Site Loader

Содержание

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформаторы

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

Схематичное устройство трансформатора

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток

Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

Работа трансформатора без нагрузки

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток

I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

Работа трансформатора под нагрузкой

В результате размагничивающего действия потока Ф2

в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Формула магнитного потока

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток

I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1

, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Схематичное изображение разделительного трансформатора

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют

повышающим.

Схематичное изображение повышающего трансформатора

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Схематичное изображение понижающего трансформатора

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Магнитопроводы из электротехнической стали

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Магнитопроводы из сплавов с высокой магнитной проницаемостью

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Магнитопроводы из магнитомягких прессованных ферритов

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Шихтованные магнитопроводы

Магнитопровод из плоских шихтовых пластин

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

Ленточные магнитопроводы

Трансформатор с ленточным магнитопроводом

Тороидальный трансформатор из ленточного магнитопровода

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Схематичное изображение трансформатора стержневого типа

Трансформатор стержневого типа

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Схематичное изображение трансформатора броневого типа

Трансформатор броневого типа

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Схематичное изображение тороидального трансформатора

Тороидальный трансформатор

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

Новые формы магнитопроводов

На этом пока закончим. Продолжим во второй части.
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

принцип работы и типы приборов

маленький трансформатор

Трансформатор — незаменимое устройство в электротехнике.

Без него энергосистема в ее нынешнем виде не могла бы существовать.

Присутствуют эти элементы и во многих электроприборах.

Желающим познакомиться с ними поближе предлагается данная статья, тема которой — трансформатор: принцип работы и виды приборов, а также их назначение.

 

Что такое трансформатор

Так называют устройство, изменяющее величину переменного электрического напряжения. Существуют разновидности, способные менять и его частоту.

Таким аппаратами оснащают многие приборы, также они применяются в самостоятельном виде.

Например, установки, повышающие напряжение для передачи тока по электромагистралям.

Генерируемое электростанцией напряжение они поднимают до 35 – 750 кВ, что дает двойную выгоду:

  • уменьшаются потери в проводах;
  • требуются провода меньшего сечения.
В городских электросетях напряжение снова уменьшается до величины в 6,1 кВ, опять же с использованием трансформатора. В распределительных сетях, раздающих электричество потребителям, напряжение понижают до 0,4 кВ (это привычные нам 380/220 В).

Принцип работы

Работа трансформаторного устройства основана на явлении электромагнитной индукции, состоящей в следующем: при изменении параметров магнитного поля, пересекающего проводник, в последнем возникает ЭДС (электродвижущая сила). Проводник в трансформаторе присутствует в форме катушки или обмотки, и общая ЭДС равна сумме ЭДС каждого витка.

Для нормальной работы требуется исключить электрический контакт между витками, потому используют провод в изолирующей оболочке. Эту катушку называют вторичной.

Магнитное поле, необходимое для генерации во вторичной катушке ЭДС, создается другой катушкой. Она подключается к источнику тока и называется первичной. Работа первичной катушки основана на том факте, что при протекании через проводник тока, вокруг него формируется электромагнитное поле, а если он смотан в катушку, оно усиливается.

принципы работы трансформатора

Как работает трансформатор

При протекании через катушку постоянного тока параметры электромагнитного поля не меняются и оно неспособно вызвать ЭДС во вторичной катушке. Поэтому трансформаторы работают только с переменным напряжением.

На характер преобразования напряжения влияет соотношение количества витков в обмотках – первичной и вторичной. Его обозначают «Кт» – коэффициент трансформации. Действует закон:

Кт = W1 / W2 = U1 / U2,

где,

  • W1 и W2 — количество витков в первичной и вторичной обмотках;
  • U1 и U2 — напряжение на их выводах.

Следовательно, если в первичной катушке витков больше, то напряжение на выводах вторичной ниже. Такой аппарат называют понижающим, Кт у него больше единицы. Если витков больше во вторичной катушке — трансформатор напряжение повышает и называется повышающим. Его Кт меньше единицы.

трансформатор на улице

Большой силовой трансформатор

Если пренебречь потерями (идеальный трансформатор), то из закона сохранения энергии следует:

P1 = P2,

где Р1 и Р2 — мощность тока в обмотках.

Поскольку P = U * I, получим:

  • U1 * I1 = U2 * I2;
  • I1 = I2 * (U2 / U1) = I2 / Кт.

Это означает:

  • в первичной катушке понижающего устройства (Кт > 1) протекает ток меньшей силы, чем в цепи вторичной;
  • с повышающими трансформаторами (Кт < 1) все наоборот: сила тока в первичной катушке выше, чем в цепи вторичной.

Данное обстоятельство учитывают при подборе сечения проводов для обмоток аппаратов.

Конструкция

Трансформаторные обмотки надевают на магнитопровод — деталь из ферромагнитной, трансформаторной или иной магнитомягкой стали. Он служит проводником электромагнитного поля от первичной катушки ко вторичной.

Под действием переменного магнитного поля в магнитопроводе также генерируются токи — они называются вихревыми. Эти токи приводят к потерям энергии и нагреву магнитопровода. Последний, с целью свести данное явление к минимуму, набирают из множества изолированных друг от друга пластин.

На магнитопроводе катушки располагают двояко:

  • рядом;
  • наматывают одну поверх другой.

Обмотки для микротрансформаторов изготавливают из фольги толщиной 20 – 30 мкм. Ее поверхность в результате окисления становится диэлектриком и играет роль изоляции.

части трансформатора

Конструкция трансформатора

На практике добиться соотношения Р1 = Р2 невозможно из-за потерь трех видов:

  1. рассеивание магнитного поля;
  2. нагрев проводов и магнитопровода;
  3. гистерезис.

Потери на гистерезис — это затраты энергии на перемагничивание магнитопровода. Направление силовых линий электромагнитного поля постоянно меняется. Каждый раз приходится преодолевать сопротивление диполей в структуре магнитопровода, выстроившихся определенным образом в предыдущей фазе.

Потери на гистерезис стремятся уменьшить, применяя разные конструкции магнитопроводов.

Итак, в реальности величины Р1 и Р2 отличаются и соотношение Р2 / Р1 называют КПД устройства. Для его измерения используются следующие режимы работы трансформатора:

  • холостого хода;
  • короткозамкнутый;
  • с нагрузкой.

В некоторых разновидностях трансформаторов, работающих с напряжением высокой частоты, магнитопровод отсутствует.

Режим холостого хода

Первичная обмотка подключена к источнику тока, а цепь вторичной разомкнута. При таком подключении в катушке течет ток холостого хода, в основном представляющий реактивный ток намагничивания.

Такой режим позволяет определить:

  • КПД устройства;
  • коэффициент трансформации;
  • потери в магнитопроводе (на языке профессионалов — потери в стали).
холостой ход

Схема трансформатора в режиме холостого хода

Короткозамкнутый режим

Выводы вторичной обмотки замыкают без нагрузки (накоротко), так что ток в цепи ограничивается лишь ее сопротивлением. На контакты первичной подают такое напряжение, чтобы ток в цепи вторичной обмотки не превышал номинального.

Такое подключение позволяет определить потери на нагрев обмоток (потери в меди). Это необходимо при реализации схем с применением вместо реального трансформатора активного сопротивления.

Режим с нагрузкой

В этом состоянии к выводам вторичной обмотки подключен потребитель.

Охлаждение

В процессе работы трансформатор греется.

Применяют три способа охлаждения:

  1. естественное: для маломощных моделей;
  2. принудительное воздушное (обдув вентилятором): модели средней мощности;
  3. мощные трансформаторы охлаждаются при помощи жидкости (в основном используют масло).
охлаждение прибора

Прибор с масляным охлаждением

Виды трансформаторов

Аппараты классифицируются по назначению, типу магнитопровода и мощности.

Силовые трансформаторы

Наиболее многочисленная группа. К ней относятся все трансформаторы, работающие в энергосети.

Автотрансформатор

У этой разновидности между первичной и вторичной обмотками имеется электрический контакт. При намотке провода делают несколько выводов — при переключении между ними задействуется разное число витков, отчего меняется коэффициент трансформации.

Достоинства автотрансформатора:

  • Повышенный КПД. Объясняется тем, что преобразованию подвергается только часть мощности. Это особенно важно при незначительной разнице между напряжением на входе и выходе.
  • Низкая стоимость. Это обусловлено меньшим расходом стали и меди (автотрансформатор имеет компактные размеры).

Эти устройства выгодно применять в сетях напряжением 110 кВ и более с эффективным заземлением при Кт не выше 3-4.

Трансформатор тока

Используется для снижения силы тока в подключенной к источнику питания первичной обмотке. Устройство находит применение в защитных, измерительных, сигнальных и управляющих системах. Преимущество в сравнении с шунтовыми схемами измерения, состоит в наличии гальванической развязки (отсутствие электроконтакта между обмотками).

Первичная катушка включается в цепь переменного тока – исследуемую или контролируемую –  с нагрузкой последовательно. К выводам вторичной обмотки подключают исполнительное индикаторное устройство, к примеру, реле, или прибор измерения.

типы трансформаторов

Трансформатор тока

Допустимое сопротивление в цепи вторичной катушки ограничено мизерными значениями — почти короткое замыкание. У большинства токовых трансформаторов величина номинального тока в этой катушке составляет 1 или 5 А. При размыкании цепи в ней формируется высокое напряжение, способное пробить изоляцию и повредить подключенные приборы.

Импульсный трансформатор

Работает с короткими импульсами, продолжительность которых измеряется десятками микросекунд. Форма импульса практически не искажается. В основном используются в видеосистемах.

Сварочный трансформатор

Данное устройство:

  • понижает напряжение;
  • рассчитано на номинальный ток в цепи вторичной обмотки до тысяч ампер.

Регулировать сварочный ток можно изменением числа витков обмоток, задействованных в процессе (они имеют по нескольку выводов). При этом изменяется величина индуктивного сопротивления или вторичное напряжение холостого хода. Посредством дополнительных выводов обмотки разбиты на секции, потому регулировка сварочного тока осуществляется ступенчато.

Габариты трансформатора во многом зависят от частоты переменного тока. Чем она выше, тем более компактным получится устройство.

ТДМ 70-460

Сварочный трансформатор ТДМ 70-460

На этом принципе основано устройство современных инверторных сварочных аппаратов. В них переменный ток перед подачей на трансформатор подвергается обработке:

  • выпрямляется посредством диодного моста;
  • в инверторе — управляемом микропроцессором электронном узле с быстро переключающимися ключевыми транзисторами — снова становится переменным, но уже с частотой 60 – 80 кГц.

Потому эти сварочные аппараты такие легкие и небольшие.

Также устроены блоки питания импульсного типа, например, в ПК.

Разделительный трансформатор

В этом устройстве обязательно присутствует гальваническая развязка (нет электрического контакта между первичной и вторичной обмотками), а Кт равен единице. То есть разделительный трансформатор напряжение оставляет неизменным. Он необходим для повышения безопасности подключения.

Прикосновение к токоведущим элементам оборудования, подключенного к сети через такой трансформатор, к сильному удару током не приведет.

В быту такой способ подключения электроприборов уместен во влажных помещениях— в ванных и пр.

Кроме силовых трансформаторов, существуют сигнальные разделительные. Они устанавливаются в электроцепи для гальванической развязки.

Магнитопроводы

Бывают трех видов:

  1. Стержневые. Выполнены в виде стержня ступенчатого сечения. Характеристики оставляют желать лучшего, но зато просты в исполнении.
  2. Броневые. Лучше стержневых проводят магнитное поле и вдобавок защищают обмотки от механических воздействий. Недостаток: высокая стоимость (требуется много стали).
  3. Тороидальные. Наиболее эффективная разновидность: создают однородное сконцентрированное магнитное поле, чем способствуют уменьшению потерь. Трансформаторы с тороидальным магнитопроводом имеют наибольший КПД, но они дороги из-за сложности изготовления.

Мощность

Мощность трансформатора принято обозначать в вольт-амперах (ВА). По данному признаку устройства классифицируются так:
  • маломощные: менее 100 ВА;
  • средней мощности: несколько сотен ВА;

Существуют установки большой мощности, измеряемой в тысячах ВА.

Трансформаторы отличаются назначением и характеристиками, но принцип действия у них одинаков: переменное магнитное поле, генерируемое одной обмоткой, возбуждает во второй ЭДС, величина которого зависит от числа витков.

Необходимость в преобразовании напряжения возникает очень часто, потому трансформаторы получили самое широкое распространение. Данное устройство можно изготовить самостоятельно.

Трансформатор: назначение, принципы работы и правила подключения

Автор Даниил Леонидович На чтение 9 мин. Просмотров 1.7k. Опубликовано

Свойства магнитного поля изучаются учеными давно. Впервые электромагнитную индукцию описал Майкл Фарадей. А именно как появляется прочная электромагнитная взаимосвязь в обмотках при создании переменного тока в первой катушке. Во вторичной же катушке повышается напряжение, но мощность и частота остаются прежними. Конечно, несведущему человеку в электричестве сложно понять конструкцию, принцип действия, предназначение трансформатора. Однако, это неотъемлемый прибор с установкой во многих сферах: радиотехника, электроэнергетика.

Трансформаторы напряжения: назначение и принцип действия

Трансформатор – электрическое устройство. Преобразует переменный ток одного напряжения в электрический ток другого напряжения. Частота, согласно явлению электромагнитной индукции, остается неизменной.

Состоит статический трансформатор из:

  • первичной и вторичной обмотки;
  • сердечника.

Применяется устройство в разных схемах питания и электроприборах. Передает электроэнергию на большие расстояния и:

  • снижает потери энергии;
  • уменьшает площадь сечения проводов ЛЭП.

Трансформаторы напряжения

Разновидности прибора:

  • повышающий;
  • понижающий;
  • силовой;
  • вращающийся;
  • импульсный;
  • разделительный;
  • согласующий.

Понижающий трансформатор применяется в быту. Именно через него проходит и поступает ток в домашние розетки с мощностью 220 Вт.

Силовой агрегат в составе из сердечника и нескольких обмоток преобразует напряжение в электроцепи по принципу электромагнитной индукции. Также значение напряжения переменного тока без изменений его частоты. Применяется для распределения и передачи электрической энергии. Напряжение в обмотках – свыше 300 кВ. Мощность – от 4 кВ до 200000 кВА.

Справка! Трансформатор служит для понижения либо повышения переменного напряжения. Основой является ферромагнитный сердечник. В дополнение для бесперебойной работы – обмотки, изоляция, магнитопровод, система охлаждения.

Обмотки выполнены из изолированных медных проводов прямоугольного сечения. Между их слоями находятся пустоты для циркуляции охлаждающего масла. Роль которого – отбирать тепло у обмоток, передавать через радиаторные трубки в окружающую среду.

принцип действия трансформатора

Принцип действия устройства основан на:

  • изменении магнитного потока;
  • создании электромагнитной индукции при прохождении через обмотку;
  • подаче напряжения на первичную обмотку;
  • воспроизведении магнетизма электрическим током, изменяющимся во времени.

Переменный ток, протекая по первичной обмотке, начинает создавать в магнитопроводе магнитный ток. Постепенно приводит к потоку во всех обмотках, преобразуя гальваническую развязку (переменное напряжение), но без видоизменения частоты.

Стоит знать! Действие прибора основано на электромагнитной индукции. За счет переменного тока образуется магнитное переменное поле вокруг проводника, видоизменяется в электродвижущую силу. Напряжение на выходе полностью зависит от используемого (понижающего, повышающего) трансформатора. Коэффициент ЭДС в обмотках прямо пропорционален количеству витков.

Для чего нужен трансформатор напряжения?

Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.

Используются в:

  • электроустановках;
  • блоках питания;
  • агрегатах передачи электроэнергии;
  • устройствах обработки сигналов;
  • источниках питания приборов.

Силовой трансформатор с большим напряжением применяется для:

  • подачи энергии в электросети на электростанциях;
  • повышения напряжения генератора, линии электропередач;
  • снижения напряжения, доходящего до потребительского уровня.

принцип действия силового трансформатора

Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.

Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.

Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.

Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока. Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.

Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.

Как работает трансформатор напряжения?

Приборы преобразуют энергию источника в необходимый коэффициент напряжения. Работают исключительно при переменном напряжении с постоянной частотой. В основе работы – электромагнитная индукция как явление, срабатываемое при изменении во времени магнитного потока, порождении ЭДС в обмотках.

Работа трансформатора начинается в первичной обмотке, где сердечник создает магнитный поток. Далее задействуется переменный ток, намагничивает сердечник, повышает индуктивность первичной обмотки, препятствует нарастанию тока на выводах обмотки напряжения. Если первичная обмотка отдает магнитный поток, то вторичная принимает его, изменяет с определенной скоростью, пронизывая все ветки и создавая ЭДС.

принцип действия трансформатора

Напряжение на ветках в полной мере зависит от быстроты изменения магнитного потока в сердечнике. Хотя получается одинаковым на ветках первичной и вторичной обмотки благодаря прохождению через них одного и того же магнитного потока.

Он в свою очередь создает вокруг себя электрическое поле в сердечнике, некий вихрь с воздействием на электроны, начиная толкать их в определенную сторону.

Справка! Если сказать проще, то принцип работы трансформатора напряжения основан на возбуждении напряжения во второй обмотке за счет возникшего переменного тока в магнитопроводе.

Чем отличается трансформатор тока от трансформатора напряжения?

Источником питания для трансформатора тока является непосредственно ток. Если он не будет проходить через обмотки, тот агрегат быстро выйдет из строя. Питание для трансформатора напряжения – источники напряжения и он также не будет функционировать при повышенных нагрузках тока.

Отличие между устройствами в разных электрических величинах и схемах включения.

Измерительные трансформаторы напряжения и тока

Приборы с работой под высоким напряжением нуждаются в периодическом измерении.

принцип действия измерительного трансформатора

Для чего этих целей в помощь – измерительные устройства, которые:

  • снижают величину напряжения до нужного уровня;
  • обеспечивают гальваническую развязку измерительному оборудованию от цепей с повышенной опасностью.

Номинальная мощность, напряжение и ток

Номинальная – мощность, с которой трансформатор работает в определенном классе точности и в соответствии с ГОСТом. Выражается в вольтах, амперах. Незначительные отклонения мощности допускаются, но не выше нормированных величин.

Важно! Во избежание повышения погрешности вторичной нагрузки суммарное потребление обмоток измерительных приборов и реле не должно быть более номинальной мощности трансформатора. Узнать номинальную мощность можно в паспорте к агрегату либо на щитке.

Порог номинального напряжения у трансформатора – 10кВ.

Разница в зависимости от мощности электроприборов составляет для:

  • питания электроприемников – 3-6,3кВ;
  • крупногабаритных электродвигателей – до 1000В.

Мощность трехфазного трансформатора вычитается по формуле: – S=квадратный корень цифры 3 UIU—номинальное междуфазное напряжение, В; / — ток в фазе, А. Коэффициенты рабочих токов в обмотках при рабочем состоянии трансформатора не должны быть выше номинальных Хотя кратковременные перегрузки в масляных и сухих агрегатах до определенных пределов (2,5 -3%) приемлемы.

Закон Фарадея

закон Фарадея

По закону электромагнитной индукции во вторичной обмотке создается ЭДС напряжение. Вычисляется по формуле – U2 = −N2*dΦ/dt.

Справка! Фарадея – основной закон электродинамики. Гласит о том, что генерируемая электродвижущая сила равняется скорости изменения магнитного потока, но взятой со знаком минус. Именно Майкл Фарадей сделал открытие, когда в ходе экспериментов объявил, что электродвижущая сила начинает появляться в проводнике только при изменении магнитного поля. Величина этой силы прямо пропорциональна скорости изменения магнитного поля.

Все факты содержатся в одном уравнении. Однако, знак минус в законе – правило Ленца, указывающее на возникновение индукционного электрического тока при изменении магнитного поля в проводнике. Действие тока направлено на магнитное поле, начинающего противодействовать изменению магнитного потока.

Правило Ленца не подчиняется законам электродинамики, ведь индукционный ток появляется как в обмотках, так и в сплошных металлических блоках.

Уравнения идеального трансформатора

В таком трансформаторе силовые линии проходят через все ветки первичной, вторичной обмотки. Значит, отсутствуют вихревые потоки и потери энергии. Магнитное поле изменяется, но порождает идентичную ЭДС во всех витках, поэтому становится прямо пропорциональным их общему числу.

Энергия при поступлении из первичной цепи трансформируется в магнитное поле, далее поступает во вторичной цепи.

Формула уравнения идеального трансформатора – P1 = I1 • U1 = P2 = I2 • U2:

  • R1 – коэффициент поступающей мощности из первой цепи на трансформатор;
  • R2 – коэффициент преобразованной мощности с поступлением во вторичную цепь.

Если повысить напряжение на концах вторичной обмотки, то снизится уровень тока первичной цепи. Согласно уравнению – U2/U1 = N2/N1 = I1/I2 преобразование сопротивления одной цепи к сопротивлению другой возможно только при умножении величины на квадрат отношения.

Как правильно подключить

Во всех тонкостях электрики сложно разобраться простому человеку, но при использовании трансформатора понижающего типа в быту важно понимать, как происходит процесс подключения.

Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей.

Стоит знать:

  1. При подключении трансформатора сразу на несколько потребителей важно учитывать количество выходных клемм.
  2. Общая потребляемая мощность для жильцов должна быть идентичной мощности трансформатора либо немного ниже. По мнению специалистов, идеальный второй показатель выше первого – на 20%.
  3. Подключается агрегат через электрическую проводку, размер которой не должен быть слишком большим. Достаточно 2 м при монтаже светодиодного освещения во избежании потери мощности.
  4. Суммарная мощность электроприборов не должна быть выше мощности трансформатора.

Если посмотреть на схему подключения понижающего трансформатора, то видно, что монтируется между распределительной коробкой мощностью 220 Вт и лампами накаливания. Провода из распредкоробки подключаются непосредственно к выключателю.

Подключение трансформатора напряженияПодключение трансформатора напряжения

Дополнительная информация! Стоит изначально определять правильное место установки электрического понижающего трансформатора. Нельзя его усердно прятать от посторонних глаз, ведь доступ для демонтажа либо замены должен быть свободным. При этом потребляемая мощность – не ниже мощности трансформатора, иначе процесс монтажа проводить запрещено.

При подключении важно, чтобы совпадали все уравнения, касающиеся модели прибора. Также существенное значение имеет фазировка, если в одну цепь подключается сразу несколько приборов параллельно. Во избежание больших потерь мощности фазы должны быть правильно соединены между собой с образованием замкнутого контура. При несовпадении фаз начнет расти нагрузка и падать мощность. Может произойти короткое замыкание.

Важно! Смотрите на фото, как выглядит упрощенный вид трансформатора.

Трансформатор – электромагнитный аппарат. Повышает либо понижает напряжение переменного тока. Он лишен подвижных частей. Значит, является статическим. По размерам бывает с трехэтажное здание либо миниатюрное, помещаемое в руку. В составе – сердечник и несколько обмоток с расположением на магнитопроводе. Хотя может содержать всего одну обмотку без сердечника.

При работе трансформатора срабатывает принцип электромагнитного взаимодействия. Переменный ток подается на первичную обмотку, меняет направление дважды за цикл. Значит, что вокруг обмотки образуется магнитное поле, но ежесекундно исчезает. Вторичная обмотка – проводник электромагнитного взаимодействия. Там же индуцируется напряжение.

Конечно, простому человеку сложно понять конструкцию, назначение прибора. Для познания можно просто разобрать, прозвонить, подключить или демонтировать в домашних условиях.

конструкция, принцип и режимы работы

Однофазный трансформатор – статическое устройство, имеющее две обмотки связанные индуктивно на магнитопроводе, предназначенное для преобразования одной величины напряжение и тока в другое в одной фазе.

Конструкция однофазного трансформатора

Любой однофазный трансформатор может работать только в цепях переменного тока. За счёт него полученное электрическое напряжение изменяется в нужную величину. Ток, полученный таким способом, повышается, в результате того, что мощность отдаётся в действительности без потерь. С этого и следует вывод, что основное использование такого прибора – вывести необходимое для решения задачи напряжение, после чего можно применять в определённых целях.

Вникнуть в работу прибора поможет детальный разбор конструкции трансформатора. Состоит он из следующих основных частей:

  • Сердечник, состоящий из материалов с ферромагнитными свойствами;
  • Две катушки, вторая находится на отдельном каркасе;
  • Защитный чехол (имеется не у всех моделей).
Конструкция однофазного трансформатораКонструкция однофазного трансформатора

Принцип работы

Однофазный трансформатор работает на определённом законе, ввиду которого идущее в витке переменное электромагнитное поле наводит электродвижущую силу в расположенном рядом проводнике. Действие названо законом электромагнитной индукции, которое было открыто Майклом Фарадеем в 1831 году. В результате обоснования закона учёный создал общую теорию, используемую в работе огромного числа современных электрических приборов.

При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в сердечнике (магнитопроводе) переменный магнитный поток. Замыкаясь в сердечнике, этот поток сцепляется с первичной и вторичной обмотками и индуцирует в них ЭДС, пропорциональные числу витков W.

Принцип работы трансформатораПринцип работы трансформатора

В первичной обмотке ЭДС самоиндукции:
во вторичной обмотке ЭДС взаимоиндукции:
При подключение ко вторичной обмотке нагрузке потечет I2 и установиться U2.

Режимы работы

Как и любой другой преобразователь, однофазный трансформатор имеет три режима работы:

  1. Режим холостого хода. Из названия понятно, что ток проходить не будет, в виду разомкнутой вторичной цепью устройства. А по первичной обмотке проходит холостой ток, основной элемент которого представлен реактивным током намагничивания. Режим используется в качестве определения КПД трансформатора, либо для вывода потерь в сердечнике.режимы работы
  2. Режим нагрузки. Режим определяется работой трансформатора с подсоединённым источником в первичной цепи, и определённой нагрузкой во вторичном канале устройства. Для вторичной цепи характерен протекающий ток нагрузки (посчитанного из отношения количества витков обмотки и вторичного тока) и ток холостого хода.
  3. Режим короткого замыкания. Режим действует в процессе замыкания вторичной цепи из-за разностей значения потенциала. В этом режиме получаемое сопротивление от вторичной обмотки будет одним источником нагрузки. При проведении короткого замыкания можно вычислить убыток на нагрев обмотки в цепи устройства.

Коэффициент трансформации

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Формула по вычислению коэффициента трансформацииФормула по вычислению коэффициента трансформации
  • U1 и U2 — напряжение в первичной и вторичной обмотки,
  • N1 и N2 — количество витков в первичной и вторичной обмотке,
  • I1 и I2 — ток в первичной и вторичной обмотки.

Более подробно про расчёт коэффициента трансформации.

Виды магнитопроводов

виды-магнитопроводовВиды магнитопроводов

Классификация однофазных трансформаторов

Силовой трансформатор

Трансформатор используется в преобразовании электроэнергии в сетях и в устройствах, используемых для получения и применения нужной величины электрической энергии. «Силовой» подразумевает его работу с высоким напряжением. Использование силовых трансформаторов вынуждается разными показателями рабочей мощности ЛЭП, сетей в городской полосе, выводящее напряжение для конечных объектов, а также для общей работы электрических устройств и машин. Мощность разнится от нескольких единиц вольт до сотен киловатт.

Автотрансформатор – один из видов преобразователя, где первичная и вторичная обмотки не разделены, а соединены друг с другом напрямую. Ввиду этого между ними образуется как электромагнитная, так и электрическая связь. Обмотка сопровождается как минимум тремя выводами, подсоединяясь к каждой из них, можно использовать разные мощности. Главным достоинством такого трансформатора – это его высокий уровень КПД, так как преобразуется не всё напряжение, а лишь некоторая часть. Разница особенно заметна, когда входная и выходная мощность имеют незначительные отличия.

схема работы автотрансформатора

Трансформатор тока

Такой трансформатора используется в основном для уменьшения тока первичной обмотки до нужного значения, подходящего в применении цепей измерения, защиты, регулирования и сигнализации. Помимо этого используется в гальванической развязке (передача электроэнергии или сигнала связанными электрическими цепями, при этом электрический контакт между ними отсутствует).

Нормируемое значение параметров тока вторичной обмотки – 1 А или 5 А. Первичная обмотка трансформатора подсоединяется ступенчато в цепь с нагрузкой, при этом переменный ток подвергается контролю, ко вторичной обмотке подключаются измерительные устройства.

Вторичной обмотке трансформатора тока необходимо постоянно находиться в режиме около короткого замыкания. Ведь при любом варианте разъединения цепи на неё поступает высокая мощность, способная выбить изоляцию и выхода из строя включённых приборов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Читать более подробно про трансформатор тока.

Трансформатор напряжения

Такой трансформатор получает энергию от источника напряжения. Используется в основном для изменения высокого напряжения в низкое в различных цепях, в том числе измерительных и релейной защиты и автоматики. Имеет возможность проводить изоляцию цепей защиты и измерения от цепей повышенной мощности.

трансформатор напряженияВысоковольтный ТН(слева) и низковольтный ТН(справа)

Читать более подробно про ТН.

Импульсный трансформатор

Применяется для изменения импульсных сигналов с откликом импульса в точности до десятков микросекунд. При этом форма импульса сопровождается лишь незначительным искажением. Главным назначением импульсного трансформатора является передача прямоугольного электрического импульса. Используется для преобразования коротких видеоимпульсов напряжения, зачастую воспроизводящихся с высокой скважностью.

Важный параметр при использовании импульсного трансформатора – это неискажённый вид передачи импульсных систем напряжения. При влиянии на вход устройства мощности, отличающейся друг от друга, важно получить напряжение, в точности совпадающее с той же самой формой, разве что, с другой амплитудой или различающейся полярностью.

Виды трансформаторовВиды импульсных трансформаторов

Читать более подробно про импульсный трансформатор.

Особенности

Как правило, однофазные трансформаторы используют в электрических сетях и в роли источников питания различных устройствах.

Исходя из того факта, что нагрев провода прямо пропорционален квадрату току, идущего через провод, то при передаче энергии на дальние расстояния выгоднее будет использовать высокие напряжения и небольшие токи. Для исключения повреждений электроприборов и уменьшения объёма изоляции в домашних условиях лучше использовать низкие мощности.

Ввиду этого, для уменьшения затрат на транспортировку электрической энергии в общей электросети в большом количестве применяются силовые трансформаторы: вначале увеличивают напряжение генераторов на электростанциях перед передачей энергии по кабелю, а уже после транспортировки уменьшают напряжение линий электропередач до нужного уровня в повсеместном использовании.

однофазный трансформаторОднофазные трансформаторы

Эксплуатация

При использовании однофазных трансформаторов технике безопасности отводится особое место. Обусловлено это тем, что устройство находится под высоким напряжением, находящимся на первичных обмотках. При подключении и установке трансформатора в электрические схемы важно соблюдать ряд правил, для исключения поломок и нарушений работы прибора:

  • Чтобы обмотки не выходили из строя (выгорали), необходимо поставить защиту от короткого замыкания на вторичной цепи;
  • Необходимо контролировать температурный режим сердечника и обмоток. Желательно установить систему охлаждения, предусматривающую исключение критического повышения температуры при работе.

В случае различной нагрузки от электросети изменяется и её напряжение. Для стабильной работы устройств, получающих энергию, необходимо, чтобы напряжение не изменялось от установленного уровня выше допустимого диапазона. Ввиду этого допускается использование методов регулирования напряжения в сети.

Принцип работы силового трансформатора

Трансформаторные будки есть практически на каждой улице любого города вне зависимости от размеров. Вся планета подвержена власти электричества. Что такое силовой трансформатор? Для чего они? Принцип работы силового трансформатора? При должном объяснении все станет понятно любому школьнику.

Зачем это нужно?

Трансформатор служит для повышения или понижения подаваемой электроэнергии. Зачем нужно преобразовывать ток? Смысл в том, что согласно закону Джоуля-Ленца тепло, которое выделяет проводник при прохождении по нему электрического тока выделяется в зависимости от силы тока. Причем зависимость эта квадратичная, так как сила тока в формуле имеет вторую степень.

На практике это означает, что увеличение силы тока в 2 раза приведет к увеличению тепловыделений в 4 раза. Все бы ничего, но закон сохранения энергии пока никто не отменял. На нагрев проводника расходуется электроэнергия, которую с таким трудом добывает человечество. Единственный выход: повысить напряжение до максимум.

Согласно закону Ома всегда сохраняется некое равенство: произведение силы тока на сопротивление равняется напряжению в сети. Предположим, что сопротивление не изменяется, так как оно зависит от свойств проводящего материала. Тогда единственным выходом будет максимально задрать напряжение, чтобы уменьшить силу тока в сети.

Высоковольтные линии придумали не ради развлечения. Единственная цель столь сложной системы с трансформаторами: максимальное сокращение потерь.

Принцип работы силового трансформатора

Чтобы говорить о принципе работы силового трансформатора требуется вспомнить некоторые понятия из школьного курса физики. В итоге будет проще понять объяснения рабочей схемы устройства.

Индукция

Чтобы понять, как работает силовой трансформатор, надо разбираться в понятии индукции. Именно на ней основана львиная доля современной электроники. Суть этого явления в том, что при прохождении через проводник ток создает переменное электрическое поле. Движение электронов в свою очередь порождает переменное магнитное поле, которое при попадании в другой проводник породит так переменное электрическое поле.

То есть, если поставить рядом два проводника, причем один из них подключить к источнику тока, а другое не подключать – электричество будет течь в обоих проводниках. Причем во втором проводнике направление тока будет противоположным таковому в исходном варианте.

Свойство индукции используется достаточно часто: в усилителях, передатчиках и, конечно, школьных опытах

Устройство трансформатора

Корпус аппарата представляет собой бак, в который заливается масло. Масло насыщается минералами, чтобы лучше отводить тепло. Выбросы тепловой энергии при работе трансформатора огромны. Однако даже такие потери в тысячи раз меньше возможных утечек энергии при транспортировке.

Масло циркулирует по внутреннему и внешнему контуру трансформатора. Отдельно отметим, что внешний контур часто представляет собой оребренный радиатор. Увеличение площади теплоотдачи приводит к улучшению отдачи тепла. Проще говоря, чем больше площадь соприкосновения масла из внутреннего контура и внешнего радиатора – тем лучше будет отводится тепло, тем меньше вероятность аварии на трансформаторной подстанции.

Само устройство силового трансформатора представляет собой квадратного сечения сердечник, набранный из тонких электростальных пластинок. Используются именно наборные сердечники, чтобы свести к минимум появление самоиндукционных токов, которые приводят к перегреву и увеличению потерь энергии.

На противоположные стороны квадрата наносят обмотку. Обмотка, на которую поддается ток, называется первичной, обмотка, отдающая преобразованную энергию, вторичной.

Принцип работы

Схема работы силового трансформатора выглядит так:

  1. Ток подается на первичную обмотку.
  2. Первичная обмотка в результате прохождения электрического тока начинает генерировать переменное магнитное поле.
  3. Магнитное поле, проходящее сквозь вторичную обмотку, вызывает в ней электрический ток.

Вес секрет процесса в количестве витков. Отношение принятого напряжения к отданному равняется отношению количества витков первичной обмотки к количеству витков вторичного обмотки. Это же отношение называют коэффициентом трансформации. То есть коэффициент показывает, во сколько раз уменьшится или увеличится выходное напряжение на подстанции.

Схема простейшего трансформатораСхема простейшего трансформатора

Почему трансформатор называют силовым

Как мы уже сказали, силовые трансформаторы используют для понижения высоковольного тока до приемлемых для города параметров, то есть 220/360 В – в зависимости от местности и прочих условий. Но нужно отметить, что напряжение высоковольтных линий ненамного больше 1000 к В, а это больше миллиона вольт. Именно за трансформацию столь сильного напряжения, устройство и назвали таким красивым именем.

Установленный силовой трансформаторУстановленный силовой трансформатор

Именно силовые трансформаторы используются для преобразования электричества городских и квартальных сетей. Получается многоступенчатая система снабжения страны электроэнергией:

  1. Сначала повышающие трансформаторы увеличивают напряжение до огромных значений
  2. По проводам ток течет в города и села
  3. Понижающие трансформаторы понижают напряжение сначала до общегородских, а потом и до квартальных значений.

Отдельно нужно сказать, что иногда приходится понижать значение напряжения до 360 В в городе, потому что высоковольтные линии проводить в городской черте запрещено.

Виды трансформаторов

Уже были названы повышающие и понижающие трансформаторы. В зависимости от места использования можно выделить сетевые и силовые аппараты. Сетевые трансформаторы используются в устройствах, поскольку даже квартальные параметры тока слишком высоки для простого телевизора или ноутбука. Поэтому используется трансформатор, чтобы преобразовать ток в подходящий для конкретного предмета бытовой техники.

Сразу использовать маленькие параметры в городе нельзя из тех же соображений экономии. К тому же, разные приборы требуют разных параметров – всем производителям электроники не угодишь, а потому проще каждому встраивать в свой прибор трансформатор.

Отдельной строкой идут автомобильные трансформаторы, которые позволяют заводить машину с использованием небольшого электрического импульса. Выделяют и импульсные и многие другие трансформаторы, но всех их объединяет одно: принцип работы. Отличия кроются только в рабочих параметрах тока и предназначении трансформатора.

Сетевой трансформаторСетевой трансформатор

Контроль работы устройства

Во время сервисных работ строго запрещается заглядывать внутрь бака, сливать полностью масла и проводить какие-либо манипуляции с содержимым корпуса трансформатора. Работоспособность изделия проверяется путем химической оценки пробы масла и холостого подключения аппарата. В результате удается узнать, насколько трансформатор работоспособен в данный момент времени.

Даже к месту монтажа привозят уже готовую конструкцию, которую остается только подключить к сети. Заливка маслом производится на заводе, не говоря уже о более сложных процедурах. Для доставки оборудования используется специализированная техника.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

Устройство и принцип действия трансформатора

Трансформаторы

С открытием и началом промышленного использования электричества возникла необходимость создания систем его преобразования и доставки к потребителям. Так появились трансформаторы, о принципе действия которых и пойдет речь.

Появлению их на свет предшествовало открытие явления электромагнитной индукции великим английским физиком Майклом Фарадеем почти 200 лет назад. Позже он и его американский коллега Д. Генри нарисовали схему будущего трансформатора.

Трансфрматор Фарадея Трансформатор Фарадея

Первое воплощение идеи в железо состоялось в 1848 году с создания индукционной катушки французским механиком Г. Румкорфом. Свою лепту внесли и российские ученые. В 1872 году профессор Московского университета А. Г. Столетов открыл петлю гистерезиса и описал структуру ферромагнетика, а 4 года спустя, выдающийся российский изобретатель П. Н. Яблочков получил патент на изобретение первого трансформатора переменного тока.

Трансформатор Яблочкова

Как устроен и как работает трансформатор

Трансформаторы – это название огромного «семейства», куда входят однофазные, трехфазные, понижающие, повышающие, измерительные и множество других типов трансформаторов. Основное их назначение – преобразование одного или нескольких напряжений переменного тока в другое на основе электромагнитной индукции при неизменной частоте.

Итак, кратко, как работает простейший однофазный трансформатор. Он состоит из трех основных элементов – первичной и вторичной обмоток и объединяющего их в единое целое магнитопровода, на который они как бы нанизаны. Источник подключается исключительно к первичной обмотке, в то время, как вторичная снимает и передает уже измененное напряжение потребителю.

Принцип работы трансформатораПринцип работы трансформатора

Подключенная к сети первичная обмотка создает в магнитопроводе переменное электромагнитное поле и формирует магнитный поток, который начинает циркулировать между обмотками, индуцируя в них электродвижущую силу (ЭДС). Ее величина зависит от числа витков в обмотках. К примеру, для понижения напряжения необходимо, чтобы в первичной обмотке витков было больше, чем во вторичной. Именно по такому принципу работают понижающие и повышающие трансформаторы.

Важная особенность конструкции трансформатора состоит в том, что магнитопровод имеет стальную структуру, а обмотки, как правило имеющие форму цилиндра, изолированы от него, непосредственно не связаны друг с другом и имеют свою маркировку.

Трансформаторы напряжения

Это, пожалуй, наиболее многочисленная разновидность семейства трансформаторов. В двух словах, их основная функция – сделать произведенную на электростанциях энергию доступной для потребления различными устройствами. Для этого существует система передачи электроэнергии, состоящая из повышающих и понижающих трансформаторных подстанций и линий электропередач.

Передаяа энергии по ЛЭП

Вначале электроэнергия, произведенная электростанцией, подается на повышающую трансформаторную подстанцию (к примеру, с 12 до 500 кВ). Это необходимо для того, чтобы компенсировать неизбежные потери электроэнергии при передаче на большие расстояния.

Следующий этап – понижающая подстанция, откуда электроэнергия уже по низковольтной линии подается на понижающий трансформатор и далее к потребителю в виде напряжения 220 в.

Но на этом работа трансформаторов не заканчивается. В большинстве окружающих нас бытовых электроприборов — в ПК, телевизорах, принтерах, стиральных машинах-автоматах, холодильниках, микроволновых печах, DVD и даже в энергосберегающих лампочках установлены понижающие трансформаторы. Пример индивидуального «карманного» трансформатора – зарядное устройство мобильного телефона (смартфона).

Адаптер питания

Гигантскому разнообразию современных электронных устройств и выполняемых ими функций соответствует множество различных типов трансформаторов. Это далеко не полный их список: силовые, импульсные, сварочные, разделительные, согласующие, вращающиеся, трехфазные, пик-трансформаторы, трансформаторы тока, тороидальные, стержневые и броневые.

Какие они, трансформаторы будущего

Считается, что трансформаторная отрасль весьма консервативна. Тем не менее и ей приходится считаться с революционными изменениями в области электротехники, где все громче о себе заявляют нанотехнологии. Как и множество других устройств, они постепенно «умнеют».

Элегазовые трансформаторыЭлегазовые трансформаторы

Активно ведется поиск новых конструкционных материалов – изоляционных и магнитных, способных обеспечить более высокую надежность трансформаторного оборудования. Одним из направлений может стать использование аморфных материалов, что значительно повысит его пожарную безопасность и надежность.

Появятся взрыво- и пожаробезопасные трансформаторы, в которых хлордифенилы, используемые для пропитки электроизоляционных материалов, будут заменены нетоксичными жидкими, экологически безопасными диэлектриками.

Элегазовые трансформаторыЭлегазовые трансформаторы

Примером тому — элегазовые силовые трансформаторы, где функцию хладагента выполняет негорючий элегаз гексафторид серы, вместо далеко не безопасного трансформаторного масла.

Вопрос времени – создание «умных» электросетей, оснащенных полупроводниковыми твердотельными трансформаторами с электронным управлением, с помощью которых появится возможность регулировать напряжение в зависимости от потребностей потребителей, в частности, подключать к домашней сети возобновляемые и промышленные источники питания, или наоборот отключать лишние, когда в них нет необходимости.

Еще одно перспективное направление – низкотемпературные сверхпроводимые трансформаторы. Работа по их созданию началась еще в 60-е годы. Главная проблема, с которой столкнулись ученые – огромные размеры криогенных систем, необходимых для изготовления жидкого гелия. Все изменилось в 1986 году, когда были открыты сверхпроводниковые высокотемпературные материалы. Благодаря им, появилась возможность отказаться от громоздких охлаждающих устройств.

Трансформатор с полупроводниковым преобразователемТрансформатор с полупроводниковым преобразователем

Сверхпроводимые трансформаторы обладают уникальным качеством: при высокой плотности тока потери в них минимальны, зато, когда ток достигает критических значений, сопротивление от нулевого уровня резко увеличивается.Трансформатор с полупроводниковым преобразователем

§63. Назначение и принцип действия трансформатора

Назначение трансформатора. Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.

Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.

В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные на фабриках, заводах, в депо и жилых домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.

Кроме трансформаторов, применяемых в системах передачи и распределения электроэнергии, промышленностью выпускаются трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.

Трансформаторы используют также для включения электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей. Транс-

Рис. 212. Схема включения однофазного трансформатора

форматоры бывают однофазные и трехфазные, двух- и многообмоточные.

Принцип действия трансформатора. Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).

При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.

Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока. Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е1 и E2, индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витков ?1 и ?2 этих обмоток, т. е.

E1/E2 = ?1/ ?2.

Отношение э. д. с. Евн обмотки высшего напряжения к э. д. с. Eнн обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации,

n = Евн / Eнн = ?вн / ?нн.

Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2—5 % номинальных значений напряжений U1 и U2), то можно считать, что отношение напряжения U1 первичной обмотки к напряжению U2 вторичной обмотки приблизительно равно отношению чисел их витков, т. е.

U1/U2? ?1/ ?2

Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.

Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.

При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке. Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.

Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I1/I2 ? U2/U1 или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток: I1/I2 ? ?2/?1. Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U2 больше напряжения U1), а в понижающем ток во вторичной обмотке больше, чем в первичной. Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *