Site Loader

Содержание

Электрический ток — Википедия

У этого термина существуют и другие значения, см. Ток.

Электри́ческий ток — направленное (упорядоченное) движение частиц или квазичастиц — носителей электрического заряда[1][2][3].

Такими носителями могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определённых условиях — электроны, в полупроводниках — электроны или дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля[4].

Электрический ток имеет следующие проявления:

Классификация

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционным[3].

Различают постоянный и переменный электрические токи, а также всевозможные разновидности переменного тока. В таких понятиях часто слово «электрический» опускают.

  • Постоянный ток — ток, направление и величина которого не меняются во времени.
  • Переменный ток — электрический ток, изменяющийся во времени[5]. Под переменным током понимают любой ток, не являющийся постоянным.
  • Периодический ток — электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности[5].
  • Синусоидальный ток — периодический электрический ток, являющийся синусоидальной функцией времени[5]. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону[6]. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
  • Квазистационарный ток — «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ)[7]. Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
    [7]
  • Пульсирующий ток — это периодический электрический ток, среднее значение которого за период отлично от нуля[5].
  • Однонаправленный ток — это электрический ток, не изменяющий своего направления[5].

Вихревые токи

Вихревые токи (токи Фуко) — «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока»[9], поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Видео по теме

Характеристики

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.[2].

Дрейфовая скорость электронов

Скорость (дрейфовая) направленного движения частиц в проводниках, вызванного внешним полем, зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счёт упорядоченного движения меньше чем на 0,1 мм[10] — в 20 раз медленнее скорости улитки

[источник не указан 703 дня]. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Сила и плотность тока

Электрический ток имеет количественные характеристики: скалярную — силу тока, и векторную — плотность тока.

Сила тока — физическая величина, равная отношению количества заряда ΔQ{\displaystyle \Delta Q}, прошедшего за некоторое время Δt{\displaystyle \Delta t} через поперечное сечение проводника, к величине этого промежутка времени.

I=ΔQΔt.{\displaystyle I={\frac {\Delta Q}{\Delta t}}.}

Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А; международное: A).

По закону Ома сила тока I{\displaystyle I} на участке цепи прямо пропорциональна напряжению U{\displaystyle U}, приложенному к этому участку цепи, и обратно пропорциональна его сопротивлению R{\displaystyle R}:

I=UR.{\displaystyle I={\frac {U}{R}}.}

Если на участке цепи электрический ток не постоянный, то напряжение и сила тока постоянно изменяется, при этом у обычного переменного тока средние значения напряжения и силы тока равны нулю. Однако средняя мощность выделяемого при этом тепла нулю не равна. Поэтому применяют следующие понятия:

  • мгновенные напряжение и сила тока, то есть действующие в данный момент времени.
  • амплитудные напряжение и сила тока, то есть максимальные абсолютные значения
  • эффективные (действующие) напряжение и сила тока определяются тепловым действием тока, то есть имеют те же значения, которые они имеют у постоянного тока с таким же тепловым эффектом.
    [11]

Плотность тока — вектор, абсолютная величина которого равна отношению силы тока, протекающего через некоторое сечение проводника, перпендикулярное направлению тока, к площади этого сечения, а направление вектора совпадает с направлением движения положительных зарядов, образующих ток.

Согласно закону Ома в дифференциальной форме плотность тока в среде j→{\displaystyle {\vec {j}}} пропорциональна напряжённости электрического поля E→{\displaystyle {\vec {E}}} и проводимости среды  σ{\displaystyle \ \sigma }:

j→=σE→.{\displaystyle {\vec {j}}=\sigma {\vec {E}}.}

Мощность

При наличии тока в проводнике совершается работа против сил сопротивления. Электрическое сопротивление любого проводника состоит из двух составляющих:

  • активное сопротивление — сопротивление теплообразованию;
  • реактивное сопротивление — «сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно)» (БСЭ)
    [12]
    .

Как правило, большая часть работы электрического тока выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

P=IU=I2R=U2R{\displaystyle P=IU=I^{2}R={\frac {U^{2}}{R}}}

Мощность измеряется в ваттах.

В сплошной среде объёмная мощность потерь p{\displaystyle p} определяется скалярным произведением вектора плотности тока j→{\displaystyle {\vec {j}}} и вектора напряжённости электрического поля E→{\displaystyle {\vec {E}}} в данной точке:

p=(j→E→)=σE2=j2σ{\displaystyle p=\left({\vec {j}}{\vec {E}}\right)=\sigma E^{2}={\frac {j^{2}}{\sigma }}}

Объёмная мощность измеряется в ваттах на кубический метр.

Сопротивление излучению вызвано образованием электромагнитных волн вокруг проводника. Это сопротивление находится в сложной зависимости от формы и размеров проводника, от длины излучаемой волны. Для одиночного прямолинейного проводника, в котором везде ток одного направления и силы, и длина которых L значительно меньше длины излучаемой им электромагнитной волны λ{\displaystyle \lambda }, зависимость сопротивления от длины волны и проводника относительно проста:

R=3200(Lλ){\displaystyle R=3200\left({\frac {L}{\lambda }}\right)}

Наиболее применяемому электрическому току со стандартной частотой 50 Гц соответствует волна длиной около 6 тысяч километров, именно поэтому мощность излучения обычно пренебрежительно мала по сравнению с мощностью тепловых потерь. Однако, с увеличением частоты тока длина излучаемой волны уменьшается, соответственно возрастает мощность излучения. Проводник, способный излучать заметную энергию, называется антенной.

Частота

Понятие частоты относится к переменному току, периодически изменяющему силу и/или направление. Сюда же относится наиболее часто применяемый ток, изменяющийся по синусоидальному закону.

Период переменного тока — наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются[11]. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.

Ток смещения

Иногда для удобства вводят понятие тока смещения. В уравнениях Максвелла ток смещения присутствует на равных правах с током, вызванным движением зарядов. Интенсивность магнитного поля зависит от полного электрического тока, равного сумме тока проводимости и тока смещения. По определению, плотность тока смещения jD→{\displaystyle {\vec {j_{D}}}} — векторная величина, пропорциональная скорости изменения электрического поля E→{\displaystyle {\vec {E}}} во времени:

jD→=∂E→∂t{\displaystyle {\vec {j_{D}}}={\frac {\partial {\vec {E}}}{\partial t}}}

Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения ID{\displaystyle I_{D}} в конденсаторе определяется по формуле:

ID=dQdt=−CdUdt{\displaystyle I_{D}={\frac {{\rm {d}}Q}{{\rm {d}}t}}=-C{\frac {{\rm {d}}U}{{\rm {d}}t}}},

где Q{\displaystyle Q} — заряд на обкладках конденсатора, U{\displaystyle U} — разность потенциалов между обкладками, C{\displaystyle C} — ёмкость конденсатора.

Ток смещения не является электрическим током, поскольку не связан с перемещением электрического заряда.

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока»[13]. Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.[3]

Электрические токи в природе

Атмосферное электричество — электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин[14]. В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю[15]. Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10−12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А[16].

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма — естественный коронный электрический разряд.

Биотоки — движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происх

Электрический ток в жидкостях. Видеоурок. Физика 10 Класс

Жидкости, как и твердые тела, могут быть проводниками, полупроводниками и диэлектриками. В этом уроке речь пойдет о жидкостях-проводниках. Причем не о жидкостях с электронной проводимостью (расплавленные металлы), а о жидкостях-проводниках второго рода (растворы и расплавы солей, кислот, оснований). Тип проводимости таких проводников – ионный.

Определение. Проводники второго рода – такие проводники, в которых при протекании тока происходят химические процессы.

Для лучшего понимания процесса проводимости тока в жидкостях, можно представить следующий опыт: В ванну с водой поместили два электрода, подключенные к источнику тока, в цепи в качестве индикатора тока можно взять лампочку. Если замкнуть такую цепь, лампа гореть не будет, что означает отсутствие тока, а это значит, что в цепи есть разрыв, и вода сама по себе ток не проводит. Но если в ванную поместить некоторое количество  – поваренной соли – и повторить замыкание, то лампочка загорится. Это значит, что в ванной между катодом и анодом начали двигаться свободные носители заряда, в данном случае ионы (рис. 1).

Рис. 1. Схема опыта

Проводимость  электролитов

Откуда во втором случае берутся свободные заряды? Как было сказано в одном из предыдущих уроков, некоторые диэлектрики – полярные. Вода имеет как раз-таки полярные молекулы (рис. 2).

Рис. 2. Полярность молекулы воды

При внесении в воду соли молекулы воды ориентируются таким образом, что их отрицательные полюса находятся возле натрия, положительные – возле хлора. В результате взаимодействий между зарядами молекулы воды разрывают молекулы соли на пары разноименных ионов. Ион натрия имеет положительный заряд, ион хлора – отрицательный (рис. 3). Именно эти ионы и будут двигаться между электродами под действием электрического поля.

Рис. 3. Схема образования свободных ионов

При подходе ионов натрия к катоду он получает свои недостающие электроны, ионы хлора при достижении анода отдают свои.


Электролиз

 

Так как протекание тока в жидкостях связано с переносом вещества, при таком токе имеет место процесс электролиза.

Определение. Электролиз – процесс, связанный с окислительно-восстановительными реакциями, при которых на электродах выделяется вещество.

Вещества, которые в результате подобных расщеплений обеспечивают ионную проводимость, называются электролитами. Такое название предложил английский физик Майкл Фарадей (рис. 4).

Электролиз позволяет получать из растворов вещества в достаточно чистом виде, поэтому его применяют для получения редких материалов, как натрий, кальций… в чистом виде. Этим занимается так называемая электролитическая металлургия.

Рис. 4. Майкл Фарадей (Источник)

 


Законы Фарадея

В первой работе по  электролизу 1833 года Фарадей представил свои два закона электролиза. В первом речь шла о массе вещества, выделяющегося на электродах:

Первый закон Фарадея гласит, что эта масса пропорциональна заряду, прошедшему через электролит:

Здесь роль коэффициента пропорциональности играет величина  – электрохимический эквивалент. Это табличная величина, которая уникальна для каждого электролита и является его главной характеристикой. Размерность электрохимического эквивалента:

Физический смысл электрохимического эквивалента – масса, выделившаяся на электроде при прохождении через электролит количества электричества в 1 Кл.

 

Если вспомнить формулы из темы о постоянном токе:

То можно представить первый закон Фарадея в виде:

Второй закон Фарадея непосредственно касается измерения электрохимического эквивалента через другие константы для конкретно взятого электролита:

Здесь:  – молярная масса электролита;  – элементарный заряд;  – валентность электролита;

 – число Авогадро.

Величина   называется химическим эквивалентом электролита. То есть, для того чтобы знать электрохимический эквивалент, достаточно знать химический эквивалент, остальные составляющие формулы являются мировыми константами.

Исходя из второго закона Фарадея, первый закон можно представить в виде:

Фарадей предложил терминологию этих ионов по признаку того электрода, к которому они движутся. Положительные ионы называются катионами, потому что они движутся к отрицательно заряженному катоду, отрицательные заряды называются анионами как движущиеся к аноду.

Вышеописанное действие воды по разрыву молекулы на два иона называется электролитической диссоциацией.

Помимо растворов, проводниками второго рода могут быть и расплавы. В этом случае наличие свободных ионов достигается тем, что при высокой температуре начинаются очень активные молекулярные движения и колебания, в результате которых и происходит разрушение молекул на ионы.


Практическое применение электролиза

 

Первое практическое применение электролиза произошло в 1838 году русским ученым Якоби. С помощью электролиза он получил оттиск фигур для Исаакиевского собора. Такое применение электролиза получило название гальванопластика. Другой сферой применения является гальваностегия – покрытие одного металла другим (хромирование, никелирование, золочение и т.д., рис. 5)

 

Рис. 5. Примеры гальванопластики и гальваностегии соответственно (Источник), (Источник)

Также электролиз применяется в металлургии для выплавки редких металлов в чистом виде (алюминий, натрий, кальций, магний).

На следующем уроке мы разберем методику решения задач на тему «Электрический ток в жидкостях».

           

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. – М.: 2010.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Fatyf.narod.ru (Источник).
  2. ХиМиК (Источник).
  3. Ens.tpu.ru (Источник).  

 

Домашнее задание

  1. Что такое электролиты?
  2. Какие существуют два принципиально разных типа жидкостей, в которых может протекать электрический ток?
  3. Какие могут быть механизмы образования свободных носителей зарядов?
  4. *Почему масса, выделившаяся на электроде, пропорциональна заряду?

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости. При температурах близких к абсолютному нулю (-2730C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.

Применение электрического тока в металлах

Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом.

В «рекламной» неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой «живую плазму». Между электродами сварочного аппарата возникает дуговой разряд. Дуговой разряд горит в ртутных лампах — очень ярких источниках света.Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА! Для коронного разряда характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.

Электролечение — Википедия

Материал из Википедии — свободной энциклопедии

Электролечение или электротерапия — лечение при помощи воздействия на пациента электрического тока или электромагнитного поля[1], наиболее широко применяемая разновидность физиотерапии.

Поскольку многие физиологические процессы (например передача нервных импульсов, перенос веществ через клеточную мембрану) связаны с появлением разности потенциалов или электрического тока, электромагнитное поле и электрический ток могут оказывать, в зависимости от их силы и частоты, разнообразное влияние на состояние отдельных органов и организма в целом[2].

Есть сведения, что ещё в глубокой древности люди пользовались электрическим действием янтаря и разрядами электрических рыб для лечения параличей, нервных и ревматических болей[3].

Во второй половине XVIII века, после изобретения лейденской банки, а потом гальванического элемента, началось широкое применение электричества в медицине. Поскольку теория электромагнитных явлений ещё не была тогда разработана, электролечение применялось эмпирически. В дальнейшем, на протяжении XIX века, развитие и усовершенствование методов электротерапии шло параллельно с изучением законов электромагнетизма и электрофизиологии[3].

После того, как С. Ледюк[en] открыл, что некоторые вещества проникают под действием электрического тока через неповрежденную кожу, был предложен электрофорез — введение в организм лекарств при помощи этого явления.

Основы современных методик использования постоянного и переменного низкочастотного токов были разработаны в 1835—1855 годах Г. Дюшеном, которого иногда называют «отцом электротерапии».

После изобретения Н. Теслой в 1891 году высокочастотного трансформатора Ж.-А. д’Арсонваль предложил метод электролечения, названный впоследствии дарсонвализацией.

В 1905 году Р. Цейнек (R. Zeyneck) и Ф. Нагельшмидт (F. Nagelschmidt) разработали метод диатермии — воздействия на организм высокочастотным током низкого напряжения и большой силы[2].

К электротерапии относятся[2]:

  • Воздействие током высокой частоты:
    • Дарсонвализация (местная) — воздействие на отдельные участки тела импульсным током высокой частоты (100—500 кГц).
    • Диатермия — воздействие на организм током высокой частоты, низкого напряжения и большой силы (до 3 А).

Некоторые из этих методов признаны в настоящее время неэффективными и более не используются.

Применение — электрический ток — Большая Энциклопедия Нефти и Газа, статья, страница 1

Применение — электрический ток

Cтраница 1

Применение электрического тока в процессе нанесения гальванических покрытий создает опасность поражения электрическим током. Согласно Правилам устройства электроустановок помещения гальванических участков и цехов относятся к особо опасным помещениям, поэтому в гальванических цехах обычно используют постоянный ток напряжением до 12 В, но в отдельных случаях, например при оксидировании алюминия, необходим ток напряжением до 120 В.  [1]

Применение электрического тока при диализе ускоряет процесс и создает ряд других преимуществ.  [2]

Применение электрического тока для нагрева или охлаждения как путем непосредственного пропускания тока, так и с помощью вспомогательных устройств удобно тем, что тепловой поток может легко регулироваться, а сам процесс нагрева или охлаждения может быть автоматизирован.  [3]

Однако применение электрического тока для нагрева пока относительно дорого. Это связано с многоступенчатостью преобразования химической энергии топлива в электроэнергию. Строительство мощных электростанций открывает большие возможности для удешевления этого способа нагрева.  [4]

Технология применения электрического тока для увеличения Нефтеотдачи пластов пока не разработана.  [5]

Идея применения электрического тока для ускорения процесса удаления электролитов из различных растворов была осуществлена впервые в практике.  [6]

Идея применения электрического тока для ускорения процесса удаления электролитов из различных растворов была осуществлена впервые в практике.  [7]

При осаждении без применения электрического тока одновременное восстановление и окисление осаждаемого металла используется для образования свободных атомов и молекул металлов. Поскольку для этого метода не требуется электрическая проводимость во время осаждения, он может использоваться с подложками изолирующего типа. Никель, медь и золото — это металлы, которые наиболее часто осаждаются таким способом.  [8]

Химическое никелирование осуществляется без применения электрического тока, что упрощает и удешевляет процесс. Другое преимущество этого способа — возможность никелировать изделия самого сложного профиля; при этом покрытия, даже толстые, получаются блестящими и равномерными. Сущность данного метода заключается в нанесении покрытия путем восстановления никелевых солей с помощью гипофосфита.  [9]

Химическое полирование не требует применения электрического тока, что упрощает использование его в производстве.  [10]

Порядок проведения работ с применением электрического тока строго регламентирован соответствующими инструкциями по технике безопасности. К работам может быть допущен только подготовленный персонал. Все работы ведутся под обязательным наблюдением ответственных лиц, хорошо знающих особенности производства.  [11]

При проведении опытов с применением электрического тока почти всегда приходится пользоваться реостатами во избежание возможности короткого замыкания и порчи приборов. Реостат служит для введения дополнительного сопротивления в цепь и понижения этим самым величины силы тока.  [12]

У ванн, работающих без применения электрического тока, расстояние от края детали до стенок или боковых змеевиков составляет 100 мм.  [13]

Следует подчеркнуть, что многообразие применения электрического тока обусловливает сложность правил безопасности, требует знания и понимания законов электротехники. Статистика показывает, что на долю рабочих неэлектротехнических специальностей приходится свыше 50 % электротравм, хотя они имеют дело с электрооборудованием во много раз реже, чем электромонтеры. Это объясняется тем, что лица, связанные с эксплуатацией электроустройств, проходят специальное обучение. По окончании обучения им присваивается определенная квалификация. Во многих случаях они действуют только при наличии нарядов или конкретных поручений, обеспечивающих безопасность как самих исполнителей, так и других работающих. Поэтому все работники предприятия, не имеющие квалификации или наряда на выполнение работ, не должны производить какие-либо, даже незначительные, электротехнические работы — это дело только специально обученных электромонтеров. И все же есть некоторые общие правила электробезопасности, знать которые необходимо каждому рабочему.  [14]

Порядок проведения всех работ с применением электрического тока строго регламентирован соответствующими инструкциями по технике безопасности. Работы должен проводить подготовленный персонал под наблюдением ответственных лиц, хорошо знающих особенности производства.  [15]

Страницы:      1    2    3

Применение электрического тока в металлах

Практически все металлы можно рассматривать, как проводники электрического тока. Это обусловлено их строением, представляющим собой кристаллическую пространственную решетку. Узлы этой решетки совпадают с центрами положительных ионов, вокруг которых наблюдается хаотическое движение свободных электронов. Этим объясняется явление проводимости, благодаря которому применение электрического тока в металлах получило наиболее широкое распространение.

Физические свойства металлов

Свойства металлов полностью зависят от их внутреннего строения. Твердое состояние металлов представляет собой кристаллическую решетку пространственного типа, где кристаллы расположены упорядоченно. Как уже было отмечено, между узлами кристаллической решетки наблюдается движение свободных электронов.

Абсолютное значение их отрицательных зарядов совпадает с положительным зарядом всех ионов, расположенных в узлах кристаллической решетки. Когда через проводник пропускается электрический ток, ионы остаются на своем месте. Происходит перемещение свободных электронов, одинаковых в любом веществе.

Электрический ток в металлах: применение

То, что в металлах существуют электроны, проводящие ток, было доказано очень давно. Прежде всего, эти полезные свойства используются при передаче электроэнергии от источника к потребителям. В основе работы генераторов и электродвигателей также используются физические свойства металлов. Они применяются и в нагревательных приборах всех типов, предназначенных для промышленного производства и домашних условий.

Таким образом, электрический ток в металлах является упорядоченным движением свободных электронов, на которые воздействует электрическое поле. При его отсутствии, движение электронов становится хаотичным, подобно движению молекул жидкостей или газов. Однако, при наличии в проводнике электрического поля, происходит смещение электронов к положительному полюсу источника тока, то есть их движение становится упорядоченным.

Сами электроны в проводнике перемещаются с невысокой скоростью, в отличие от электрического поля, которое перемещается в проводнике со скоростью, приближающейся к скорости света. Именно эта величина служит показателем скорости распространения в проводнике электрического тока.

Электрический ток в металле: электронная проводимость

Переменный электрический ток и его применение. Переменный электрический ток и его применение в медицине

ПЕРЕМЕННЫЙ ТОК

Переменным — называется такой вид электрического тока, при котором электроны или ионы совершают маятникообразные движения в переменном направлении: сначала в одну, а затем в другую сторону.

Переменный ток или электромагнитные колебания характеризуются параметрами — частотой колебаний (количествополных колебаний в 1 сек) и длиной волны (расстояние, пройденное волной з а 1 период колебания). менного тока и длиной волны существует обратная зависимость: чем больше частота, тем меньше длина волны.

С лечебной целью применяются переменные токи и электромагнитные поля (ЭМП) высокой частоты — (ВЧ) от 30 килогерц (кГц) до 30 мегагерц (МГц), к которым относятся лечебные методы — дарсонвализация и индуктотермия; ультравысокой частоты (30 МГц-300 МГц) – лечебные методы -УВЧ- терапия и УВЧ-индуктотермия; сверхвысокой частоты (СВЧ) от 300 МГц до 30 тыс. МГц, включающие дециметро-волновую и сантиметроволновую терапию, и крайне высокой частоты (КВЧ) -от 30 тыс. до 300 тыс. МГц — КВЧ-терапия. При воздействии переменных токов и ЭМП в тканях не происходит сдвига ионного равновесия, как это отмечЧастота колебаний измеряется в герцах, 1 Гц равен 1колебаниюв 1с, длина волны — в метрах, сантиметрах и миллиметрах. Между частотой переалось под влиянием постоянного вращение дипольных молекул.

Вследствие колебательного движения ионов и вращательного движения диполей в переменном ЭМП, происходит трение частиц друг о друга и образуется эндогенное тепло, в основном в тканях-проводниках, богатых жидкостью. Это составляет неспецифический тепловой компонент механизма действия переменных токов и ЭМП.

Второй компонент механизма действия – специфический, присущий только данным методам электро-терапии, нетепловой или осцилляторный, физико-химический. В его основе лежат колебательные (осцил-ляторные) движения ионов, электронов, дипольных молекул и частей крупных белковых молекул под влиянием ЭМП ВЧ, УВЧ, СВЧ. При этом происходит повышение физико-химической активности атомов, мо-лекул, кристаллических структур в клетках и тканях организма, что приводит к усилению и ускорению фер-ментативных, окислительно-восстановительных реакций, стимуляции обменных процессов, изменению состава белков и аминокислот, рНкрови, образованию биологически активных веществ.

Температурные и физико-химические изменения внутренней среды организма под влиянием физического фактора вызывают раздражение рецепторов в месте воздействия. Импульсы поступают в спинной и головной мозг, где с участием нервных и эндокринных систем формируется общая ответная реакция на воздействие, что и обусловливает лечебный эффект. Тепловой и осцилляторный компоненты механизма действия прояв-ляются при разных лечебных методах в разной степени: так, при индуктотермии главную роль играет образование эндогенного тепла в тканях, при УВЧ-терапии — осцилляторный компонент, а при микро-волновой терапии хорошо выражены оба компонента.

ДАРСОНВАЛИЗАЦИЯ

Дарсонвализация — воздействие на организм импульсного тока высокой частоты (110 кГц), высокого напряжения (20 кВ) и малой силы (0,02 мА) в виде электрических разрядов или переменного ЭМП.

Свое название метод получил по имени французского исследователя Д»Арсонваля, который в 1892 году впервые применил эти токи для лечения больных.

Различают местную и общую дарсонвализацию. В медицинской практике в основном используется мест-ная дарсонвализация, при которой на определенные участки кожи или слизистых оболочек действует переменный ток высокой частоты (110 кГц), тихий или искровой электрический разряд, возникающий между электродом и телом больного, образующееся небольшое количество эндогенного тепла, а также небольшое количество озона и окислов азота.

Электрические разряды раздражают рецепторы кожи и слизистых оболочек, при этом расширяются сосуды, улучшается кровообращение и микроциркуляция, раскрываются резервные капилляры, улуч-шается тонус венозных сосудов, происходит усиление обменных и регенераторных процессов, снижение возбудимости чувствительных и двигательных нервов. Дарсонвализация оказывает обезболивающее, противозудное, сосудорасширяющее, небольшое противовоспалительное, выраженное трофическое действие, стимулирует регенерацию и заживление поврежденных тканей.

Применение дарсонвализации показано при заболеваниях сердца и сосудов, особенно при варикозном расширении вен, сосудистых спазмах, болезнях центральной и периферической нервной системы, при кожных заболеваниях, трофических язвах, вяло гранулирующих ранах, при заболеваниях уха, горла и носа, в стоматологии, гинекологии, урологии, косметологии. Противопоказаниями являются опухолевые заболевания, кровотечения, активный туберкулез, острые гнойные воспалительные процессы, недостаточность кровообращения II стадии, индивидуальная непереносимость тока и истерия. Пр

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *