Site Loader

Содержание

Вращающийся электролизер для получения водорода и кислорода

Изобретение относится к конструкциям электролизеров для получения водорода и кислорода путем электролиза воды. Устройство для электролитического получения водорода и кислорода содержит технологические линии подачи воды и электролита и отвода продуктов электролиза, электролизер, включающий корпус с верхней и нижней крышками, установленный на соединенном с приводом вращения валу, и короткозамкнутые электроды, один из которых расположен на валу, а другой образован внутренней поверхностью корпуса. Линия отвода продуктов электролиза содержит последовательно соединенные устройство откачивания продуктов электролиза, газовый анализатор и сепаратор, а линия подачи воды и электролита содержит емкости для воды и электролита, устройство регулирования расхода воды, вентили, смеситель и теплообменник. Устройство снабжено магнитной системой, включающей механически соединенные магнитопроводом постоянные неподвижные магниты в виде дисков, расположенных параллельно над верхней и нижней крышками корпуса, а также двумя электрически соединенными с валом и корпусом токоведущими дисками, соответствующими ширине неподвижных магнитов, покрывающими верхнюю и нижнюю крышки.

В токоведущих дисках выполнены радиальные прорези, а крышки выполнены из электроизоляционного материала. Изобретение позволяет снизить рабочую скорость вращения электролизера, увеличить производительность и сократить потребляемую электроэнергию. 2 ил.

 

Предлагаемое техническое решение относится к области электрохимии, а именно к конструкциям электролизеров для получения водорода и кислорода путем электролиза воды. Известна «Установка для разложения воды электролизом» (патент РФ №2224051, опубл. 20.02.2004), содержащая технологические линии подачи воды и электролита и отвода продуктов электролиза, электролизер, включающий корпус, установленный на соединенном с приводом вращения валу с каналами подвода раствора электролита и отвода продуктов электролиза, канал отвода раствора электролита, короткозамкнутые электроды, один из которых расположен на валу, а другой образован внутренней поверхностью корпуса, и теплообменник, а также верхний и нижний подшипниковые узлы, в которых вертикально расположен вал.

Внешний контур циркуляции раствора электролита содержит кольцевую камеру раствора электролита с внутренней поверхностью в форме улитки, установленную на верхнем подшипниковом узле неподвижно, датчик наличия раствора электролита и смеситель раствора электролита, соединенный с линиями подачи электролита и воды и каналом подвода раствора электролита, корпус электролизера выполнен из токопроводящего материала и снабжен нижней и верхней крышками, выполненными из токопроводящего материала, канал отвода раствора электролита выполнен в верхней крышке и снабжен регулируемым клапаном, сообщающимся с кольцевой камерой раствора электролита, внутренняя поверхность корпуса снабжена, по меньшей мере, одной направляющей канавкой, линия подачи воды снабжена устройством регулирования расхода воды, линия отвода продуктов электролиза снабжена устройством для откачивания продуктов электролиза, теплообменник расположен во внешнем контуре циркуляции раствора электролита, а датчик наличия раствора электролита соединен с устройством регулирования расхода воды и приводом вращения вала.
К недостаткам известной установки относится необходимость в больших рабочих скоростях вращения электролизера, что делает устройство малопригодным для промышленного применения. Сюда же можно отнести сложность конструкции, малую производительность.

Наиболее близким к предлагаемому техническому решению является «Устройство для электролитического получения водорода и кислорода» (патент РФ №2309198, опубл. 27.10.2007, БИ №30), содержащее технологические линии подачи воды и отвода продуктов электролиза, электролизер, включающий корпус с верхней и нижней крышками, выполненными из электропроводящего материала, установленный на соединенном с приводом вращения валу с каналами подвода раствора электролита и отвода продуктов электролиза, короткозамкнутые электроды, один из которых расположен на валу, а другой образован внутренней поверхностью корпуса. При этом линия отвода продуктов электролиза содержит последовательно соединенные устройство откачивания продуктов электролиза и сепаратор, а линия подачи воды и электролита содержит емкости для воды и электролита, устройство регулирования расхода воды, вентили, смеситель и теплообменник.

Устройство снабжено электромагнитной системой, включающей неподвижные магниты в виде дисков, установленные параллельно над верхней и под нижней крышками корпуса, механически соединенный с ними магнитопровод с обмоткой возбуждения, электрически соединенной с генератором импульсов и преобразователем напряжения, на линии отвода продуктов электролиза установлен газовый анализатор, вход которого соединен с выходом устройства откачивания продуктов электролиза, а выход соединен с устройством регулирования расхода воды, при этом короткозамкнутый электрод, расположенный на валу, выполнен в виде цилиндра с радиальными каналами.

К недостаткам данного устройства относится также требование высоких рабочих скоростей вращения электролизера, малая производительность и значительное потребление электроэнергии, необходимое для питания электромагнитной системы.

Технической задачей, решаемой предлагаемым техническим решением, является упрощение конструкции, снижение рабочей скорости вращения электролизера, увеличение производительности и сокращение потребляемой электроэнергии.

Поставленная задача решается тем, что известное устройство для электролитического получения водорода и кислорода, содержащее технологические линии подачи воды и электролита и отвода продуктов электролиза, электролизер, включающий корпус с верхней и нижней крышками, установленный на соединенном с приводом вращения валу с каналами подвода раствора электролита и отвода продуктов электролиза, короткозамкнутые электроды, один из которых расположен на валу, а другой образован внутренней поверхностью корпуса, при этом линия отвода продуктов электролиза содержит последовательно соединенные устройство откачивания продуктов электролиза и сепаратор, а линия подачи воды и электролита содержит емкости для воды и электролита, устройство регулирования расхода воды, вентили, смеситель и теплообменник, на линии отвода продуктов электролиза установлен газовый анализатор, вход которого соединен с выходом устройства откачивания продуктов электролиза, а выход соединен с устройством регулирования расхода воды, при этом короткозамкнутый электрод, расположенный на валу, выполнен в виде цилиндра с радиальными каналами, согласно изобретению снабжено магнитной системой, включающей механически соединенные магнитопроводом постоянные неподвижные магниты в виде дисков, расположенных параллельно над верхней и под нижней крышками корпуса, а также двумя электрически соединенными с валом и корпусом токоведущими дисками, покрывающими верхнюю и нижнюю крышки с выполненными в них радиальными прорезями, соответствующими ширине неподвижных магнитов, при этом крышки выполнены из электроизоляционного материала.

Предлагаемое устройство схематично представлено на фиг.1. На фиг.2 представлено изображение токоведущего диска с радиальными прорезями.

Устройство содержит электролизер 1, включающий цилиндрический корпус 2, выполненный из электропроводящего немагнитного материала с верхней 3 и нижней 4 крышками, выполненными из электроизоляционного материала, установленный на вертикальном валу 5, выполненном из токопроводящего немагнитного материала и закрепленном в верхнем 6 и в нижнем 7 подшипниковых узлах. Вал 5 соединен с приводом вращения 8 и внутри имеет каналы подвода раствора электролита или воды 9 и отвода продуктов электролиза 10. К наружным поверхностям крышек 3 и 4 прилегают верхний 11 и нижний 12 токоведущие диски с радиальными прорезями. На валу 5 внутри электролизера расположен короткозамкнутый электрод 13 с радиально расположенными в нем каналами 14 (например, анод), выполненный из электропроводящего немагнитного материала. Внутренняя поверхность корпуса 2 образует другой электрод (например, катод).

Канал подачи раствора электролита или воды 9 соединен с линией подачи воды и электролита 15, с теплообменником 16, смесителем 17, с вентилем 18, с емкостью для электролита 19, с вентилем 20, с устройством регулирования расхода воды 21 и с емкостью для воды 22. Теплообменник 16 соединен также со сливным вентилем 23. Канал отвода продуктов электролиза 10 соединен посредством технологической линии отвода продуктов электролиза 24 с устройством откачивания продуктов электролиза 25, соединенным с газовым анализатором 26, электрически соединенным с устройством регулирования расхода воды 21 и с сепаратором 27 для разделения кислородно-водородной смеси на кислород и водород. Электролизер снабжен магнитной системой, включающей верхний 28 и нижний 29 постоянные неподвижные магниты в виде дисков и механически соединенный с ними магнитопровод 30. На поверхности электролизера, контактирующей с электролитом, нанесены специальные покрытия, улучшающие электрические свойства электропроводящих частей и защищающие материалы от коррозии.

Устройство работает следующим образом. Электролит из емкости для электролита 19 через открытый вентиль 18 попадает в смеситель 17, затем в теплообменник 16, затем по технологической линии подачи электролита 15 — в канал подачи раствора электролита 9, расположенный в валу 5, и в электролизер 1. Вентиль 20 на линии подачи воды закрыт. После наполнения электролизера 1 раствором электролита вентиль 18 закрывают и включают привод вращения 8 вала 5, который приводит электролизер 1 во вращение, разгоняя его до начала процесса электролиза. При достаточно высокой производительности установки газовый анализатор 26 вырабатывает запирающий сигнал для устройства регулирования расхода воды 21, и технологическая линия подачи воды 15 в электролизер 1 перекрывается. Открывают вентиль 20. Устройство переходит в режим автоматического регулирования подачи воды из емкости для воды 22 через устройство регулирования расхода воды 21, открытый вентиль 20, смеситель раствора электролита 17, теплообменник 16 и канал подачи раствора электролита 9 в электролизер 1. Во вращающемся электролизере 1 в процессе выработки водорода и кислорода объем раствора электролита и соответственно его концентрация постоянно изменяются: концентрация раствора электролита повышается, а объем уменьшается. Граница раздела раствора электролита и газовой среды смещается к периферии электролизера 1. Электрод 13, расположенный на валу 5, оказывается в газовой среде, и электролиз прекращается. Газовый анализатор 26 подает сигнал на открытие устройства регулирования расхода воды 21. Из емкости для воды 22 по технологической линии подачи воды 15 в электролизер 1 поступает подогретая в теплообменнике 16 вода. Далее процесс повторяется. Каждый из электродов в электролизере 1 может выполнять функцию анода или катода в зависимости от химического состава используемого электролита.

В процессе вращения под действием центробежной силы в электролизере 1 создается поле искусственной силы тяжести, под воздействием которого катионы и анионы в виде гидратов, имеющих существенно отличающуюся собственную массу, разделяются. Более тяжелые ионы, например катионы, образуют около внутренней поверхности корпуса 2 (катода) отрицательный пространственный электрический заряд, который индуцирует в корпусе 2, выполненном из токопроводящего материала, адекватный заряд из электронов проводимости. Легкие ионы сконцентрируются в области между катодом и анодом 13, образуя свой пространственный положительный заряд, при этом, если величина его потенциала окажется достаточной для создания электрического поля, способного деформировать гидратные оболочки легких ионов, возникшее равновесие будет нарушено на аноде 13. Легкие ионы приблизятся к поверхности анода 13 и разрядятся. Тяжелые ионы также отдадут свой заряд катоду, и между электродами через верхний 11 и нижний 12 токоведущие диски с радиальными прорезями и вал 5, выполненные из токопроводящих материалов, как по короткозамкнутому контуру, потечет постоянный электрический ток. Ионы электролита восстановятся, образуя водород и кислород, а промежуточные продукты электролиза вступят с водой во вторичные реакции. Восстановленные водород и кислород вытесняются к центру электролизера 1 и в виде кислородно-водородной смеси через канал отвода продуктов электролизера 10, устройство откачивания продуктов электролиза 25 и газовый анализатор 26 отводят потребителю.

Для разделения кислородно-водородной смеси на кислород и водород в устройстве может быть предусмотрен сепаратор 27, из которого разделенные газы направляют к потребителям кислорода и водорода.

В подобных известных устройствах процесс электролиза происходит под действием только центробежного поля, что предполагает большие угловые частоты вращения электролизера (3000-5000 радиан в секунду). Технически это труднореализуемо. В подобных известных устройствах следующего поколения для снижения рабочих скоростей вращения электролизера и повышения производительности применяется электромагнитная система с электропитанием от внешнего источника.

В предлагаемом устройстве применена магнитная система с постоянными магнитами 28 и 29, что исключает потребление электроэнергии извне.

На движущуюся в постоянном магнитном поле электрически заряженную частицу воздействует сила Лоренца

F=B·V·q,

где В — магнитная индукция, Тл;

V -линейная скорость, м/с;

q -величина электрического заряда, К.

Векторы сил, действующих на отрицательные и положительные частицы, направлены противоположно и перпендикулярно к вектору линейной скорости так, что тяжелые ионы стремятся к периферии электролизера, а легкие — к центру.

Для увеличения возникающей разности потенциалов между электродами в предлагаемом устройстве применяются токоведущие диски 11 и 12 с радиальными прорезями. Диски прилегают к наружным поверхностям крышек 3 и 4 корпуса 2 и соединяют электрически корпус с валом 5 и соответственно с расположенными на них электродами. При вращении токоведущих дисков 11 и 12 в постоянном магнитном поле в них возникает ЭДС:

E=ω·B(r2-r1),

где ω -угловая частота вращения диска, 1/с,

В — магнитная индукция, Тл,

r1 — расстояние от оси вала 5 до ближайшего края радиальной прорези,

r2 — расстояние от оси вала 5 до отдаленного края радиальной прорези.

Нужный знак ЭДС токоведущих дисков 11 и 12 реализуется либо изменением направления вращения электролизера 1, либо изменением полюсов магнитной системы, состоящей из магнитопровода 30 и постоянных магнитов 28, 29. В результате применения токоведущих дисков удается снизить рабочие скорости электролизера до 500÷700 радиан в секунду и значительно повысить производительность.

Процесс разложения воды на водород и кислород за счет восстановления их ионов сопровождается уменьшением энтальпии раствора электролита, в результате чего температура раствора постоянно снижается, и, если не восполнять теплопотери, то раствор замерзнет и процесс прекратится. По этой причине раствор необходимо подогревать. С этой целью в технологической линии подвода воды установлен теплообменник 16. Тепловую энергию к теплообменнику 16 могут подводить в виде выхлопных газов или антифриза от двигателя внутреннего сгорания или в ином виде. Для обеспечения техники безопасности устройство может быть снабжено защитным кожухом. В предлагаемом устройстве происходит преобразование механической, электрической и тепловой энергий в химическую энергию.

Газовый анализатор 26 может быть использован типа АВП-02 или АКПН-02, выполняющий и функцию датчика. В качестве устройства откачивания продуктов электролиза 25 можно задействовать электровакуумный насос, устройства регулирования расхода воды 21 — электромагнитный клапан.

Предлагаемое устройство позволяет повысить производительность установки, снизить рабочие угловые частоты вращения электролизера и упростить конструкцию и значительно снизить потребление электроэнергии. Устройство может быть изготовлено с использованием традиционных конструкционных материалов, комплектующих и известных электролитов и может быть использовано в агрегатах двигателей внутреннего сгорания транспортных средств, повышая их топливную экономичность, с паровыми турбинами тепловых и атомных электростанций, для утилизации промышленного тепла в металлургии и др.

Устройство для электролитического получения водорода и кислорода, содержащее технологические линии подачи воды и электролита и отвода продуктов электролиза, электролизер, включающий корпус с верхней и нижней крышками, установленный на соединенном с приводом вращения валу с каналами подвода раствора электролита и отвода продуктов электролиза, короткозамкнутые электроды, один из которых расположен на валу, а другой образован внутренней поверхностью корпуса, при этом линия отвода продуктов электролиза содержит последовательно соединенные устройство откачивания продуктов электролиза и сепаратор, а линия подачи воды и электролита содержит емкости для воды и электролита, устройство регулирования расхода воды, вентили, смеситель и теплообменник, на линии отвода продуктов электролиза установлен газовый анализатор, вход которого соединен с выходом устройства откачивания продуктов электролиза, а выход соединен с устройством регулирования расхода воды, при этом короткозамкнутый электрод, расположенный на валу, выполнен в виде цилиндра с радиальными каналами, отличающееся тем, что оно снабжено магнитной системой, включающей механически соединенные магнитопроводом постоянные неподвижные магниты в виде дисков, расположенных параллельно над верхней и под нижней крышками корпуса, а также двумя электрически соединенными с валом и корпусом токоведущими дисками, покрывающими верхнюю и нижнюю крышки, с выполненными в них радиальными прорезями, соответствующими ширине неподвижных магнитов, при этом крышки выполнены из электроизоляционного материала.

Поезд на магнитной подушке, летающий поезд, маглев

Поезд на магнитной подушке, летающий поезд, маглев.

Технология находится в процессе разработки!

Поезд на магнитной подушке – летающий поезд, магнитоплан или маглев – это поезд, удерживаемый над полотном дороги, движимый и управляемый силой электромагнитного либо магнитного поля.

Описание

Поезд на электромагнитной подвеске (EMS) 

Поезд на электродинамической подвеске (EDS)

Системы магнитной левитации поезда на постоянных магнитах Inductrack

Система RusMaglev

Описание:

Поезд на магнитной подушке – летающий поезд, магнитоплан или маглев (от англ. magnetic levitation – «магнитная левитация») – это поезд, удерживаемый над полотном дороги, движимый и управляемый силой электромагнитноголибо магнитного поля.

В отличие от традиционных железнодорожных поездов, в процессе движения маглев не касается поверхности рельса. Поэтому скорость данного транспорта может быть сопоставима со скоростью самолета. На сегодняшний день максимальная скорость такого поезда – 581 км/ч (Япония).

На практике реализованы две системы магнитной левитации: на электромагнитной подвеске (EMS) и на электродинамической подвеске (EDS). Другие системы: на постоянных магнитах существуют еще только в теории, а система RusMaglev находится в процессе разработки.

Поезд на электромагнитной подвеске (EMS) :

Электромагнитная подвеска (EMS) позволяет поезду левитировать, используя электромагнитное поле с изменяющейся по времени силой. Система представляет собой путь, сделанный из проводника и систему электромагнитов, установленных на поезде.

Достоинства этой системы:

— магнитные поля внутри и снаружи транспортного средства меньше, чем у системы EDS,

экономически выгодная реализуемая и доступная технология,

— высокие скорости (500 км/ч),

нет нужды в дополнительных системах подвески.

Недостатки этой системы:

нестабильность: требуется постоянный контроль и корректировка колебания магнитного поля путей и состава,

процесс выравнивания по допускам внешними средствами может привести к нежелательной вибрации.

Поезд на электродинамической подвеске (EDS):

Система на электродинамической подвеске (EDS) создает левитацию изменяющимся магнитным полем в путях и поля, создаваемого магнитами на борту состава поезда.

Достоинства этой системы:

— развитие сверхбольших скоростей (603 км/ч) и способность выдерживать большие нагрузки.

Недостатки этой системы:

 невозможность левитировать на низких скоростях, необходимость в большой скорости, чтобы была достаточно отталкивающая сила хотя бы для удержания на весу поезда (поэтому подобные поезда используют колеса),

сильное магнитное излучение вредно и небезопасно для пассажиров со слабым здоровьем и с кардиостимуляторами, для магнитных носителей данных.

Системы магнитной левитации поезда на постоянных магнитах Inductrack:

В настоящее время актуальной к воплощению является система на постоянных магнитах Inductrack, которая является разновидностью системы EDS.

Достоинства этой системы:

— потенциально самая экономичная система,

низкая мощность для активации магнитов,

— магнитное поле локализовано ниже вагона,

поле левитации генерируется уже при скорости 5 км/ч,

— при сбое питания вагоны останавливаются безопасно,

множество постоянных магнитов может оказаться более эффективным, чем электромагниты.

Недостатки этой системы:

требуются колеса или специальный сегмент пути, поддерживающий поезд при его остановке.

Система RusMaglev:

Левитация RusMaglev является российской разработкой. Левитация создается постоянными магнитами (неодим-железо-бор) на борту состава поезда. Пути выполнены из алюминия. Система не требует абсолютно никакого подвода электричества.

Достоинства этой системы:

— экономичнее высокоскоростной магистрали,

не требуется электричества,

— высокие скорости — более 400 км/ч,

поезд левитирует при нулевой скорости,

— перевозка грузов в 2 раза дешевле, чем перевозка грузов по существующей железной дороге.  

Примечание: © Фото https://www.pexels.com

отдел технологий

г. Екатеринбург и Уральский федеральный округ

Звони: +7-908-918-03-57

или пиши нам здесь…

карта сайта

Войти    Регистрация

В чате:

Виктор Потехин

Поступила просьба разместить технологию обработки торфа электрогидравлическим эффектом.

Мы ее выполнили!

2018-04-06 19:21:11

2018-04-06 19:21:52

Виктор Потехин

Поступил вопрос о лазерной очистке металла. Дан ответ. В частности, указана более дешевая и эффективная технология.

2018-04-11 23:18:19

2018-04-18 20:53:11

Виктор Потехин

Поступил вопрос по термостабилизаторам грунтов в условиях вечной мерзлоты. Дан ответ.

2018-04-29 09:51:54

Виктор Потехин

Поступил вопрос по стеклопластиковым емкостям. Дан ответ.

2018-05-04 06:47:56

Виктор Потехин

Поступил вопрос по гидропонным многоярусным установкам. Дан ответ. В частности указаны более прорывные технологии в сельском хозяйстве.

2018-05-16 20:22:35

Виктор Потехин

Поступил вопрос по выращиванию сапфиров касательно технологии и оборудования. Дан ответ.

2018-05-16 20:23:28

Виктор Потехин

Поступил вопрос касательно мотор-колеса Дуюнова и мотор-колеса Шкондина, что лучше. Дан ответ.

2018-05-16 20:30:50

Виктор Потехин

Поступил вопрос об организациях, которые осуществляют очистку металла от ржавчины. Дан ответ: оставляйте свои заявки внизу в комментариях. Производители сами найдут вас и свяжутся.

2018-05-17 10:35:28

Виктор Потехин

Поступил вопрос касательно санации трубопровода. Дан ответ. В частности указана более инновационная технология.

2018-05-17 18:10:26

Виктор Потехин

Поступил вопрос касательно сотрудничества, а именно: определения направлений развития предприятия и составления планов будущего развития. В настоящее время ведутся переговоры. Будет проанализирована исходная информация, совместно выберем инновационные направления и составим планы.

2018-05-18 10:34:05

Виктор Потехин

Поступил вопрос касательно электрохимических станков. Дан ответ.

2018-05-18 10:35:57

Виктор Потехин

Поступил вопрос относительно пиролизных установок для сжигания ТБО. Дан ответ. В частности, разъяснено, что существуют разные пиролизные установки: для сжигания 1-4 класса опасности и остальные. Соответственно разные технологии и цены.

2018-05-18 11:06:55

Виктор Потехин

К нам поступают много заявок на покупку различных товаров. Мы их не продаем и не производим. Но мы поддерживаем отношения с производителями и можем порекомендовать, посоветовать.

2018-05-18 11:08:11

Виктор Потехин

Поступил вопрос по гидропонному зеленому корму. Дан ответ: мы не продаем его. Предложено оставить заявку в комментариях для того, чтобы его производители выполнили данную заявку.

2018-05-18 17:44:35

Виктор Потехин

Поступает очень много вопросов по технологиям. Просьба задавать эти вопросы внизу в комментариях к записям.

2018-05-23 07:24:36

Для публикации сообщений в чате необходимо авторизоваться

маглев поезд на магнитной подушке принцип работы видео китай скорость шанхай устройство ссср
японские китайские поезда на магнитной подушке в японии в россии китай в шанхае в москве игрушка
скорость поездов на магнитной подушке
маглев скоростной поезд на магнитной подушке
сон летающий поезд мультик франция сканворд dahir insaat
летают ли поезда песня
поезд который умеет летать
летающие поезда будущего в россии в японии
концепция летающего поезда
скачать музыку летать поезда
шанхайский маглев поезд шанхай расписание скорость 2018 видео япония в россии
ветрогенератор маглев схема википедия время работы стоимость китай
модель маглева
русский российский японский технология маглев линия цена купить оренбург
сколько стоит прокладка маглев колеи

Количество просмотров с 26 марта 2018 г. : 3

comments powered by HyperComments
Источник публикации

Читайте также

Посмотрите это видео и решите сами

исбман
Избиратель (50+ постов)