Site Loader

Векторная площадь параллелограмма. Векторное произведение векторов. Смешанное произведение векторов. Векторное произведение векторов в координатах

Площадь параллелограмма, построенного на векторах, равняется произведению длин этих векторов на угол угла, который лежит между ними.

Хорошо, когда по условиям даны длины этих самых векторов. Однако бывает и так, что применить формулу площади параллелограмма, построенного на векторах можно только после расчетов по координатам.
Если повезло, и по условиям даны длины векторов, то нужно просто применить формулу, которую мы уже подробно разбирали в статье . Площадь будет равняться произведению модулей на синус угла между ними:

Рассмотрим пример расчета площади параллелограмма построенного на векторах.

Задача: параллелограмм построен на векторах и . Найдите площадь, если , а угол между ними 30°.
Выразим вектора через их значения:

Возможно, у вас возник вопрос – откуда взялись нули? Стоит вспомнить, что мы работаем с векторами, а для них . также обратите внимание, что если в результате мы получаем выражение ,то оно будет преобразовано в. Теперь проводим итоговые вычисления:

Вернемся к проблеме, когда длины векторов не указаны в условиях. Если ваш параллелограмм лежит в декартовой системе координат, то потребуется сделать следующее.

Расчет длин сторон фигуры, заданной координатами

Для начала находим координаты векторов и отнимаем от координат конца соответствующие координаты начала. Допустим координаты вектора a (x1;y1;z1), а вектора b (x3;y3;z3).
Теперь находим длину каждого вектора. Для этого каждую координату необходимо возвести в квадрат, потом сложить полученные результаты и из конечного числа извлечь корень. По нашим векторам будут следующие расчеты:


Теперь потребуется найти скалярное произведение наших векторов. Для этого их соответствующие координаты множатся и складываются.

Имея длины векторов и их скалярное произведение, мы можем найти косинус угла, лежащего между ними .
Теперь можем найти синус этого же угла:
Теперь у нас есть все необходимые величины, и мы можем запросто найти площадь параллелограмма построенного на векторах по уже известной формуле.

Вспомним в начале, что такое векторное произведение.

Замечание 1

Векторным произведением для $\vec{a}$ и $\vec{b}$ является $\vec{c}$, представляющий собой некоторый третий вектор $\vec{c}= ||$, причём этот вектор обладает особенными свойствами:

  • Cкаляр полученного вектора — произведение $|\vec{a}|$ и $|\vec{b}|$ на синус угла $\vec{c}= ||= |\vec{a}| \cdot |\vec{b}|\cdot \sin α \left(1\right)$;
  • Все $\vec{a}, \vec{b}$ и $\vec{c}$ образуют правую тройку;
  • Полученный вектор ортогонален к $\vec{a}$ и $\vec{b}$.

Если для векторов присутствуют некоторые координаты ($\vec{a}=\{x_1; y_1; z_1\}$ и $\vec{b}= \{x_2; y_2; z_2\}$), то их векторное произведение в декартовой системе координат можно определить по формуле:

$ = \{y_1 \cdot z_2 – y_2 \cdot z_1; z_1 \cdot x_2 – z_2 \cdot x_1; x_2 \cdot y_2 – x_2 \cdot y_1\}$

Легче всего запомнить эту формулу записав в форме определителя:

$ = \begin{array} {|ccc|} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ \end{array}$.

Эта формула весьма удобна для использования, но чтобы понимать, как её использовать, для начала следует ознакомиться с темой матриц и их определителей.

Площадь параллелограмма , стороны которого определяются двумя векторами $\vec{a}$ и $vec{b}$ равна скаляру векторного произведения данных двух векторов.

Это соотношение совсем несложно вывести.

Вспомним формулу для нахождения площади обычного параллелограмма, который можно охарактеризовать образующими его отрезками $a$ и $b$:

$S = a \cdot b \cdot \sin α$

При этом длины сторон равны скалярным значениям векторов $\vec{a}$ и $\vec{b}$, что вполне себе подходит нам, то есть, скаляр векторного произведения данных векторов и будет площадью рассматриваемой фигуры.

Пример 1

Даны векторы $\vec{c}$ c координатами $\{5;3; 7\}$ и вектор $\vec{g}$ с координатами $\{3; 7;10 \}$ в декартовой системе координат. Найти, чему равна площадь параллелограмма, образованного $\vec{c}$ и $\vec{g}$. 2} = \sqrt{1878} ≈ 43, 34$.

Данный ход рассуждений справедлив не только для нахождения площади в 3-хмерном пространстве, но и для двухмерного. Познакомьтесь со следующей задачкой на эту тему.

Пример 2

Вычислить площадь параллелограмма, если его образующие отрезки задаются векторами $\vec{m}$ с координатами $\{2; 3\}$ и $\vec{d}$ с координатами $\{-5; 6\}$.

Решение:

Эта задача представляет собой частный пример задачки 1, решённой выше, но при этом оба вектора лежат в одной плоскости, а это значит, что третью координату, $z$, можно принять за нуль.

Подведём итоги по всему вышесказанному, площадь параллелограмма составит:

$S = \begin{array} {||cc||} 2 & 3\\ -5 & 6 \\ \end{array} = \sqrt{12 + 15} =3 \sqrt3$.

Пример 3

Даны векторы $\vec{a} = 3i – j + k; \vec{b}= 5i$. Определите площадь образуемого ими параллелограмма.

$[ \vec{a} \times \vec{b}] = (3i – j + k) \times 5i = 15 – 5 + $

Упростим согласно приведённой таблице для единичных векторов:

Рисунок 1. 2} = 5\sqrt{2}$.

Предыдущие задачи были о векторах, координаты которых заданы в декартовой системе координат, но рассмотрим также случай, если угол между базисными векторами отличается от $90°$:

Пример 4

Вектор $\vec{d} = 2a + 3b$, $\vec{f}= a – 4b$, длины $\vec{a}$ и $\vec{b}$ равны между собой и равны единице, а угол между $\vec{a}$ и $\vec{b}$ равен 45°.

Решение:

Вычислим векторное произведение $\vec{d} \times \vec{f}$:

$[\vec{d} \times \vec{f} ]= (2a + 3b) \times (a – 4b) = 2 – 8 + 3 – 12 $.

Для векторных произведений согласно их свойствам справедливо следующее: $$ и $$ равны нулю, $ = — $.

Используем это для упрощения:

$[\vec{d} \times \vec{f} ]= -8 + 3 = -8 — 3 =-11$.

Теперь воспользуемся формулой $(1)$ :

$[\vec{d} \times \vec{f} ] = |-11 | = 11 \cdot |a| \cdot |b| \cdot \sin α = 11 \cdot 1 \cdot 1 \cdot \frac12=5,5$.

На данном уроке мы рассмотрим ещё две операции с векторами: векторное произведение векторов

и смешанное произведение векторов (сразу ссылка, кому нужно именно оно) . Ничего страшного, так иногда бывает, что для полного счастья, помимо скалярного произведения векторов , требуется ещё и ещё. Такая вот векторная наркомания. Может сложиться впечатление, что мы залезаем в дебри аналитической геометрии. Это не так. В данном разделе высшей математики вообще мало дров, разве что на Буратино хватит. На самом деле материал очень распространенный и простой – вряд ли сложнее, чем то же скалярное произведение , даже типовых задач поменьше будет. Главное в аналитической геометрии, как многие убедятся или уже убедились, НЕ ОШИБАТЬСЯ В ВЫЧИСЛЕНИЯХ. Повторяйте как заклинание, и будет вам счастье =)

Если векторы сверкают где-то далеко, как молнии на горизонте, не беда, начните с урока Векторы для чайников , чтобы восстановить или вновь приобрести базовые знания о векторах. Более подготовленные читатели могут знакомиться с информацией выборочно, я постарался собрать максимально полную коллекцию примеров, которые часто встречаются в практических работах

Чем вас сразу порадовать? Когда я был маленьким, то умел жонглировать двумя и даже тремя шариками. Ловко получалось. Сейчас жонглировать не придётся вообще, поскольку мы будем рассматривать

только пространственные векторы , а плоские векторы с двумя координатами останутся за бортом. Почему? Такими уж родились данные действия – векторное и смешанное произведение векторов определены и работают в трёхмерном пространстве. Уже проще!

В данной операции, точно так же, как и в скалярном произведении, участвуют два вектора . Пусть это будут нетленные буквы .

Само действие обозначается следующим образом: . Существуют и другие варианты, но я привык обозначать векторное произведение векторов именно так, в квадратных скобках с крестиком.

И сразу вопрос : если в скалярном произведении векторов

участвуют два вектора, и здесь тоже умножаются два вектора, тогда в чём разница ? Явная разница, прежде всего, в РЕЗУЛЬТАТЕ:

Результатом скалярного произведения векторов является ЧИСЛО:

Результатом векторного произведения векторов является ВЕКТОР : , то есть умножаем векторы и получаем снова вектор. Закрытый клуб. Собственно, отсюда и название операции. В различной учебной литературе обозначения тоже могут варьироваться, я буду использовать букву .

Определение векторного произведения

Сначала будет определение с картинкой, затем комментарии.

Определение : Векторным произведением неколлинеарных векторов , взятых в данном порядке , называется ВЕКТОР , длина которого численно равна площади параллелограмма , построенного на данных векторах; вектор ортогонален векторам , и направлен так, что базис имеет правую ориентацию:

Разбираем определение по косточкам, тут много интересного!

Итак, можно выделить следующие существенные моменты:

1) Исходные векторы , обозначенные красными стрелками, по определению не коллинеарны . Случай коллинеарных векторов будет уместно рассмотреть чуть позже.

2) Векторы взяты в строго определённом порядке : – «а» умножается на «бэ» , а не «бэ» на «а». Результатом умножения векторов является ВЕКТОР , который обозначен синим цветом. Если векторы умножить в обратном порядке, то получим равный по длине и противоположный по направлению вектор (малиновый цвет). То есть, справедливо равенство .

3) Теперь познакомимся с геометрическим смыслом векторного произведения. Это очень важный пункт! ДЛИНА синего вектора (а, значит, и малинового вектора ) численно равна ПЛОЩАДИ параллелограмма, построенного на векторах . На рисунке данный параллелограмм заштрихован чёрным цветом.

Примечание : чертёж является схематическим, и, естественно, номинальная длина векторного произведения не равна площади параллелограмма.

Вспоминаем одну из геометрических формул: площадь параллелограмма равна произведению смежных сторон на синус угла между ними . Поэтому, исходя из вышесказанного, справедлива формула вычисления ДЛИНЫ векторного произведения:

Подчёркиваю, что в формуле речь идёт о ДЛИНЕ вектора, а не о самом векторе . Каков практический смысл? А смысл таков, что в задачах аналитической геометрии площадь параллелограмма часто находят через понятие векторного произведения:

Получим вторую важную формулу. Диагональ параллелограмма (красный пунктир) делит его на два равных треугольника. Следовательно, площадь треугольника, построенного на векторах (красная штриховка), можно найти по формуле:

4) Не менее важный факт состоит в том, что вектор ортогонален векторам , то есть . Разумеется, противоположно направленный вектор (малиновая стрелка) тоже ортогонален исходным векторам .

5) Вектор направлен так, что базис имеет правую ориентацию. На уроке о переходе к новому базису я достаточно подробно рассказал об ориентации плоскости , и сейчас мы разберёмся, что такое ориентация пространства. Объяснять буду на пальцах вашей правой руки . Мысленно совместите указательный палец с вектором и средний палец с вектором . Безымянный палец и мизинец прижмите к ладони. В результате большой палец – векторное произведение будет смотреть вверх. Это и есть правоориентированный базис (на рисунке именно он). Теперь поменяйте векторы (указательный и средний пальцы ) местами, в результате большой палец развернётся, и векторное произведение уже будет смотреть вниз. Это тоже правоориентированный базис. Возможно, у вас возник вопрос: а какой базис имеет левую ориентацию? «Присвойте» тем же пальцам левой руки векторы , и полУчите левый базис и левую ориентацию пространства (в этом случае большой палец расположится по направлению нижнего вектора) . Образно говоря, данные базисы «закручивают» или ориентируют пространство в разные стороны. И это понятие не следует считать чем-то надуманным или абстрактным – так, например, ориентацию пространства меняет самое обычное зеркало, и если «вытащить отражённый объект из зазеркалья», то его в общем случае не удастся совместить с «оригиналом». Кстати, поднесите к зеркалу три пальца и проанализируйте отражение;-)

…как всё-таки хорошо, что вы теперь знаете о право- и левоориентированных базисах, ибо страшнЫ высказывания некоторых лекторов о смене ориентации =)

Векторное произведение коллинеарных векторов

Определение подробно разобрано, осталось выяснить, что происходит, когда векторы коллинеарны. Если векторы коллинеарны, то их можно расположить на одной прямой и наш параллелограмм тоже «складывается» в одну прямую. Площадь такого, как говорят математики, вырожденного параллелограмма равна нулю. Это же следует и из формулы – синус нуля или 180-ти градусов равен нулю, а значит, и площадь нулевая

Таким образом, если , то и . Обратите внимание, что само векторное произведение равно нулевому вектору, но на практике этим часто пренебрегают и пишут, что оно тоже равно нулю.

Частный случай – векторное произведение вектора на самого себя:

С помощью векторного произведения можно проверять коллинеарность трёхмерных векторов, и данную задачу среди прочих мы тоже разберём.

Для решения практических примеров может потребоваться тригонометрическая таблица , чтобы находить по ней значения синусов.

Ну что же, разжигаем огонь:

Пример 1

а) Найти длину векторного произведения векторов , если

б) Найти площадь параллелограмма, построенного на векторах , если

Решение : Нет, это не опечатка, исходные данные в пунктах условия я намеренно сделал одинаковыми. Потому что оформление решений будет отличаться!

а) По условию требуется найти длину вектора (векторного произведения). По соответствующей формуле:

Ответ :

Коль скоро спрашивалось о длине, то в ответе указываем размерность – единицы.

б) По условию требуется найти площадь параллелограмма, построенного на векторах . Площадь данного параллелограмма численно равна длине векторного произведения:

Ответ :

Обратите внимание, что в ответе о векторном произведении речи не идёт вообще, нас спрашивали о площади фигуры , соответственно, размерность – квадратные единицы.

Всегда смотрим, ЧТО требуется найти по условию, и, исходя из этого, формулируем чёткий ответ. Может показаться буквоедством, но буквоедов среди преподавателей хватает, и задание с хорошими шансами вернётся на доработку. Хотя это не особо натянутая придирка – если ответ некорректен, то складывается впечатление, что человек не разбирается в простых вещах и/или не вник в суть задания. Этот момент всегда нужно держать на контроле, решая любую задачу по высшей математике, да и по другим предметам тоже.

Куда подевалась большая буковка «эн»? В принципе, её можно было дополнительно прилепить в решение, но в целях сократить запись, я этого не сделал. Надеюсь, всем понятно, что и – это обозначение одного и того же.

Популярный пример для самостоятельного решения:

Пример 2

Найти площадь треугольника, построенного на векторах , если

Формула нахождения площади треугольника через векторное произведение дана в комментариях к определению. Решение и ответ в конце урока.

На практике задача действительно очень распространена, треугольниками вообще могут замучить.

Для решения других задач нам понадобятся:

Свойства векторного произведения векторов

Некоторые свойства векторного произведения мы уже рассмотрели, тем не менее, я их включу в данный список.

Для произвольных векторов и произвольного числа справедливы следующие свойства:

1) В других источниках информации данный пункт обычно не выделяют в свойствах, но он очень важен в практическом плане. Поэтому пусть будет.

2) – свойство тоже разобрано выше, иногда его называют антикоммутативностью . Иными словами, порядок векторов имеет значение.

3) – сочетательные или ассоциативные законы векторного произведения. Константы безпроблемно выносятся за пределы векторного произведения. Действительно, чего им там делать?

4) – распределительные или дистрибутивные законы векторного произведения. С раскрытием скобок тоже нет проблем.

В качестве демонстрации рассмотрим коротенький пример:

Пример 3

Найти , если

Решение: По условию снова требуется найти длину векторного произведения. Распишем нашу миниатюру:

(1) Согласно ассоциативным законам, выносим константы за переделы векторного произведения.

(2) Выносим константу за пределы модуля, при этом модуль «съедает» знак «минус». Длина же не может быть отрицательной.

(3) Дальнейшее понятно.

Ответ :

Пора подбросить дров в огонь:

Пример 4

Вычислить площадь треугольника, построенного на векторах , если

Решение : Площадь треугольника найдём по формуле . Загвоздка состоит в том, что векторы «цэ» и «дэ» сами представлены в виде сумм векторов. Алгоритм здесь стандартен и чем-то напоминает примеры № 3 и 4 урока Скалярное произведение векторов . Решение для ясности разобьём на три этапа:

1) На первом шаге выразим векторное произведение через векторное произведение , по сути, выразим вектор через вектор . О длинах пока ни слова!

(1) Подставляем выражения векторов .

(2) Используя дистрибутивные законы, раскрываем скобки по правилу умножения многочленов.

(3) Используя ассоциативные законы, выносим все константы за пределы векторных произведений. При маломальском опыте действия 2 и 3 можно выполнять одновременно.

(4) Первое и последнее слагаемое равно нулю (нулевому вектору) благодаря приятному свойству . Во втором слагаемом используем свойство антикоммутативности векторного произведения:

(5) Приводим подобные слагаемые.

В результате вектор оказался выражен через вектор, чего и требовалось достичь:

2) На втором шаге найдем длину нужного нам векторного произведения. Данное действие напоминает Пример 3:

3) Найдём площадь искомого треугольника:

Этапы 2-3 решения можно было оформить и одной строкой.

Ответ :

Рассмотренная задача достаточно распространена в контрольных работах, вот пример для самостоятельного решения:

Пример 5

Найти , если

Краткое решение и ответ в конце урока. Посмотрим, насколько вы были внимательны при изучении предыдущих примеров;-)

Векторное произведение векторов в координатах

, заданных в ортонормированном базисе , выражается формулой :

Формула и правда простецкая: в верхнюю строку определителя записываем координатные векторы, во вторую и третью строки «укладываем» координаты векторов , причём укладываем в строгом порядке – сначала координаты вектора «вэ», затем координаты вектора «дубль-вэ». Если векторы нужно умножить в другом порядке, то и строки следует поменять местами:

Пример 10

Проверить, будут ли коллинеарны следующие векторы пространства:
а)
б)

Решение : Проверка основана на одном из утверждений данного урока: если векторы коллинеарны, то их векторное произведение равно нулю (нулевому вектору): .

а) Найдём векторное произведение:

Таким образом, векторы не коллинеарны.

б) Найдём векторное произведение:

Ответ : а) не коллинеарны, б)

Вот, пожалуй, и все основные сведения о векторном произведении векторов.

Данный раздел будет не очень большим, так как задач, где используется смешанное произведение векторов, немного. Фактически всё будет упираться в определение, геометрический смысл и пару рабочих формул.

Смешанное произведение векторов – это произведение трёх векторов :

Вот так вот они выстроились паровозиком и ждут, не дождутся, когда их вычислят.

Сначала опять определение и картинка:

Определение : Смешанным произведением некомпланарных векторов , взятых в данном порядке , называется объём параллелепипеда , построенного на данных векторах, снабжённый знаком «+», если базис правый, и знаком «–», если базис левый.

Выполним рисунок. Невидимые нам линии прочерчены пунктиром:

Погружаемся в определение:

2) Векторы взяты в определённом порядке , то есть перестановка векторов в произведении , как вы догадываетесь, не проходит без последствий.

3) Перед тем, как прокомментировать геометрический смысл, отмечу очевидный факт: смешанное произведение векторов является ЧИСЛОМ : . В учебной литературе оформление может быть несколько другим, я привык обозначать смешанное произведение через , а результат вычислений буквой «пэ».

По определению смешанное произведение – это объем параллелепипеда , построенного на векторах (фигура прочерчена красными векторами и линиями чёрного цвета). То есть, число равно объему данного параллелепипеда.

Примечание : чертёж является схематическим.

4) Не будем заново париться с понятием ориентации базиса и пространства. Смысл заключительной части состоит в том, что к объёму может добавляться знак минус. Простыми словами, смешанное произведение может быть отрицательным: .

Непосредственно из определения следует формула вычисления объема параллелепипеда, построенного на векторах .

Ошибка

Перейти к основному содержанию

Вся размещенная на ресурсе информационная продукция предназначена для детей, достигших возраста шестнадцати лет (16+)

Извините, не удалось найти запрашиваемый Вами файл

Подробнее об этой ошибке

Перейти на. .. Перейти на…Новостной форумКомплексные числа (с приложениями к задачам электротехники)Лекционный материал по теме «Комплексные числа»Разбор типовых задач задач по теме «Комплексные числа»Примеры решения задач по теме «Комплексные числа»КОМПЛЕКСНЫЕ ЧИСЛАКомплексные числа. Основы линейной алгебры. Системы линейных уравненийТеория функций комплексного переменного. Операционное исчислениеПрезентация по теме «Комплексные числа»Дополнительный материал к темеОсновы линейной алгебры с приложениями в других разделах математикиЛекционный материал по теме «Матрицы. Определители»Лекционный материал по теме «Системы линейных алгебраических уравнений (СЛАУ). Применение СЛАУ в экономике»Лекционный материал по теме «Линейные операторы»Примеры решения по теме «Системы линейных алгебраических уравнений»ЛИНЕЙНАЯ АЛГЕБРАКомплексные числа. Основы линейной алгебры. Системы линейных уравненийЛинейная алгебра для экономистовМатрицы. ОпределителиВекторная алгебра.Аналитическая геометрияЛекционный материал по теме «Векторная алгебра. Линейные операции над векторами»Лекционный материал по теме «Скалярное, векторное и смешанное произведения векторов»Примеры решения задач по теме «Векторная алгебра. Линейные операции над векторами»ВЕКТОРНАЯ АЛГЕБРАВекторная алгебра и аналитическая геометрияПрезентация по теме «Векторная алгебра»Векторная алгебра.Аналитическая геометрияТеоретический материал по теме «Метод координат на плоскости и в пространстве»Лекционный материал по теме «Прямая на плоскости»Лекционный материал по теме «Кривые второго порядка»Лекционный материал по теме «Прямая в пространстве»Лекционный материал по теме «Плоскость в пространстве»Лекционный материал по теме «Поверхности второго порядка»Примеры решения задач по теме «Прямая на плоскости»Примеры решения задач по теме «Кривые второго порядка»Примеры решения задач по темам «Прямая и плоскость в пространстве»АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯВекторная алгебра и аналитическая геометрияСправочный материал «Прямая на плоскости»Справочный материал «Кривые второго порядка»Справочный материал «Прямая и плоскость в пространстве»Линейная алгебра для экономистовПрезентация по теме «Прямая на плоскости»Презентация по теме «Уравнения плоскости и прямой в пространстве»▶ Виртуальный тренажер «Прямая на плоскости» 👨‍🎓Введение в анализНачала анализаЛекционный материал по теме «Множества, функции, основные характеристики функций. Основные элементарные функции»Лекционный материал по теме «Предел функции, основные теоремы о пределах.Замечательные пределы. Бесконечно малые функции»Лекционный материал по теме «Непрерывность функции»Примеры решения задач по теме «Множества, функции, основные характеристики функций. Основные элементарные функции»Примеры решения задач по теме «Предел функции. Раскрытие математических неопределенностей»Примеры решения задач по теме «Непрерывность функции»ВВЕДЕНИЕ В АНАЛИЗУпражнения для самостоятельного решения Тест «Введение в анализ»Презентация по теме «Введение в анализ»1. Понятие функцииПрименение функций в экономической теории и практикеПрименение пределов в экономических расчетахПриложение понятия непрерывности функций в экономике▶ Виртуальная справочная «Тригонометрические функции» 👨‍🎓Дифференциальное исчисление функций одной переменнойПриложения дифференциального исчисления функции одной переменнойЛекционный материал по теме «Дифференциальное исчисление функции одной переменной»Лекционный материал по теме «Основные теоремы дифференциального исчисления. Правила Лопиталя»Лекционный материал по теме «Формулы Тейлора и Маклорена»Лекционный материал по теме «Приложения дифференциального исчисления»Примеры решения задач по теме «Дифференциальное исчисление функций одной переменной»ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙТест «Основные правила и формулы дифференцирования»Тест «Дифференциальное исчисление функций одной переменной»Основы дифференцирования. Часть 1Основы дифференцирования. Часть 2Основы дифференцирования. Часть 3Приложения производной Исследование функций, Примеры решения задачПрименение производных при решении экономических задачИнтегральное исчисление функции одной переменнойЛекционный материал по теме «Неопределенный интеграл»Лекционный материал по теме «Определенный интеграл»Практическое занятие 1. Непосредственное интегрирование (неопределённый интеграл)Практическое занятие 2. Интегрирование заменой переменной (неопределённый интеграл)Практическое занятие 3. Интегрирование по частям. Интегрирование выражений, содержащих квадратный многочлен (неопределённый интеграл)Практическое занятие 4. Интегрирование рациональных дробей (неопределенный интеграл)Практическое занятие 5. Определенный интегралПримеры решения задач по теме «Неопределенный интеграл»Примеры решения задач по теме «Определенный интеграл»ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙТест «Таблица основных неопределенных интегралов»Тест «Интегрирование функций одной переменной»1. Неопределенный интеграл. Основы интегрирования2. Интегрирование иррациональных выражений 3. Интегрирование тригонометрических выражений 4. Определенный интегралДифференциальное исчисление функций нескольких переменныхЛекционный материал по теме «Функции нескольких переменных»Примеры решения задач по теме «Функции нескольких переменных»ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХТест «Дифференциальное исчисление функций нескольких переменных»1. Функции нескольких переменныхПрименение функций нескольких переменных в экономикеОбыкновенные дифференциальные уравненияОбыкновенные дифференциальные уравнения и их приложенияДифференциальные уравнения первого порядкаДифференциальные уравнения высших порядковСистемы дифференциальных уравнений и устойчивость их решенийЛекционный материал по теме «Дифференциальные уравнения 1-го порядка»Лекционный материал по теме «Дифференциальные уравнения высших порядков»Примеры решения задач по теме «Дифференциальные уравнения»ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯТест «Обыкновенные дифференциальные уравнения»1. Дифференциальные уравнения 1-го порядка2. Дифференциальные уравнения высших порядковСпециальные разделы высшей математикиСпециальные разделы высшей математики: практикум Кратные, криволинейные и поверхностные интегралы. Элементы теории поляПоверхностные интегралы. Векторный анализЛекционный материал по теме «Двойные интегралы»Примеры решения задач по теме «Двойные интегралы»КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ2. Двойные интегралыРядыЛекционный материал по теме «Числовые ряды»Лекционный материал по теме «Функциональные ряды»Примеры решения задач по теме «Ряды»1. Числовые ряды2. Функциональные ряды3. Разложение функций в степенные рядыТеория функций комплексного переменного. Операционное исчисление.Основы теории функций комплексного переменногоОперационное исчисление.Теория функций комплексного переменного. Операционное исчислениеТеория вероятностей Теория вероятностей (случайные события)Вероятность, случайные процессы, математическая статистикаТеория вероятностей. Случайные процессы: практикумЛекционный материал по теме «Основные подходы к определению вероятности»Лекционный материал по теме «Алгебра событий. Основные теоремы о вероятности»Лекционный материал по теме «Дискретные случайные величины»Лекционный материал по теме «Непрерывные случайные величины»Лекционный материал по теме «Числовые характеристики случайных величин»Лекционный материал по теме «Моменты и другие характеристики распределений»Лекционный материал по теме «Нормальное распределение»Практическое занятие 1. КомбинаторикаПрактическое занятие 2. Действия над событиями. Вероятность событияПрактическое занятие 3. Теоремы умножения и сложения вероятностей событийПрактическое занятие 4. Формула полной вероятности Практическое занятие 5. Схема Бернулли. Локальная и интегральная теоремы ЛапласаПрактическое занятие 6. Дискретные случайные величины. Числовые характеристикиПрактическое занятие 7. Непрерывные случайные величины. Классические законы распределения НСВПримеры решения задач по теме «Комбинаторика»Примеры решения задач по теме «Классическое определение вероятности»Примеры решения задач по теме «Теоремы сложения и умножения»Примеры решения задач по теме «Формула полной вероятности. Формулы Байеса»Примеры решения задач по теме «Схема независимых испытаний Бернулли»Примеры решения задач по теме «Дискретные случайные величины»Примеры решения задач по теме «Основные числовые характеристики дискретных случайных величин»Примеры решения задач по теме «Непрерывные случайные величины»Примеры решения задач по теме «Основные числовые характеристики непрерывных случайных величин»Примеры решения задач по теме «Классические законы распределения дискретных случайных величин»Примеры решения задач по теме «Классические законы распределения непрерывных случайных величин»Таблица значений функции ЛапласаТЕОРИЯ ВЕРОЯТНОСТЕЙТест по разделу «Случайные события»Тест по теме «Числовые характеристики случайных величин»Тест по теме «Дискретные случайные величины»Тест по теме «Непрерывные случайные величины»Основные подходы к определению вероятностиАлгебра событий. Основные теоремы о вероятностиТеория вероятностей (Лыткина Е.М.,Чихачев А.С., 2013)Математическая статистикаОсновы математической статистикиМатематическая статистика: практикумПримеры решения задач по математической статистикиМАТЕМАТИЧЕСКАЯ СТАТИСТИКАТест по разделу «Математическая статистика». Тема «Статистическое распределение. Точечные и интервальные оценки параметров распределения»Тест по разделу «Математическая статистика». Тема «Статистические гипотезы. Корреляционный и регрессионный анализ»Вероятность, случайные процессы, математическая статистикаСтатистический метод и основы его примененияВероятностно-статистические методы на примере задач исследования работы железнодорожного транспорта Марковские процессы и СМО. Учебное пособиеЛекционный материал по теме «Марковский процесс с дискретным временем»Лекционный материал по теме «Марковский процесс с непрерывным временем»Лекционный материал по теме «Системы массового обслуживания»Примеры решения задач по теме «Марковские процессы»СЛУЧАЙНЫЕ ПРОЦЕССЫЛабораторные работы Вероятность, случайные процессы, математическая статистикаТеория вероятностей. Случайные процессы. ПрактикумЛекция «Марковские процессы»Цепи МарковаСистемы массового обслуживания (СМО)СМОВыбор группы*Тест «Таблица основных неопределенных интегралов»*Тест «Интегрирование функций одной переменной»*Тест «Дифференциальное исчисление функций нескольких переменных»*Тест «Обыкновенные дифференциальные уравнения»*Тест по разделу «Случайные события»*Тест по теме «Дискретные случайные величины»*Тест по теме «Непрерывные случайные величины»*Тест по теме «Числовые характеристики случайных величин»*Тест «Введение в анализ»*Тест «Основные правила и формулы дифференцирования»*Тест «Дифференциальное исчисление функций одной переменной»*Экзаменационный тест «Таблица основных неопределенных интегралов»*Экзаменационный тест «Интегрирование функций одной переменной»*Экзаменационный тест «Дифференциальное исчисление функций нескольких переменных»*Экзаменационный тест «Обыкновенные дифференциальные уравнения»Контрольная работа. Дифференциальное исчисление функций нескольких переменныхКонтрольная работа. Неопределенный интеграл (методы интегрирования)Контрольная работа. Неопределенный интеграл (интегрирование рациональных дробей)Контрольная работа. Определенный интегралКонтрольная работа. Обыкновенные дифференциальные уравненияКонтрольная работа 1. Теория вероятностей (случайные события)Контрольная работа 2. Теория вероятностей (характеристики дискретной случайной величины)Контрольная работа 3. Теория вероятностей (характеристики непрерывной случайной величины)Контрольная работа 4. Теория вероятностей (классические законы распределения дискретной случайной величины)Контрольная работа 5. Теория вероятностей (классические законы распределения непрерывной случайной величины)Экзамен Математика (2 семестр). СОД.1,2,3-19-1 (И,З)ЭКЗАМЕН. Математика (3 семестр)_СОД.1,2,3-19 (з)

Перекрестное произведение

Перекрестное произведение

Перекрестное произведение и равно

Строго говоря, в качестве определение и второе равенство как полезный способ запомнить, как вычислить его. Почему?

Определители определяются для матриц, все элементы которых числа. На более продвинутых курсах вы можете увидеть, что «числа» вообще могут быть элементами алгебраического структура под названием коммутативное кольцо с тождество . Проблема с определителем выше состоит в том, что элементы первой строки являются векторами, а остальные элементы числа. Непонятно, что такое одиночная алгебраическая структура содержит элементы матрицы, или если свойства определители, которые справедливы для числовых матриц, будут справедливы и для матриц как тот, что выше.

Мы увидим это небрежное использование определителей в других местах — для например, когда мы обсуждаем curl вектора поле. К счастью, с небольшой осторожностью в использовании этих ярлыков все работает так, как вы ожидаете.


Пример. Вычислить .


Вот некоторые алгебраические свойства перекрестного произведения.

Предложение. Пусть , , и — 3-мерные векторы, и пусть k — количество.

(а) .

(б) .

(с) .

(г) .

(e) (тройное скалярное произведение)

(f) ортогонален к и к .

Доказательство. Идея в каждом случае состоит в том, чтобы написать векторы с точки зрения компонентов, а затем вычислить.

Например, вот доказательство (а):

Для (е) у меня есть

Затем, используя эту формулу с заменой на , заменой на и заменой на , у меня есть

Третье и четвертое равенства использовали тот факт, что перестановка двух строк умножает определитель на -1.

Теперь легко доказать (f). Так как определитель матрицы с две равные строки равны 0,

Это доказывает, что перпендикулярно . Аналогичное рассуждение доказывает результат для .

Я покажу ниже, что имеет геометрическую интерпретацию: его абсолютная величина равна объему параллелепипед определяется , , и .

Свойство (c) показывает, что векторное произведение не коммутативно. В на самом деле это тоже не ассоциативно: В общем, .

Пример. Покажи, что

Таким образом,

Таким образом,

Следовательно,


Следующий результат дает часть геометрической интерпретации перекрестное произведение. Это рутина — просто выписывание векторов с точки зрения компоненты и вычисления — но довольно технические. Вы можете захотеть пропустите доказательство и попытайтесь понять утверждение.

Предложение. Позвольте и быть 3-мерными векторами. Затем

это угол от до удовлетворения .

Доказательство. Во-первых, обратите внимание, что

Так

Я буду использовать последний результат в середине следующего вычисления:

Взяв квадратный корень с обеих сторон и отметив, что это означает, что я

До сих пор я знаю, что это вектор, который перпендикулярно обоим и , и длина которого . Это почти определяет ; вопрос только в том, какой из двух возможные перпендикулярные векторы это могут быть:

На этой картинке оказывается перпендикулярный вектор, указывающий «вверх»; тот, кто указывает «вниз» на самом деле .

Определение. упорядоченных набора векторов в положительно ориентированный (или имеет правая ориентация ) если

(То есть составить матрицу с векторами в заданном порядке в качестве его строк и возьмем определитель. )

Если определитель отрицательный, упорядоченный набор векторов отрицательно ориентирован (или имеет левосторонняя ориентация ).

«Упорядоченный набор» означает, что если вы сохраните три вектора, то же самое, но измените порядок, в котором они перечислены, у вас есть разные заказывал комплект.

Пример. Покажите, что упорядоченное множество положительно ориентировано.

Следовательно, множество положительно ориентировано.


Предложение. Если и отличны от нуля и непараллельны, то это вектор, длина которого , а направление перпендикулярно и , так что положительно ориентирован.

Другими словами, это похоже на соглашение с положительными x, y и z-оси в : Если вы сгибаете пальцы ваших правильно проведите через меньший угол от до , ваш большой палец указывает на Направление .

Доказательство. Используя тройное скалярное произведение,

Сейчас . Так как и отличны от нуля, и отличны от нуля. Так как и не параллельны, .

Следовательно, .

Это показывает, что множество положительно ориентировано. Остальные утверждения имеют было доказано выше.

Пример. Найдите два перпендикулярных единичных вектора к обоим и .

Сейчас

Таким образом, два единичных вектора перпендикулярны обоим и равны .


Геометрически длина площадь параллелограмма определяется и .

Как показано на рисунке, это длина основания параллелограмма и составляет высота параллелограмма. Следовательно, их продукт площадь параллелограмма, которая как раз

Пример. Вершины параллелограмма, перечислены против часовой стрелки, являются , , и . Найдите площадь параллелограмма.

и . Затем

Площадь


Пример. Найдите площадь параллелограмма чьи вершины , , , . Какова площадь?

Параллелограмм изображен ниже:

и являются смежные стороны параллелограмма. Чтобы взять свой крест произведение, рассматриваем их как трехмерные векторы с нулевыми z-компонентами: и .

Затем

Площадь параллелограмма равна . Площадь треугольника равна половине площади параллелограмм: 2.


имеет следующее геометрическая интерпретация: его абсолютное значение дает объем параллелепипед определяется , и :

Чтобы убедиться в этом, заметьте, что если угол между а потом

площадь основания, в то время как высота. Следовательно, их произведение – объем параллелепипеда (с точностью до знака).


Пример. Найдите объем параллелепипеда определяется векторами , , .


Контактная информация

Домашняя страница Брюса Икенаги

Copyright 2017 Брюс Икенага

Движение

— Какие есть хорошие примеры практического использования перекрестного произведения в разработке игр?

Генерация нормалей

Как отмечает Максимус Минимус в комментариях, когда у нас есть сетка без векторов нормалей (скажем, только необработанные положения вершин из процедурного генератора или 3D-сканированного облака точек), мы можем определить вектор нормали для каждого треугольника. сетки, используя векторное произведение двух ребер треугольника, гарантируя, что вектор перпендикулярен поверхности треугольника.

Величина такого вектора будет равна удвоенной площади треугольника, что мы можем использовать при усреднении нормалей вокруг каждой вершины для получения нормалей вершин. Взвешивание площади означает, что деление большого треугольника на множество маленьких узких треугольников не приведет к несправедливому искажению результирующей нормали.

Эти нормали вершин затем можно использовать для применения освещения и затенения при рендеринге поверхности, или согласования ориентации объекта с его основной поверхностью, или вычисления рикошета от поверхности и т. д.

Проверка обмотки

Мы можем использовать упрощенную версию этого перекрестного произведения между ребрами треугольника, чтобы проверить, является ли это передней или задней гранью во время рендеринга.

После преобразования вершин в нормализованные координаты устройства мы можем вычислить только компонент z векторного произведения и проверить его знак, чтобы определить, обращен ли треугольник к камере или от нее. Во многих шейдерах это будет использоваться для отбраковки треугольников с обратной стороны объектов, примерно вдвое сокращая затраты на затенение/смешивание фрагментов для них.

Создание основы координат

Часто в играх мы хотим, чтобы объект смотрел в определенном направлении — например, наведение камеры на цель или наведение головы/глаз/оружия персонажа с помощью IK, или создание снаряда, ориентированного вдоль его направление полета.

Но одного вектора направления недостаточно, чтобы полностью указать ориентацию — он использует две степени свободы вращения, но у нас все еще остается одна степень свободы: вращение объекта вокруг этого вектора направления.

Итак, чтобы получить однозначную ориентацию, нам нужно расширить это направление до основы. Один из распространенных способов сделать это — использовать векторное произведение. В левосторонней системе координат это может выглядеть так:

 требуемоеПраво = нормализовать(крест(мирВверх, желательноВперед))
ЖелаемыйВверх = Крест(ЖелаемыйВперед, ЖелаемыйВправо)
 

(Это имеет особенность, когда вы хотите смотреть точно вверх или вниз, поэтому эти крайние случаи должны обрабатываться отдельно — обычно все еще с перекрестным произведением)

Вы можете использовать трио векторов вправо/вверх/вперед, сформированное этим как столбцы матрицы вращения или преобразовать их в кватернион.

Приложение крутящего момента

Когда сила прикладывается к физическому объекту со смещением от его центра масс, она должна сообщать объекту некоторый угловой момент, заставляя его вращаться.

Мы можем рассчитать величину и направление вращения, используя крутящий момент:

 крутящий момент = cross(offsetFromCenter, force)
 

Это действует как угловой эквивалент силы и может быть интегрировано в угловой момент/угловую скорость с помощью физического движка подобно тому, как обычная линейная сила интегрируется в линейный импульс/линейную скорость.

Определители и обратные матрицы

Удобным способом вычисления определителя матрицы 3×3 является скалярное тройное произведение. Если векторы a , b и c являются строками вашей матрицы, то:

 определитель = точка (крест (a, b), c)
 

Вы можете найти более полную математическую обработку этого в другом месте, но достаточно сказать, что это может быть удобно при вычислении обратных матриц, например, если мы хотим отменить преобразование объекта, чтобы преобразовать точку из мировых координат в локальные координаты объекта.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *