Модуль на элемент Пельтье + интересное применение.
Приветствую тебя читатель
астрологи объявили неделю Пельтье поэтому в обзоре речь пойдёт об одном интересном применении данной штуковины. Милости просим под CUT.
Начнём с ликбеза
Как говорит википедия «Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока.» Я уверен что после этой фразы понятнее не стало ).
Ок попробуем иначе. Представьте себе специфический аквариум, состоящий из зон двух типов. В первой зоне аквариума рыбки плавают быстро во второй медленно. Ещё представим себе на границах зон лопасти, крутящиеся в воде. Правила следующие 1) рыбка переплывает в другую зону только тогда когда её скорость соответствует скорости установленной для зоны.2) при переходе границ зоны рыбка может взаимодействовать с лопастями для увеличения либо для уменьшения своей скорости.
Давайте посмотрим как по мнению спонсора обзора выглядит 13,90 зелени.
Модуль представляет из себя этакий 5 уровневый бутерброд, он состоит из пары радиаторов и вентиляторов и собственно самого элемента Пельтье.Вентилятор большего размера предназначен для отвода тепла. При приложении усилия его можно снять без выкручивания шурупов. Вентилятор самый обыкновенный ( Питание 12В размер 90мм) прикрыт решёткой, изначально вентилятор установлен на отвод воздуха.На противоположной стороне малый вентилятор (Питание 12В размер 40мм)Малыш прикручен на совесть Посмотрим на радиаторыБольшой радиатор размером 100мм*120мм высота 20ммМалый радиатор 40мм*40мм высота 20мм. Радиаторы скреплены двумя винтами, в малом радиаторе нарезана резьба.
Снимем малый радиатор и попробуем запустить модуль замерив температуры «тёплой» и «холодной» сторон.Температура «холодной» стороны -16,1 «горячей» 37,5 дельта 53,6. ток потребления при 12В составил 4,2А. На режим элемент Пельтье вышел через 90с.
А теперь весёлая часть.
Находим металлическую и блестящую пластину и делаем в ней отверстие для термопары.Кладём термопасту и устанавливаем термопаруДалее изготавливаем узконаправленный фотоприёмник и фотодиод из чёрной бумаги и обычных компонентовСобираем готовое устройство вспоминая правило «угол падения равен углу отражения»Кто догадался что это такое? Это прибор (ну точнее модель для демонстрации принципа действия) для определения температуры точки росы/относительной влажности воздуха.
Товар для написания обзора предоставлен магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Планирую купить +13 Добавить в избранное Обзор понравился
+59 +108
Применение элемента пельтье
Буквально на днях на канале YouTube смотрел фильм, где автор рассказывает об инновационной идее обогрева помещения с использованием термомодулей. Судя по дате размещения фильма, на дворе был год. К началу следующего отопительного сезона изобретатель Кондрашов А. Работает такой термомодуль при подведении постоянного электрического тока напряжением 15 В как высокоэффективный тепловой насос. В зимнее время он работают на обогрев помещения, а с наступлением лета будет работать на охлаждение воздуха, подобно кондиционеру. Для этого достаточно будет поменять полярность подключения термомодуля к источнику тока.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Электронщик
- Полупроводниковые холодильники Пельтье
- Применение элементов Пельтье.
Лайфхак для любопытных - Вы точно человек?
- Элемент Пельтье
- Элемент Пельтье, принцип работы
- Обогрев помещения с помощью элементов Пельтье. Миф или реальность?
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Элемент Пельтье 135 Вт, генерация электроэнергии? ЧАСТЬ # 1
Электронщик
В основном, эта разница температур в пределах от 15 до 25 градусов цельсия. Своими словами: Это, пластина с двумя выводами, толщиной около 4 мм. Если подать ток на выводы контакты элемента, то одна его сторона нагревается, а другая охлаждается. Если сменить полярность, то и температуры, на стенках, так же поменяются на противоположные.
В основном, каждый из элементов состоит из ми полупроводников, соединённых последовательно. Из-за этого стоит помнить, что при выходе из строя одного из них, весь элемент придет в негодность. Полярность у которого будет зависеть от того, какую именно сторону будут нагревать. Важно помнить о граничной температуре. Это значит, что если температура нагрева приблизится к этому значению, вероятно весь элемент выйдет из строя расплавится и развалится.
В работе, при охлаждении чего либо с помощью элементов Пельтье, не стоит забывать отводить высокую температуру с обратной стороны элемента. Так как это может привести к разрушению элемента. В автомобильный холодильниках, упоминавшихся ранее, стоит воздухоотвод, который выводит наружу горячий воздух.
Элементы Пельтье уже перестали быть экзотическим продуктом из мира фантастики, и стали доступны по цене для всякого рода экспериментаторов, поэтому количество новинок, на его основе заметно возросло. Но в случае с последним, зачастую элемент не справляется при сильной загрузке компьютера, даже при использовании температурного аккумулятора. Но об этом в следующей статье. Ваш e-mail не будет опубликован.
Оглавление 1 Элемент Пельтье. Что это такое. Похожие записи: Солнечная батарея своими руками. Солнечная батарея для телефона.
Фонарь FlashTorch разжигает огонь. Топ 10 смартфонов по продолжительности работы. Как подключить светодиод? Как проверить реле холодильника. Беспроводная зарядка для смартфона. Батарейки заряжают себя сами. Добавить комментарий Отменить ответ Ваш e-mail не будет опубликован.
Полупроводниковые холодильники Пельтье
На практике данное устройство создает температурную разность на разных концах поверхности при протекании энергии электрического тока. Одним из наиболее простейших вариантов данного устройства Пельтье в практическом использовании является модификация ТЕС, изображенная на рисунке 1. Элемент Пельтье — преобразователь термический, электрический ТЕС В корне принципа работы положен термоэлектрический эффект Пельтье. К ним предъявляются высокие требования к эксплуатации, при невыполнении которых, устройство быстро выходит из строя.
Впервые я столкнулся с элементами Пельтье (далее — ЭП) несколько лет назад, когда разрабатывал устройство охлаждения для аквариума. Сегодня .
Применение элементов Пельтье. Лайфхак для любопытных
Сайт помогает найти что-нибудь интересное в огромном ассортименте магазинов и сделать удачную покупку. Если Вы купили что-то полезное, то, пожалуйста, поделитесь информацией с другими. Также у нас есть DIY сообщество , где приветствуются обзоры вещей, сделанных своими руками. Установка её в Москвич. Своими руками. Последний раз. Зарегистрироваться Логин или эл. Напомнить пароль Пароль.
Вы точно человек?
Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника. Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.
Эффекты Пельтье и Зеебека на данном этапе становления альтернативной энергетики заинтересовали ученых как возможный перспективный метод получения электричества. Единственной сложностью, тормозящей промышленное использование подобных элементов, является их низкий КПД.
Элемент Пельтье
Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур, или энергетическая эффективность охладителя не важна. Например элементы Пельтье применяются в маленьких автомобильных холодильниках, так как применение компрессора в этом случае невозможно из-за ограниченных размеров и кроме того необходимая мощность охлаждения невелика. Кроме того элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях например в астрофотографии. Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах. Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров, с тем чтобы стабилизировать длину волны излучения.
Элемент Пельтье, принцип работы
Элемент Пельтье — это специальный термоэлектрический преобразователь, который работает по одноименному принципу Пельтье — возникновении разности температур во время подачи электрического тока. В английском языке чаще всего упоминается как ТЕС, что в переводе означает термоэлектрический охладитель. Работа элемента Пельтье базируется на контакте двух токопроводящих материалов, которые обладают разным уровнем энергии электронов в зоне проводимости. При подаче электрического тока через подобную связь, электрон приобретает высокую энергию , чтобы потом перейти в более высокоэнергетическую зону проводимости другого полупроводника. В момент поглощения этой энергии осуществляется охлаждение места охлаждения проводников. Если же ток протекает в обратном направлении — то это приводит к нагреванию места контакта и к обычному тепловому эффекту. Если с одной стороны сделать хороший отвод тепла, например, при использовании радиаторных систем, то холодная сторона сможет обеспечить очень низкую температуру, которая на десятки градусов будет ниже температуры окружающего мира. Величина тока пропорциональна степени охлаждения.
Если у Вас задача просто отвести тепло от процессора транзистора и т.д. применение элемента Пельтье невыгодно т.к.
Обогрев помещения с помощью элементов Пельтье. Миф или реальность?
В англоязычной литературе элементы Пельтье обозначаются TEC от англ. Эффект, обратный эффекту Пельтье, называется эффектом Зеебека. В основе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника.
В основном, эта разница температур в пределах от 15 до 25 градусов цельсия. Своими словами: Это, пластина с двумя выводами, толщиной около 4 мм. Если подать ток на выводы контакты элемента, то одна его сторона нагревается, а другая охлаждается. Если сменить полярность, то и температуры, на стенках, так же поменяются на противоположные.
Впервые я столкнулся с элементами Пельтье ЭП несколько лет назад, когда разрабатывал устройство охлаждения воды в аквариуме. Сегодня ЭП стали еще более доступными, а сфера их применения существенно расширилась.
В англоязычной литературе элементы Пельтье обозначаются TEC от англ. В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.
Войдите , пожалуйста. Хабр Geektimes Тостер Мой круг Фрилансим. Мегапосты: Криминальный квест HR-истории Путешествия гика. Войти Регистрация.
Элементы Пельтье
Элементы Пельтье / термоэлектрические охладители (ТЭО) представляют собой тепловые насосы, передающие тепло с одной стороны на другую в зависимости от направления электрического тока. Контроллеры TEC используются для управления элементами Пельтье.
В этой статье объясняется, как работают элементы Пельтье / термоэлектрические охладители, описываются особенности и упоминаются производители элементов Пельтье.
—> Купить контроллер TEC здесь
Содержание
- Основы элемента Peltier
- Модель элемента пельтье
- Параметры элемента Peltier
- Свойства и поведение элементов Peltier
- Heat Pucked VS Current
- COEPENTICALITICANITIONSICAITION (COP) (COP) (COPE) (COPE) (COPE) (COPE) (COPE) (COPE) (COPE) (COPE) (COPE). Отклонение элемента Пельтье
- Зависимость отведенного тепла от dT
- Напряжение от тока
- Многокаскадные элементы Пельтье
- Производители
Основы элемента Пельтье
Элемент Пельтье способен передавать тепло с помощью эффекта Пельтье. Внутри элемента Пельтье эффект Пельтье создает разницу температур между двумя сторонами, когда течет ток.
В зависимости от направления протекания постоянного тока можно охлаждать и нагревать с помощью элементов Пельтье без замены разъемов или механической настройки. Дополнительные преимущества заключаются в возможности реализации небольших конструкций и отсутствии движущихся частей. Ток, подаваемый на элемент Пельтье, регулируется контроллером ТЭО.
Левая сторона: Стандартный элемент Пельтье Правая сторона: Специальные типы элементов Пельтье
Обычно идентификация производителя напечатана на холодной стороне элемента Пельтье. Это холодная сторона, если положительное напряжение питания подключено к красному кабелю элемента Пельтье
Поскольку кабели обладают теплоемкостью, они подключаются к горячей стороне элемента Пельтье, чтобы не снижать охлаждающую способность элемента.
Как вы можете видеть на правом рисунке, существуют различные типы элементов Пельтье. Они различаются по размеру и форме, мощности и температурному диапазону.
Диапазон размеров: от 1 мм x 1 мм до 60 мм x 60 мм
Формы: квадратные, кольцевые, многоступенчатые, одноступенчатые, герметичные или негерметичные, нестандартные формы
Диапазон температур: перепад температур dT макс. до 130 °C (многоступенчатый), макс. температура до 200 °C
Максимальная мощность охлаждения: до 290 Вт
Элемент Пельтье Модель
Элементы Пельтье можно охарактеризовать с помощью модели. В этой модели учитываются следующие три эффекта
- Эффект Пельтье Q p : Перенос тепла с одной стороны на другую. Описано в этом уравнении Q p = I * α * T
- Обратный поток тепла Q Rth : Поток тепла от горячей стороны к холодной стороне. Описывается в этом уравнении Q Rth = dT / Rth
- Джоулевы нагрев/потери Q Rv представлено в сопротивлении R v : Описано в этом уравнении Q Rv = I 2 * R v / 2.
Тепло, выделяемое R v , делится поровну между горячим и холодным сторона. Тепло, выделяемое на горячей стороне, непосредственно рассеивается радиатором и поэтому не включается в это уравнение.
Результирующая перекачиваемая тепловая нагрузка Q c зависит от трех эффектов Q p , Q Rth и Q Rv .
В случае охлаждения уравнение для Q c . выглядит следующим образом: Q c = Q p — Q Rth — Q Rv .
Параметры элемента Пельтье
Помимо механических свойств элементы Пельтье характеризуются четырьмя важными параметрами. Которые предоставляются производителем: Q max , dT max , U max , I max
- Q max : Максимальная мощность перекачки тепла при разнице температур между горячей и холодной сторонами 0 °K
- dT max : Максимальная разность температур на элементе Пельтье, когда тепло не перекачивается
- I max : Ток через Элемент Пельтье при Q макс.
- U макс. : Напряжение через элемент Пельтье при Q макс.
Параметры Q макс. и dT макс. Элементы Пельтье. Однако эти максимальные значения никогда не достигаются в термоэлектрическом приложении. Они предоставляются производителем для характеристики производительности модуля Пельтье.
В термоэлектрическом применении всегда существует компромисс между производительностью теплового насоса Q c и разностью температур dT.
Свойства и поведение элементов Пельтье
Следующие четыре диаграммы характеризуют товар с элементами Пельтье. Они полезны для понимания свойств и поведения элементов Пельтье. Подобные схемы иногда используют и производители, например Ferrotec. Все значения на графиках относительные.
Сравнение теплового насоса с текущим
Эта нормализованная диаграмма описывает зависимость между мощностью теплового насоса по оси y и током по оси x для различных значений разности температур между горячей и холодной сторонами (dT = T горячая — T холодная ) в случае охлаждения.
Динамика системы. Нормированная диаграмма Тепловой насос в зависимости от тока
Только при относительно небольшой разнице температур dT может передаваться значительное количество тепла. Многоступенчатые элементы Пельтье используются, когда необходимы более высокие перепады температур.
Перекачиваемое тепло Q C и разность температур dT обратно пропорциональны друг другу, так как тепло подается на холодную сторону, разница температур подавляется.
Обычно ток через элемент Пельтье должен составлять от 0 до 0,7 умноженного на I max .
Динамика системы
Динамика системы. Нормализованная диаграмма Тепловой насос в зависимости от тока
Чтобы понять динамику системы, мы можем наблюдать, что происходит при изменении температуры (и, следовательно, dT) или при увеличении тепловой нагрузки.
Если мы используем элемент Пельтье с током около 25 % от I макс. можно компенсировать повышение dT на 10 градусов по Кельвину — точка от A до B — Чтобы обеспечить постоянную производительность теплового насоса, ток должно быть увеличено. Производительность теплового насоса также может быть увеличена без изменения dT, если мы перейдем от A к C.
Если рабочая точка составляет около 60% от I max , нам потребуется больший ток, чем в предыдущем примере, чтобы компенсировать 10- Повышение dT по шкале Кельвина — точки от D до E — когда производительность теплового насоса не должна изменяться. Производительность теплового насоса можно увеличить без потери разницы температур, если перейти от D к F.
Однако, если элемент Пельтье работает при максимальном токе, изменение температуры не может быть компенсировано увеличением тока. Переход от более низкой к более высокой разности температур приведет к снижению производительности теплового насоса.
Коэффициент полезного действия (COP) (КПД)
Определение COP – это теплота, поглощаемая на холодной стороне Q C , деленная на входную мощность P el элемента Пельтье: COP = Q C /P эль . COP в принципе представляет собой эффективность элемента Пельтье при охлаждении.
На следующей диаграмме показана производительность (COP) в зависимости от отношения тока I / I max , значения на этой диаграмме являются относительными и нормализованными.
На этой диаграмме показана зависимость производительности (COP) от текущего соотношения. Используйте его, чтобы найти рабочий ток, обеспечивающий наибольшую производительность для соответствующей разницы температур dT.
С левой стороны мы видим, что КПД максимален при самой низкой разнице температур. Следовательно, мы получаем большое количество тепла, перекачиваемого на единицу электрической мощности. Как видим, в зависимости от dT соответствующий максимум КПД находится на разных уровнях тока — при большем dT он смещается вправо. Если мы проследим за кривой вправо, мы обнаружим, что мы должны вложить в систему много электроэнергии, чтобы получить только небольшое количество тепла, что соответствует низкому значению COP. Мы также можем заметить, что более высокие токи необходимы для создания более высоких перепадов температур.
Причина, по которой COP не начинается с нуля при dT > 0 K, заключается в том, что сначала обратный поток тепла Q Rth должен быть компенсирован эффектом Пельтье Q p , прежде чем элемент Пельтье остынет.
Тепло, отводимое элементом Пельтье
На следующей диаграмме показана теплота Q h , рассеиваемая на теплой стороне элемента Пельтье, в зависимости от тока при охлаждении.
Нормализованная диаграмма, показывающая тепло, отводимое радиатором, в зависимости от тока при различных перепадах температур dT.
Значения нормализованные и относительные. Как видите, Q h , отклоненное элементом Пельтье, может быть в 2,6 раза больше Q max . Количество тепла на горячей стороне Q h может быть таким большим, потому что тепло от эффекта Пельтье Q p и тепло сопротивления потерь Q Rv должны рассеиваться. Q h = Q p + Q Применяется Rv .
Зависимость отведенного тепла от dT
На следующей диаграмме показано соотношение между Q h и Q C для разных dT в случае охлаждения. Отношение Q h / Q c показывает, насколько больше тепла должно рассеиваться на горячей стороне, чем на холодной.
Нормализованная диаграмма, показывающая количество тепла, отводимого радиатором, в зависимости от количества перекачиваемого тепла в зависимости от тока для различных значений dT.
Это означает, что при большом dT теплоотвод рассеивает большое количество тепла при сравнительно малом количестве тепла, поглощаемом на холодной стороне элемента Пельтье.
Например, если вы хотите охладить один ватт на холодной стороне Q C = 1 Вт. Это приводит к теплу 1,75 Вт на горячей стороне Q h = 1,75 Вт, если dt = 20 K. При dT = 40 K это около 3,5 Вт на горячей стороне Q ч = 3,5 Вт. при разных значениях температурных перепадов между горячей и холодной стороной (dT = T горячий — T холодный ) в случае охлаждения.
Нормализованная диаграмма, показывающая зависимость напряжения от тока для различных значений dT.
Как видите, кривая линейная. Поведение элемента Пельтье такое же, как у резистора с источником напряжения. Наклон кривой уменьшается с увеличением dT. Смещение по оси Y связано с эффектом Зеебека.
Многоступенчатые элементы Пельтье
Многоступенчатые элементы Пельтье
Все приведенные выше схемы относятся к стандартным элементам Пельтье, но поведение многоступенчатых элементов Пельтье аналогично. Многокаскадные элементы Пельтье используются, когда требуются более высокие значения dT (до 125 К). Но Q max ниже, т.е. может рассеивать меньше тепла. Это недостаток многокаскадных элементов Пельтье.
Изготовитель
Изготовитель | Описание | Страна |
Deltron AG www.deltron.ch | Thermoelectric Modules | Switzerland |
Ferrotec thermal.ferrotec.com | Thermoelectric Modules | USA, Asia, Europe |
Laird www.lairdthermal.com | Термоэлектрические модули | Великобритания |
II-VI www.i-vi.com | Термоэлектрические модули | USA, Asia, Europe |
CUI Devices www. cuidevices.com | Thermoelectric Modules | USA |
Peltron GmbH www.peltier.de | Thermoelectric Modules, Elements for Thermocycling | Германия |
European Thermodynamics Ltd www.europeanthermodynamics.com | Термоэлектрические модули, элементы для термоциклирования | Германия |
—> Купить контроллер TEC здесь
Элементы Пельтье
Элементы Пельтье / термоэлектрические охладители (ТЭО) представляют собой тепловые насосы, которые передают тепло с одной стороны на другую в зависимости от направления электрический ток. Контроллеры TEC используются для управления элементами Пельтье.
В этой статье объясняется, как работают элементы Пельтье / термоэлектрические охладители, описываются особенности и упоминаются производители элементов Пельтье.
—> Buy TEC Controller here
Contents
- Basics of Peltier element
- Peltier Element Model
- Parameters of a Peltier Element
- Properties and behavior of Peltier elements
- Heat Pumped по сравнению с текущим
- Коэффициент полезного действия (COP) (КПД)
- Тепло, отводимое элементом Пельтье
- Зависимость отводимого тепла от dT
- Напряжение в зависимости от тока
- Многокаскадные элементы Пельтье
- Производители
Основы элемента Пельтье
Элемент Пельтье способен передавать тепло с помощью эффекта Пельтье. Внутри элемента Пельтье эффект Пельтье создает разницу температур между двумя сторонами, когда течет ток.
В зависимости от направления протекания постоянного тока можно охлаждать и нагревать с помощью элементов Пельтье без замены разъемов или механической настройки. Дополнительные преимущества заключаются в возможности реализации небольших конструкций и отсутствии движущихся частей. Ток, подаваемый на элемент Пельтье, регулируется контроллером ТЭО.
Левая сторона: Стандартный элемент Пельтье Правая сторона: Специальные типы элементов Пельтье
Обычно идентификация производителя напечатана на холодной стороне элемента Пельтье. Это холодная сторона, если положительное напряжение питания подключено к красному кабелю элемента Пельтье
Поскольку кабели обладают теплоемкостью, они подключаются к горячей стороне элемента Пельтье, чтобы не снижать охлаждающую способность элемента.
Как вы можете видеть на правом рисунке, существуют различные типы элементов Пельтье. Они различаются по размеру и форме, мощности и температурному диапазону.
Диапазон размеров: от 1 мм x 1 мм до 60 мм x 60 мм
Формы: квадратные, кольцевые, многоступенчатые, одноступенчатые, герметичные или негерметичные, нестандартные формы
Диапазон температур: перепад температур dT макс. до 130 °C (многоступенчатый), макс. температура до 200 °C
Максимальная мощность охлаждения: до 290 Вт
Элемент Пельтье Модель
Элементы Пельтье можно охарактеризовать с помощью модели. В этой модели учитываются следующие три эффекта
- Эффект Пельтье Q p : Перенос тепла с одной стороны на другую. Описано в этом уравнении Q p = I * α * T
- Обратный поток тепла Q Rth : Поток тепла от горячей стороны к холодной стороне. Описывается в этом уравнении Q Rth = dT / Rth
- Джоулевы нагрев/потери Q Rv представлено в сопротивлении R v : Описано в этом уравнении Q Rv = I 2 * R v / 2.
Тепло, выделяемое R v , делится поровну между горячим и холодным сторона. Тепло, выделяемое на горячей стороне, непосредственно рассеивается радиатором и поэтому не включается в это уравнение.
Результирующая перекачиваемая тепловая нагрузка Q c зависит от трех эффектов Q p , Q Rth и Q Rv .
В случае охлаждения уравнение для Q c . выглядит следующим образом: Q c = Q p — Q Rth — Q Rv .
Параметры элемента Пельтье
Помимо механических свойств элементы Пельтье характеризуются четырьмя важными параметрами. Которые предоставляются производителем: Q max , dT max , U max , I max
- Q max : Максимальная мощность перекачки тепла при разнице температур между горячей и холодной сторонами 0 °K
- dT max : Максимальная разность температур на элементе Пельтье, когда тепло не перекачивается
- I max : Ток через Элемент Пельтье при Q макс.
- U макс. : Напряжение через элемент Пельтье при Q макс.
Параметры Q макс. и dT макс. Элементы Пельтье. Однако эти максимальные значения никогда не достигаются в термоэлектрическом приложении. Они предоставляются производителем для характеристики производительности модуля Пельтье.
В термоэлектрическом применении всегда существует компромисс между производительностью теплового насоса Q c и разностью температур dT.
Свойства и поведение элементов Пельтье
Следующие четыре диаграммы характеризуют товар с элементами Пельтье. Они полезны для понимания свойств и поведения элементов Пельтье. Подобные схемы иногда используют и производители, например Ferrotec. Все значения на графиках относительные.
Сравнение теплового насоса с текущим
Эта нормализованная диаграмма описывает зависимость между мощностью теплового насоса по оси y и током по оси x для различных значений разности температур между горячей и холодной сторонами (dT = T горячая — T холодная ) в случае охлаждения.
Динамика системы. Нормированная диаграмма Тепловой насос в зависимости от тока
Только при относительно небольшой разнице температур dT может передаваться значительное количество тепла. Многоступенчатые элементы Пельтье используются, когда необходимы более высокие перепады температур.
Перекачиваемое тепло Q C и разность температур dT обратно пропорциональны друг другу, так как тепло подается на холодную сторону, разница температур подавляется.
Обычно ток через элемент Пельтье должен составлять от 0 до 0,7 умноженного на I max .
Динамика системы
Динамика системы. Нормализованная диаграмма Тепловой насос в зависимости от тока
Чтобы понять динамику системы, мы можем наблюдать, что происходит при изменении температуры (и, следовательно, dT) или при увеличении тепловой нагрузки.
Если мы используем элемент Пельтье с током около 25 % от I макс. можно компенсировать повышение dT на 10 градусов по Кельвину — точка от A до B — Чтобы обеспечить постоянную производительность теплового насоса, ток должно быть увеличено. Производительность теплового насоса также может быть увеличена без изменения dT, если мы перейдем от A к C.
Если рабочая точка составляет около 60% от I max , нам потребуется больший ток, чем в предыдущем примере, чтобы компенсировать 10- Повышение dT по шкале Кельвина — точки от D до E — когда производительность теплового насоса не должна изменяться. Производительность теплового насоса можно увеличить без потери разницы температур, если перейти от D к F.
Однако, если элемент Пельтье работает при максимальном токе, изменение температуры не может быть компенсировано увеличением тока. Переход от более низкой к более высокой разности температур приведет к снижению производительности теплового насоса.
Коэффициент полезного действия (COP) (КПД)
Определение COP – это теплота, поглощаемая на холодной стороне Q C , деленная на входную мощность P el элемента Пельтье: COP = Q C /P эль . COP в принципе представляет собой эффективность элемента Пельтье при охлаждении.
На следующей диаграмме показана производительность (COP) в зависимости от отношения тока I / I max , значения на этой диаграмме являются относительными и нормализованными.
На этой диаграмме показана зависимость производительности (COP) от текущего соотношения. Используйте его, чтобы найти рабочий ток, обеспечивающий наибольшую производительность для соответствующей разницы температур dT.
С левой стороны мы видим, что КПД максимален при самой низкой разнице температур. Следовательно, мы получаем большое количество тепла, перекачиваемого на единицу электрической мощности. Как видим, в зависимости от dT соответствующий максимум КПД находится на разных уровнях тока — при большем dT он смещается вправо. Если мы проследим за кривой вправо, мы обнаружим, что мы должны вложить в систему много электроэнергии, чтобы получить только небольшое количество тепла, что соответствует низкому значению COP. Мы также можем заметить, что более высокие токи необходимы для создания более высоких перепадов температур.
Причина, по которой COP не начинается с нуля при dT > 0 K, заключается в том, что сначала обратный поток тепла Q Rth должен быть компенсирован эффектом Пельтье Q p , прежде чем элемент Пельтье остынет.
Тепло, отводимое элементом Пельтье
На следующей диаграмме показана теплота Q h , рассеиваемая на теплой стороне элемента Пельтье, в зависимости от тока при охлаждении.
Нормализованная диаграмма, показывающая тепло, отводимое радиатором, в зависимости от тока при различных перепадах температур dT.
Значения нормализованные и относительные. Как видите, Q h , отклоненное элементом Пельтье, может быть в 2,6 раза больше Q max . Количество тепла на горячей стороне Q h может быть таким большим, потому что тепло от эффекта Пельтье Q p и тепло сопротивления потерь Q Rv должны рассеиваться. Q h = Q p + Q Применяется Rv .
Зависимость отведенного тепла от dT
На следующей диаграмме показано соотношение между Q h и Q C для разных dT в случае охлаждения. Отношение Q h / Q c показывает, насколько больше тепла должно рассеиваться на горячей стороне, чем на холодной.
Нормализованная диаграмма, показывающая количество тепла, отводимого радиатором, в зависимости от количества перекачиваемого тепла в зависимости от тока для различных значений dT.
Это означает, что при большом dT теплоотвод рассеивает большое количество тепла при сравнительно малом количестве тепла, поглощаемом на холодной стороне элемента Пельтье.
Например, если вы хотите охладить один ватт на холодной стороне Q C = 1 Вт. Это приводит к теплу 1,75 Вт на горячей стороне Q h = 1,75 Вт, если dt = 20 K. При dT = 40 K это около 3,5 Вт на горячей стороне Q ч = 3,5 Вт. при разных значениях температурных перепадов между горячей и холодной стороной (dT = T горячий — T холодный ) в случае охлаждения.
Нормализованная диаграмма, показывающая зависимость напряжения от тока для различных значений dT.
Как видите, кривая линейная. Поведение элемента Пельтье такое же, как у резистора с источником напряжения. Наклон кривой уменьшается с увеличением dT. Смещение по оси Y связано с эффектом Зеебека.
Многоступенчатые элементы Пельтье
Многоступенчатые элементы Пельтье
Все приведенные выше схемы относятся к стандартным элементам Пельтье, но поведение многоступенчатых элементов Пельтье аналогично. Многокаскадные элементы Пельтье используются, когда требуются более высокие значения dT (до 125 К). Но Q max ниже, т.е. может рассеивать меньше тепла. Это недостаток многокаскадных элементов Пельтье.
Изготовитель
Изготовитель | Описание | Страна |
Deltron AG www.deltron.ch | Thermoelectric Modules | Switzerland |
Ferrotec thermal.ferrotec.com | Thermoelectric Modules | USA, Asia, Europe |
Laird www.lairdthermal.com | Термоэлектрические модули | Великобритания |
II-VI www.i-vi.com | Термоэлектрические модули | USA, Asia, Europe |
CUI Devices www.cuidevices.com | Thermoelectric Modules | USA |
Peltron GmbH www.peltier.de | Thermoelectric Modules, Elements for Thermocycling | Германия |
European Thermodynamics Ltd www. |