Собираем УКВ ЧМ радиоприемник с АПЧ и ИТН
Собственно, оно все как получилось… В 1887 наш немецкий коллега Генрих Герц построил первый в мире искровой радиопередатчик. Он это сделал для того, чтобы проверить теории Максвелла и Фарадея о существовании радиоволн. Вообще говоря, прикладная часть такого исследования Герца не очень интересовала, ему важно было опытным путем доказать существование радиоволн и по возможности изучить какие-то их свойства. Что ему отлично удалось.
Через 7 лет после этих событий, Оливер Лодж и Александр Мирхед провели демонстрацию первого сеанса телеграфной связи. Сигнал передатчика, находящегося на расстоянии 40 метров от приемника был успешно принят и воспроизведен. А 7 мая 1895 года наш соотечественник Александр Степанович Попов на заседании Русского физико-химического общества показал свой вариант радиоприемника-грозоотметчика. Кстати, именно поэтому 7 мая в России отмечается День радио.
Ну, дальше, понятное дело, пошло-поехало.
В 1899 году была построена первая линия телеграфной связи. Ее длина составляла 45км.
Накануне Первой мировой войны стали появляться первые радиолампы, на основе которых началось массовое производство приемников прямого усиления. Словосочетание «прямое усиление» — это вовсе не пустое название, а вполне себе схема построения и принцип работы приемника. Надо понимать, что в то время приемники работали на довольно низких частотах в диапазонах длинных или даже сверхдлинных волн. Так что приемник прямого усиления занимался тем, что принимал сигнал передатчика и без лишних преобразований детектировал его и выдавал слушателю. Но тут вот какая незадача. Чем большее количество информации нужно передавать, тем большая частота передачи должна быть у передатчика. Телеграфу-то, понятное дело без разницы — точка-тире и всего делов. А вот чтобы передавать голосовые сообщения, требуется хорошая разборчивость приема. В приемнике прямого усиления любое изменения частоты требует фактически перестройки всего приемного тракта — фильтров, усилителя, что очень неудобно.
В 1918 году немец Вальтер Шоттки и американец Эдвин Армстронг предлагают другую схему построения приемников и называют ее «супергетеродин».
Справедливости ради нужно отметить, что сии достойные граждане использовали в своей работе идеи француза Леви.
Основная идея такого приемника — преобразование частоты принимаемого сигнала в некую фиксированную частоту и все последующие тракты приемника работают только с этой частотой, которая не зависит от частоты входного сигнала. Кажется, неплохо, давайте посмотрим на картинку.
Итак, перед вами блок-схема супергетеродинного приемника. Радиосигнал, принятый антенной, усиливается УВЧ — усилителем высокой частоты и поступает на специальный узел — смеситель. На другой вход смесителя подается сигнал с гетеродина. Гетеродин представляет собой по сути небольшой передатчик, частота которого может изменяться. Частоту гетеродина выбирают так, чтобы она была выше частоты принимаемого сигнала. Таким образом, в смесителе получается винегрет из двух сигналов — принятого антенной и гетеродина. В состав этого винегрета входит в том числе и разность частот гетеродина и входящего сигнала. Весь этот винегрет подается на выход смесителя и попадает на специальный фильтр, который называется фильтр ПЧ. Этот фильтр занимается тем, что выбирает из винегрета на выходе смесителя зеленый горошек эту самую разность частот, которая теперь будет гордо именоваться промежуточной частотой (ПЧ).
Величина промежуточной частоты выбирается заранее. В принципе, это величина стандартная — суровый ГОСТ повелевает для диапазона средних и коротких волн использовать ПЧ 465кГц, а для УКВ диапазона — 6,5 или 10,7МГц. Что это значит? Это значит, что частота гетеродина должна быть выбрана так, чтобы после операции вычитания у нас получалась означенная ПЧ и все оставшиеся функциональные блоки приемника работают именно с этой частотой. Нам не нужно, например, перестраивать УПЧ каждый раз при настройке на новую радиостанцию — он все время настроен на частоту 6,5МГц. Частотный детектор, который расположен за УПЧ тоже работает все время на одной и той же частоте, и его тоже не нужно перестраивать.
А что же нам нужно перестроить, чтобы попасть на нужную нам радиостанцию? Всего лишь, частоту гетеродина!
Ну, довольно пустой теории, давайте переходить к практике — так будет понятнее.
Чтобы вам было проще разбираться с основами построения радиоприемников, мы сделали набор — NM0703, УКВ приемник с АПЧ и ИТН. АПЧ — это автоподстройка частоты, а ИТН — это индикатор точной настройки.
Радиоприемник собран полностью на транзисторах, чтобы можно было при необходимости подробно разобрать принцип работы каждого узла супергетеродинного приемника.
Давайте посмотри на принципиальную схему нашего приемника. Пока она представлена без номиналов деталей, исключительно для понимания, в каком месте что находится из рассмотренного выше.
Итак, для упрощения конструкции мы не стали делать УВЧ, поскольку высокочастотный транзистор в смесителе обладает вполне достаточным усилением. Узел смесителя выполнен на транзисторе VT2, гетеродина — на VT1. Изменение частоты гетеродина, а значит и настройка приемника на вещательную станцию осуществляется переменным резистором. Он меняет напряжение на варикапе, тот в свою очередь изменяет внутреннюю емкость, а значит и резонансную частоту контура L2. Перестройка входного контура L1 происходит автоматически за счет индуктивной связи между гетеродином и смесителем. Таким же образом сигнал от гетеродина попадает в смеситель.
Промежуточная частота в этом приемнике очень низкая — 180кГц. Мы выбрали ее для того, чтобы упростить схему, избавив её от лишних катушек индуктивности. Как видите, за исключением катушек L1 и L2 в приемнике нет ни одной катушки. Такое решение имеет и кучу минусов, но нам показалось, что мотать катушки — это довольно скучное и нужное занятие и решили вас от этого занятия избавить.
На транзисторе VT2 собран фильтр НЧ, выделяющий промежуточную частоту из винегрета смесителя. Он выполняет роль ФПЧ. Далее сигнал ПЧ поступает на УПЧ на транзисторах VT5, VT6, VT8. Кстати говоря, низкая промежуточная частота позволяет еще и выполнить хороший, устойчивый УПЧ с весьма высоким коэффициентом усиления. После УПЧ сигнал идет на формирователь импульсов и частотный детектор на транзисторах VT10 и VT11, VT14 соответственно. С выхода частотного детектора, обозначенного на схеме большой красной буквой А выходит уже низкочастотный звуковой сигнал, пригодный для УНЧ. Помимо УНЧ, сигнал с ЧД через интегрирующие цепочки подается на АПЧ — автоподстройку частоты и ИТУН — индикатор настройки.
Принцип работы ИТУН довольно прост — чем точнее настройка на радиостанцию, тем выше напряжение на выходе частотного детектора. Схематически, ИТУН представляет собой два пороговых элемента, один их которых срабатывает выше определенного напряжения, другой — ниже.
Вся схема радиоприемника, за исключением УНЧ, питается от внутреннего стабилизатора на транзисторе VT13. Это необходимо для того, чтобы параметры настройки приемника не уплывали при питании приемника например от несвежей батарейки, напряжение которой уже порядком подсело.
Основные технические характеристики приемника следующие:
Напряжение питания, В | 9 |
Потребляемый ток в режиме молчания, мА | 18 |
Принимаемый диапазон частот, МГц | 88…108 |
Чувствительность по входу, мкВ | 20 |
Выходная мощность, мВт | 250 |
Габаритные размеры, мм | 113х45 |
Принципиальная схема:
Схема выполнена на общедоступных компонентах, не содержит дорогих или дефицитных деталей.
Дроссель Др.1 — готовый, выводной. Можно использовать отечественный ДПМ-0,1, можно любой китайский.
В набор входит разумеется готовая печатная плата с обозначением всех компонентов — куда-что нужно припаять. Не смотря на довольно высокое количество компонентов, сборка приемника потребует не слишком много времени.
В набор входит все необходимое для сборки, включая припой и эмалированный медный провод для намотки катушек L1 и L2.
Настройка на радиостанцию осуществляется многооборотным подстроечным резистором. В целом, это не слишком удобно, но для такого резистора вполне можно придумать ручку, которую и вывести на переднюю панель корпуса радиоприемника. Если такой вариант не очень устраивает, можно приобрести специальный многооборотный переменный резистор фирмы Bourns такого же номинала, как указано на схеме.
Ну и после сборки должно получится что-то вроде такого:
Ну, во всяком случае, так получилось у нас. Что получится у вас — давайте посмотрим.
ЧМ СИГНАЛЫ
Абсолютное большинство жучков работает с ЧМ модуляцией (изменение частоту сигнала в такт звуку микрофона), а что-же происходит с таким частотно модулируемым сигналом после попадания его в приёмник? Отличительной особенностью тракта приема ЧМ сигнала является наличие частотного детектора, который создает напряжение или ток, повторяющие закон изменения частоты входного сигнала. Результат детектирования не должен зависеть от амплитуды напряжения, действующего на входе детектора. Прохождение ЧМ сигнала через нелинейные элементы (активные элементы, ограничители, диоды) не ведет к искажению модулирующей функции.В настоящее время структурные схемы приемников с каналами приема AM и ЧМ сигналов делятся на две группы:
— с совмещенными каналами;
— с раздельными.
Сейчас существует тенденция отхода от использования совмещенных схем УПЧ (усилитель промежуточной частоты). Построение УПЧ по раздельному принципу повышает устойчивость тракта УПЧ и упрощает схему коммутации при переходе с АМ на ЧМ диапазоны. Разделение каналов стало целесообразным в связи с примененном интегральных микросхем, а также с уменьшением стоимости транзисторов.
• согласование входа приемника с антенной;
• усиление сигналов на радиочастоте;
• преобразование сигналов в промежуточную частоту;
Форум по приёмникам
Обсудить статью ЧМ СИГНАЛЫ
Простой радиовещательный ЧМ приемник с низкой промежуточной частотой. — Сайт радиолюбителя
Решил попробовать сделать максимально простой вещательный ЧМ приемник. Приемник Захарова оказался довольно «капризным» в работе, а сверхрегенератор имеет слишком низкое качество звука, поэтому выбрал схему с низкой промежуточной частотой.
Приемник предназначен только для приема местных станций. Подключать к нему наружную антенну для приема удаленных станций нет смысла, т.к. она соберет все низкочастотные промышленные помехи и забьет приемник.
Схема получилась такая.
VT1 – смеситель.
VT5 – гетеродин. В гетеродине применен транзистор p-n-p. Просто с этим транзистором удобнее паять, т.к. получается меньше проводов.
Катушка L1 и L2 расположены соосно на расстоянии 4 мм друг от друга. Так сигнал гетеродина поступает на вход смесителя.
Катушки бескаркасные. Намотаны на оправке диаметром 5 мм проводом диаметром 0,5 мм.
L1 – 6 витков.
L2 – 5 витков.
VT2 — VT3 это УПЧ.
VT4 транзисторный ключ. На выходе ключа получаем практически прямоугольные импульсы с промежуточной частотой. С выхода ключа сигнал поступает на импульсный частотный детектор. Он отличается от амплитудного детектора тем, что конденсатор связи С10 ставится раз 200 – 300 меньше, чем в амплитудном детекторе.
В приемнике есть АПЧ, хотя можно и без неё, но с АПЧ настойка на станцию более удобная.
Настройка обычная. Крутим R18 и устанавливаем на варикапе максимальное напряжение. Сдвигая-раздвигая витки катушки L2 добиваемся частоты генерации чуть больше 108 МГц.
Последовательно с резистором настройки со стороны общего провода можно поставить ограничивающий резистор. Он будет ограничивать частоту гетеродина снизу. Я не стал делать, т.к. в дальнейшем вместо резистора настройки поставлю четыре подстроечных резистора, что бы получить фиксированные настройки на наши четыре станции.
Выше я писал, что на входе можно поставить УВЧ. УВЧ полезен не только для увеличения чувствительности. Он в принципе необходим, если хотим подключить наружную антенну. УВЧ будет являться развязкой между входным контуром и антенной, поэтому антенна не будет расстраивать входной контур.
Схема приемника с УВЧ может выглядеть так.
Но лучше в смесителе поставить К174ПС1 или SA612, но это уже нельзя будет назвать простым приемником.
Я делал подобный приемник в которой в преобразователе частоты применена микросхема SA612, но стало жалко на это дело микросхему микросхему и поставил транзисторы, а на микросхеме сделал простенькую радиостанцию с АМ на 27 МГц. Цель была заменить сверхрегенератор в простейших радиостанциях, но что бы была очень простая настройка.
Делалось это просто от безделья.
А это я принимаю наши местные станции на антенну длиной где то 50 см
https://yadi.sk/d/rdNXc5-lgsHmYw
Самодельные КВ и УКВ конвертеры для АМ и ЧМ радиоприемников
В практике радиоприема нередко возникает необходимость преобразовывать сигналы одной частоты в другую. Например, частоты радиостанций КВ-диапазона в частоты СВ-диапазона, частоты УКВ-диапазона — 65-74 МГц в УКВ-диапазон частот 87-108 МГц и наоборот. Это расширяет возможности существующих радиосредств.
Например,прослушивать радиостанции КВ-диапазона на радиоприемниках, имеющих СВ-диапазон, использовать импортные радиоприемники для прослушивания радиостанций в отечественном диапазоне и отечественных радиоприемников для приема радиостанций западного стандарта час-ми, Нередко возникает проблема преобразования частот в рамках одного на кого-нибудь диапазона: КВ — в КВ, УКВ — в УКВ и т.д.
Что такое радиоконвертер
Поставленные задачи наиболее просто решаются использованием специальных устройств — радиоконвертеров, называемых обычно просто конвертерами. Эти устройства преобразуют сигналы из одних частот в другие.
Обычно используют конвертеры для преобразования радиосигналов в диапазонах СВ и КВ (сигналы с амплитудной модуляцией) и УКВ (частотная модуляция). Такие конвертеры часто называемым , соответственно, АМ- и ЧМ-конвертерами. Хотя встречаются АМ-устройства — для УКВ-диапазона и ЧМ — для КВ-, СВ- и даже для ДВ-диапазона.
Конвертер, как правило, представляет собой супергетеродинный радиоприемник с обычно неперестраиваемым гетеродином. Кстати, достаточно часто конвертеры имеют коэффициент усиления больше единицы, т.с. производят усиление сигнала. За счет преобразования радиосигнала повышается общая помехозащищенность радиоприема.
В основе схемы конвертера обычно лежит схема смесителя и генератора (гетеродина), осуществляющих преобразование частоты сигнала. Принцип преобразования основан на получении разности или суммы частот входного сигнала и частоты гетеродина: разность — для преобразования из большей частоты в меньшую, сумма — из меньшей частоты в более высокую. Полученная разностная (или суммарная) частота и является выходным сигналом конвертера и, соответственно, входным сигналом для последующего приемника.
Генераторы для конвертеров
На рис.1 представлены примеры типовых схем генераторов, часто используемых в гетеродинах конвертеров. Для обеспечения предварительного усиления входных радиосигналов в составе конвертеров применяют одно- или многотранзисторные усилители высоких частот — УВЧ.
Рис.1. Примеры схем генераторов, используемых в гетеродинах конвертеров.
На рис.2 и 3 представлены несколько вариантов схем АМ-конвертеров, осуществляющих преобразование радиосигналов из диапазона сигналов КВ в радиодиапазон СВ. При этом приведены два варианта схем и конструкций конвертеров: первый — настройка на частоты радиостанций СВ-радиоприемником, второй — элементами конвертера при фиксированной настройке радиоприемника.
Выбирая схему конвертера, следует учитывать, что первый вариант проще и дешевле второго.
Схема АМ-конвертера (КВ в СВ)
На рисунке 2 представлена одна из схем АМ-конвертера (КВ в СВ) с настройкой на необходимую частоту (радиостанции КВ-диапазона) СВ-радиоприемником.
Рис.2. Схема АМ-конвертера ( КВ в СВ ) с фиксированной частотой гетеродина.
Данный конвертер обеспечивает радиоприем КВ-радиостанций в четырех поддиапазонах:
Конвертер состоит из гетеродина (Т2) и усилителя-смесителя (Т1). Гетеродин выполнен по схеме индуктивной трехточки. Напряжение гетеродина подается в эмиттерную цепь смесителя.
Входной контур (L1, L2-С7С8/С11С12/С15С16/С19С20) — широкополосный, настроен на середину каждого КВ-диапазона (14 м, 20 м, 25 м, 41 м).
Контур гетеродина настраивается так, чтобы при настройке на среднюю частоту каждого КВ-поддиапазона на выходе конвертера получились разностные составляющие с промежуточной частотой, находящейся в середине средневолнового диапазона. Выбор соответствующего поддиапазона осуществляется с помощью переключателя.
Выход конвертера подключается к антенному входу СВ-радиоприемника. В качестве антенны конвертера используется отрезок медного провода.
Радиоэлементы:
- R1=15к, R2=10к, R3=300, R4=1 к, R5=6.2к, R6=3к, R7=13, R8=1к, R9=27;
- С1=10н, С2=6.8н, С3=10н, С4=10н, С5=10н, С6=6.8н, С7=30, С8=6-25, С9=47,
- С 10=6-25, С11=47, С12=6-25, С13=91, С14=6-25, С15=180, С16=6-25,
- С17=220, С 18=6-25, С19=390, С20=6-25, С21=620, С22=6-25;
- Т1,Т2 — ГТ310И или аналогичные, могут быть использованы кремниевые транзисторы, например, КТ3107, КТ361 и т.д.
- Конденсаторы типа КЛС, КМ, КД и т.д.
Катушки наматывают на каркасах 5 мм. L1, L2 размещены на общем каркасе на расстоянии 5 мм одна от другой.
- L1 — 22 витка ПЭЛШО — 0,2 внавал, ширина 5 мм.
- L2 — 8 витка ПЭЛ 0.64, с шагом 1,5 мм.
- LЗ — 13.5 витка ПЭЛ 0,41, с шагом 0.5 мм, отводы от 0,5 и 8,5 витков, считая от заземленного вывода.
- L4 — дроссель, 60 витков ПЭЛ 0,12, внавал, ширина 10 мм.
Переключатель КВ-поддиапазонов Б1 — П2К.
АМ-конвертер (КВ в СВ) на 5 диапазонов
На рисунке 3 представлен еще один вариант АМ-конвертера (КВ в СВ) с фиксированной частотой гетеродина и настройкой СВ-радиоприемником.
Рис.3. Схема АМ-конвертера ( КВ в СВ ) с фиксированной частотой гетеродина.
Этот конвертер обеспечивает радиоприем КВ-радиостанций в диапазонах:
- 25м,
- 31м,
- 41м,
- 49м,
- 52м.
Радиоэлементы:
- R1=47к, R2= 10к, R3=330, R4=1к, R5=51 к, R6=10к,
- R7=1,2к, R8=1.2к, R9=510, R10=1,2к, R11=33к, R12=10к;
- С1=10-30, С2=20, С3=27, С4=51, С5=75, С6=82, С7=1н-6,8н,
- С8= 1 н-6,8н, С9=1н-6,8н, С10=91-220, С11=6.8н-15н, С12=16,
- С13=24, С14=43, С15=56, С16=62, С17=47, С18=3н-10н,
- С19=3н-10н, С20=10-50мкФ;
- Т1,Т2,ТЗ — ГТЗ10И, ГТЗ13 или аналогичные, могут быть использованы, КТ3107, КТ361 и т.д.
Конденсаторы типа КЛС. КМ, КД и т.д.. С20 — К50-6, К53-14 и др.
Катушки наматывают на каркасах диаметром 7 и высотой 10 мм. Подстройка — ферритовые сердечники диаметром 5 мм. Катушки L1, L2 и LЗ, L4 расположены на общих каркасах.
Намоточные данные катушек:
- L1, L3 — 25 витков ПЭВ 0,3,
- L2, L4 — 6 витков ПЭЛШО 0,12.
АМ-конвертер (КВ в СВ) с перестраиваемыми частотами
На рис. 4 представлен один из вариантов АМ-конвертера (КВ в СВ) с перестраиваемыми частотами входного контура и гетеродина и фиксированной выходной частотой (СВ). Этот конвертер обеспечивает радиоприем КВ-радиостанций в диапазонах: 25 м, 31 м, 41 м, 49 м, 52 м.
Рис.4. Схема АМ-конвертера (КВ в СВ) с фиксированной выходной частотой (СВ) и с перестраиваемыми частотами входного контура и гетеродина.
Радиоэлементы:
- R1=47к, R2=10к, R3=1.2к, R4=1.2к, R5=820,
- R6=510, R7=1,2к. R8=33к, R9=10к, R10= 150;
- С1=10-30, С2=5-380, С3=1н-6.8н, С4=6.8н-15н,
- С5=1н-6,8н,С6=3н, С7=47, С8=5-380, С9=6,8н-15н, С10=10-50мкФ;
- Т1,Т2 — ГТ310И, ГТ313 или аналогичные, могут быть использованы, КТ3107, КТ361 и т.д.
Конденсаторы типа КЛС, КМ, КД и т.д., С10 — К50-6. К53-14 и др. Катушки наматывают на каркасах диаметром 7 и высотой 10 мм. Подстройка — ферритовые сердечники диаметром 5 мм.
- L1, L2 и LЗ, L4 расположены на общих каркасах.
- L1, LЗ — 25 витков ПЭВ 0,3,
- L2, L4 — 6 витков ПЭЛШО 0,12.
Следует заметить, что приведенный конвертер с перестраиваемыми частотами входного контура и фиксированной выходной частотой фактически является обычной и стандартной частью супергетеродинного радиоприемника и всегда присутствуют в его составе. Это его УВЧ и гетеродин. Для такого узла выходная частота составляет стандартную фиксированную величину — 465 кГц.
Схемы УКВ ЧМ конвертеров на полевых транзисторах
В последнее время более широкое распространение получили ЧМ-конвертеры УКВ-диапазонов. Это объясняется сравнительно простыми схемами, конструкциями, малыми габаритами и высоким качеством радиопередач, связанных с особенностями ЧМ-модуляции.
На рисунке 5 представлены схемы ЧМ-конвертеров, осуществляющих преобразование радиосигналов из диапазона 65.8-73 МГц в диапазон частот 95.8-103 МГц. Данные устройства позволяют прослушивать радиостанции традиционного отечественного диапазона на импортных радиоприемниках и магнитолах.
В схеме конвертера — рисунке 5 (а) использованы два полевых транзистора. На Т1 собран усилитель и смеситель, на Т2 — гетеродин. Частота гетеродина — 30 МГц.
Частота выходного сигнала равна частоте входного плюс частота гетеродина.
Ввод данного устройства подключается к антенне, в качестве которой может быть использована телескопическая антенна или кусок толстого медного провода. Выход конвертера подключается к антенному входу’ или непосредственно к телескопической антенне используемого радиоприемника.
Рис.5. Схемы УКВ-ЧМ-конвертеров с использованием полевых транзисторов (65.8-73 МГц в 95.8-103 МГц).
Радиоэлементы:
- R1=1к, R2=2к, R3=100к;
- С1=33, С2=6,8н, С3=100, С4=51, С5=100, С6=6,8н;
- Т1,Т2 — КП303Г,В,Д, можно использовать полевые транзисторы КП307, КП302 и др.
Конденсаторы типа КЛС, КМ, КД и т.д. L1, L2 — на каркасах диаметром 4-5 мм длиной 8-10 мм, провод ПЭВ-2 0,3-0,4: L1 — 1+4 витков, L2 — 2+8 витков, подстроечники — латунные.
Настройка УКВ конвертеров производится по следующему принципу: подстроечником катушки L2 устанавливается частота гетеродина равной 30 МГц, с помощью подстроечника L1 входной контур настраивается на середину отечественного диапазона.
Приведенную схему можно использовать как для преобразования радиочастот из отечественного диапазона (65-73 МГц) в зарубежный (87-108 МГц), так и наоборот — из 87-108 МГц в 65-73 МГц. Данный конвертер можно использовать и для других частотных диапазонов. В этих случаях параметры используемых контуров и частоты гетеродина конвертера корректируют в зависимости от выбранных частот входного и выходного сигналов.
На рисунке 5 (б) приведена схема конвертера повышенной чувствительности. Для этого к схеме конвертера, представленной и описанной выше, добавлен усилитель высокой частоты на р-п-р транзисторе. Для обеспечения преемственности описания в новой схеме сохранена нумерация сходных элементов предыдущей схемы рис.3 (а).
Радиоэлементы:
- R1=1к, R2=2к, R3=100к, R4=6.8к, R5=360, R6=16к, R7=100к-1М, R8=100-300;
- С1=33, С2=6.8н, С3=100, С4=51, С5=100, С6=6.8н, С7=47-100, С8=33, С9=36-100, С10=160-360, С11=1н-10н;
- Т1, Т2 — КП303Г,В,Д, можно использовать полевые транзисторы КП307, КП302 и др.
- Т3 — КТ3127, КТ3128 или аналогичные, могут быть использованы транзисторы ГТЗ13.
Конденсаторы типа КЛС, КМ, КД и т.д. L1, L2, LЗ — на каркасах диаметром 4-5 мм длиной 8-10 мм, провод ПЭВ-2 0,3-0,4 мм; L1, LЗ -1+4 витков, L2 — 2+8 витков, подстроечники — латунные.
Схемы УКВ ЧМ конвертеров на биполярных транзисторах
На рис.6 приведены схемы УКВ-конвертеров на биполярных транзисторах. Приведенные параметры радиоэлементов предназначены для преобразования частот диапазона 65-73 МГц в 87-108 МГц. Это позволяет принимать на импортные радиоприемники передачи отечественных радиостанций.
Схемы отличаются доступностью деталей, простотой конструкций и настройки.
Рис.6. Схемы УКВ-ЧМ-конвертеров на биполярных транзисторах (65-73МГц в 95.8-103МГц).
Радиоэлементы для схемы рисунка 6 (а):
- R1=150к, R2=1,6-2,2к, R3=150к, R4=1.6-2.2к,
- R5=470-560, R6=16к, R7= 10к;
- С1=24, С2= 100-150, СЗ=100-150, С4=100-150,
- С5=5-20, С6=10,С7= 10-50, С8=100-150, С9=1н-10н, С10=1н-2н;
- Т1,Т2,ТЗ — ГТЗ11И или аналогичные, могут быть использованы кремниевые транзисторы, например, КТ368 или КТЗ102.
Конденсаторы типа КЛС, КМ, КД и т.д.
L1, L2 — бескаркасные, диаметр намотки соответственно 3 и 6 мм, для первой — 10 витков провода ПЭВ 1,0, второй — 6 витков ПЭВ 1,0 с отводом от второго сверху (по схеме) витка. LЗ, L4 — на каркасе диаметром 4-5 мм длиной 8-10 мм, провод ПЭВ-2 0,3-0,4, LЗ — 4 витка, L4 -10 витков, подстроечник — латунный.
На печатной плате катушки L1 и L2 располагаются под углом 90 градусов друг к другу.
Радиоэлементы для схемы рисунке 6 (б):
- R1=150к, R2=1.6-2.2к, R3=150к, R4=1.6-2.2к, R5=470-560, R6=16к, R7= 10к;
- С1=24, С2=100-150, С3= 100-150, С4=100-150, С5=5-20, С6=10,
- С7= 10-50, С8= 100-150, С9=1н-10н, С10=1н-2н;
- Т1,Т2,ТЗ — ГТ311И или аналогичные, могут быть использованы кремниевые транзисторы, например, КТ368 или КТЗ102.
Конденсаторы типа КЛС, КМ, КД и т.д.
L1, L2 — бескаркасные, диаметр намотки соответственно 3 и 6 мм, для первой — 10 витков провода ПЭВ 1.0, второй — 6 витков ПЭВ 1.0 с отводом от второго сверху (по схеме) витка. LЗ — дроссель, индуктивность не менее 10 мкГн, эту катушку можно намотать на кольце 1000 НН диаметром 5 мм.
L4 — на каркасе диаметром 4-5 мм длиной 8-10 мм, провод ПЭВ-2 0,3-0,4, 10 витков, подстроечник — латунный. На печатной плате катушки L1 и L2 располагаются под углом 90-градусов друг к другу.
К недостаткам приведенных схем следует отнести, например, нестабильность частоты гетеродина. Это вызвано нестабильностью параметров LС-контура. Схему конвертера можно существенно улучшить, если работу гетеродина стабилизировать кварцевым резонатором.
На рисунке 6 (г) приведена схема улучшенного варианта конвертера УКВ-диапазона. Частота гетеродина стабилизирована кварцевым резонатором.
Радиоэлементы для схемы рис.6 (а):
- R1=150к, R2=1.6-2.2к, R3=150к, R4=1.6-2.2к, R5=470-560, R6=16к, R7=10к;
- С1=24, С2=100-150, С3= 100-150, С4=100-150, С5=5-20, С6=10,
- С7= 10-50, С8=100-150, С9=1н-10н, С10=1н-2н;
- Т1,Т2,ТЗ — ГТ311И, КТ368, КТЗ102 или аналогичные.
Конденсаторы типа КЛС, КМ, КД и т.д.
L1, L2 — бескаркасные, диаметр намотки соответственно 3 и 6 мм, для первой — 10 витков провода ПЭВ 1.0, второй — 6 витков ПЭВ 1.0 с отводом от второго сверху (по схеме) витка, L3, L4 — индуктивности не менее 10 мкГн, эти катушки можно намотать на кольцах 1000 НН диаметром 5 мм.
Q1 — кварцевый резонатор на частоту 22-36 МГц.
УКВ конвертеры на МОП транзисторах
На рисунке 7 представлены две схемы УКВ-конвертеров в конструкциях которых использованы полевые транзисторы с изолированными затворами — МОП-транзисторы. Это позволяет упростить схемы при повышении их качественных параметров.
Рис.7. Схемы УКВ-ЧМ-конвертеров на биполярных и МОП-транзисторах.
Гетеродины выполнены по стандартным схемам. МОП-транзисторы применены в УВЧ.
Радиоэлементы для схемы рис.3.7.а:
- R1=560-680, R2=5.1, R3=18к;
- С1=30, С2=30,03=100-300, С4=10,05=10-15, С6=1н-10н, С7=2н-6.8н;
- Т1 -КП305Ж, КП305Е, Т2 -П416, ГТЗ 10, ГТЗ 13, КТЗ68 или аналогичные.
Конденсаторы типа КЛС, КМ, КД и т.д.
L1, L2 — на каркасах диаметром 4-5 мм длиной 8-10 мм, провод ПЭВ-2 0,3-0,4; L1 — 1+4 витков, L2 — 5 витков, подстроечники — латунные. LЗ — на каркасе 6 мм от КВ контура радиоприемника, 2+9 витков провода ПЭВ 0,15-0,2.
На рисунке 7 (б) представлена схема аналогичного конвертера, отличающаяся от предыдущей наличием дополнительного УВЧ на транзисторе. Это позволяет повысить чувствительность конвертера.
Радиоэлементы для схемы рисунке 7 (б):
- R1=560-680, R2=5,1, R3=18к, R4=6.8к, R5=390, R6= 18к;
- С1=30, С2=30, C3=100-300, С4=10, C5=10-15, С6=1н-10н, С7=2н-6,8н, С8=30, C9=30-50, C10=300-510;
- Т1 — КП305Ж, КП305Е, Т2 — КТЗ68, П416, ГТЗ13, ГТЗ10 или аналогичные, Т3 — ГТЗ 10, КТЗ127А, КТЗ128А, КТ368 или аналогичные.
Катушки L1, L2 — на каркасах диаметром 4-5 мм длиной 8-10 мм, провод ПЭВ-2 0,3-0,4; L1, L4 — 1+4 витков, L2 — 5 витков, подстроечники -латунные. LЗ — на каркасе 6 мм от КВ контура радиоприемника, 2+9 витков провода ПЭВ 0,15-0,2.
Литература: Рудомедов Е.А., Рудометов В.Е — Электроника и шпионские страсти-3.
Радиолюбительский ЧМ приемник на диапазон частот 430МГц
Развитие любительской радиосвязи на УКВ с применением узкополосной ЧМ сдерживается, как отмечалось в [1], в первую очередь отсутствием простых конструкций УКВ ЧМ приемников, передатчиков и трансиверов.
Описываемый приемник благодаря применению в нем детектора с фазовой автоподстройкой частоты (ФАПЧ) [2] сравнительно прост. Аппарат работает в полосе 430…440 МГц. Его чувствительность при соотношении сигнал/шум 10 дБ равна 0,1 мкВ.
Структурная схема
Приемник построен на супергетеродинной схеме с одним преобразованием частоты (рис. 1). Гетеродин состоит из генератора G1 с кварцевой стабилизацией частоты, вырабатывающего колебания частотой 45 МГц, утроителей частоты U3, U4, усилителя А4 и полосовых фильтров Z5, Z6.
Рис. 1. Структурная схема.
Колебания частотой 405 МГц с гетеродина подаются на смеситель U1. Сюда же через входной фильтр Z1 поступают сигналы станций. Преобразованный смесителем U1 спектр промежуточных частот лежит в интервале 25…35 МГц. Полосу пропускания тракта ПЧ (с усилителями А1, А2) определяют фильтры Z2-Z4.
Традиционное построение приемника предполагает далее применение второго преобразователя частоты, перестраиваемого второго гетеродина и узкополосного усилителя ПЧ с ЧМ детектором — фактически необходим дополнительный ЧМ приемник. В данном аппарате в качестве узкополосного ЧМ приемника использован приемник прямого преобразования с ФАПЧ U2, выполненный на одном транзисторе [3] и обладающий хорошей чувствительностью и избирательностью.
Схема сигнального тракта
Принципиальная схема сигнального тракта приведена на рис. 2. Смеситель выполнен на туннельном обращенном диоде VD1. Усилитель ПЧ содержит два однотипных каскада усиления, построенных по каскадной схеме на транзисторах VТ1, VТ2 и VТЗ, VТ4 соответственно.
На транзисторе VТ5 собран синхронный фазовый детектор, преобразующий промежуточную частоту в звуковую.
Рис. 2. Принципиальная схема сигнального тракта приемника.
Преобразование происходит на второй гармонике генерируемых колебаний, так как контур L7C18C20 перестраивается конденсатором С20 в интервале 12,5… 17,5 МГц. Избирательность обеспечивается действием ФАПЧ: при приближении частоты гетеродина к половинному значению частоты сигнала принимаемой станции происходит захват этой частоты и синхронное детектирование ЧМ.
При этом выходное напряжение ЗЧ независимо от уровня входных ЧМ сигналов, что эквивалентно действию АРУ, а также подавляется амплитудная модуляция и импульсные помехи. Полосу ЗЧ (примерно 3 кГц) определяет фильтр нижних частот (ФНЧ) R19C17. На выходе приемника можно применить RC или LC ФНЧ более высокого порядка, что дополнительно улучшит соотношение сигнал/шум.
Применение всего одного транзистора VТ5 вместо многокаскадного ЧМ приемника резко снизило общий уровень шумов тракта. Определяющим здесь является то, что база этого транзистора по ЗЧ через конденсатор С16 большой емкости (10 мкФ) соединена с общим проводом. Экспериментально установлено, что емкость этого конденсатора определяет работоспособность системы ФАПЧ. Для работы как гетеродина, так и смесителя достаточно, чтобы емкость была всего 10 000 нФ. Однако при этом система ФАПЧ практически не работает и резко возрастает уровень ЗЧ шумов транзистора VТ5.
Выходной звуковой сигнал с уровнем несколько десятков милливольт может быть подан на простой усилитель ЗЧ.
Схема гетеродина
Принципиальная схема гетеродина приемника изображена на рис. 3. Гетеродин выполнен по традиционной схеме умножения частоты задающего генератора, который собран на транзисторе VТ1 и работает на частоте 45 МГц-третьей механической гармонике кварцевого резистора ZQ1. Каскад на транзисторе VТ2 — утроитель частоты.
Его нагрузка — контур L2C8, настроенный на частоту 135 МГц. Каскад на транзисторе VТЗ — усилительный. Контур L3C12 выделяет сигнал частотой 135 МГц. Второй утроитель частоты собран на транзисторе VТ4.
Его нагрузка — контур на элементах L4 L6, С17, С18, С20 — выделяет сигнал частотой 405 МГц и подавляет побочные продукты умножения частоты. Через цепь связи C19L7 сигнал подается на контур L8C21C22 дополнительно улучшающий фильтрацию спектра выходного сигнала. Через петлю связи L9 колебания частотой 405 МГц поступают на выходной разъем XW1 и далее на смеситель.
Рис. 3. Принципиальная схема гетеродина приемника.
Конструкция и детали
Конструктивно приемник собран в двух корпусах, изготовленных из посеребренной латуни (меди) и разделенных на секции перегородками. Сигнальный блок выполнен объемно-печатным монтажом на плате. В гетеродине применен объемный монтаж на опорных штырях, изолированных от корпуса фторопластовыми втулками.
Опорными элементами для цепей питания служат блокировочные конденсаторы С5, С7, С9, С11, С13, СC5, C16.
Расположение основных элементов в блоках показано на рис. 4. Выводы элементов должны быть как можно короче, катушки L4, L5 и линии L6, L8 в блоке гетеродина припаивают непосредственно к выводам конденсаторов C17, C18, С20-С22.
Рис. 4. Конструкция приемника.
Чтобы уменьшить размеры СВЧ колебательных систем, во входной цепи сигнального тракта и выходных цепях гетеродина применены спиральные резонаторы, имеющие длину во много раз меньше, чем полосковые линии [4]. Линия L1 в радиочастотном блоке изготовлена из посеребренной медной полосы шириной 4 и толщиной 1 мм, свернутой в спираль диаметром 6,5 и шагом 2,5 мм.
Число витков в спирали — 5, отводы сделаны от 1-го и 4-го витков. Линия L8 блока гетеродина выполнена аналогично, но без отводов. Петли связи L7, L9 сделаны в виде скоб из отрезков посеребренного медного провода диаметром 0,8 и длиной 30 мм (рис. 4).
Резонатор L6 представляет собой посеребренную полосу размерами 48X4X1 мм. Отводы расположены на расстоянии 6,5+9,5+16 мм (считая от конца, соединенного с корпусом).
Катушки L2, L3, L5, L7 в сигнальном блоке намотаны виток к витку проводом ПЭВ-2 0,5; L2 содержит 5+4 витка, L3, L5 — по 6+4, L7 — 12. В гетеродине катушки L2 и L3 имеют 2+1,5 витка, L4 и L5 — по 3 витка. L2 и L3 выполнены с шагом 2 мм посеребренным проводом диаметром 0,8 мм, L4.
L5 — с шагом 4 мм посеребренным проводом диаметром 1,2 мм. Эти катушки намотаны на полистироловых каркасах диаметром 6,5 мм от трактов УПЧИ унифицированных телевизоров. Дроссели L4, L6 — ДМ-0,1.
Конденсатор С20 сигнального блока изготовлен из подстроечного с воздушным диэлектриком и удлиненной осью; размещен непосредственно около контура L7C18.
Постоянные резисторы — МЛТ. Подстроечные конденсаторы — КПВМ, опорные — КО-2 или любые, подходящие по габаритам, емкостью 1000…6800 пФ, остальные — КМ, КД. Конденсаторы С16, С22 в сигнальном блоке — К53-1 или К50-6.
Вместо диода ГИ401А можно применить ГИ401Б, АИ402А с любым буквенным индексом, вместо транзисторов ГТ313Б — КТ3128А, КТ3127А, КТ328Б. Транзистор ГТ311E (VТ5 в сигнальном блоке) заменим на ГТ311И, КТ306Б, КТ312Б, КТ316А.
Приемник начинают налаживать с сигнального блока. К выходному разъему XW1 присоединяют усилитель ЗЧ. Затем подключают источник питания и убеждаются в работе каскада на транзисторе VТ5, для чего прикасаются отверткой к эмиттеру транзистора. При исправном транзисторе должен прослушиваться фон переменного тока.
Далее к коллектору транзистора VТ4 подключают антенну или генератор стандартных сигналов (ГСС) и перестройкой контура C20C18L7 добиваются приема радиолюбительских станций или несущей частоты ГСС в диапазоне 28…30 МГц. При настройке на несущую должен наблюдаться захват и удержание частоты.
При необходимости подбирают конденсаторы С18 и С19, добиваясь устойчивого приема [3]. После этого антенну или ГСС подключают к базе транзистора VТЗ, а затем к точке соединения элементов VD1 и С2 и проверяют работоспособность тракта ПЧ. Контуры L2C3C4, L3C8R8, L5C14R16 настраивают так, чтобы полоса пропускания тракта ПЧ составляла 25…35 МГц.
Настройку блока гетеродина начинают с кварцевого генератора — должна быть устойчивая генерация на третьей механической гармонике кварцевого резонатора. В остальных каскадах контуры настраивают на частоты, указанные на рис.
3. Затем подключают выход блока гетеродина к смесителю сигнального блока и, подавая на антенный вход с ГСС несущую частоту в диапазоне 430…440 МГц, перестройкой контура L7C20C18 добиваются приема сигнала. После этого уменьшают уровень сигнала на входе приемника до срыва удержания частоты и, подстраивая контуры L1C1 в сигнальном блоке и L6C20, L8C21C22 в гетеродине, получают надежный захват и удержание частоты сигнала.
Эти операции повторяют до тех пор, пока не будет достигнуто минимальное значение входного сигнала, еще обеспечивающее удержание частоты. На этом настройку приемника можно считать законченной.
А. Михельсон (UA6AFL). г. Краснодар. Радио 1989, 11.
Литература:
- Поляков В. Радиосвязь с ФМ. — Радио, 1986, № 1, с. 24-26.
- Поляков В. Т. Радиовещательные ЧМ приемники с фазовой автоподстройкой.- М.: Радио и связь, 1983.
- Захаров А. УКВ ЧМ приемники с ФАПЧ.- Радио, 1985, № 12, с. 28-30.
- Жеребцов И. Ведение в технику дециметровых и сантиметровых волн.- Л.: Энергия, 1976.
ЧМ приемник на диапазон 430МГц
Развитие любительской ра-диосвязи на УКВ с применением узкополосной ЧМ сдерживается, как отмечалось в [1], в первую очередь отсутствием простых конструкций УКВ ЧМ приемников, передатчиков и трансиверов.
Описываемый приемник благодаря применению в нем детектора с фазовой автоподстройкой частоты (ФАПЧ) [2] сравнительно прост. Аппарат работает в полосе 430…440 МГц. Его чувствительность при соотношении сигнал/шум 10 дБ равна 0,1 мкВ.
Приемник построен на супергетеродинной схеме с одним преобразованием частоты (рис. 1). Гетеродин состоит из генератора G1 с кварцевой стабилизацией частоты, вырабатывающего колебания частотой 45 МГц, утроителей частоты U3, U4, усилителя А4 и полосовых фильтров Z5, Z6.
Puc.1
Колебания частотой 405 МГц с гетеродина подаются на смеситель Ш. Сюда же через входной фильтр Z1 поступают сигналы станций. Преобразованный смесителем U1 спектр промежуточных частот лежит в интервале 25…35 МГц. Полосу пропускания тракта ПЧ (с усилителями A1, A2) определяют фильтры Z2-Z4. Традиционное построение приемника предполагает далее применение второго преобразователя частоты, перестраиваемого второго гетеродина и уз-кополосного усилителя ПЧ с ЧМ детектором — фактически необходим дополнительный ЧМ приемник. В данном аппарате в качестве узкополосного ЧМ приемника использован приемник прямого преобразования с ФАПЧ U2, выполненный на одном транзисторе [3] и обладающий хорошей чувствительностью и избирательностью.
Принципиальная схема сигнального тракта приведена на рис. 2. Смеситель выполнен на туннельном обращенном диоде VD1. Усилитель ПЧ содержит два однотипных каскада усиления, построенных по каскодной схеме на транзисторах VT1, VT2 и VT3, VT4 соответственно. На транзисторе VT5 собран синхронный фазовый детектор, преобразующий промежуточную частоту в звуковую. Преобразование происходит на второй гармонике генерируемых колебаний, так как контур L7C18C20 перестраивается конденсатором С20 в интервале 12,5…17,5 МГц. Избирательность обеспечивается действием ФАПЧ: при приближении частоты гетеродина к половинному значению частоты сигнала принимаемой станции происходит захват этой частоты и синхронное детектирование ЧМ [З]. При этом выходное напряжение 3Ч независимо от уровня входных ЧМ сигналов, что эквивалентно действию АРУ, а также подавляется амплитудная модуляция и импульсные помехи. Полосу 3Ч (примерно 3 кГц) определяет фильтр нижних частот (ФНЧ) R19C17. На выходе приемника можно применить RC или LC ФНЧ более высокого порядка, что дополнительно улучшит соотношение сигнал/шум.
Puc.2
Применение всего одного транзистора VT5 вместо многокаскадного ЧМ приемника резко снизило общий уровень шумов тракта. Определяющим здесь является то, что база этого транзистора по 3Ч через конденсатор С16 большой емкости (10 мкФ) соединена с общим проводом. Экспериментально установлено, что емкость этого конденсатора определяет работоспособность системы ФАПЧ. Для работы как гетеродина, так и смесителя достаточно, чтобы емкость была всего 10 000 пф. Однако при этом система ФАПЧ практически не работает и резко возрастает уровень 3Ч шумов транзистора VT5.
Выходной звуковой сигнал с уровнем несколько десятков милливольт может быть подан на простой усилитель 3Ч.
Принципиальная схема гетеродина приемника изображена на рис. 3. Гетеродин выполнен по традиционной схеме умножения частоты задающего генератора, который собран на транзисторе VT1 и работает на частоте 45 МГц — третьей механической гармонике кварцевого резистора ZQ1. Каскад на транзисторе VT2 — утроитель частоты. Его нагрузка — контур L2C8, настроенный на частоту 135 МГц. Каскад на транзисторе VT3 — усилительный. Контур L3C12 выделяет сигнал частотой 135 МГц. Второй утроитель частоты собран на транзисторе VT4. Его нагрузка — контур на элементах L4-L6, С17, С 18, С20 — выделяет сигнал частотой 405 МГц и подавляет побочные продукты умножения частоты. 4ерез цепь связи C19L7 сигнал подается на контур L8C21C22 дополнительно улучшающий фильтрацию спектра выходного сигнала, 4ерез петлю связи L9 колебания частотой 405 МГц поступают на выходной разъем XW1 и далее на смеситель.
Puc.3
Конструктивно приемник собран в двух корпусах, изготовленных из посеребренной латуни (меди) и разделенных на секции перегородками. Сигнальный блок выполнен объемно-печатным монтажом на плате. В гетеродине применен объемный монтаж на опорных штырях, изолированных от корпуса фтороплас-товыми втулками. Опорными элементами для цепей питания служат блокировочные конденсаторы С5, С7, С9, С 11, С 13, С15, С16.
Расположение основных элементов в блоках показано на рис. 4. Выводы элементов должны быть как можно короче, катушки L4, L5 и линии L6, L8 в блоке гетеродина припаивают непосредственно к выводам конденсаторов С17, CIS, C20-C22. Чтобы уменьшить размеры СВЧ колебательных систем, во входной цепи сигнального тракта и выходных цепях гетеродина применены спиральные резонаторы, имеющие длину во много раз меньше, чем полосковые
Puc.4
линии [4]. Линия L1 в радиочастотном блоке изготовлена из посеребренной медной полосы шириной 4 и толщиной 1 мм, свернутой в спираль диаметром 6,5 и шагом 2,5 мм. Число витков в спирали — 5, отводы сделаны от 1-го и 4-го витков. Линия L8 блока гетеродина выполнена аналогично, но без отводов. Петли связи L7, L9 сделаны в виде скоб из отрезков посеребренного медного провода диаметром 0,8 и длиной 30 мм (рис. 4). Резонатор L6 представляет собой посеребренную полосу размерами 48Х4Х1 мм. Отводы расположены на растоянии 6,5+9,5+16 мм (считая от конца, соединенного с корпусом).
Катушки L2, L3, L5, L7 в сигнальном блоке намотаны виток к витку проводом ПЭВ-2 0,5; L2 содержит 5+4 витка, L3, L5 — по 6+4, L7 — 12. В гетеродине катушки L2 и L3 имеют 2+1,5 витка, L4 и L5 — по 3 витка. L2 и L3 выполнены с шагом 2 мм посеребренным проводом диаметром 0,8 мм, L4, L5 — с шагом 4 мм посеребренным проводом диаметром 1,2 мм. Эти катушки намотаны на полистироловых каркасах диаметром 6,5 мм от трактов УПЧИ унифицированных телевизоров. Дроссели L4, L6 — ДМ-0,1. Конденсатор С20 сигнального блока изготовлен из подстроечного с воздушным диэлектриком и удлиненной осью; размещен непосредственно около контура L7C18.
Постоянные резисторы — МЛТ. Подстроечные конденсаторы — КПВМ, опорные — КО-2 или любые, подходящие по габаритам, емкостью 1000…6800 пф, остальные — КМ, КД. Конденсаторы С16, С22 в сигнальном блоке — К53-1 или К50-6.
Вместо диода ГИ401А можно применить ГИ401Б, АИ402А с любым буквенным индексом, вместо транзисторов ГТ313Б — КТ3128А, КТ3127А, КТ328Б. Транзистор ГТ31 IE (VT5 в сигнальном блоке) заменим на ГТ311И, КТ306Б, КТ312Б, КТ316А.
Приемник начинают налаживать с сигнального блока. К выходному разъему XW1 присоединяют усилитель 3Ч. Затем подключают источник питания и убеждаются в работе каскада на транзисторе VT5, для чего прикасаются отверткой к эмиттеру транзистора. При исправном транзисторе должен прослушиваться фон переменного тока. Далее к коллектору транзистора VT4 подключают антенну или генератор стандартных сигналов (ГСС) и перестройкой контура C20C18L7 добиваются прием! радиолюбительских станций ил» несущей частоты ГСС в диапазоне 28…30 МГц. При настройке на несущую должен наблюдаться захват и удержание частоты. При необходимости подбирают конденсаторы С18 и С19, Добиваясь устойчивого приема [З]. После этого антенну или ГСС подключают к базе транзистора VT3, а затем к точке соединения элементов VD1 и С2 и проверяют работоспособность тракта ПЧ. Контуры L2C3C4, L3C8R8, L5C14R16 настраивают так, чтобы полоса пропускания тракта ПЧ составляла 25…35 МГц,
Настройку блока гетеродина начинают с кварцевого генератора — должна быть устойчивая генерация на третьей механической гармонике кварцевого резонатора. В остальных каскадах контуры настраивают на частоты, указанные на рис. 3. Затем подключают выход блока гетеродина к смесителю сигнального блока и, подавая на антенный вход с ГСС несущую частоту в диапазоне 430… 440 МГц, перестройкой контура L7C20C18 добиваются приема сигнала. После этого уменьшают уровень сигнала на входе приемника до срыва удержания частоты и, подстраивая контуры L1C1 в сигнальном блоке и L6C20, L8C21C22 в гетеродине, получают надежный захват и удержание частоты сигнала. Эти операции повторяют до тех пор, пока не будет достигнуто минимальное значение входного сигнала, еще обеспечивающее удержание частоты. На этом настройку приемника можно считать законченной.
А. МИХЕЛЬСОН (UA6AFL) г. Краснодар
ЛИТЕРАТУРА
1. Поляков В. Радиосвязь с ФМ. — Радио, 1986, № 1, с. 24-26.
2. Поляков В. Т. Радиовещательные ЧМ приемники с фазовой авто-подстройкой.- М.: Радио и связь, 1983.
3. Захаров А. У KB ЧМ приемники с ФАПЧ.- Радио, 1985, № 12, с. 28-30.
4. Жеребцов И. Введение в технику дециметровых и сантиметровых волн.- Л.: Энергия, 1976.
В последнее время радиолюбители проявляют интерес к работе на УКВ с использованием частотной модуляции (ЧМ). Этому в немалой степени способствовало появление нескольких публикаций в журнале «Радио» [1-4]. Но пока всетаки еще мало описаний простых конструкций УКВ радиоприемников. Это сдерживает развитие и популяризацию ЧМ, а также организацию УКВ ЧМ радиолюбительских сетей. Разрабатывая описываемый здесь приемник, авторы преследовали несколько целей. Вопервых, хотелось создать несложную для повторения конструкцию. Это способствовало бы .росту числа наблюдателей на УКВ диапазонах и более интенсивному созданию УКВ ЧМ радиолюбительских сетей для местных связей. Вовторых, предлагалось использовать этот приемник в качестве дежурного и контрольного (в том числе для приема оперативной, технической и спортивной информации и контроля зa спорадическим прохождением радиоволн). Втретьих, была идея включить его в состав простой УКВ ЧМ радиостанции, использовать для работы с космической станцией «Мир». Кроме того, хотелось применить данный приемник для экспериментального приема цифровой информации. По нашему мнению, потавленные цели достигнуты. Появление в широкой продаже микросхем серии К74 позволило создать малогабаритную, универсальную, простую и легко повторяемую конструкцию с дотаточно высокими характерстиками. Использование в приемнике модуля УПЧЗ1М от телевизоров, включающего микросхему К174УР4 и фильтры, дало возможность сократить число намоточных элементов (контуров ПЧ). При этом, правда, тракт ПЧ получился относительно широкополосным (полоса пропускания примерно в три раза больше оптимальной). Но с этим вполне можно смириться, так как пока число работающих любительских ЧМ станций невелико и, как правило, все они работают на одной частоте. Приемник построен по супергетеродинной схеме с одним преобразованием частоты (рис. 1). Он работает в диапазоне частот 145,4…145,7 МГц. Чувствительность — около 5 мкВ. Промежуточная частота равна 6,5 МГц. Полоса пропускания по РЧ-ЗОО кГц, по ПЧ- 50 кГц. Входное сопротивление приемника — 75 0м. Выходная мощность тракта ЗЧ — не менее 0,5 Вт. Аппарат питается от источника напряжением 9 В и потребляет ток (при средней громкости приема) около 50 мА. Сигнал из антенны через конденсатор С1 поступает на контур L1C2, подключенный полностью к первому затвору полевого транзистора VT1, выполняющего функции усилителя РЧ. Изменяя подстроечным резистором R1 напряжение смещения на втором затворе этого транзистора, можно регулировать усиление каскада до необходимого или оптимального уровня. Контур L2C6, являющийся нагрузкой усилителя РЧ, подключен к стоку транзистора частично. С части витков катушки L2 сигнал РЧ поступает на смеситель, выполненный на микросхеме DA1. На ней же собран генератор плавного диапазона. Его частотозадающий контур L3C12 перестраивают варикапом VD2 в пределах 139,9…139,2 МГц. Колебания промежуточной частоты 6,5 МГц выделяются на контуре L4C15. Выбранная ПЧ определяется используемым модулем УПЧЗ1М. В составе модуля имеется двухкристальный полосовой фильтр, восьмикаскадный усилительограничитель ПЧ, детектор и предварительный усилитель 34, Активная часть модуля выполнена на микросхеме К174УР4. С выхода модуля (вывод 6) напряжение 34 через регулятор громкости (резистор R8) поступает на оконечный усилитель 34, собранный на микросхеме DA3, которая включена по более простой по сравнению с типовой схеме. Выход микросхемы DA3 (вывод 12) нагружен на громкоговоритель ВА1. Детали приемника в основном малогабаритные. Все постоянные резисторы, кроме R11 — ОМЛТ0,125. Резистор R11 можно изготовить самостоятельно, намотав нужное количество высокоомного провода (нихромового) на резистор МЛТ0,25. В качестве подстроечного резистора R1 можно использовать СПЗ38А, СПЗ41 и другие. Резисторы R4 и R8- практически любые, имеющиеся в наличие у радиолюбителя. Конденсаторы постоянной емкости можно использовать любые малогабаритные, например КМ; оксидные — К506 или более современные К5016. Конденсаторы С9-С11, С14 должны быть по возможности с малым значением ТКЕ. Подстровчные конденсаторы С2, С6 — МП, С12-с воздушным диэлектриком 1КПВМ, который с худшим результатом заменим на КПКМН (без изменения печатной платы). Вместо микросхемы К174ПС1 (DA1) можно использовать без доработки платы К174ПС4. Допустима замена модуля УПЧЗ1М наУПЧЗ2. Микросхема К174УН7 может быть заменена (с изменением рисунка печатной платы) на К174УН4, однако, последняя, как показал опыт, работает неустойчиво. Транзистор VT1 (КП306А) допускает замену на КП306 или КП350 с любым буквенным индексом. Стабилитрон VD1 — малогабаритный с напряжением стабилизации 5,6.. .8 В. Громкоговоритель ВА1 может быть любым с сопротивлением звуковой катушки в пределах 4…8 0м и мощностью 0,25…1 Вт. Катушки L1 и L2- бескаркасные с наружным диаметром 6 мм, намотаны посеребренным проводом диаметром 0,7 мм. Длина намотки катушки L1 — 9 мм, число витков 1+4, катушки L2 — 7 мм, а число витков 1+1+2. В обоих случаях отсчет витков ведется от вывода, соединенного с проводом питания. Катушка L3 намотана таким же проводом, что и L1, L2, на керамическом каркасе диаметром 5 мм (наматывают с натяжением) с последующей пропиткой клеем БФ2. Число витков — 4, длина намотки — 10 мм. Очень удобно для изготовления этой катушки использовать керамические каркасы от УКВ радиостанции «Марс». Катушка L4 намотана проводом ПЭЛШО 0,15 в броневом магнйтопроводе СБ9а. Она имеет 20 витков, отвод сделан от середины. Конструкция приемника может быть любой. Один из возможных вариантов оформления аппарата показан в начале статьи. Очень удобно, например, собрать приемник в корпусе бытового абонентского громкоговорителя, применив любой источник питания напряжением 8…12 В. Большинство радиоэлементов приемника установлено на печатной плате, выполненной из одностороннего фольгированного стеклотекстолита толщиной 1,5…2 мм. Размещение деталей показано на рис. 2, фотошаблона — на рис. 3. По размерам платы из дюралюминиевого сплава делаются основание, прикрепляемое к ней снизу посредством винтов МЗ и металлических втулок длиной 5 мм, которое играет роль экрана (рис. 4). В плате и основании следует просверлить отверстия для доступа к подстроечным элементам (С12, L4) и под крепежные детали. Микросхему DA3 крепят к печатной плате с помощью винтов М2,5 и втулок. Теплоотвод на микросхему можно не ставить. Для связи с внешними элементами в печатную плату следует впрессовать монтажные шпильки (или отрезки провода длиной 10…15 мм). Резистор R4 («Настройка») снабжают простейшей шкалой с делениями через 25 кГц. На плате со стороны деталей участок, где располагается микросхема DAI, контуры L3C12, L4C15 и некоторые другие детали, огораживают экраном из медной фольги толщиной 0,15… 0,5 мм (см. рис. 2). Высота экрана 30 мм. Для его крепления и пайки в плате предусмотрены отверстия. При исправных деталях налаживание приемника заключается в настройке колебательных контуров на соответствующую частоту. Для налаживания необходимы сигналгенератор, УКВ генератор, частотомер, работающий на частотах до 150 МГц, и генератор ЗЧ. Тракт звуковой частоты проверяют, подав с генератора 34 сигнал частотой 1000 Гц и амплитудой 50…100 мВ на верхний по схеме вывод регулятора громкости. Тракт ПЧ — 34 при исправных модуле и микросхеме DA3, как правило, работает сразу. При подключении к выводу 1 модуля УПЧЗ1М небольшого отрезка провода слышны радиовещательные станции, работающие на частотах возле 6,5 МГц. При налаживании тракта ПЧ-ЗЧ с помощью сигналгенератора на вход DA1 (вывод 8) подают частотномодулированный сигнал с амплитудой 5,.,10 мВ и частотой 6,5 МГц, Изменяя положение подстроечника катушки L4, добиваются максимальной громкости сигнала на выходе приемника. Если в приборе нет частотной модуляции, то контур L4C15 настраивают до исчезновения шипения в громкоговорителе. Далее контур L3C12 в ГПД настраивают на частоту в интервале 138,9… 139,2 МГц. Частотомер подключают к выводу 13 микросхемы DA1 через минимально возможную емкость конденсатора (1 …2 пФ). При наличии колебаний в контуре конденсатором С12 «вгоняют» ГПД в нужный диапазон частот при среднем положении переменного резистора R4. После этого проверяют перекрытие частот гетеродином, оно должно быть 300…500 кГц. При необходимости интервал перестройки можно изменить подбором конденсатора С14. Усилитель РЧ налаживают, подав сигнал рабочей частоты амплитудой около 100 мкВ на вход приемника. Движок резистора R1 при этом должен быть в среднем положении. Вначале настраивают контур L1C2 по максимуму выходного сигнала, а затем, уменьшив уровень сигнала с УКВ генератора до 10 мкВ, контур L2C6. По уровню выходного сигнала уточняют положение отводов катушек LI, L2 и положение движка резистора R1. Окончательно настраивают приемник с наружной антенной (с входным сопротивлением 75 0м) во время работы любительских радиостанций. С использованием комнатной антенны в виде вертикального штыря длиной около 0,5 м авторы статьи наблюдали по приемнику за работой многих любительских станций УКВ ЧМ радиосети г. Твери. ЛИТЕРАТУРА: Е. ФРОЛОВ (UA3ICO) |