжение на выходе:
- D — постоянное.
- A — переменное.
- Диапазон напряжения на выходе:
- H — от 90 до 480 Вольт (переменное).
- Нет — от 24 до 380 Вольт (переменное).
Популярные модели
Выделим популярные модели твердотельных реле для каждой из серий:
- Трехфазные (серии TSR) — TSR-25DA, TSR-40DA, TSR-75DA, TSR-25A, TSR-40AA, TSR-75AA.
- Однофазные (серии SSR) — SSR-10DA, SSR-25DA, SSR-40DA, SSR-50DA, SSR-75DA.
- Однофазные с регулировкой выходного напряжения (SSR серия) — SSR-10VA, SSR-25VA, SSR-40VA
- Линейные однофазные с регулировкой выходного напряжения (SSR-LA серия) — SSR-25LA, SSR-40LA, SSR-50LA, SSR-75LA.
- Однофазные AC-AC и DC-DC типа (SSR серия) — SSR-10AA, SSR-25AA, SSR-40AA, SSR-05DD, SSR-10DD.
Технические характеристики.
Схема.
Технические характеристики.
Схема.
Технические характеристики.
Схема.
Размеры радиатора.
Принцип работы твердотельного реле — КиберПедия
Рис. Схема работы с использованием твердотельного реле. В положении выключено, когда на входе наблюдается 0 В, твердотельное реле не дает пройти току через нагрузку. В положение включено, на входе есть напряжение, ток идет через нагрузку.
Основные элементы регулируемой входной цепи переменного напряжения.
- Регулятор тока служит для поддержки неизменного значения тока.
- Двухполупериодный мост и конденсаторы на входе в устройство служат для преобразования сигнала переменного тока в постоянный.
- Встроенный оптрон оптической развязки, на него подается питающее напряжение и через него протекает входной ток.
- Триггерная цепь служит для управления эмиссией света встроенного оптрона, в случае прекращения подачи входного сигнала ток прекратит свое протекание через выход.
- Резисторы, расположенные в схеме последовательно.
В твердотельных реле используется два распространенных типа оптических развязок – симистор и транзистор.
Симистор обладает следующими преимуществами: включение в состав развязки триггерной цепи и ее защищенность от помех. К недостаткам следует отнести дороговизну и необходимость больших величин тока на входе в устройство, необходимого для переключения выхода.
Рис. Схема реле с симистором.
Тиристор — не нуждается в наличии большого значения тока для переключения выхода. Недостаток – нахождение тригерной цепи вне развязки, а значит большее число элементов и слабая защита от помех.
Рис. Схема реле с тиристором.
Рис. Внешний вид и расположение элементов в конструкции твердотельного реле с транзисторным управлением.
Принцип работы твердотельного реле типа SCR полупериодного управления
При прохождении тока через реле исключительно в одном направлении величина мощности снижается почти на 50%. Для предотвращения этого явления используют два параллельно подключенных SCR, расположенные на выходе (катод соединяется анодом другого).
Рис. Схема принципа работы полупериодного управления SCR
Типы коммутирования твердотельных реле
- Управление коммутационными действиями при переходе тока через ноль.
Рис.. Коммутация реле при переходе тока через ноль.
Преимущество способа – отсутствие помех при включении.
Недостатки – прерывание выходного сигнала, отсутствие возможности применения с нагрузками, обладающими высокой индуктивностью.
Используется для резистивной нагрузки в системах управления и контролирования нагревательных устройств. Использование в слабоиндуктивных и емкостных нагрузках.
- Фазовое управление твердотельным реле
Рис. Схема фазного управления.
Преимущество: непрерывность и плавная регулировка, возможность изменять значение выходного напряжения.
Недостатки: присутствуют помехи при производстве переключений.Область использования: управление систем нагрева, индуктивные нагрузки (трансформаторы), инфракрасные выключатели (резистивная нагрузка).
инструкция по сборке и советы по подключению
Что такое твердотельные реле и их классификация
Самодельное твердотельное реле
Твердотельные реле (или ТТР) – это электронные приборы со структурой, не содержащей механических компонентов. Принцип их действия основан на особенностях работы полупроводниковых переходов, отличающихся высокой скоростью коммутаций и защищенностью от физических полей.
Переключение твердотельных реле основано на принципе срабатывания электронного ключа.
В качестве ключевых элементов в этих изделиях традиционно применяются такие распространенные электронные компоненты, как транзисторы, управляемые диоды или тиристоры. В зависимости от используемых при их изготовлении структур ТТР подразделяются на приборы, построенные на основе одного из перечисленных элементов (реле на симисторах, например).
В соответствии с режимами работы и по виду коммутируемых напряжений образцы твердотельных реле, изготавливаемых на базе полупроводников, делятся на следующие группы:
- устройства, коммутирующие постоянный ток;
- приборы, управляющие работой нагрузочных линий с переменными токовыми параметрами;
- универсальные изделия, работающие в различных цепях.
Для первых устройств характерно управление постоянными напряжениями величиной не более 32 Вольт. Представители двух оставшихся позиций способны коммутировать значительные по величине потенциалы (вплоть до десятков киловольт).
Принцип действия
Схема всех SSR практически одинаковая, даже если есть разница, она никак не влияет на принцип действия.
Схема SSR постоянного тока
Принцип действия механизма заключается в замыкании и размыкания контактов, которые передают напряжение. Выполняется это с помощью активатора, то есть твердотельного прибора.В зависимости от характера тока (переменного или постоянного) используется тип силового элемента (полупроводниковый прибор). Для постоянного тока используются транзисторы, для переменного – симисторы и тиристоры. Транзистор пропускает постоянный ток. Симистор проводит ток в двух направлениях, а тиристор может проводить напряжение и в 1ом и в 2х направлениях.
Схема твердотельного реле переменного тока
Схема цепей
На вход поступает электрический сигнал, дальше он подаётся на оптический светодиод. Оптическая развязка обеспечивает изоляцию между входной, промежуточной и выходной цепью. В работу включается триггерная цепь. Она управляет переключением выхода ТТР. Переключающая цепь передает напряжение на нагрузку, которая представлена транзистором, тиристором или симистором. Защитная цепь нужна для надежной работы ТТР при различных нагрузках.
Для предотвращения сгорания контактов устройства, рекомендуется установка предохранителя.
Что нужно знать о работе реле?
Напряжение срабатывания
Напряжение, которое обозначено на корпусе реле, – это усредненное оптимальное напряжение. На автомобильных реле пропечатано «12V», но срабатывают они и при напряжении 10 вольт, сработают и при 7-8 вольтах. Аналогично и 14,5-14,8 вольт, до которых поднимается напряжение в бортсети при запущенном двигателе, им не вредит. Так что 12 вольт – это условный номинал. Хотя реле от 24-вольтовой грузовой машины в 12-вольтовой сети не заработает – тут уж разница слишком велика…
Коммутируемый ток
Второй главный параметр реле после рабочего напряжения обмотки – максимальный ток, который может пропустить через себя контактная группа без перегрева и пригорания. Указывается он обычно на корпусе – в амперах. В принципе, контакты всех автомобильных реле достаточно мощные, «слабаков» тут не водится. Даже самое миниатюрное коммутирует 15-20 ампер, реле стандартных размеров – 20-40 ампер. Если ток указывается двойной (например, 30/40 А), то это означает кратковременный и долговременный режимы. Собственно, запас по току никогда не мешает – но это касается в основном какого-то нештатного электрооборудования автомобиля, подключаемого самостоятельно.
Нумерация выводов
Выводы автомобильных реле маркируются в соответствии с международным электротехническим стандартом для автопрома. Два вывода обмотки пронумерованы цифрами «85» и «86». Выводы контактной «двойки» или «тройки» (замыкающие или переключающие) обозначаются как «30», «87» и «87а».
Впрочем, гарантии маркировка, увы, не дает. Российские производители порой маркируют нормально замкнутый контакт как «88», а иностранные – как «87а». Неожиданные вариации стандартной нумерации встречаются и у безымянных «брендов», и у компаний уровня Bosch. А иногда контакты и вовсе маркируются цифрами от 1 до 5. Так что если тип контактов не подписан на корпусе, что нередко случается, лучше всего проверить распиновку неизвестного реле при помощи тестера и источника питания 12 вольт – подробнее об этом ниже.
Материал и тип выводов
Контактные выводы реле, к которым подключается электропроводка, могут быть «ножевого» типа (для установки реле в разъем колодки), а также под винтовую клемму (обычно у особо мощных реле или реле устаревших типов). Контакты бывают «белыми» или «желтыми». Желтые и красные – латунь и медь, матовые белые – луженая медь или латунь, блестящие белые – сталь, покрытая никелем. Луженые латунь и медь не окисляются, но голая латунь и медь – лучше, хотя и склонны темнеть, ухудшая контакт. Никелированная сталь также не окисляется, но сопротивление её высоковато. Неплохо, когда силовые выводы – медные, а выводы обмотки – никелированные стальные.
Плюс и минус питания
Чтобы реле сработало, на его обмотку подается питающее напряжение. Полярность его – безразлична для реле. Плюс на «85» и минус на «86», или наоборот – без разницы. Один контакт обмотки реле, как правило, постоянно подсоединен к плюсу или минусу, а на второй приходит управляющее напряжение с кнопки или какого-либо электронного модуля.
В прежние годы чаще использовалось постоянное подключение реле к минусу и плюсовой управляющий сигнал, сейчас более распространен обратный вариант. Хотя это не догма – бывает по-всякому, в том числе и в рамках одного автомобиля. Единственный вариант исключения из правил – реле, в котором параллельно обмотке подключен диод – тут уже полярность важна.
Реле с диодом параллельно катушке
Если напряжение на обмотку реле подает не кнопка, а электронный модуль (штатный или нештатный – например, охранное оборудование), то при отключении обмотка дает индуктивный всплеск напряжения, который способен повредить управляющую электронику. Чтобы погасить всплеск, параллельно обмотке реле включается защитный диод.
Как правило, внутри электронных узлов эти диоды уже есть, но иногда (в особенности в случае различного допоборудования) требуется реле со встроенным внутри диодом (в этом случае его символ маркирован на корпусе), а изредка применяется выносная колодка с диодом, припаянным со стороны проводов. И если вы устанавливаете какое-то нештатное электрооборудование, нуждающееся, согласно инструкции, в таком реле, требуется строго соблюдать полярность при подключении обмотки.
Температура корпуса
Обмотка реле потребляет мощность около 2-2,5 ватт, из-за чего его корпус во время работы может достаточно сильно греться – это не криминально. Но нагрев допускается у обмотки, а не у контактов. Перегрев же контактов для реле губителен: они обугливаются, разрушаются и деформируются. Такое случается чаще всего в неудачных экземплярах реле российского и китайского производства, у которых плоскости контактов порой не параллельны друг другу, контактная поверхность из-за перекоса недостаточна, и при работе идет точечный токовый разогрев.
Реле не выходит из строя мгновенно, но рано или поздно перестает включать нагрузку, или наоборот – контакты привариваются друг к другу, и реле перестает размыкаться. К сожалению, выявить и предупредить такую проблему не совсем реально.
Проверка реле
При ремонте неисправное реле обычно временно подменяют исправным, а затем заменяют на аналогичное, и дело с концом. Однако мало ли какие задачи могут возникнуть, к примеру, при установке дополнительного оборудования. А значит, полезно будет знать элементарный алгоритм проверки реле с целью диагностики или уточнения цоколевки – вдруг попалось нестандартное? Для этого нам понадобятся источник питания с напряжением 12 вольт (блок питания или два провода от аккумулятора) и тестер, включенный в режиме измерения сопротивления.
Предположим, что у нас реле с 4 выводами – то есть, с парой нормально разомкнутых контактов, работающих на замыкание (реле с переключающей контактной «тройкой», проверяется аналогичным образом). Сперва касаемся щупами тестера поочередно всех пар контактов. В нашем случае это 6 комбинаций (изображение условное, чисто для понимания).
На одной из комбинаций выводов омметр должен показать сопротивление около 80 ом – это обмотка, запомним или пометим её контакты (у автомобильных 12-вольтовых реле наиболее распространенных типоразмеров это сопротивление бывает в диапазоне от 70 до 120 ом). Подадим на обмотку напряжение 12 вольт от блока питания или АКБ – реле должно отчетливо щелкнуть.
Соответственно, два других вывода должны показывать бесконечное сопротивление – это наши нормально разомкнутые рабочие контакты. Подключаем к ним тестер в режиме прозвонки, а на обмотку одновременно подаем 12 вольт. Реле щелкнуло, тестер запищал – все в порядке, реле работает.
Если же вдруг на рабочих выводах прибор показывает замыкание даже без подачи напряжения на обмотку, значит, нам попалось редкое реле с НОРМАЛЬНО ЗАМКНУТЫМИ контактами (размыкающимися при подаче напряжения на обмотку), либо, что более вероятно, контакты от перегрузки оплавились и сварились, замкнувшись накоротко. В последнем случае реле отправляется в утиль.
Механизмы реле
Основные элементы электромагнитного реле
Релейный прибор выполняется в виде катушки, обвитой большим количеством медной проволоки. Внутри нее расположен сердечник-стержень из металла, зафиксированный на ярме – Г-образной пластине. Поверх сердечника и катушки находится якорь – металлическая пластина, которая удерживается возвратная пружина. К якорю прикреплены подвижные контакты, а напротив них – неподвижные.
Узел из катушки и сердечника – электромагнит, а узел из сердечника, якоря и ярка – магнитопровод. Контакты обеспечивают управление электроцепью, размыкая и замыкая ее.
Детали и корпус
Нам потребуется:
- F1 – предохранитель на 100 мА.
- S1 – любой маломощный переключатель.
- C1 – конденсатор 0.063 мкФ 630 Вольт.
- C2 – 10 – 100 мкФ 25 Вольт.
- C3 – 2.7 нФ 50 Вольт.
- C4 – 0.047 мкФ 630 Вольт.
- R1 – 470 кОм 0.25 Ватт.
- R2 – 100 Ом 0.25 Ватт.
- R3 – 330 Ом 0.5 Ватт.
- R4 – 470 Ом 2 Ватта.
- R5 – 47 Ом 5 Ватт.
- R6 – 470 кОм 0.25 Ватт.
- R7 – варистор TVR12471, или подобный.
- R8 – нагрузка.
- D1 – любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например – 1N4007.
- D2 – стабилитрон на 6.2 Вольта.
- D3 – диод 1N4007.
- T1 – симистор ВТ138-800.
- LED1 – любой сигнальный светодиод.
Виды устройства
SSR различаются по следующим свойствам.
- Характер тока в сети
- Однофазное реле способно коммутировать электрический ток от 10 до 120 А или от 100 до 500 А. Управление проводится через фазу с помощью аналогового сигнала (непрерывный по времени) и переменного резистора (элемент электрической цепи). Как правило, корпус однофазного SSR стандартный, модульный (завершенная конструкция).
Однофазное реле используется в бытовых приборах.
Рекомендация. Установка однофазного ТТР в электрическую систему обезопасит домашнюю технику от поломки.
- Трехфазное релекоммутирует электричество на трёх фазах сразу. Диапазон напряжения 10 – 120 А. Отдельными характеристиками обладает реверсивное трехфазное ТТР. Выделяется надёжной коммутацией цепей. Сфера использования – непостоянная работа двигателя.
Чтобы не происходило перенапряжение, используется варистор (полупроводниковый резистор)или предохранитель. Трёхфазное SSR имеет долгий срок использования в сравнении с однофазным устройством.
- Способ управления
- Коммутация постоянного тока. Применяется при постоянном напряжении от 3 до 32 вольт. Отличаются высокой надежностью работы. Поддержка температур от -30 до +70 соблюдается практически у всех моделей.
- Коммутация переменного тока. SSR переменного тока характеризуется маленьким соотношением электромагнитных помех, бесшумностью, экономным энергопотреблением и оперативной работой. Диапазон напряжения от 90 до 250 вольт.
- Реле, управляемое вручную. Оно позволяет управлять настройками.
Коммутация – процесс переключение и отключение напряжения. Происходит моментально при замыкании и размыкании цепей.
- Тип коммуникации
- Конструкция с фазовым регулятором мощности. Тип коммуникации – изменения на выходе нагрузки с управлением мощности, нагреванием (уровень освещения).
- Прибор, контролируемый нулевым регулятором мощности. Область использования –коммутация ёмкостных (конденсатных) резистивных (лампы и нагреватели) слабо индуктивных приборов. SSR с нулем необходимы для коммутации индуктивных (трансформаторы, двигатели) и резистивных нагрузок при необходимости мгновенного действия.
- По конструкции
- Устанавливаемые на одну рейку.
- Монтируемые на планки переходного типа.
Разновидности реле
Реле контроля напряжения однофазное цифровое на DIN-рейку
Релейные устройства классифицируются по нескольким параметрам.
Количество фаз
Подразделяются на:
- однофазные – предназначены для подачи напряжения в жилых помещениях;
- трехфазные – подходят для применения в промышленных условиях.
Трехфазники отключают питание всего оборудования при скачках вольтажа на одной из линий.
Тип переключения
Можно приобрести модели:
- максимальные – повышают параметр напряжения до определенной величины;
- минимальные – понижают показатель до заданного значения.
Порог напряжения пользователем не устанавливается.
Тип активации воспринимающего элемента
Реле промежуточное РП-18-54 220В DC
Воспринимающий элемент, по включению которого будет работать прибор, – это электромагнит, магнитоэлектрический узел, индукционная или электродинамическая система. В зависимости от его вида существуют реле:
- первичные с прямым подключением контактов в сеть;
- вторичные – могут подключаться через измерительные индуктивные или емкостные трансформаторы;
- промежуточные – усиливают или преобразуют сигналы первичных/вторичных моделей.
Функции воспринимающего элемента – преобразование напряжения в процесс движения якоря относительно ярма.
Тип управления нагрузкой
Для управления напряжением применяются модели:
- прямого действия – нагрузка переключается контактами;
- косвенного действия – нагрузку подключаются вторичные элементы.
Нагрузка подается и приостанавливается с определенными промежутками.
Тип поступления сигнала
Герконовое реле
В продаже можно найти следующие коммутационные устройства:
- электронные – обеспечивают контроль напряжения в условиях высокой нагрузки. Управляют освещением и узлами автомобиля;
- герконовые – небольшие модели в виде катушки. Предназначены для замыкания, переключения, размыкания сети. Чувствительны к механическим воздействиям и ультразвуку;
- электротепловые – отключают и включают электрический ток по нагреву биметаллической пластины. Используются для электродвигателей на производстве, обустройства однофазной или трехфазной электросети;
- временной выдержки – для создания кратковременных пауз применяются схемы замедления. Приборы работают в автомобилях, светофорах, елочных гирляндах;
- таймеры света – позволяют программировать освещение теплиц, аквариумов, животноводческих комплексов. К ним подключаются нагреватели, вентиляторы;
- электромагнитные – ток статистической обмотки активируется по воздействию магнитного поля. Приборы со средней нагрузкой до 320 А и напряжение до 1,6 кВт могут работать только в сети с постоянным током.
Конструктивно стандартный регулятор имеет вид пакетника для крепления на дин-рейку. Некоторые модели исполняются в виде переходников и удлинителей.
Характеристики твердотельного реле
- Входной управляющий сигнал 1,5 – 12 В постоянного тока
- Оптимальное напряжение самой схемы VCC 12 – 18 В
- Питание нагрузки 12 – 60 В постоянного тока
- Частота входного сигнала до 50 кГц
- Напряжение изоляции 3 kV
Примечание: нужно увеличить резистор на светодиоде, если питание нагрузки выше чем 24 В.
Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Драйвер затвора необходимо питать в пределах 12 – 18 В постоянного тока. Теплоотвод необходим только для предельной нагрузки. До 5-ти ампер можно не ставить.
Сферы применения
Твердотельное реле 12в
SSR не заменит полностью электромагнитный аналог, но во многих областях превосходит его в применении.
Сфера применения достаточно обширная. Его устанавливают в том оборудования, где нужно надежное и длительное использование системы.
- Для поддержания постоянной температуры в технологическом процессе.
- Регулятор мощности тока.
- При замене пyскателя реверсивного типа.
- Электрический двигатель.
- Датчик движения.
- Датчик освещения.
- Диммер (выключатель с регулировкой яркости лампы).
- Производственные станки.
- Регулятор температуры камеры.
Далеко не весь список использования.
Преимущества использования
Твердотельное реле применяется в различных электрических цепях- низковольтных, высоковольтных. От простейшего бытового прибора, которое имеется в каждом доме до крупного промышленного объекта.
- Компактный размер даёт возможность использования в ограниченных пространством условиях, и перемещать его.
- Более точный и стабильный регулятор температуры по сравнению с электромагнитным устройством.
- Скорость быстрого включения в работу без потребности долгого запуска.
- Экономия электроэнергии из-за использования полупроводников вместо электромагнитного разнесения.
- Надёжность работы. Реле может выполнить более миллиарда срабатываний.
- Долгий срок эксплуатации без необходимости прохождения постоянного технического обслуживания.
- Отсутствие источников искр.
- Включение в цепь без помех из-за герметичной конструкции.
- Бесшумность работы.
- Не происходит дребезжания благодаря быстрому старту.
- Широкая сфера применения. ТТР используется для регулятора работы многих устройств.
Различия схем включения реле
По виду подключения твердотельные реле можно разделить на следующие категории:
По управлению (виду входного управляющего сигнала):
- постоянное напряжение (встречается чаще всего),
- переменное напряжение,
- постоянный ток 4-20 мА,
- переменный резистор.
По виду коммутируемого тока
- твердотельные реле переменного тока
- твердотельные реле постоянного тока
По количеству фаз
- одна фаза
- три фазы (как правило, фактически это две фазы)
В любом случае, для выбора ТТР и его схемы включения нужно руководствоваться мануалами на данное реле.
Простая схема реле
В силовой электронике часто возникает необходимость использовать одно- или 3 х-фазное твердотельное реле. Своими руками изготовить это устройство можно по одной из схем, представленных в статье.
Преимущество твердотельного реле перед механическими контакторами очевидно – у них ресурс намного выше. И это из-за того, что в них нет ни одного механического компонента, а именно они являются наиболее уязвимыми.
Для изготовления твердотельного реле можно использовать цепочки, состоящие из схемы управления и симистора. Гальваническую развязку осуществляет симисторная оптопара. В схеме используются такие элементы:
- Оптопара типа МОС3083.
- Симистор марки ВТ139-800 16А с изолированным анодом.
- Ограничивающий резистор, который снижает ток, проходящий через светодиод.
- Светодиод для индикации работы устройства.
- К управляющему электроду симистора подключается резистор 160 Ом.
А теперь давайте рассмотрим более детально процесс изготовления устройства.
Особенности процесса изготовления
Нагрузка нагревательного элемента составляет Вт.
Вход — это первичная цепь, в которой устанавливается постоянное сопротивление.
В обычных для приведения какой-либо электрический механизм в действие используются контакты, которые периодически замыкаются и размыкаются.
Выходная мощность порядка Вт. Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках.
Рекомендации о выборе кулеров приводятся в технической документации на конкретное твердотельное реле, поэтому давать универсальные советы нельзя. Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей.
Конструкция и детали
Чувствительность реле изменяют подстроечным конденсатором С4. В устройстве, монтаж которого показан на рис. 1, б, можно применить подстроеч-ные конденсаторы КПВ, КПК-МЛ, КПК-1, резистор R2 составлен из двух-, трех резисторов меньшего номинала, для повышения чувствительности сопротивление этого резистора можно увеличить до 10 … 15 МОм. Ток, потребляемый устройством в дежурном режиме, составляет 1,5 … 2 мА, а при подаче звукового сигнала — 3 … 4 мА.
Монтажная плата устройства показана на рис. 1. Датчик Е1 представляет собой металлическую сетку или пластину размерами примерно 200X Х200 мм.
Как сделать ТТР своими руками?
Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.
Вот такой выглядит самодельная конструкция твердотельного реле. Сделать нечто подобное несложно. Нужны лишь базовые навыки электронщика и электрика. Материальные затраты небольшие
Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.
Электронные компоненты для сборки схемы
Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:
- Оптопара типа МОС3083.
- Симистор типа ВТ139-800.
- Транзистор серии КТ209.
- Резисторы, стабилитрон, светодиод.
Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:
Принципиальная схема маломощного твердотельного реле для сборки своими руками. Небольшое количество деталей и простой навесной монтаж позволяют спаять схему без труда
Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.
А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.
Проверка собранной схемы на работоспособность
Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.
Проверка работоспособности твердотельного реле с помощью измерительного прибора. Если на вход устройства подано управляющее напряжение, переход симистора должен быть открыт
Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».
Устройство монолитного корпуса
Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.
Каркас под заливку корпуса будущего прибора. Делается из картонной полосы или других подходящих материалов. На алюминиевой подложке закрепляется универсальным клеем
Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.
На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.
Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.
Закрепление симистора на алюминиевой подложке. Главное условие – этот электронный компонент необходимо плотно прижать к металлическому основанию. Только так обеспечивается качественный теплоотвод и надёжность работы
Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.
Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.
Вариант крепления симистора к подложке при помощи клёпки. С обратной стороны клёпка расплющивается заподлицо с поверхностью подложки
Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).
Приготовление компаунда и заливка корпуса
Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:
- Эпоксидная смола без отвердителя.
- Порошок алебастра.
Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.
Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.
Так выглядит готовый экземпляр твердотельного реле, собранного своими руками. Несколько необычно и не очень презентабельно, но достаточно надёжно
Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.
По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.
Налаживание
Проверяют и настраивают емкостное реле в следующей последовательности. Одной рукой касаются неизолированного общего провода и подстроечным конденсатором С4 добиваются пропадания звукового сигнала. После этого приближают руку к датчику—в телефоне должен появиться сигнал. Если звука нет, то увеличивают емкость конденсатора C3, если же звуковой сигнал не пропадает, то уменьшают емкость этого конденсатора или удаляют его вообще. Более точным подбором емкости подстроечного конденсатора можно добиться срабатывания реле при поднесении руки к датчику на расстоянии 10 – 15 см.
С эмкостным реле думаю все понятно, а для управления устройствами при помощи звука используется звуковое реле, основным датчиком которого является микрофон.
Пример подключения твердотельного реле
Вы знаете, как изготовить твердотельное реле своими руками. Аналоги такого устройства встречаются в продаже достаточно часто. Можно использовать как любительские схемы, так и промышленные – зависит от того, какие возможности нужно получить от устройства. С помощью такого устройства обеспечивается контакт высоковольтной и низковольтной цепей.
Большая часть промышленных устройств и самоделок имеет схожую структуру. Отличия несущественные, на работу не влияют никак. Убедиться в этом несложно. На рисунке приведена простейшая схема включения реле:
Структура устройства:
- Оптическая развязка цепей.
- Триггерная цепь (может быть несколько).
- Защитные устройства и переключатели.
- Входы.
Вход – это первичная цепь, в которой устанавливается постоянное сопротивление. Функция входа заключается в приеме сигнала и передаче нужной команды на устройство, которое производит коммутацию нагрузки.
Развязка оптического типа
Оптическая развязка – это прибор, который осуществляет изоляцию входов и выходов. Когда происходит обработка сигнала, поступающего на вход, обязательно нужно использовать триггерную цепь. Это отдельный компонент, но иногда он включен в конструкцию оптической развязки. Цепь переключения используется в том случае, когда нужно подать напряжение к нагрузке.
Источники
- https://StrojDvor.ru/elektrosnabzhenie/tverdotelnoe-rele-svoimi-rukami/
- https://electricvdele.ru/elektrooborudovanie/datchiki/tverdotelnoe-rele.html
- https://www.kolesa.ru/article/avtomobilnye-rele-kak-ustroeny-kak-ih-vybirat-i-proveryat
- https://StrojDvor.ru/elektrosnabzhenie/kak-podklyuchit-dvux-chetyrex-i-pyatikontaktnoe-rele/
- https://SdelaySam-SvoimiRukami.ru/4493-tverdotelnoe-rele-svoimi-rukami.html
- https://tehnoobzor.com/schemes/automatics/825-shema-tverdotelnogo-rele-na-12v.html
- https://SamElectric.ru/promyshlennoe-2/tverdotelnye-rele-shemy-podklyucheniya.html
- https://FB.ru/article/374516/tverdotelnoe-rele-svoimi-rukami-shema
- https://tokzamer.ru/bez-rubriki/tverdotelnoe-rele-shema-principialnaya
- https://RadioStorage.net/1307-emkostnoe-rele-na-mikroskheme-k176la7.html
- https://sovet-ingenera.com/elektrika/rele/tverdotelnoe-rele-svoimi-rukami.html
SSR Принцип работы | Средства автоматизации | Промышленные устройства
Японский Английский Английский (Азиатско-Тихоокеанский регион) Китайский (упрощенный)
Характеристики переключения SSR
1.SSR для нагрузок переменного тока
1.Пересечение нуля SSR
SSR с переходом через ноль использует фотоэлектрический ответвитель для изоляции входа от выхода (см. Конфигурацию схемы на предыдущей странице). Когда входной сигнал активирован, внутренняя схема детектора перехода через ноль запускает симистор для включения, когда напряжение нагрузки переменного тока пересекает ноль.
Ток нагрузки поддерживается за счет эффекта фиксации симистора после деактивации входного сигнала до тех пор, пока симистор не отключится, когда напряжение нагрузки пересечет ноль. Ниже описаны формы сигналов напряжения и тока для различных типов нагрузок:
● Резистивные нагрузки
Поскольку резистивные нагрузки не вызывают сдвига фаз между напряжением и током, симистор включается, когда напряжение нагрузки переменного тока достигает нуля после активации входного сигнала. SSR выключается, когда напряжение нагрузки переменного тока достигает нуля, а ток нагрузки отключается после того, как входной сигнал впоследствии деактивируется.
● Индуктивные нагрузки
SSR включается, когда напряжение нагрузки пересекает ноль после активации входного сигнала. Он выключается, когда ток нагрузки впоследствии пересекает ноль после деактивации входного сигнала. Разность фаз между напряжением и током может вызвать скачок напряжения в SSR, когда он выключен. Хотя демпферная цепь поглощает этот всплеск, слишком большой всплеск может привести к ошибке dv / dt во внутреннем симисторе SSR.
2.Случайный тип SSR
SSR случайного типа использует фотоэлемент для изоляции входа от выхода. Когда входной сигнал активирован, выход сразу же включается, так как нет схемы детектора перехода через ноль. Ток нагрузки поддерживается за счет эффекта фиксации симистора после деактивации входного сигнала до тех пор, пока напряжение нагрузки переменного тока не станет равным нулю.
● Резистивные нагрузки
2.SSR для нагрузок постоянного тока
SSR для нагрузок постоянного тока использует драйвер MOS-FET для изоляции входа от выхода.
Выход немедленно реагирует на вход, поскольку драйвер MOS-FET напрямую включает или выключает выходной MOS-FET.
Вернуться к началу
Твердотельные реле Связанная информация
Вернуться к началу
Фототриаковая муфта Фотоприемник для промышленного оборудования и бытовой электроники Твердотельное реле AQ8 Тип SIL, толщина 9 мм, высокое диэлектрическое напряжение 3000 В переменного тока, контроль до 3 А
Как работает твердотельное реле?
Твердотельное реле (SSR) — это специальный тип устройства управления, которое переключает электрические цепи с помощью полупроводниковых элементов без движущихся частей или обычных контактов.Самая большая особенность твердотельного реле заключается в том, что в нем не используются переключающие контакты, которые физически изнашиваются. Вот почему его принцип работы отличается от электромеханического реле.
Твердотельные реле обычно состоят из входа оптоизолятора, такого как оптопара или фототриак. Оптоизолятор активирует твердотельное переключающее устройство, такое как симистор, транзисторный MOSFET или тиристор.
Хотя это самые быстрые переключающие элементы при сравнении времени срабатывания, время срабатывания или отключения велико.Управление переменным током — обычное применение для симисторов и тиристоров, потому что время выключения уменьшается, когда устройство выключается во время перехода через нуль. Кроме того, их изоляция ограничена токами утечки полупроводниковых устройств, и они имеют высокие вносимые потери для сигналов низкого уровня. Управление постоянным током — обычное приложение для транзисторов и полевых МОП-транзисторов.
Как работает твердотельное реле?
Полупроводниковые реле похожи на электромеханические реле в том, что оба используют схему управления и отдельную схему для переключения нагрузки.Но принцип их действия другой.
Принцип работы твердотельного реле можно описать следующим образом:
- Когда на вход твердотельного реле подается напряжение, реле возбуждается от оптопары или другого электронного устройства (диода, светодиода, резистора, и транзистор). Оптопара преобразует электрические сигналы в оптические и ретранслирует сигналы через пространство, тем самым полностью изолируя секции ввода и вывода при передаче сигналов на высокой скорости.
- Электрический сигнал передается в цепь триггера в выходных цепях.
- Включается переключающий элемент в выходной цепи.
- Когда переключающий элемент включается, течет ток нагрузки, и можно управлять устройством, подключенным к выходу.
- Удаление входного напряжения отключает цепь управления, и твердотельный переключатель выключается.
По способу переключения твердотельные реле можно разделить на две основные группы:
- реле переключения при переходе через нуль,
- реле случайного включения.
Реле перехода через нуль
Реле включается, когда напряжение достигает нуля, и выключается, когда ток достигает нуля. Этот метод переключения позволяет ограничить импульсные токи, возникающие во время операций переключения. Реле рекомендуются для управления резистивными, емкостными или слабоиндуктивными нагрузками.
Реле случайного включения (мгновенного включения)
Реле активируется сразу после появления управляющего сигнала (подается управляющее напряжение).В этом случае время включения меньше, чем при переключении через нуль. Этот тип переключения используется для индуктивных нагрузок в приложениях, где требуется быстрое время отклика.
Чтобы полностью понять принцип работы твердотельного реле, необходимо знать его технические параметры.
Технические определения для стороны входа
Номинальное напряжение — это напряжение, которое служит стандартным значением для напряжения входного сигнала.
Рабочее напряжение — это допустимый диапазон напряжения, в котором напряжение входного сигнала может колебаться.
Должное рабочее напряжение — это минимальное входное напряжение, когда состояние выхода меняется с ВЫКЛ на ВКЛ.
Напряжение отпускания должно быть — максимальное входное напряжение, когда состояние выхода изменяется с ВКЛ на ВЫКЛ.
Входной ток — это ток, протекающий через твердотельное реле при подаче номинального напряжения.
Входное сопротивление входной цепи и сопротивление используемых токоограничивающих резисторов. В реле состояния Soldi, которые имеют широкий диапазон входных напряжений, входное сопротивление изменяется в зависимости от входного напряжения, что вызывает изменение входного тока.
Технические определения для выходной стороны
Напряжение нагрузки — это эффективное напряжение источника питания, при котором нагрузка может переключаться, а SSR может непрерывно использоваться, когда SSR выключен.
Максимальный ток нагрузки — это эффективное значение максимального тока, который может непрерывно течь на выходные клеммы при определенных условиях охлаждения (таких как размер, материалы и толщина радиатора, а также условия излучения температуры окружающей среды).
Ток утечки — это эффективное значение тока, протекающего через выходные клеммы, когда заданное напряжение нагрузки приложено к SSR с выключенным выходом.
Падение выходного напряжения при включении — это эффективное значение переменного напряжения на выходных клеммах, когда максимальный ток нагрузки протекает через SSR при определенных условиях охлаждения (таких как размер, материалы и толщина радиатора, а также окружающая среда. температурный радиационный режим).
Минимальный ток нагрузки — это минимальный ток нагрузки, при котором ТТР может нормально работать.
Продолжить чтение
Основы твердотельного реле: работа, характеристики и структура
Твердотельное реле(SSR) — это бесконтактный переключатель, состоящий из микроэлектронных схем, дискретных электронных устройств и силовых электронных силовых устройств. Изолирующее устройство используется для обеспечения изоляции между контрольным концом и концом нагрузки. Входная клемма твердотельного реле использует крошечный управляющий сигнал для непосредственного управления большой токовой нагрузкой.
Каталог
Ⅰ Введение
Твердотельное реле — это новый тип бесконтактного переключающего устройства, состоящего из твердотельных электронных компонентов. Он использует коммутационные характеристики электронных компонентов (таких как переключающие транзисторы, симисторы и другие полупроводниковые устройства), которые могут достигать цели замыкания и размыкания цепи без контакта и искры, поэтому его также называют «бесконтактным переключателем». Твердотельное реле — это активное устройство с четырьмя выводами, два из которых являются выводами управления входом, а два других вывода — выводами, управляемыми по выходу.Он имеет как усилительные, так и управляющие функции, а также функции изоляции, которые очень подходят для управления мощными переключающими приводами. По сравнению с электромагнитными реле, оно имеет более высокую надежность, отсутствие контакта, длительный срок службы, высокую скорость и меньше помех для внешнего мира. Он получил широкое распространение.
Ⅱ Принцип работы
SSR можно разделить на тип переменного и постоянного тока в зависимости от случая использования. Они используются в качестве переключателей нагрузки в источниках питания переменного или постоянного тока и не могут быть смешаны.Ниже в качестве примера показан принцип работы SSR переменного тока. На рисунке 1 представлена блок-схема принципа его работы. Компоненты ~ ④ на Рисунке 1 составляют основной корпус SSR переменного тока. В целом ТТР имеет только две входные клеммы (A и B) и две выходные клеммы (C и D), это четырехконтактное устройство.
Рисунок 1. Блок-схема принципа работы SSR
При работе, пока определенный управляющий сигнал добавлен к A и B, «вкл» и «выкл» между двумя концами C и D можно контролировать, и можно реализовать функцию «переключателя».Функция схемы связи заключается в обеспечении канала между входными / выходными клеммами для входного управляющего сигнала от клемм A и B, но электрически разъединяет (электрическое) соединение между входной клеммой и выходной клеммой в SSR, чтобы предотвратить выходной терминал от воздействия на входной терминал. Компонент, используемый в схеме связи, представляет собой «оптический ответвитель», который является чувствительным, имеет высокую скорость отклика и имеет высокий уровень изоляции (выдерживаемого напряжения) между входными и выходными клеммами.Поскольку нагрузка на входной клемме представляет собой светоизлучающий диод, это позволяет входной клемме SSR легко согласовывать уровень входного сигнала и может быть напрямую подключен к выходному интерфейсу компьютера во время использования, который контролируется логическим уровнем. из «1» и «0».
Функция триггерной схемы заключается в генерации триггерного сигнала, который отвечает требованиям для работы схемы переключателя ④, но поскольку в схеме переключателя нет специальной схемы управления, она будет генерировать радиочастотные помехи и загрязнять мощность сетка с высокими гармониками или всплесками.Поэтому была разработана «Схема управления переходом через ноль». Так называемое «пересечение нуля» означает, что когда добавляется управляющий сигнал и напряжение переменного тока пересекает ноль, SSR находится во включенном состоянии; и когда сигнал управления отключен, SSR ожидает пересечения положительного полупериода и отрицательного полупериода переменного тока, SSR находится в выключенном состоянии. Такая конструкция может предотвратить гармонические помехи высокого порядка и загрязнение электросети. Схема поглощения предназначена для предотвращения ударов и помех (или даже неисправности) симистора переключающего устройства из-за всплесков и скачков (напряжения) от источника питания.Обычно используется цепь последовательного поглощения «RC» или нелинейное сопротивление (варистор).
Ⅲ Характеристики
Твердотельное реле представляет собой бесконтактный электронный переключатель с функцией изоляции. В процессе переключения отсутствуют механические контактные детали. Таким образом, в дополнение к тем же функциям, что и электромагнитные реле, твердотельные реле также обладают совместимостью логических цепей, устойчивостью к вибрации и механическим ударам, неограниченным количеством монтажных положений, хорошей влажностью, плесенью и коррозионной стойкостью, а также отличными характеристиками во взрывозащите и предотвращении озоновое загрязнение.Он обладает такими характеристиками, как низкая входная мощность, высокая чувствительность, низкая мощность управления, хорошая электромагнитная совместимость, низкий уровень шума и высокая рабочая частота.
(1) Внутри SSR нет механических частей, и в конструкции используется полностью герметичный метод перфузии. Таким образом, SSR обладает такими преимуществами, как виброустойчивость, коррозионная стойкость, долгий срок службы и высокая надежность, а срок его службы составляет до 10,1 миллиона раз;
(2) Низкий уровень шума: SSR переменного тока использует технологию триггера по переходу через ноль, поэтому скорость нарастания напряжения dv / dt и скорость нарастания тока di / dt фактически снижаются на линии, так что SSR имеет минимальные помехи для сети. при длительной эксплуатации;
(3) Время переключения короткое, около 10 мс, что может использоваться в более высокочастотных случаях;
(4) Между входной и выходной цепями используется фотоэлектрическая изоляция, а напряжение изоляции превышает 2500 В;
(5) Потребляемая мощность очень низкая, совместима со схемами TTL и COMS;
(6) На выходе есть схема защиты;
(7) Высокая грузоподъемность.
1 Advantage(1) Длительный срок службы и высокая надежность: твердотельное реле не имеет механических частей, а контактная функция выполняется твердотельными устройствами. Поскольку в нем нет движущихся частей, он может работать в условиях сильных ударов и вибрации. Из-за компонентов, составляющих твердотельное реле, присущие твердотельные реле характеристики определяют длительный срок службы и высокую надежность твердотельных реле.
Рисунок 2.твердотельное реле
(2) Высокая чувствительность, низкая мощность управления и хорошая электромагнитная совместимость: твердотельное реле имеет широкий диапазон входного напряжения и низкую мощность привода и совместимо с большинством логических интегральных схем без необходимости в буферах или драйверы.
(3) Быстрое переключение: поскольку в твердотельных реле используются твердотельные устройства, скорость переключения может варьироваться от нескольких миллисекунд до нескольких микросекунд.
(4) Небольшие электромагнитные помехи: твердотельное реле не имеет входной «катушки», нет зажигания и отскока дуги, что снижает электромагнитные помехи.Большинство выходных твердотельных реле переменного тока представляют собой переключатель нулевого напряжения, который включается при нулевом напряжении и выключается при нулевом токе, уменьшая внезапное прерывание формы волны тока, тем самым уменьшая переходный эффект переключения.
2 Недостаток(1) Падение напряжения на лампе после включения велико, прямое падение напряжения на тиристоре или симисторе может достигать 1 ~ 2 В, а падение напряжения насыщения на высокомощном транзистор также находится между 1 ~ 2 В, и общее сопротивление трубки с силовым полевым эффектом также больше, чем контактное сопротивление механических контактов.
(2) Полупроводниковый прибор может все еще иметь ток утечки от нескольких микроампер до нескольких миллиампер после выключения, поэтому идеальная электрическая изоляция не может быть достигнута.
(3) Из-за большого падения давления в трубке потребление энергии и тепловыделение после проводимости также велики, объем твердотельного реле высокой мощности намного больше, чем у электромагнитного реле той же мощности. , и стоимость тоже выше.
(4) Температурные характеристики электронных компонентов и электронных схем имеют плохую помехоустойчивость, а также низкую радиационную стойкость.Без принятия эффективных мер надежность работы невысока.
Рис. 3. Полупроводниковое реле 2
(5) Твердотельные реле более чувствительны к перегрузке и должны быть защищены от перегрузки быстродействующим предохранителем или демпфирующей цепью RC. Нагрузка твердотельного реле, очевидно, связана с температурой окружающей среды. При повышении температуры грузоподъемность быстро падает.
(6) Основными недостатками являются падение напряжения в открытом состоянии (требуются соответствующие меры по рассеиванию тепла), ток утечки в закрытом состоянии, переменный и постоянный ток не могут использоваться повсеместно, количество контактных групп невелико.
Ⅳ Структура
Твердотельное реле состоит из трех частей: входной цепи, развязки (связи) и выходной цепи.
1 Входная цепьВ соответствии с различными типами входного напряжения входную цепь можно разделить на три типа: входная цепь постоянного тока, входная цепь переменного тока и входная цепь переменного / постоянного тока. Некоторые схемы управления входом также совместимы с TTL / CMOS, положительной и отрицательной логикой управления и функциями инверсии и могут быть легко подключены к логическим схемам TTL и MOS.
Для управляющего сигнала с фиксированным управляющим напряжением используется резистивная входная цепь. Управляющий ток гарантированно превышает 5 мА. Для управляющего сигнала с большим диапазоном изменения (например, 3 ~ 32 В) используется цепь постоянного тока, чтобы гарантировать надежную работу с током более 5 мА во всем диапазоне изменения напряжения.
2 Изолирующая муфта
Входные и выходные цепи твердотельных реле могут быть изолированы и связаны двумя способами: фотоэлектрическая связь и трансформаторная связь: в фотоэлектрической связи обычно используется фотодиод-фототранзистор, фотодиод-двунаправленный тиристор, управляемый светом, фотоэлектрический элемент и реализовать контроль изоляции стороны управления и стороны нагрузки; высокочастотная трансформаторная связь использует самовозбуждающийся высокочастотный сигнал, генерируемый входным управляющим сигналом, который направляется во вторичную обмотку, обнаруживается и выпрямляется и обрабатывается логической схемой для формирования сигнала возбуждения.
3 Выходная цепьПереключатель питания SSR напрямую подключен к источнику питания и стороне нагрузки, чтобы реализовать двухпозиционный переключатель источника питания нагрузки. В основном используются мощные транзисторы, односторонний тиристор (тиристор или SCR), двунаправленный тиристор (Triac), силовой полевой транзистор (MOSFET), биполярный транзистор с изолированным затвором (IGBT). Выходная цепь твердотельного реле также может быть разделена на выходную цепь постоянного тока, выходную цепь переменного тока и выходную цепь переменного / постоянного тока.По типу нагрузки его можно разделить на твердотельное реле постоянного тока и твердотельное реле переменного тока. Биполярные устройства или силовые полевые транзисторы могут использоваться для выхода постоянного тока, а два тиристора или один двунаправленный тиристор обычно используются для выхода переменного тока. Твердотельное реле переменного тока можно разделить на однофазное твердотельное реле переменного тока и трехфазное твердотельное реле переменного тока. Твердотельные реле переменного тока можно разделить на произвольные твердотельные реле переменного тока и твердотельные реле переменного тока с переходом через ноль в зависимости от времени включения и выключения.
Основы твердотельного реле и его работа.
Надеюсь, вы прочитали мою статью про Что такое реле? Это важно в электрическом поле. Теперь в этой статье мы рассмотрим другие типы реле, а именно твердотельное реле . В отличие от электромеханического реле , , , , , реле использует магнитную катушку, пружину и электрические контакты для работы и переключения питания.
SSR (твердотельное реле) не имеет движущихся частей, вместо этого он использует электрические и оптические свойства полупроводников для выполнения своих функций переключения.Так же, как EMR и SSR, также обеспечивает полную гальваническую развязку между входными и выходными электрическими контактами.
Твердотельное релеи электромеханическое реле принципиально схожи по своей работе, поскольку они изолируют входную цепь низкого напряжения от выхода и его переключающих контактов. Электромеханическое реле имеет некоторые ограничения по сравнению с твердотельным реле: оно имеет более низкую скорость переключения и меньший срок службы из-за подвижных контактов.
Основы и принцип работы твердотельного реле Что такое твердотельное реле?
A Solid-State Realy — это переключатель, состоящий из твердотельных электрических элементов, способных управлять сильноточной нагрузкой с помощью слабого токового сигнала.
Твердотельное релеможет включать и выключать цепь без физического контакта и искры благодаря характеристикам переключения таких электрических элементов, как транзистор SCR, TRIAC, и .
Твердотельное релеимеет следующие преимущества перед электромеханическими или электромагнитными реле, такими как : высокая надежность, отсутствие контакта, отсутствие искры, длительный срок службы, быстрая скорость переключения и небольшие размеры.
Принцип работы твердотельного реле Твердотельное реле
способно переключать нагрузку переменного или постоянного тока, даже некоторые из них могут переключать нагрузку как переменного, так и постоянного тока.
Давайте возьмем пример принципа работы AC SSR, используя приведенную выше схему. SSR имеет две входные клеммы и две выходные клеммы. Это четырехконтактное активное устройство.
Только определенный сигнал для A&B может управлять состоянием ВКЛ / ВЫКЛ на выходной клемме C&D и выполнять функцию переключения. Схема связи играет важную роль в обеспечении соединения между входными и выходными клеммами.
Оптопара используется в качестве компонента в цепи связи из-за его хорошей чувствительности, высокой скорости действия и высокого уровня развязки входа и выхода.
Схема запуска обеспечивает необходимый сигнал запуска для управления схемой переключения. Благодаря использованию специальных схем управления, таких как контроль перехода через нуль, схема устраняет радиочастотные помехи.
Характеристики твердотельного реле
⇒ SSR не имеют движущихся частей, поэтому не изнашиваются и обладают такими преимуществами, как виброустойчивость, коррозионная стойкость, долгий срок службы и высокая надежность.
⇒ В ТТР переменного тока используется схема управления переходом через ноль, которая, безусловно, снижает уровень шума и делает минимальные помехи ТТР источнику питания при длительной работе.
⇒ Короткое время переключения, SSR могут использоваться в высокочастотных приложениях.
⇒ Высокая изоляция за счет оптических изоляционных свойств.
⇒ Низкое энергопотребление.
⇒ Высокая грузоподъемность
Надеюсь, вам понравилась эта статья о твердотельном реле. Если вам понравилась эта статья, оставьте отзыв в разделе комментариев ниже.
Предлагаю вам больше статей о программируемом логическом контроллере .
⇒ Что такое ПЛК? Как это работает?
⇒ Поглощение против источника в ПЛК
⇒ Команды битовой логики
⇒ Таймер ПЛК и счетчик ПЛК
⇒ Замкнутый или открытый контур
⇒ Блоки программирования ПЛК
Вы можете прочитать больше статей о контрольно-измерительных приборах и найти книги, которые расширят ваши знания в области приборостроения ⇒
преимуществ твердотельного реле перед электромагнитным реле
Преимущества твердотельного реле перед электромагнитным реле
Привет, в этом посте мы собираемся обсудить преимущество твердотельного реле перед электромагнитным реле.Перед тем, как начать обсуждение преимуществ твердотельного реле перед электромагнитным, сначала мы должны узнать о твердотельных реле (твердотельных реле) и электромеханических реле.Реле электромагнитное
Электромагнитное реле работает по принципу электромагнитной индукции. При подаче управляющего напряжения на катушку реле. Катушка получает питание и начинает действовать как магнит. Магнитное притяжение тянет якорь и устанавливает контакт между неподвижным контактом и подвижным контактом.Это позволяет пропускать ток от входа к выходу. Твердотельное реле Твердотельное реле не имеет движущихся частей, поэтому названо твердотельным реле. При подаче входного напряжения загорается инфракрасный светодиод. Фотодоид или симистор улавливают инфракрасный свет, и это создает схему, как показано на рисунке ниже.Преимущества твердотельного реле перед электромагнитным реле.
- Основным преимуществом твердотельного реле является отсутствие движущихся частей, как в электромагнитном реле.Таким образом, твердотельное реле не изнашивается. Вот почему срок службы твердотельного реле больше, чем у любого обычного электромагнитного реле.
- Твердотельное реле постепенно увеличивает ток вместо подачи полного напряжения, как в электромагнитном реле. Из-за этого преимущества твердотельные реле в основном используются для резистивных нагрузок, таких как нагреватели, молнии и т. Д. Это преимущество SSR увеличивает срок службы устройств.
- Твердотельное реле используется до 50 ампер, тогда как электромагнитное реле используется до 5 ампер, поэтому электромагнитное реле в основном используется для управления.
- Электромагнитное реле издает звук во время работы, потому что рычаг всегда застревает вокруг контакта во время работы, тогда как ssr не производит шума во время работы из-за отсутствия каких-либо движущихся частей.
- Операция переключения ssr очень быстрая по сравнению с электромагнитным реле.
- SSR используются для одновременного управления одним устройством, но электромагнитное реле используется для управления несколькими выходами за одну операцию.
- Теплоотвод требуется в твердотельном реле для рассеивания тепла, поскольку твердотельный трансформатор выделяет тепло из-за работы различных электронных компонентов, тогда как электромагнитное реле не выделяет тепло во время работы.
- Стоимость сср намного выше электромагнитного реле .
- При обнаружении неисправности ssr необходимо заменить весь блок, но это не то же самое в случае электромагнитного реле.Электромагнитное реле легко ремонтируется.
- SSR могут легко выйти из строя из-за тока короткого замыкания или перегрузки, поэтому на выходе SSR необходим автоматический выключатель для защиты SSR от повреждения, но электромагнитные реле не повреждаются, но из-за старения изнашиваются их контакты из.
Связанные
Электромеханическое и твердотельное реле
Реле — это коммутационные устройства с электрическим приводом, используемые для управления процессами и цепями.По принципу действия они делятся на два типа: твердотельные реле и электромеханические реле. В этой статье давайте обсудим каждый из них, их различий и сходств.
Сравнение электромеханических и твердотельных реле
Электромеханические реле | Твердотельные реле |
---|---|
В этих реле электромеханическая сила создается катушкой реле при приложении напряжения.Эта сила тянет якорь и замыкает контакты реле. | SSR не имеют в себе электромагнита или каких-либо подвижных контактов. Вместо этого он состоит из полупроводников и оптронов внутри. Когда напряжение подается на входную секцию SSR, ток течет через оптопару и запускает TRIAC на выходной секции, и TRIAC начинает проводить. |
Электромеханическое реле состоит из следующих частей: 1. Электромагнитная катушка 2.Якорь 3. Контакты | A Твердотельное реле состоит из следующих частей: 1. Входная цепь 2. Оптопара 3. Выходные схемы драйвера 4. Полупроводниковые коммутационные устройства. |
Электромеханическое реле использует физические контакты для переключения. | В SSR используются полупроводниковые устройства, такие как TRIAC, тиристоры, полевые МОП-транзисторы и транзисторы. |
Контакты реле размываются при длительном переключении. | SSR не имеют механических контактов. |
Тепло, выделяемое этими реле, мало, и им можно пренебречь. | Полупроводники внутри SSR выделяют большое количество тепла. Поэтому для отвода тепла необходимы радиаторы. |
Эти реле создают шум при переключении. | Нет шума переключения. |
Колебания напряжения катушки вызывают дребезг контактов в электромагнитных реле. | Отсутствие дребезга из-за отсутствия механических контактов. |
Переключение контактов реле под нагрузкой может привести к образованию дуги. | Дуга отсутствует. |
Индуктивность электромагнитной катушки может вызвать скачки напряжения при переключении. | Отсутствие риска скачков напряжения в твердотельных реле. |
Срок службы электромеханических реле составляет несколько миллионов механических переключений. | SSR служит дольше, чем электромеханические реле. |
: базовый обзор
Вот блог о твердотельных реле (SSR), который я обещал в своем последнем, посвященном механическим реле.SSR выполняют те же основные функции, что и механические реле, но здесь я расскажу, как они функционируют внутри, почему вы бы предпочли их механическим реле, и рассмотрю некоторую терминологию.
SSRсостоит из трех основных частей: датчика, переключающего устройства и соединительного механизма. Обычно соединение осуществляется оптически, чтобы обеспечить гальваническую развязку между цепями управления и сигналами. На входе загорится внутренний светодиод, который включает светочувствительный диод. Диод включит тиристор, тиристор или полевой МОП-транзистор, пропуская поток к выходным контактам.
SSRобычно быстрее механических реле, потому что в них нет движущихся частей, поэтому время срабатывания значительно сокращается, дребезг контактов не играет роли, они служат дольше и отсутствуют акустические шумы. Некоторыми недостатками SSR являются то, что они имеют более высокое контактное сопротивление, чем механическое реле, и более уязвимы для повреждений от импульсных токов. Если внутреннее коммутационное устройство повреждено, реле выйдет из строя.
Одна часть, которая обычно озадачивает людей при просмотре SSR, — это типы вывода.Они могут переключать постоянный ток, переменный ток или их комбинацию. При переключении переменного тока есть несколько вариантов, таких как: переход через ноль, пропорциональное управление или асинхронный режим. Давайте посмотрим на различия между этими типами.
Пересечение нуля ( «Синхронный» ) : После подачи управляющего напряжения реле не включится, пока напряжение нагрузки не пересечет нулевое напряжение. На изображении ниже показано, как управляющее напряжение постоянного тока подается на вход, но напряжение нагрузки переменного тока не проходит через выход до линии 1, которая является первым разом, когда синусоидальная волна пересекает нулевое напряжение.Нагрузка не отключается снова, пока синусоида не пересечет ноль в первый раз после отключения управляющего напряжения (линия 1 отмечает точку включения, а линия 2 отмечает точку выключения).
Рисунок 1: Реле нулевого перекрестия (Источник изображения: Digi-Key Electronics)
Пропорциональное управление: В этом случае мощность, подаваемая на нагрузку, прямо пропорциональна аналоговому управляющему сигналу, подаваемому на вход. Управляющий сигнал может принимать несколько различных форм, например 0–5 В, постоянного тока, , 4–20 мА и 0–10 В, постоянного тока, .Эти изменяющиеся выходные сигналы обычно используются в системах освещения или обогрева.
Асинхронный ( «Мгновенное» или «Случайное включение» ) : Выход этих реле включается, как только на вход подается напряжение, и выключается, как только напряжение снимается и синус волна достигает нуля.
Для получения дополнительной информации об электромеханических реле или реле в целом, пожалуйста, загляните в этот блог, «Механические реле: базовый обзор», или посмотрите видео ниже.
Об авторе
Эшли Аволт (Ashley Awalt) — разработчик технического контента, работающая в Digi-Key Electronics с 2011 года. Она получила степень младшего специалиста по прикладным наукам в области электронных технологий и автоматизированных систем в Общественном и техническом колледже Northland через стипендиальную программу Digi-Key. В настоящее время ее роль заключается в оказании помощи в создании уникальных технических проектов, документировании процесса и, в конечном итоге, в участии в производстве видеоматериалов, освещающих эти проекты.В свободное время Эшли любит — подожди, а есть ли свободное время, когда ты мама?
.